Sample records for dissolution tests showed

  1. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models.

    PubMed

    Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar

    2017-01-01

    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.

  2. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models

    PubMed Central

    Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar

    2017-01-01

    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible. PMID:28442890

  3. The differences between the branded and generic medicines using solid dosage forms: In-vitro dissolution testing

    PubMed Central

    Al Ameri, Mubarak Nasser; Nayuni, Nanda; Anil Kumar, K.G.; Perrett, David; Tucker, Arthur; Johnston, Atholl

    2011-01-01

    Introduction Dissolution is the amount of substance that goes into solution per unit time under standardised conditions of liquid/solid interface, solvent composition and temperature. Dissolution is one of the most important tools to predict the in-vivo bioavailability and in some cases to determine bioequivalence and assure interchangeability. Aim To compare the differences in dissolution behaviour of solid dosage forms between innovators (reference products) and their generic counterparts (tested products). Methods Four replicates for each batch of 37 tested medicines was carried out using A PT-DT70 dissolution tester from Pharma Test. A total of 13 branded medicines and 24 generic counterparts were obtained locally and internationally to detect any differences in their dissolution behaviour. They were tested according to the British Pharmacopeia, European Pharmacopeia and the US Pharmacopeia with the rate of dissolution determined by ultra-violet Spectrophotometery. Results Most tested medicines complied with the pharmacopoeial specifications and achieved 85% dissolution in 60 min. However, some generic medicines showed significant differences in dissolution rate at 60 and 120 min. Many generic medicines showed a slower dissolution rate than their branded counterparts such as the generic forms of omeprazole 20 mg. Some showed an incomplete dissolution such as the generic form of nifedipine 10 mg. Other generics showed faster dissolution rate than their branded counterpart such as the generic forms of meloxicam 15 mg. Moreover, some generics from different batches of the same manufacturer showed significant differences in their dissolution rate such as the generic forms of meloxicam 7.5 mg. Nevertheless, some generic medicines violated the EMA and the FDA guidelines for industry when they failed to achieve 85% dissolution at 60 min, such as the generic form of diclofenac sodium 50 mg. Conclusion Most medicines in this study complied with the pharmacopeial limits. However, some generics dissolved differently than their branded counterparts. This can clearly question the interchangeability between the branded and its generic counterpart or even among generics. PMID:25755988

  4. Developing a quality by design approach to model tablet dissolution testing: an industrial case study.

    PubMed

    Yekpe, Ketsia; Abatzoglou, Nicolas; Bataille, Bernard; Gosselin, Ryan; Sharkawi, Tahmer; Simard, Jean-Sébastien; Cournoyer, Antoine

    2018-07-01

    This study applied the concept of Quality by Design (QbD) to tablet dissolution. Its goal was to propose a quality control strategy to model dissolution testing of solid oral dose products according to International Conference on Harmonization guidelines. The methodology involved the following three steps: (1) a risk analysis to identify the material- and process-related parameters impacting the critical quality attributes of dissolution testing, (2) an experimental design to evaluate the influence of design factors (attributes and parameters selected by risk analysis) on dissolution testing, and (3) an investigation of the relationship between design factors and dissolution profiles. Results show that (a) in the case studied, the two parameters impacting dissolution kinetics are active pharmaceutical ingredient particle size distributions and tablet hardness and (b) these two parameters could be monitored with PAT tools to predict dissolution profiles. Moreover, based on the results obtained, modeling dissolution is possible. The practicality and effectiveness of the QbD approach were demonstrated through this industrial case study. Implementing such an approach systematically in industrial pharmaceutical production would reduce the need for tablet dissolution testing.

  5. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    PubMed

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  6. Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

    PubMed Central

    Fussell, Andrew L.; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J.; Offerhaus, Herman L.

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833

  7. The impact of calcium carbonate as pore forming agent and drug entrapment method towards drug dissolution mechanism of amoxicillin trihydrate encapsulated by chitosan-methyl cellulose semi-IPN hydrogel for floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Dewantara, Fauzi; Budianto, Emil

    2018-04-01

    Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.

  8. Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4).

    PubMed

    Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-06-01

    To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations. Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets. PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems. Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.

  9. Effect of drug loading method against drug dissolution mechanism of encapsulated amoxicillin trihydrate in matrix of semi-IPN chitosan-poly(N-vinylpyrrolidone) hydrogel with KHCO3 as pore forming agent in floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Fimantari, Khansa; Budianto, Emil

    2018-04-01

    Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.

  10. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  11. Dissolution Failure of Solid Oral Drug Products in Field Alert Reports.

    PubMed

    Sun, Dajun; Hu, Meng; Browning, Mark; Friedman, Rick L; Jiang, Wenlei; Zhao, Liang; Wen, Hong

    2017-05-01

    From 2005 to 2014, 370 data entries of dissolution failures of solid oral drug products were assessed with respect to the solubility of drug substances, dosage forms [immediate release (IR) vs. modified release (MR)], and manufacturers (brand name vs. generic). The study results show that the solubility of drug substances does not play a significant role in dissolution failures; however, MR drug products fail dissolution tests more frequently than IR drug products. When multiple variables were analyzed simultaneously, poorly water-soluble IR drug products failed the most dissolution tests, followed by poorly soluble MR drug products and very soluble MR drug products. Interestingly, the generic drug products fail dissolution tests at an earlier time point during a stability study than the brand name drug products. Whether the dissolution failure of these solid oral drug products has any in vivo implication will require further pharmacokinetic, pharmacodynamic, clinical, and drug safety evaluation. Food and Drug Administration is currently conducting risk-based assessment using in-house dissolution testing, physiologically based pharmacokinetic modeling and simulation, and post-market surveillance tools. At the meantime, this interim report will outline a general scheme of monitoring dissolution failures of solid oral dosage forms as a pharmaceutical quality indicator. Published by Elsevier Inc.

  12. Impact of vibration and agitation speed on dissolution of USP prednisone tablets RS and various IR tablet formulations.

    PubMed

    Seeger, Nicole; Lange, Sigrid; Klein, Sandra

    2015-08-01

    Dissolution testing is an in vitro procedure which is widely used in quality control (QC) of solid oral dosage forms and, given that real biorelevant test conditions are applied, can also be used as a predictive tool for the in vivo performance of such formulations. However, if a dissolution method is intended to be used for such purposes, it has to deliver results that are only determined by the quality of the test product, but not by other variables. In the recent past, more and more questions were arising on how to address the effects of vibration on dissolution test results. The present study was performed to screen for the correlation of prednisone dissolution of USP Prednisone Tablets RS with vibration caused by a commercially available vibration source as well as to investigate how drug release from a range of immediate release formulations containing class 1-4 drugs of the biopharmaceutical classification scheme is affected by vibration when performing dissolution experiments at different agitation rates. Results of the present study show that the dissolution process of oral drug formulations can be affected by vibration. However, it also becomes clear that the degree of which a certain level of vibration impacts dissolution is strongly dependent on several factors such as drug properties, formulation parameters, and the design of the dissolution method. To ensure the establishment of robust and predictive dissolution test methods, the impact of variation should thus be considered in method design and validation.

  13. Development and Validation of New Discriminative Dissolution Method for Carvedilol Tablets

    PubMed Central

    Raju, V.; Murthy, K. V. R.

    2011-01-01

    The objective of the present study was to develop and validate a discriminative dissolution method for evaluation of carvedilol tablets. Different conditions such as type of dissolution medium, volume of dissolution medium and rotation speed of paddle were evaluated. The best in vitro dissolution profile was obtained using Apparatus II (paddle), 50 rpm, 900 ml of pH 6.8 phosphate buffer as dissolution medium. The drug release was evaluated by high-performance liquid chromatographic method. The dissolution method was validated according to current ICH and FDA guidelines using parameters such as the specificity, accuracy, precision and stability were evaluated and obtained results were within the acceptable range. The comparison of the obtained dissolution profiles of three different products were investigated using ANOVA-based, model-dependent and model-independent methods, results showed that there is significant difference between the products. The dissolution test developed and validated was adequate for its higher discriminative capacity in differentiating the release characteristics of the products tested and could be applied for development and quality control of carvedilol tablets. PMID:22923865

  14. Modeling solid-state transformations occurring in dissolution testing.

    PubMed

    Laaksonen, Timo; Aaltonen, Jaakko

    2013-04-15

    Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Preparation and in vitro/in vivo Evaluation of Lacidipine by Adsorption onto Fumed Silica Using Supercritical Carbon Dioxide.

    PubMed

    Geng, Yajie; Fu, Qiang; Guo, Bei; Li, Yun; Zhang, Xiangrong; Wang, Xianglin; Zhang, Tianhong

    2016-01-01

    The aim of this study was to design a silica-supported solid dispersion of lacidipine (LCDP) to enhance the dissolution rate and oral absorption using supercritical CO2 (scCO2) as a solvent. The formulation was characterized using differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and fourier transformed infrared spectroscopy. In the dissolution test, LCDP-scCO2 formulation showed a significantly enhanced dissolution compared with LCDPsilica physical mixture and a faster dissolution rate than Lacipil® under different dissolution conditions. In an in vivo test, the area under concentration-time curve and Cmax of LCDP-scCO2 formulation was 9.23 and 23.78 fold greater than LCDP-silica physical mixture (1:15, w/w), respectively, whereas the corresponding values were 1.92 and 2.80 fold greater than Lacipil®, respectively. Our results showed that the solid dispersion prepared by supercritical fluids technology is a feasible method to enhance the oral bioavailability of LCDP.

  16. [Comparison in dissolution behavior of ethical and over-the counter scopolamine butylbromide].

    PubMed

    Suzuki, Ichie; Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2011-01-01

    Marketing authorization holders do not disclose any information on the pharmaceutical properties of over-the-counter drugs (OTC). When a drug is switched from a prescription drug to OTC, pharmacists can acquire that information from the corresponding ethical drug (ED) through the package insert, interview form, and so on. However, the pharmaceutical equivalence between ED and OTC is unclear. In this study, we examined the drug dissolution behavior of both ED and OTCs containing scopolamine butylbromide. Dissolution tests were performed by the paddle method using Japanese Pharmacopeia (JP) XV test fluids at pH 1.2, 4.0 and 6.8 and water based on the guidelines for bioequivalence studies of generic products. The dissolution profiles of OTCs differed significantly from ED showing a similarity factor (f2) value ranging from 8.9 to 42.9. Time until 85% dissolution ranged from 23 to 95 min and from 17 to 174 min at pH 1.2 and pH 6.8, respectively. Then JP XV disintegration tests were conducted to investigate differences in the disintegration process. The disintegration time of preparations showing delayed dissolution was prolonged compared to that of others, suggesting that the disintegration of the tablet or capsule is one of the important factors affecting the drug dissolution. These differences in the disintegration and drug dissolution might cause differences in the bioavailability of the drug. For patient safety, more detailed product information of OTCs should be supplied by the manufacturer, and not be assumed from that of corresponding ED.

  17. Validation of Dissolution Testing with Biorelevant Media: An OrBiTo Study.

    PubMed

    Mann, James; Dressman, Jennifer; Rosenblatt, Karin; Ashworth, Lee; Muenster, Uwe; Frank, Kerstin; Hutchins, Paul; Williams, James; Klumpp, Lukas; Wielockx, Kristina; Berben, Philippe; Augustijns, Patrick; Holm, Rene; Hofmann, Michael; Patel, Sanjaykumar; Beato, Stefania; Ojala, Krista; Tomaszewska, Irena; Bruel, Jean-Luc; Butler, James

    2017-12-04

    Dissolution testing with biorelevant media has become widespread in the pharmaceutical industry as a means of better understanding how drugs and formulations behave in the gastrointestinal tract. Until now, however, there have been few attempts to gauge the reproducibility of results obtained with these methods. The aim of this study was to determine the interlaboratory reproducibility of biorelevant dissolution testing, using the paddle apparatus (USP 2). Thirteen industrial and three academic laboratories participated in this study. All laboratories were provided with standard protocols for running the tests: dissolution in FaSSGF to simulate release in the stomach, dissolution in a single intestinal medium, FaSSIF, to simulate release in the small intestine, and a "transfer" (two-stage) protocol to simulate the concentration profile when conditions are changed from the gastric to the intestinal environment. The test products chosen were commercially available ibuprofen tablets and zafirlukast tablets. The biorelevant dissolution tests showed a high degree of reproducibility among the participating laboratories, even though several different batches of the commercially available medium preparation powder were used. Likewise, results were almost identicalbetween the commercial biorelevant media and those produced in-house. Comparing results to previous ring studies, including those performed with USP calibrator tablets or commercially available pharmaceutical products in a single medium, the results for the biorelevant studies were highly reproducible on an interlaboratory basis. Interlaboratory reproducibility with the two-stage test was also acceptable, although the variability was somewhat greater than with the single medium tests. Biorelevant dissolution testing is highly reproducible among laboratories and can be relied upon for cross-laboratory comparisons.

  18. Testing lyoequivalency for three commercially sustained-release tablets containing diltiazem hydrochloride.

    PubMed

    Maswadeh, Hamzah A; Al-Hanbali, Othman A; Kanaan, Reem A; Shakya, Ashok K; Maraqa, Anwar

    2010-01-01

    In vitro release kinetics of three commercially available sustained release tablets (SR) diltiazem hydrochloride were studied at pH 1.1 for 2 h and for another 6 h at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process was studied by analyzing the dissolution data using five kinetic equations: the zero-order equation, the first-order equation, the Higuchi square root equation, the Hixson-Crowell cube root law and the Peppas equation. Analyses of the dissolution kinetic data for diltiazem hydrochloride commercial SR tablets showed that both Dilzacard and Dilzem SR tablets released drug by Non-Fickian (Anomalous transport) release with release exponent (n) equal to 0.59 and 0.54, respectively, which indicate the summation of both diffusion and dissolution controlled drug release. Bi-Tildiem SR tablets released drug by super case II (n = 1.29) which indicate zero-order release due to the dissolution of polymeric matrix and relaxation of the polymer chain. This finding was also in agreement with results obtained from application of zero-order and Hixson-Crowell equations. A dissolution profile comparative study was done to test the lyoequivelancy of the three products by using the mean dissolution time (MDT), dissimilarity factor f1 and similarity factor f2. Results showed that the three products are different and not lyoequivalent.

  19. The effect of formulation additives on in vitro dissolution-absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations.

    PubMed

    Borbás, Enikő; Nagy, Zsombor K; Nagy, Brigitta; Balogh, Attila; Farkas, Balázs; Tsinman, Oksana; Tsinman, Konstantin; Sinkó, Bálint

    2018-03-01

    In this study, brand and four generic formulations of telmisartan, an antihypertensive drug, were used in in vitro simultaneous dissolution-absorption, investigating the effect of different formulation additives on dissolution and on absorption through an artificial membrane. The in vitro test was found to be sensitive enough to show even small differences between brand and generic formulations caused by the use of different excipients. By only changing the type of filler from sorbitol to mannitol in the formulation, the flux through the membrane was reduced by approximately 10%. Changing the salt forming agent as well resulted in approximately 20% of flux reduction compared to the brand formulation. This significant difference was clearly shown in the published in vivo results as well. The use of additional lactose monohydrate in the formulation also leads to approximately 10% reduction in flux. The results show that by changing excipients, the dissolution of telmisartan was not altered significantly, but the flux through the membrane was found to be significantly changed. These results pointed out the limitations of traditional USP dissolution tests and emphasized the importance of simultaneously measuring dissolution and absorption, which allows the complex effect of formulation excipients on both processes to be measured. Moreover, the in vivo predictive power of the simultaneous dissolution-absorption test was demonstrated by comparing the in vitro fluxes to in vivo bioequivalence study results. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hydrodynamics-induced variability in the USP apparatus II dissolution test.

    PubMed

    Baxter, Jennifer L; Kukura, Joseph; Muzzio, Fernando J

    2005-03-23

    The USP tablet dissolution test is an analytical tool used for the verification of drug release processes and formulation selection within the pharmaceutical industry. Given the strong impact of this test, it is surprising that operating conditions and testing devices have been selected empirically. In fact, the flow phenomena in the USP test have received little attention in the past. An examination of the hydrodynamics in the USP apparatus II shows that the device is highly vulnerable to mixing problems that can affect testing performance and consistency. Experimental and computational techniques reveal that the flow field within the device is not uniform, and dissolution results can vary dramatically with the position of the tablet within the vessel. Specifically, computations predict sharp variations in the shear along the bottom of the vessel where the tablet is most likely to settle. Experiments in which the tablet location was carefully controlled reveal that the variation of shear within the testing device can affect the measured dissolution rate.

  1. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  2. Automated Dissolution for Enteric-Coated Aspirin Tablets: A Case Study for Method Transfer to a RoboDis II.

    PubMed

    Ibrahim, Sarah A; Martini, Luigi

    2014-08-01

    Dissolution method transfer is a complicated yet common process in the pharmaceutical industry. With increased pharmaceutical product manufacturing and dissolution acceptance requirements, dissolution testing has become one of the most labor-intensive quality control testing methods. There is an increased trend for automation in dissolution testing, particularly for large pharmaceutical companies to reduce variability and increase personnel efficiency. There is no official guideline for dissolution testing method transfer from a manual, semi-automated, to automated dissolution tester. In this study, a manual multipoint dissolution testing procedure for an enteric-coated aspirin tablet was transferred effectively and reproducibly to a fully automated dissolution testing device, RoboDis II. Enteric-coated aspirin samples were used as a model formulation to assess the feasibility and accuracy of media pH change during continuous automated dissolution testing. Several RoboDis II parameters were evaluated to ensure the integrity and equivalency of dissolution method transfer from a manual dissolution tester. This current study provides a systematic outline for the transfer of the manual dissolution testing protocol to an automated dissolution tester. This study further supports that automated dissolution testers compliant with regulatory requirements and similar to manual dissolution testers facilitate method transfer. © 2014 Society for Laboratory Automation and Screening.

  3. Influence of enzymes and surfactants on the disintegration behavior of cross-linked hard gelatin capsules during dissolution.

    PubMed

    Pennings, F H; Kwee, B L S; Vromans, H

    2006-01-01

    Gelatin exhibits cross-linking upon storage at stress conditions. Capsules stored at these conditions fail to show appropriate in vitro dissolution. The aim of this study is to show the effect of surfactants in the medium on the disintegration of the gelatin capsule. This is demonstrated in the presence and absence of the enzymes pancreatin and pepsin, the function of which is to improve the dissolution. Sodium lauryl sulfate (SLS) and Tween 80 are tested as surfactants. When SLS is used in the medium, dissolution is significantly hampered due to the formation of a less soluble precipitate of gelatin. Compared to SLS, Tween 80 shows far better disintegration and solubility results in dissolution media with neutral or low pH. Therefore, it is concluded in this study that Tween 80 is preferred when a surfactant is necessary to comply with sink condition requirements.

  4. [Preparation and in vitro dissolution of magnolol solid dispersion].

    PubMed

    Tang, Lan; Qiu, Shuai-Bo; Wu, Lan; Lv, Long-Fei; Lv, Hui-Xia; Shan, Wei-Guang

    2016-02-01

    In this study, solid dispersion system of magnolol in croscarmellose sodium was prepared by using the solvent evaporation method, in order to increase the drug dissolution. And its dissolution behavior, stability and physical characteristics were studied. The solid dispersion was prepared with magnolol and croscarmellose sodium, with the proportion of 1∶5, the in vitro dissolution of magnolol solid dispersion was up to 80.66% at 120 min, which was 6.9 times of magnolol. The results of DSC (differential scanning calorimetry), IR (infra-red) spectrum and SEM (scanning electron microscopy) showed that magnolol existed in solid dispersion in an amorphous form. After an accelerated stability test for six months, the drug dissolution and content in magnolol solid dispersion showed no significant change. So the solid dispersion prepared with croscarmellose sodium as the carrier can remarkably improve the stability and dissolution of magnolol. Copyright© by the Chinese Pharmaceutical Association.

  5. Investigation of the Dissolution Profile of Gliclazide Modified-Release Tablets Using Different Apparatuses and Dissolution Conditions.

    PubMed

    Skripnik, K K S; Riekes, M K; Pezzini, B R; Cardoso, S G; Stulzer, H K

    2017-07-01

    In the absence of an official dissolution method for modified-release tablets of gliclazide, dissolution parameters, such as apparatuses (1, 2, and 3), rotation speeds, pH, and composition of the dissolution medium were investigated. The results show that although the drug presents a pH-mediated solubility (pH 7.0 > 6.8 > 6.4 > 6.0 > 5.5 > 4.5), the in vitro release of the studied tablets was not dependent on this parameter, despite of the apparatus tested. On the other hand, the rotation speed demonstrated a greater influence (100 rpm >50 rpm). Using similar hydrodynamic conditions, the three different apparatuses were compared in pH 6.8 and provided the following trend: apparatus 1 at 100 rpm >2 at 50 rpm ≈3 at 10 dpm. As a complete, but slow release is expected from modified-release formulations, apparatus 2, in phosphate buffer pH 6.8 and 100 rpm, were selected as the optimized dissolution method. In comparison to apparatus 1 under the same conditions, the paddle avoids the stickiness of formulation excipients at the mesh of the basket, which could prejudice the release of gliclazide. Results obtained with biorelevant medium through the developed dissolution method were similar to the buffer solution pH 6.8. The application of the optimized method as a quality control test between two different brands of gliclazide modified-release tablets showed that both dissolution profiles were considered similar by the similarity factor (f2 = 51.8). The investigation of these dissolution profiles indicated a dissolution kinetic following first-order model.

  6. Development and validation of a dissolution test for lodenafil carbonate based on in vivo data.

    PubMed

    Codevilla, Cristiane Franco; Castilhos, Tamara dos Santos; Cirne, Carolina Araújo; Froehlich, Pedro Eduardo; Bergold, Ana Maria

    2014-04-01

    Lodenafil carbonate is a phosphodiesterase type 5 inhibitor used for the treatment of erectile dysfunction. Currently, there is no dissolution test reported for lodenafil carbonate and this drug is not listed in any pharmacopoeia. The present study focused on the development and validation of a dissolution test for lodenafil carbonate tablets, using a simulated absorption profile based on in vivo data. The appropriate conditions were determined after testing sink conditions. Different conditions as medium, surfactant concentration and rotation speed were evaluated. The percentage of dose absorbed was calculated by deconvolution, using the Wagner-Nelson method. According to the obtained results, the use of 0.1 M HCl + 1.5% SLS (900 mL, at 37 + 0.5 °C) as the dissolution medium, paddles at 25 rpm were considered adequate. The samples were quantified by UV spectroscopy at 295 nm and the validation was performed according to international guidelines. The method showed specificity, linearity, accuracy and precision, within the acceptable range. Kinetics of drug release was better described by the first-order model. The proposed dissolution test can be used for the routine quality control of lodenafil carbonate in tablets.

  7. Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2016-01-01

    The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used.

  8. Evaluating bioequivalence of meloxicam tablets: is in-vitro dissolution test overdiscriminating?

    PubMed

    Jin, Chan; Zhao, Chenyao; Shen, Dachao; Dong, Wenxiang; Liu, Hongzhuo; He, Zhonggui

    2018-02-01

    The aim of the study was to assess the impact of the differences in dissolution profiles of meloxicam tablets on the in-vivo bioavailability parameters after oral administration. Compare in-vitro dissolution testing in the recommended media to evaluate in-vivo bioequivalence outcomes for the Biopharmaceutics Classification System Class II weak acidic drugs. Nine Beagle dogs received a single oral administration of each formulation (7.5 mg) in a three-way crossover design. The dissolution of meloxicam from both test products showed marked differences with that from the reference tablet in pH 1.0, 4.5 and 6.8 media at 50 or 75 rpm. Both formulations exhibiting slow or fast dissolution were then compared with the reference product for in-vivo bioequivalence study. Both products were bioequivalent with the reference tablet in either extent or rate of oral absorption. It indicated that the dissolution profiles which discriminated between the formulations in vitro did not accurately predict the in-vivo bioequivalence outcomes. Comparative dissolution profiles using similarity factor (f 2 ) in the recommended media should be relaxed to fulfil the requirements for the development, scale-up and postapproval changes to immediate release oral solid dosage forms of meloxicam. © 2017 Royal Pharmaceutical Society.

  9. Novel biorelevant dissolution medium as a prognostic tool for polysaccharide-based colon-targeted drug delivery system.

    PubMed

    Yadav, Ankit Kumar; Sadora, Manik; Singh, Sachin Kumar; Gulati, Monica; Maharshi, Peddi; Sharma, Abhinav; Kumar, Bimlesh; Rathee, Harish; Ghai, Deepak; Malik, Adil Hussain; Garg, Varun; Gowthamrajan, K

    2017-01-01

    To overcome the limitations of the conventionally used methods for evaluation of orally administered colon-targeted delivery systems, a novel dissolution method using probiotics has been recently reported. In the present study, universal suitability of this medium composed of five different probiotics is established. Different delivery systems - mini tablets, liquisolid compacts, and microspheres coated with different polysaccharides - were prepared and subjected to sequential dissolution testing in medium with and without microbiota. The results obtained from fluid thioglycollate medium (FTM)-based probiotic medium for all the polysaccharide-based formulations showed statistically similar dissolution profile to that in the rat and goat cecal content media. Hence, it can be concluded that the developed FTM-based probiotic medium, once established, may eliminate the need for further animal sacrifice in the dissolution testing of polysaccharide-based colon-targeted delivery system.

  10. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland

    2017-07-15

    The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.

  11. Influence of Dissolution Media and Presence of Alcohol on the In Vitro Performance of Pharmaceutical Products Containing an Insoluble Drug.

    PubMed

    Friuli, Valeria; Bruni, Giovanna; Musitelli, Giorgio; Conte, Ubaldo; Maggi, Lauretta

    2018-01-01

    The purpose of this investigation is to determine how the dissolution media may influence the release rate of an insoluble drug in in vitro conditions. Some oral dosage forms containing ibuprofen, a molecule that shows pH-dependent solubility, are tested. They are evaluated in different media to simulate the gastrointestinal transit at paddle rotation speeds of 50 and 100 rpm. Moreover, the potential effect of different ethanol concentrations on drug release is tested. The dissolution profiles of the tablets show a similar behavior in water (pH 1.0) and phosphate buffer (pH 4.5) where the 2 doses are not completely dissolved. The soft capsules show a different behavior: a certain amount of ibuprofen, which is in solution inside the capsule, reprecipitates in water and in the pH 4.5 buffer. Instead, ibuprofen dissolves rapidly in the pH 6.8 buffer from all the formulations. In the water-ethanol solutions, the dissolution curves show a valuable increase in the drug dissolved at higher ethanol concentrations. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    PubMed

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p < 0.05). A total of 2.5% NaOCl with or without agitation showed the higher tissue dissolution (between 64.5 and 67% of mass reduction) (p < 0.005). By comparing the PA solutions, the concentrations of 1 and 2% with or without agitation and the concentration of 0.5% with agitation showed similar dissolution activity (between 35.4 and 44% of mass reduction). The use of the ultrasonic agitation promoted an increase of the dissolution ability only for 0.5% PA. Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  13. Silicon Isotopes doping experiments to measure quartz dissolution and precipitation rates at equilibrium and test the principle of detailed balance

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.

    2016-12-01

    The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.

  14. The influence of co-formers on the dissolution rates of co-amorphous sulfamerazine/excipient systems.

    PubMed

    Gniado, Katarzyna; Löbmann, Korbinian; Rades, Thomas; Erxleben, Andrea

    2016-05-17

    A comprehensive study on the dissolution properties of three co-amorphous sulfamerazine/excipient systems, namely sulfamerazine/deoxycholic acid, sulfamerazine/citric acid and sulfamerazine/sodium taurocholate (SMZ/DA, SMZ/CA and SMZ/NaTC; 1:1 molar ratio), is reported. While all three co-formers stabilize the amorphous state during storage, only co-amorphization with NaTC provides a dissolution advantage over crystalline SMZ and the reasons for this were analyzed. In the case of SMZ/DA extensive gelation of DA protects the amorphous phase from crystallization upon contact with buffer, but at the same time prevents the release of SMZ into solution. Disk dissolution studies showed an improved dissolution behavior of SMZ/CA compared to crystalline SMZ. However, enhanced dissolution properties were not seen in powder dissolution testing due to poor dispersibility. Co-amorphization of SMZ and NaTC resulted in a significant increase in dissolution rate, both in powder and disk dissolution studies. Copyright © 2016. Published by Elsevier B.V.

  15. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STALLINGS, MARY

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less

  16. Contact Angle Measurements: an Alternative Approach Towards Understanding the Mechanism of Increased Drug Dissolution from Ethylcellulose Tablets Containing Surfactant and Exploring the Relationship Between Their Contact Angles and Dissolution Behaviors.

    PubMed

    Liu, Tiaotiao; Hao, Jingqiang; Yang, Baixue; Hu, Beibei; Cui, Zhixiang; Li, Sanming

    2018-05-01

    The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.

  17. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials.

    PubMed

    Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D

    2017-01-01

    Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO 2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO 2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.

  18. Clinopyroxene dissolution in basaltic melt

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhang, Youxue

    2009-10-01

    The history of magmatic systems may be inferred from reactions between mantle xenoliths and host basalt if the thermodynamics and kinetics of the reactions are quantified. To study diffusive and convective clinopyroxene dissolution in silicate melts, diffusive clinopyroxene dissolution experiments were conducted at 0.47-1.90 GPa and 1509-1790 K in a piston-cylinder apparatus. Clinopyroxene saturation is found to be roughly determined by MgO and CaO content. The effective binary diffusivities, DMgO and DCaO, and the interface melt saturation condition, C0MgO×C0CaO, are extracted from the experiments. DMgO and DCaO show Arrhenian dependence on temperature. The pressure dependence is small and not resolved within 0.47-1.90 GPa. C0MgO×C0CaO in the interface melt increases with increasing temperature, but decreases with increasing pressure. Convective clinopyroxene dissolution, where the convection is driven by the density difference between the crystal and melt, is modeled using the diffusivities and interface melt saturation condition. Previous studies showed that the convective dissolution rate depends on the thermodynamics, kinetics and fluid dynamics of the system. Comparing our results for clinopyroxene dissolution to results from a previous study on convective olivine dissolution shows that the kinetic and fluid dynamic aspects of the two minerals are quite similar. However, the thermodynamics of clinopyroxene dissolution depends more strongly on the degree of superheating and composition of the host melt than that of olivine dissolution. The models for clinopyroxene and olivine dissolution are tested against literature experiments on mineral-melt interaction. They are then applied to previously proposed reactions between Hawaii basalts and mantle minerals, mid-ocean ridge basalts and mantle minerals, and xenoliths digestion in a basalt at Kuandian, Northeast China.

  19. Lurasidone-β-cyclodextrin complexes: Physicochemical characterization and comparison of their antidepressant, antipsychotic activities against that of self microemulsifying formulation

    NASA Astrophysics Data System (ADS)

    Londhe, Vaishali Y.; Deshmane, Aishwarya B.; Singh, Sarita R.; Kulkarni, Yogesh A.

    2018-04-01

    Lurasidone hydrochloride (LHD) is an atypical antipsychotic drug has poor aqueous solubility and low bioavailability (9-19%). This study describes effect of different methods of complex formation with β-cyclodextrin (BCD) on enhancement of dissolution and on antidepressant, antipsychotic effects of LHD. Other purpose of this study is to compare pharmacodynamic effects of complexes with that of self microemulsifying drug delivery system of LHD (SMEDDS). Inclusion complexes (IC) of LHD and BCD were prepared by physical mixing (PM), kneading (KN) and spray drying (SD) in a 1:1 M ratio. These complexes were characterized by different techniques. KN and SD showing enhancement in dissolution, were compared with SMEDDS using Forced swim test (FST) and Tail suspension test (TST) for antidepressant action and Paw test for antipsychotic activity. Characterization of complexes confirmed interaction between LHD and BCD. Enhancement in dissolution is seen in following order SD > KN > PM > LHD. In all three animal models, SD, KN and SMEDDS showed statistically significant effect (p < .05) than drug alone showing enhancement in bioavailability. Complexation of LHD with BCD enhances dissolution which reflected in improvement of antidepressant and antipsychotic activity of drug. Solubility enhancement methods like complexation and self microemulsion improves pharmacodynamic activities of drug. Improvement of pharmacodynamic effect is seen in order, SD ≥ SMEDDS ≥ KN > LHD.

  20. Difference in the Dissolution Behaviors of Tablets Containing Polyvinylpolypyrrolidone (PVPP) Depending on Pharmaceutical Formulation After Storage Under High Temperature and Humid Conditions.

    PubMed

    Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru

    Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low affinity for PVPP may be easily affected by airborne water under high temperature and humid conditions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  1. Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis.

    PubMed

    Chaudhary, Sushant; Garg, Tarun; Rath, Goutam; Murthy, Rs Rayasa; Goyal, Amit K

    2016-05-01

    The method based on integrating the principles of solid dispersion and nanocrystal techniques was developed to prepare polymer crystals (PCs) of mebendazole (MBZ) and polyethylene glycol (PEG). Powder X-Ray diffraction (PXRD) of the PC crystals shows the required integrated crystalline and amorphous regions. The in vitro solubility studies showed a 32-fold increase in the solubility of the drug. Tests of dissolution of the PCs showed that the crystals have an enhanced dissolution rate in comparison to those in the MF. The results of the pharmacokinetic study showed a 2.12-fold increase in the bioavailability of the drug. Thus, the present study has proved the potential in enhancing solubility, dissolution, and bioavailability of the drug.

  2. Comparison of three preservation techniques for slowing dissolution of calcareous nannofossils in organic rich sediments

    USGS Publications Warehouse

    Seefelt, Ellen L.; Self-Trail, Jean; Schultz, Arthur P.

    2015-01-01

    In an attempt to halt or reduce dissolution of calcareous nannofossils in organic and/or pyrite-rich sediments, three different methods of short-term storage preservation were tested for efficacy: vacuum packing, argon gas replacement, and buffered water. Abundance counts of calcareous nannofossil assemblages over a six month period showed that none of the three preservation methods were consistently effective in reducing assemblage loss due to dissolution. In most cases, the control slides made at the drill site had more abundant calcareous nannofossil assemblages than those slides made from sediments stored via vacuum packing, argon gas replacement, or buffered water. Thin section and XRD analyses showed that in most cases, <1% pyrite was needed to drive the oxidation-reduction reaction that resulted in dissolution, even in carbonate-rich sediments.

  3. The effect of 8.25% sodium hypochlorite on dental pulp dissolution and dentin flexural strength and modulus.

    PubMed

    Cullen, James K T; Wealleans, James A; Kirkpatrick, Timothy C; Yaccino, John M

    2015-06-01

    The purpose of this study was to evaluate the effect of various concentrations of sodium hypochlorite (NaOCl), including 8.25%, on dental pulp dissolution and dentin flexural strength and modulus. Sixty dental pulp samples and 55 plane parallel dentin bars were retrieved from extracted human teeth. Five test groups (n = 10) were formed consisting of a pulp sample and dentin bar immersed in various NaOCl solutions. The negative control group (n = 5) consisted of pulp samples and dentin bars immersed in saline. The positive control group (n = 5) consisted of pulp samples immersed in 8.25% NaOCl without a dentin bar. Every 6 minutes for 1 hour, the solutions were refreshed. The dentin bars were tested for flexural strength and modulus with a 3-point bend test. The time until total pulp dissolution and any changes in dentin bar flexural strength and modulus for the different NaOCl solutions were statistically analyzed. An increase in NaOCl concentration showed a highly significant decrease in pulp dissolution time. The pulp dissolution property of 8.25% NaOCl was significantly faster than any other tested concentration of NaOCl. The presence of dentin did not have a significant effect on the dissolution capacity of NaOCl if the solutions were refreshed. NaOCl concentration did not have a statistically significant effect on dentin flexural strength or modulus. Dilution of NaOCl decreases its pulp dissolution capacity. Refreshing the solution is essential to counteract the effects of dentin. In this study, NaOCl did not have a significant effect on dentin flexural strength or modulus. Published by Elsevier Inc.

  4. Evaluation and selection of bio-relevant dissolution media for a poorly water-soluble new chemical entity.

    PubMed

    Tang, L; Khan, S U; Muhammad, N A

    2001-11-01

    The purpose of this work is to develop a bio-relevant dissolution method for formulation screening in order to select an enhanced bioavailable formulation for a poorly water-soluble drug. The methods used included a modified rotating disk apparatus for measuring intrinsic dissolution rate of the new chemical entity (NCE) and the USP dissolution method II for evaluating dissolution profiles of the drug in three different dosage forms. The in vitro dissolution results were compared with the in vivo bioavailability for selecting a bio-relevant medium. The results showed that the solubility of the NCE was proportional to the concentration of sodium lauryl sulfate (SLS) in the media. The apparent intrinsic dissolution rate of the NCE was linear to the rotational speed of the disk, which indicated that the dissolution of the drug is a diffusion-controlled mechanism. The apparent intrinsic dissolution rate was also linear to the surfactant concentration in the media, which was interpreted using the Noyes and Whitney Empirical Theory. Three formulations were studied in three different SLS media using the bulk drug as a reference. The dissolution results were compared with the corresponding bioavailability results in dogs. In the 1% SLS--sink conditions--the drug release from all the formulations was complete and the dissolution results were discriminative for the difference in particle size of the drug in the formulations. However, the data showed poor IVIV correlation. In the 0.5% SLS medium--non-sink conditions--the dissolution results showed the same rank order among the tested formulations as the bioavailability. The best IVIV correlation was obtained from the dissolution in 0.25% SLS medium, an over-saturated condition. The conclusions are: a surfactant medium increases the apparent intrinsic dissolution rate of the NCE linearly due to an increase in solubility. A low concentration of surfactant in the medium (0.25%) is more bio-relevant than higher concentrations of surfactant in the media for the poorly water-soluble drug. Creating sink conditions (based on bulk drug solubilities) by using a high concentration of a surfactant in the dissolution medium may not be a proper approach in developing a bio-relevant dissolution method for a poorly water-soluble drug.

  5. Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products.

    PubMed

    Velaga, Sitaram P; Djuris, Jelena; Cvijic, Sandra; Rozou, Stavroula; Russo, Paola; Colombo, Gaia; Rossi, Alessandra

    2018-02-15

    In vitro dissolution testing is routinely used in the development of pharmaceutical products. Whilst the dissolution testing methods are well established and standardized for oral dosage forms, i.e. tablets and capsules, there are no pharmacopoeia methods or regulatory requirements for testing the dissolution of orally inhaled powders. Despite this, a wide variety of dissolution testing methods for orally inhaled powders has been developed and their bio-relevance has been evaluated. This review provides an overview of the in vitro dissolution methodologies for dry inhalation products, with particular emphasis on dry powder inhalers, where the dissolution behavior of the respirable particles can have a role on duration and absorption of the drug. Dissolution mechanisms of respirable particles as well as kinetic models have been presented. A more recent biorelevant dissolution set-ups and media for studying inhalation biopharmaceutics were also reviewed. In addition, factors affecting interplay between dissolution and absorption of deposited particles in the context of biopharmaceutical considerations of inhalation products were examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Model calculation of Cr dissolution behavior of ODS ferritic steel in high-temperature flowing sodium environment

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji

    2018-07-01

    A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in inlet sodium bulk flow was set at 0.07 wt ppm in the calculation.

  7. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.

    PubMed

    Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. <0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux

    NASA Astrophysics Data System (ADS)

    Padgett, Mark C.; Tick, Geoffrey R.; Carroll, Kenneth C.; Burke, William R.

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions > 0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤ 0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. < 0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations.

  9. Disintegration of highly soluble immediate release tablets: a surrogate for dissolution.

    PubMed

    Gupta, Abhay; Hunt, Robert L; Shah, Rakhi B; Sayeed, Vilayat A; Khan, Mansoor A

    2009-01-01

    The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria.

  10. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  11. Model of dissolution in the framework of tissue engineering and drug delivery.

    PubMed

    Sanz-Herrera, J A; Soria, L; Reina-Romo, E; Torres, Y; Boccaccini, A R

    2018-05-22

    Dissolution phenomena are ubiquitously present in biomaterials in many different fields. Despite the advantages of simulation-based design of biomaterials in medical applications, additional efforts are needed to derive reliable models which describe the process of dissolution. A phenomenologically based model, available for simulation of dissolution in biomaterials, is introduced in this paper. The model turns into a set of reaction-diffusion equations implemented in a finite element numerical framework. First, a parametric analysis is conducted in order to explore the role of model parameters on the overall dissolution process. Then, the model is calibrated and validated versus a straightforward but rigorous experimental setup. Results show that the mathematical model macroscopically reproduces the main physicochemical phenomena that take place in the tests, corroborating its usefulness for design of biomaterials in the tissue engineering and drug delivery research areas.

  12. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    NASA Astrophysics Data System (ADS)

    Tingming, Fu; Liwei, Guo; Kang, Le; Tianyao, Wang; Jin, Lu

    2010-09-01

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20PO 70EO 20) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  13. Effect drug loading process on dissolution mechanism of encapsulated amoxicillin trihydrate in hydrogel semi-IPN chitosan methyl cellulose with pore forming agent KHCO3 as a floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Fithawati, Garnis; Budianto, Emil

    2018-04-01

    Common treatment for Helicobacter pylori by repeated oral consumption of amoxicillin trihydrate is not effective. Amoxicillin trihydrate has a very short residence time in stomach which leads into its ineffectiveness. Residence time of amoxicillin trihydrate can be improved by encapsulating amoxicillin trihydrate into a floating drug delivery system. In this study, amoxicillin trihydrate is encapsulated into hydrogel semi-IPN chitosan methyl cellulose matrix as a floating drug delivery system and then treated with 20% KHCO3 as pore forming agent. Drug loading process used are in-situ loading and post loading. In-situ loading process has higher efficiency percentage and dissolution percentage than post loading process. In-situ loading process resulted 100% efficiency with 92,70% dissolution percentage. Post loading process resulted 98,7% efficiency with 90,42% dissolution percentage. Mechanism of drug dissolution study by kinetics approach showed both in-situ loading process and post loading process are diffusion and degradation process (n=0,4913) and (n=0,4602) respectively. These results are supported by characterization data from optical microscope and scanning electron microscopy (SEM). Data from optical microscope showed both loading process resulted in coarser hydrogel surface. Characterization using SEM showed elongated pores in both loading process after dissolution test.

  14. A comparative study of first-derivative spectrophotometry and column high-performance liquid chromatography applied to the determination of repaglinide in tablets and for dissolution testing.

    PubMed

    AlKhalidi, Bashar A; Shtaiwi, Majed; AlKhatib, Hatim S; Mohammad, Mohammad; Bustanji, Yasser

    2008-01-01

    A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 1-35 microg/mL and precision (relative standard deviation < 1.5%). The LOD and LOQ were 0.23 and 0.72 microg/mL, respectively, and good recoveries were achieved (98-101.8%). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.

  15. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    PubMed Central

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-01-01

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant. PMID:28368030

  16. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation.

    PubMed

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-04-03

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.

  17. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-04-01

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.

  18. Assessment of oral bioavailability enhancing approaches for SB-247083 using flow-through cell dissolution testing as one of the screens.

    PubMed

    Perng, Cherng-Yih; Kearney, Albert S; Palepu, Nagesh R; Smith, Brian R; Azzarano, Leonard M

    2003-01-02

    SB-247083 is a potent, nonpeptidic, orally active, ETA-selective, endothelin receptor antagonist. The diacid form and three salts (monoarginine, diarginine and disodium) of SB-247083 were evaluated during the pre-clinical phase of development. The developability attributes (i.e. hygroscopicity, thermal behavior, aqueous solubility, and drug-excipient compatibility) of these compounds were evaluated. In addition to these attributes, the flow-through cell (FTC) dissolution testing (using USP Apparatus 4) was used as a screening technique to evaluate several SB-247083 formulations of the diacid and its salts. FTC dissolution testing offers two distinct advantages over the more traditional static-condition dissolution testing: (1) maintenance of sink conditions; and (2) the ability to change the dissolution medium during a dissolution run. The former advantage is especially important for poorly aqueous soluble drugs having associated dissolution-rate-limitations, and the latter advantage allows one to more closely simulate the pH gradient associated with transit through the GI tract. Based on the comparative dissolution data, three formulations were chosen for oral dosing in dogs. The reasonable correlation found between the FTC dissolution results and the oral bioavailability data demonstrate that FTC dissolution testing can be a valuable tool for aiding in salt (solid-state form) and formulation selection in the early stages of development of drug candidates.

  19. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic.

    PubMed

    Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan

    2015-01-01

    Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.

  20. Dissolution of spent nuclear fuel in carbonate-peroxide solution

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck; Hanson, Brady

    2010-01-01

    This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.

  1. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.

  2. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.

  3. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  4. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less

  5. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    PubMed

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  6. In-vitro Drug Dissolution Studies in Medicinal Compounds.

    PubMed

    Bozal-Palabiyik, Burcin; Uslu, Bengi; Ozkan, Yalcin; Ozkan, Sibel A

    2018-03-22

    After oral administration, drug absorption from solid dosage forms depend on the release of the drug active compounds from the dosage form, the dissolution or solubilization of the drug under physiological conditions, and the permeability across the gastrointestinal tract. Dissolution testing is an essential part of designing more effective solid dosage forms in pharmaceutical industry. Moreover dissolution testing contributes to the selection of appropriate formulation excipients for improving the dosage form efficiency. This study aims to analyze in-vitro drug dissolution testing in solid dosage forms since 2010 in order to present a comprehensive outlook of recent trends. In doing that the previous studies in the literature are summarized in the form of a table to demonstrate the apparatuses used for dissolution testing, the media in which the solid dosage form is dissolved, the method preferred for analysis from dissolution media, the conditions of analyses and the results obtained. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis.

    PubMed

    Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin

    2017-11-23

    Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  8. Sodium sulfate - Deposition and dissolution of silica

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    The hot-corrosion process for SiO2-protected materials involves deposition of Na2SO4 and dissolution of the protective SiO2 scale. Dew points for Na2SO4 deposition are calculated as a function of pressure, sodium content, and sulfur content. Expected dissolution regimes for SiO2 are calculated as a function of Na2SO4 basicity. Controlled-condition burner-rig tests on quartz verify some of these predicted dissolution regimes. The basicity of Na2SO4 is not always a simple function of P(SO3). Electrochemical measurements of an (Na2O) show that carbon creates basic conditions in Na2SO4, which explains the extensive corrosion of SiO2-protected materials containing carbon, such as SiC.

  9. In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC.

    PubMed

    Ruiz Picazo, Alejandro; Martinez-Martinez, Ma Teresa; Colón-Useche, Sarin; Iriarte, Ramon; Sánchez-Dengra, Bárbara; González-Álvarez, Marta; García-Arieta, Alfredo; González-Álvarez, Isabel; Bermejo, Marival

    2018-05-17

    The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for C max being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( f a ). Fractions dissolved ( f diss ) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f 2 similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.

  10. Development and validation of a discriminating in vitro dissolution method for a poorly soluble drug, olmesartan medoxomil: comparison between commercial tablets.

    PubMed

    Bajerski, Lisiane; Rossi, Rochele Cassanta; Dias, Carolina Lupi; Bergold, Ana Maria; Fröehlich, Pedro Eduardo

    2010-06-01

    A dissolution test for tablets containing 40 mg of olmesartan medoxomil (OLM) was developed and validated using both LC-UV and UV methods. After evaluation of the sink condition, dissolution medium, and stability of the drug, the method was validated using USP apparatus 2, 50 rpm rotation speed, and 900 ml of deaerated H(2)O + 0.5% sodium lauryl sulfate (w/v) at pH 6.8 (adjusted with 18% phosphoric acid) as the dissolution medium. The model-independent method using difference factor (f(1)) and similarity factor (f(2)), model-dependent method, and dissolution efficiency were employed to compare dissolution profiles. The kinetic parameters of drug release were also investigated. The obtained results provided adequate dissolution profiles. The developed dissolution test was validated according to international guidelines. Since there is no monograph for this drug in tablets, the dissolution method presented here can be used as a quality control test for OLM in this dosage form, especially in a batch to batch evaluation.

  11. Investigating the Impact of Drug Crystallinity in Amorphous Tacrolimus Capsules on Pharmacokinetics and Bioequivalence Using Discriminatory In Vitro Dissolution Testing and Physiologically Based Pharmacokinetic Modeling and Simulation.

    PubMed

    Purohit, Hitesh S; Trasi, Niraj S; Sun, Dajun D; Chow, Edwin C Y; Wen, Hong; Zhang, Xinyuan; Gao, Yi; Taylor, Lynne S

    2018-05-01

    Delivering a drug in amorphous form in a formulated product is a strategy used to enhance the apparent solubility of a drug substance and its oral bioavailability. Drug crystallization in such products may occur during the manufacturing process or on storage, reducing the solubility advantage of the amorphous drug. However, the impact of partial drug crystallization in the drug product on the resulting bioavailability and pharmacokinetics is unknown. In this study, dissolution testing of commercial tacrolimus capsules (which are formulated to contain amorphous drug), both fresh and those containing different amounts of crystalline drug, was conducted using both United States Pharmacopeia and noncompendial dissolution tests with different dissolution media and volumes. A physiologically based pharmacokinetic (PBPK) absorption model was developed to predict the impact of crystallinity extent on the oral absorption of the products and to evaluate the discriminatory ability of the different dissolution methods. Virtual bioequivalence simulations between partially crystallized tacrolimus capsules versus fresh Prograf or generic tacrolimus capsules were performed using the PBPK model and in vitro dissolution data of the various fresh and partially crystallized capsules under United States Pharmacopeia and noncompendial dissolution conditions. The results suggest that compendial dissolution tests may not be sufficiently discriminatory with respect to the presence of crystallinity in an amorphous formulation. Nonsink dissolution tests using lower dissolution volumes generate more discriminatory profiles that predict different pharmacokinetics of tacrolimus capsules containing different extents of drug crystallinity. In conclusion, the PBPK modeling approach can be used to assess the impact of partial drug crystallinity in the formulated product and to guide the development of appropriate dissolution methods. Copyright © 2018 American Pharmacists Association®. All rights reserved.

  12. Dissolution testing of orally disintegrating tablets.

    PubMed

    Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif

    2012-07-01

    For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  13. Industry's View on Using Quality Control, Biorelevant, and Clinically Relevant Dissolution Tests for Pharmaceutical Development, Registration, and Commercialization.

    PubMed

    Grady, Haiyan; Elder, David; Webster, Gregory K; Mao, Yun; Lin, Yiqing; Flanagan, Talia; Mann, James; Blanchard, Andy; Cohen, Michael J; Lin, Judy; Kesisoglou, Filippos; Hermans, Andre; Abend, Andreas; Zhang, Limin; Curran, David

    2018-01-01

    This article intends to summarize the current views of the IQ Consortium Dissolution Working Group, which comprises various industry companies, on the roles of dissolution testing throughout pharmaceutical product development, registration, commercialization, and beyond. Over the past 3 decades, dissolution testing has evolved from a routine and straightforward test as a component of end-product release into a comprehensive set of tools that the developer can deploy at various stages of the product life cycle. The definitions of commonly used dissolution approaches, how they relate to one another and how they may be applied in modern drug development, and life cycle management is described in this article. Specifically, this article discusses the purpose, advantages, and limitations of quality control, biorelevant, and clinically relevant dissolution methods. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    PubMed

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  15. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    PubMed

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  16. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; Pierce, R.

    2012-02-21

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu upmore » to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8-10 M HNO{sub 3} with 0.04-0.05 M KF at 112 to 116 C (boiling). The testing also showed that solutions containing 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B achieved acceptable dissolution rates in the same temperature range. To confirm that conditions identified by the dissolution rate measurements for solutions containing Gd or B can be used to dissolve Pu metal up to 6.75 g/L in the presence of Fe, demonstration experiments were performed using concentrations in the optimal ranges. In two of the demonstration experiments using Gd and in one experiment using B, the offgas generation during the dissolution was measured and samples were analyzed for H{sub 2}. The experimental methods used to perform the dissolution rate measurements and flowsheet demonstrations and a discussion of the results are presented.« less

  17. Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison.

    PubMed

    Cardot, J-M; Roudier, B; Schütz, H

    2017-07-01

    The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

  18. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties.

    PubMed

    Tsutsumi, Shunichirou; Iida, Motoo; Tada, Norio; Kojima, Takashi; Ikeda, Yukihiro; Moriwaki, Toshiya; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2011-12-15

    Miconazole salts and cocrystals were studied to improve the physicochemical properties of miconazole. Maleate, hemifumarate, and hemisuccinate were prepared and characterized by powder X-ray diffractometry, differential scanning calorimetry, and single crystal X-ray diffractometry. The intrinsic dissolution rate and stability of each miconazole crystal form were compared to those of freebase and nitrate to evaluate the optimal crystal form. Crystal structure analysis indicated that maleate was a salt formed by proton transfer from the acid to the imidazole group of miconazole. Hemifumarate and hemisuccinate were determined to be cocrystals formed by hydrogen bonding between the acids and the base in their crystal lattices. Intrinsic dissolution tests showed that the formation of salts and cocrystals improved the dissolution rate of miconazole. Stability tests of preliminary formulations prepared with each crystal form indicated that maleate and hemifumarate were unstable at 80°C and generated a specific degraded product, i.e., a Michael adduct, between miconazole and the acids. Hemisuccinate had a superior intrinsic dissolution rate and stability, and is thus considered a promising crystal form of miconazole. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  20. Comparison of Dissolution Similarity Assessment Methods for Products with Large Variations: f2 Statistics and Model-Independent Multivariate Confidence Region Procedure for Dissolution Profiles of Multiple Oral Products.

    PubMed

    Yoshida, Hiroyuki; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2017-01-01

    The current Japanese Ministry of Health Labour and Welfare (MHLW)'s Guideline for Bioequivalence Studies of Generic Products uses averaged dissolution rates for the assessment of dissolution similarity between test and reference formulations. This study clarifies how the application of model-independent multivariate confidence region procedure (Method B), described in the European Medical Agency and U.S. Food and Drug Administration guidelines, affects similarity outcomes obtained empirically from dissolution profiles with large variations in individual dissolution rates. Sixty-one datasets of dissolution profiles for immediate release, oral generic, and corresponding innovator products that showed large variation in individual dissolution rates in generic products were assessed on their similarity by using the f 2 statistics defined in the MHLW guidelines (MHLW f 2 method) and two different Method B procedures, including a bootstrap method applied with f 2 statistics (BS method) and a multivariate analysis method using the Mahalanobis distance (MV method). The MHLW f 2 and BS methods provided similar dissolution similarities between reference and generic products. Although a small difference in the similarity assessment may be due to the decrease in the lower confidence interval for expected f 2 values derived from the large variation in individual dissolution rates, the MV method provided results different from those obtained through MHLW f 2 and BS methods. Analysis of actual dissolution data for products with large individual variations would provide valuable information towards an enhanced understanding of these methods and their possible incorporation in the MHLW guidelines.

  1. Enhanced dissolution of sildenafil citrate as dry foam tablets.

    PubMed

    Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon

    2017-01-30

    Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test <1% with a disintegration time <5 min. The sildenafil citrate dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.

  2. Preparation and Characterization of Liquisolid Compacts for Improved Dissolution of Telmisartan

    PubMed Central

    Narra, Nataraj; Rama Rao, Tadikonda

    2014-01-01

    The objective of the present work was to obtain pH independent and improved dissolution profile for a poorly soluble drug, telmisartan using liquisolid compacts. Liquisolid compacts were prepared using Transcutol HP as vehicle, Avicel PH102 as carrier, and Aerosil 200 as a coating material. The formulations were evaluated for drug excipient interactions, change in crystallinity of drug, flow properties, and general quality control tests of tablets using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), angle of repose, and various pharmacopoeial tests. In vitro dissolution studies were performed at three pH conditions (1.2, 4.5 and 7.4). Stability studies were performed at 40°C and 75% RH for three months. The formulation was found to comply with Indian pharmacopoeial limits for tablets. FTIR studies confirmed no interaction between drug and excipients. XRD and DSC studies indicate change/reduction in crystallinity of drug. Dissolution media were selected based on the solubility studies. The optimized formulation showed pH independent release profile with significant improvement (P < 0.005) in dissolution compared to plain drug and conventional marketed formulation. No significant difference was seen in the tablet properties, and drug release profile after storage for 3 months. PMID:25371826

  3. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    PubMed

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  4. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs.

    PubMed

    Galia, E; Nicolaides, E; Hörter, D; Löbenberg, R; Reppas, C; Dressman, J B

    1998-05-01

    In this paper we seek to verify the differences in dissolution behavior between class I and class II drugs and to evaluate the suitability of two new physiologically based media, of Simulated Gastric Fluid (SGF) and of milk for their ability to forecast trends in the in vivo performance of class II compounds and their formulations. Dissolution behavior of two class I drugs, i.e. acetaminophen and metoprolol, and of three class II drugs, i.e. danazol, mefenamic acid and ketoconazole, was studied with USP Apparatus 2 in water, SGF, milk, Simulated Intestinal Fluid without pancreatin (SIFsp) and in two media simulating the small intestinal contents in the fed (FeSSIF) and fasted (FaSSIF) states, respectively. Class I powders dissolved rapidly in all media tested. Acetaminophen dissolution in milk was slow from one tablet formulation, in all other cases dissolution was more than 85% complete in 15 minutes. The dissolution rate of metoprolol was shown to be dependent on formulation and manufacturing method, and one of the three tablet formulations did not meet compendial specifications (80%/30 minutes). Dissolution behavior of class II drugs was greatly affected by choice of medium. Dissolution from a capsule formulation of danazol proved to be dependent on the concentration of solubilizing agents, with a the 30-fold increase in percentage dissolved within 90 minutes upon changing from aqueous media without surfactants to FaSSIF. Use of FeSSIF or milk as the dissolution medium resulted in an even greater increase in percentage dissolved, 100 and 180-fold respectively. Dissolution of the weak acid mefenamic acid from a capsule formulation is dependent on both pH and bile salt concentration, which leads to an offset between increased bile salt concentration and lower pH in the fed state compared to the fasted state medium. The weak base ketoconazole showed complete dissolution from a tablet formulation in Simulated Gastric Fluid without pepsin (SGFsp) within 30 minutes, 70% dissolution in 2 hours under fed state simulated upper jejunal conditions but only 6% dissolution in 2 hours under fasted state conditions. As predicted, dissolution of class II drugs proved to be in general much more dependent on the medium than class I drugs. With the array of compendial and physiological media available, it should be possible to design a suitable set of tests to predict the in vivo dissolution of both class I and II drugs from immediate release formulations.

  5. Dissolution enhancement of tadalafil by liquisolid technique.

    PubMed

    Lu, Mei; Xing, Haonan; Yang, Tianzhi; Yu, Jiankun; Yang, Zhen; Sun, Yanping; Ding, Pingtian

    2017-02-01

    This study aimed to enhance the dissolution of tadalafil, a poorly water-soluble drug by applying liquisolid technique. The effects of two critical formulation variables, namely drug concentration (17.5% and 35%, w/w) and excipients ratio (10, 15 and 20) on dissolution rates were investigated. Pre-compression tests, including particle size distribution, flowability determination, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM), were carried out to investigate the mechanism of dissolution enhancement. Tadalafil liquisolid tablets were prepared and their quality control tests, dissolution study, contact angle measurement, Raman mapping, and storage stability test were performed. The results suggested that all the liquisolid tablets exhibited significantly higher dissolution rates than the conventional tablets and pure tadalafil. FT-IR spectrum reflected no drug-excipient interactions. DSC and XRD studies indicated reduction in crystallinity of tadalafil, which was further confirmed by SEM and Raman mapping outcomes. The contact angle measurement demonstrated obvious increase in wetting property. Taken together, the reduction of particle size and crystallinity, and the improvement of wettability were the main mechanisms for the enhanced dissolution rate. No significant changes were observed in drug crystallinity and dissolution behavior after storage based on XRD, SEM and dissolution results.

  6. An electrochemical quartz crystal microbalance study of magnesium dissolution

    NASA Astrophysics Data System (ADS)

    Ralston, K. D.; Thomas, S.; Williams, G.; Birbilis, N.

    2016-01-01

    A quartz crystal microbalance (QCM) was used in conjunction with electrochemical measurements to study dissolution of pure magnesium (Mg) sensors in dilute NaCl electrolytes. Open circuit potential and potentiodynamic polarisation experiments were conducted in 0.01 M NaCl, having pH values 3 (buffered) and 6 (unbuffered). In the pH 3 solution, the Mg sensor showed a net mass-loss during the electrochemical tests, whereas, in the unbuffered pH 6 solution Mg showed a net mass-gain, corresponding to the growth of an Mg(OH)2 film on its surface. The loss in the electrochemical efficiency of Mg dissolution due to such direct parasitic Mg(OH)2 growth has been estimated to be around 17-34%. This loss relates to the low capacities and voltage fluctuations reported during discharge of primary Mg batteries.

  7. Comprehensive validation scheme for in situ fiber optics dissolution method for pharmaceutical drug product testing.

    PubMed

    Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra

    2009-03-01

    There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Selection of a discriminant and biorelevant in vitro dissolution test for the development of fenofibrate self-emulsifying lipid-based formulations.

    PubMed

    Pestieau, Aude; Krier, Fabrice; Brouwers, Adeline; Streel, Bruno; Evrard, Brigitte

    2016-09-20

    Fenofibrate, a BCS class II compound, has a low bioavailability especially when taken orally on an empty stomach. The challenge to find a new formulation for providing bioavailability, independent of food, is still ongoing. If the development of a suitable oral delivery formulation of BCS class II compounds is a frequent and great challenge to formulation scientists, the in vitro evaluation of these new formulations is also a great challenge. The purpose of this study was therefore to select an in vitro dissolution test that would be useful and as biorelevant as possible for the development of fenofibrate self-emulsifying lipid-based formulations. In this context, three different fenofibrate formulations, for which in vivo data are available in the literature, were tested using different dissolution tests until we found the one that was the most suitable. As part of this approach, we started with the simplest in vitro dissolution tests and progressed to tests that were increasingly more complex. The first tests were different single phase dissolution tests: a test under sink conditions based on the USP monograph, and different tests under non-sink conditions in non-biorelevant and biorelevant media. Given the inconclusive results obtained with these tests, biphasic dissolution systems were then tested: one with USP apparatus type II alone and another which combined USP apparatus types II and IV. This last combined test seemed the most suitable in vitro dissolution test for the development of the future fenofibrate lipid-based formulations we intend to develop in our own laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparative study of quality and efficacy of originator's and generic ABZ for the mass treatment of soil-transmitted nematode infections in Nepal

    PubMed Central

    Albonico, Marco; Mathema P., Pragya; Montresor, Antonio; Khakurel, Balkrishna; Reggi, Valerio; Pandey, Sharada; Savioli, Lorenzo

    2017-01-01

    Quality and efficacy of two locally-manufactured generic albendazole (ABZ) products (Curex and Royal Drug) used for de-worming children in Nepal since 1999 were tested against the originator product (GSK). The study conducted disintegration and dissolution testing and a randomised controlled clinical trial comparing cure rates (CR) and egg reduction rates (ERR) for Ascaris lumbricoides, Trichuris trichiura and hookworm infections. Stool samples from 1277 children were examined before and 21 days after treatment. For A. lumbricoides GSK's (97.0%) and Royal Drug's (95.0 %) product provided significantly higher CR than Curex's (82.6%); however, all products provided ERR higher than 90%. For T. trichiura Curex's product showed significantly lower ERR (63.2%). For hookworm, GSK's product performed significantly better (CR 74.3%, ERR 87.1%) than Royal Drug's (CR 53.3%, ERR 80.8%) and Curex's (CR 50.7%, ERR 73.1%). Only GSK's product passed both disintegration and dissolution. Both generic products failed dissolution. Curex's product showed poor disintegration. Despite its lower efficacy the cheaper Curex's product achieved good results in controlling morbidity due to soil-transmitted helminth (STH) infections. This study shows that cost-effectiveness of drugs used in mass de-worming campaigns should not be inferred on the basis of one single quality testing parameter. PMID:17129592

  10. Feasibility of Using Gluconolactone, Trehalose and Hydroxy-Propyl Gamma Cyclodextrin to Enhance Bendroflumethiazide Dissolution Using Lyophilisation and Physical Mixing Techniques.

    PubMed

    Saleh, Ashraf; McGarry, Kenneth; Chaw, Cheng Shu; Elkordy, Amal Ali

    2018-02-01

    Hydrophobic drugs are facing a major challenge in dissolution rate enhancement and solubility in aqueous solutions; therefore, a variety of methods have been used to improve dissolution rate and/or solubility of bendroflumethiazide as a model hydrophobic drug. In this study, two main methods (physical mixing and lyophilisation) were used with gluconolactone, hydroxyl propyl γ-ccyclodextrin, and trehalose to explore this challenge. Bendroflumethiazide, practically insoluble in water, was mixed with one of the three excipients gluconolactone, hydroxyl propyl γ-cyclodextrin, and trehalose in three different ratios 1:1, 1:2, 1:5. To the best of our knowledge, the dissolution of the drug has not been previously enhanced by using either these methods or any of the used excipients. Samples containing drug and each of the excipients were characterized via dissolution testing, Fourier Transform infra-red spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The used methods showed a significant enhancement in dug dissolution rate; physical mixing significantly, p < 0.05, increased the percentage of the drug released with time; for example, bendroflumethiazide dissolution in distilled water was improved from less than 20% to 99.79% within 90 min for physically mixed drug-cyclodextrin 1:5. The lyophilisation process was enhanced and the drug dissolution rate and the highest drug dissolution was achieved for (drug-gluconolactone 1:1) with 98.98% drug release within 90 min. the physical mixing and freeze drying processes significantly increased the percentage of drug release with time.

  11. Insight into the Development of Dissolution Media for BCS Class II Drugs: A Review from Quality Control and Prediction of In Vivo Performance Perspectives.

    PubMed

    Wu, Chunnuan; Liu, Yan; He, Zhonggui; Sun, Jin

    2016-01-01

    To assess in vivo behavior through in vitro method, the dissolution test is mostly used, both for quality control (QC) and for development purpose. In view of the fact that a dissolution test can hardly achieve two goals at the same time, the design of dissolution testing generally varies along with the development stage of drug products and therefore the selection of dissolution media may change with the goals of the dissolution test. To serve the QC purpose, a dissolution medium is designed to provide a sink condition; for development purpose, the dissolution medium is required to simulate the physiological conditions in the gastrointestinal tract as far as possible. In this review, we intended to provide an initial introduction to the various dissolution media applied for QC and formulation development purposes for poorly water soluble drugs. We focused on these methods like addition of cosolvents, surfactants and utilization of biphasic media, applied to provide sink conditions which are difficult to be achieved by simple aqueous buffers for lipophilic drugs, and introduced the development of physiologically relevant media for human and animals like dog and rat with respect to the choice of buffers, bile salts, lipids and so on. In addition, we further discussed the influence of biorelevant dissolution media on the modification of drug Biopharmaceutical Classification System (BCS) classification, especially for BCS class II drugs with low solubility and high permeability, the solubility of which is relatively sensitive to the presence of bile salts and lipids.

  12. Investigation and simulation of dissolution with concurrent degradation under healthy and hypoalbuminaemic simulated parenteral conditions- case example Amphotericin B.

    PubMed

    Díaz de León-Ortega, Ricardo; D'Arcy, Deirdre M; Bolhuis, A; Fotaki, N

    2018-06-01

    Guidance on dissolution testing for parenteral formulations is limited and not often related in vivo performance. Critically ill patients represent a target cohort, frequently hypoalbuminaemic, to whom certain parenteral formulations are administered. Amphotericin B (AmB) is a poorly soluble, highly protein-bound drug, available as lipid-based formulations and used in critical illness. The aim of this study was to develop media representing hypoalbuminaemic and healthy plasma, and to understand and simulate the dissolution profile of AmB in biorelevant media. Dissolution media were prepared with bovine serum albumin (BSA) in Krebs-Ringer buffer, and tested in a flow through cell apparatus and a bottle/stirrer setup. Drug activity was tested against Candida albicans. BSA concentration was positively associated with solubility, degradation rate and maximum amount dissolved and negatively associated with dissolution rate constant and antifungal activity. In the bottle/stirrer setup, a biexponential model successfully described simultaneous dissolution and degradation and increased in agitation reduced the discriminatory ability of the test. The hydrodynamics provided by the flow-through cell apparatus was not adequate to dissolve the drug. Establishing discriminating test methods with albumin present in the dissolution media, representing the target population, supports future development of biorelevant and clinically relevant tests for parenteral formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. How does natural groundwater flow affect CO2 dissolution in saline aquifers?

    NASA Astrophysics Data System (ADS)

    Rosenzweig, R.; Michel-Meyer, I.; Tsinober, A.; Shavit, U.

    2017-12-01

    The dissolution of supercritical CO2 in aquifer brine is one of the most important trapping mechanisms in CO2 geological storage. Diffusion-limited dissolution is a very slow process. However, since the CO2-rich water is slightly denser than the CO2-free water, when CO2-free water is overlaid by heavier CO2-rich water, convective instability results in fingers of dense CO2-rich water that propagate downwards, causing CO2-unsaturated water to move upwards. This convection process significantly accelerates the dissolution rate of CO2 into the aquifer water.Most previous works have neglected the effect of natural groundwater flow and assumed it has no effect on the dissolution dynamics. However, it was found that in some of the saline aquifers groundwater flow rate, although small, is not zero. In this research, we study the effect of groundwater flow on dissolution by performing laboratory experiments in a bead pack cell using a mixture of methanol and ethylene-glycol as a CO2 analog while varying the water horizontal flow rate. We find that water horizontal flow decreases the number of fingers, their wavelength and their propagation velocity. When testing high water flow rates, no fingers were developed and the dissolution process was entirely diffusive. The effect of water flow on the dissolution rate did not show a clear picture. When increasing the horizontal flow rate the convective dissolution flux slightly decreased and then increased again. It seems that the combination of density-driven flow, water horizontal flow, mechanical dispersion and molecular diffusion affect the dissolution rate in a complex and non-monotonic manner. These intriguing dynamics should be further studied to understand their effect on dissolution trapping.

  14. In vitro dynamic solubility test: influence of various parameters.

    PubMed Central

    Thélohan, S; de Meringo, A

    1994-01-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964

  15. In vitro dynamic solubility test: influence of various parameters.

    PubMed

    Thélohan, S; de Meringo, A

    1994-10-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The use of ordered mixtures for improving the dissolution rate of low solubility compounds.

    PubMed

    Nyström, C; Westerberg, M

    1986-03-01

    The dissolution rate of micronized griseofulvin has been investigated, both for the agglomerated raw material and the material formulated as an ordered mixture, by means of the USP XX paddle method. During the experiments, which were performed at sink condition and constant temperature, the effects of adding a surfactant and of agitation were tested. The ordered mixture with sodium chloride gave a fast dissolution rate, practically independent of the test parameters. Micronized griseofulvin alone gave dissolution profiles that were improved by adding polysorbate 80 and by increased agitation, but the dissolution rates obtained were much lower than those for the ordered mixture. It was concluded that the rate limiting step in the dissolution of griseofulvin as the raw material is the penetration of the dissolution medium into the agglomerates. With an ordered mixture, these agglomerates were deaggregated during the mixing process, producing a system in which the entire external surface area of the primary particles was exposed to the dissolution medium. This conclusion was supported by calculation of the contact surface areas taking part in the dissolution process for the systems tested. The procedure developed in this study could be applied to preformulation work where a cohesive, low solubility drug of hydrophobic nature is to be formulated.

  17. Porous aerosil loading probucol using supercritical carbon dioxide: preparation, in vitro and in vivo characteristics.

    PubMed

    Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong

    2014-06-01

    The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.

  18. NaK pool-boiler solar receiver durability bench test. Volume 2: Metallurgical analysis

    NASA Astrophysics Data System (ADS)

    Goods, S. H.; Bradshaw, R. W.

    1995-01-01

    The principal materials used in the construction of a NaK based pool-boiler were analyzed. The device, operated for 7500 hours, accumulated 1000 thermal cycles to a peak temperature of 750 C. Haynes 230, used to fabricate the pool-boiler vessel, was found to perform satisfactorily. Air-side corrosion of the pool-boiler vessel was insignificant. Internal surface of the alloy exhibited some NaK-induced elemental dissolution; this dissolution was somewhat more extensive where the alloy was exposed to the liquid metal compared to regions exposed only to NaK vapor; however, the corresponding metal loss in all regions was inconsequential, never exceeding more than a few microns. Autogenous seam welds of the alloy responded in a similar fashion, exhibiting only minimal metal loss over the course of the experiment. While there was 50% loss in ductility of the alloy there remained adequate ductility for the anticipated operating environment. An enhanced boiling nucleation surface comprised of stainless steel powder brazed to the vessel ID showed no change in its structure. It remained intact, showing no cracking after repeated thermal cycling. Other materials used in the experiment showed more extensive degradation after exposure to the NaK. IN 600, used to fabricate thermowells, exhibited extensive surface and intergranular dissolution. Grain boundary dissolution was sufficiently severe in one of the thermowells to cause an air leak, resulting in experiment termination. BNi-3, a brazing alloy used to join the pool-boiler vessel, endcaps and thermowells, showed some dissolution where it was exposed to the NaK as well as thermal aging effects. However, all brazes remained structurally sound. A nickel metal ribbon showed catastrophic dissolution, resulting in the formation of deep (greater than 30 (mu)m) pits and cavities. A zirconium metal foil used to getter oxygen from the NaK became extremely brittle.

  19. Lyophilic matrix method for dissolution and release studies of nanoscale particles.

    PubMed

    Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko

    2017-10-25

    We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparative Application of PLS and PCR Methods to Simultaneous Quantitative Estimation and Simultaneous Dissolution Test of Zidovudine - Lamivudine Tablets.

    PubMed

    Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli

    2015-01-01

    In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.

  1. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    PubMed

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  2. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    PubMed Central

    Taneja, Sonali; Mishra, Neha; Malik, Shubhra

    2014-01-01

    Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141

  3. Errors in reporting on dissolution research: methodological and statistical implications.

    PubMed

    Jasińska-Stroschein, Magdalena; Kurczewska, Urszula; Orszulak-Michalak, Daria

    2017-02-01

    In vitro dissolution testing provides useful information at clinical and preclinical stages of the drug development process. The study includes pharmaceutical papers on dissolution research published in Polish journals between 2010 and 2015. They were analyzed with regard to information provided by authors about chosen methods, performed validation, statistical reporting or assumptions used to properly compare release profiles considering the present guideline documents addressed to dissolution methodology and its validation. Of all the papers included in the study, 23.86% presented at least one set of validation parameters, 63.64% gave the results of the weight uniformity test, 55.68% content determination, 97.73% dissolution testing conditions, and 50% discussed a comparison of release profiles. The assumptions for methods used to compare dissolution profiles were discussed in 6.82% of papers. By means of example analyses, we demonstrate that the outcome can be influenced by the violation of several assumptions or selection of an improper method to compare dissolution profiles. A clearer description of the procedures would undoubtedly increase the quality of papers in this area.

  4. [Study on solid dispersion of copovidone-based tanshinone II(A)].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Xia, Hai-Jiang; Jia, Xiao-Bin

    2013-01-01

    To apply PVP-S630 in the preparation of tanshinone II(A) (TS II(A)) solid dispersion, in order to improve its dissolution in vitro and reduce the moisture absorption of the solid dispersion. Tanshinone II(A) solid dispersion was prepared by spray drying method. Such analytical methods as SEM, DSC, XRD were used to characterize their phases and detect their dissolution, moisture absorption and stability. In the solid dispersion prepared with tanshinone II(A) and copovidone with proportion of 1:10, tanshinone II(A) was scattered on the surface of the carrier in the amorphous form, with a dissolution in vitro up to 100% at 0.5 h and a lower moisture absorption than PVP-K30 solid dispersion prepared with the same proportion. After a three-month accelerated stability test, it showed no significant change in drug dissolution and content. The solid dispersion prepared with copovidone as the carrier can significantly improve the dissolution of tanshinone II(A), with a relatively low moisture absorption and high stability, thereby having a good prospect of application.

  5. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media.

    PubMed

    Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J

    2016-01-01

    The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.

  6. The effect of dentin on the pulp tissue dissolution capacity of sodium hypochlorite and calcium hydroxide.

    PubMed

    Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay

    2013-08-01

    Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P < .001). Dentin has a detrimental effect on the ability of NaOCl and Ca(OH)2 to dissolve pulp tissue. The dentin model appears to be an efficient tool for the study of interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Gromov, Roman; Chemerisov, Sergey D.

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H 2O 2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K 2MoO 4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H 2O 2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  8. Crushed tablets: does the administration of food vehicles and thickened fluids to aid medication swallowing alter drug release?

    PubMed

    Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J

    2014-01-01

    To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.

  9. Development and Validation of Discriminating and Biorelevant Dissolution Test for Lornoxicam Tablets

    PubMed Central

    Anumolu, P. D.; Sunitha, G.; Bindu, S. Hima; Satheshbabu, P. R.; Subrahmanyam, C. V. S.

    2015-01-01

    The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias. PMID:26180277

  10. Development and Validation of Discriminating and Biorelevant Dissolution Test for Lornoxicam Tablets.

    PubMed

    Anumolu, P D; Sunitha, G; Bindu, S Hima; Satheshbabu, P R; Subrahmanyam, C V S

    2015-01-01

    The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias.

  11. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi

    2015-07-25

    The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Yun, Pil-Young; Yeo, In-Sung; Jin, Seung-Chan; Oh, Ji-Su; Kim, Heung-Joong; Yu, Sun-Kyoung; Lee, Sook-Young; Kim, Jae-Sung; Um, In-Woong; Jeong, Mi-Ae; Kim, Gyung-Wook

    2014-01-01

    This study evaluated the surface structures and physicochemical characteristics of a novel autogenous tooth bone graft material currently in clinical use. The material's surface structure was compared with a variety of other bone graft materials via scanning electron microscope (SEM). The crystalline structure of the autogenous tooth bone graft material from the crown (AutoBT crown) and root (AutoBT root), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB), and autogenous mandibular cortical bone were compared using x-ray diffraction (XRD) analysis. The solubility of each material was measured with the Ca/P dissolution test. The results of the SEM analysis showed that the pattern associated with AutoBT was similar to that from autogenous cortical bones. In the XRD analysis, AutoBT root and allograft showed a low crystalline structure similar to that of autogenous cortical bones. In the CaP dissolution test, the amount of calcium and phosphorus dissolution in AutoBT was significant from the beginning, while displaying a pattern similar to that of autogenous cortical bones. In conclusion, autogenous tooth bone graft materials can be considered to have physicochemical characteristics similar to those of autogenous bones. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Rapid analysis of drug dissolution by paper spray ionization mass spectrometry.

    PubMed

    Liu, Yang; Liu, Ning; Zhou, Ya-Nan; Lin, Lan; He, Lan

    2017-03-20

    With a great quantity of solid dosage tested by dissolution technology, developing a rapid and sensitive method to access the content of drug within dissolution media is highly desired by analysts and scientists. Traditionally, dissolution media is not compatible with mass spectrometry since the inorganic salts in the media might damage the mass spectrometer. Here, paper spray ionization mass spectrometry (PSI-MS), one of the ambient mass spectrometry technologies, is developed to characterize the content of drugs in dissolution media. The porous structure of paper can effectively retain salts from entering mass spectrometer. This makes the measurement of drug content within dissolution media by mass spectrometer possible. After the experimental parameters were optimized, calibration curves of model drugs - enalapril, quinapril and benazepril were established by using corresponding deuterated internal standards. PSI-MS was then deployed to characterize the content of enalapril from the dissolution testing of enalapril tablets. The results from PSI-MS are comparable to those from HPLC characterization. More importantly, the analysis time of 6 samples is shortened from 90min to 6min. Detection limit of enalapril maleate tablets by PSI-MS is 1/300 of LC. PSI-MS is rapid, sensitive and accurate in analyzing drug content from dissolution tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biowaiver monographs for immediate release solid oral dosage forms: metronidazole.

    PubMed

    Rediguieri, Camila F; Porta, Valentina; G Nunes, Diana S; Nunes, Taina M; Junginger, Hans E; Kopp, Sabine; Midha, Kamal K; Shah, Vinod P; Stavchansky, Salomon; Dressman, Jennifer B; Barends, Dirk M

    2011-05-01

    Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing metronidazole are reviewed. Metronidazole can be assigned to Biopharmaceutics Classification System Class I. Most BE studies that were identified reported the investigated formulations to be bioequivalent, indicating the risk of bioinequivalence to be low. Formulations showing differences in bioavailability showed dissimilarities in in vitro dissolution profiles. Furthermore, metronidazole has a wide therapeutic index. It is concluded that a biowaiver for solid IR formulations is justified, provided: (a) the test product and its comparator are both rapidly dissolving; (b) meet similarity of the dissolution profiles at pH 1.2, 4.5, and 6.8; (c) the test product contains only excipients present in IR drug products approved in International Conference on Harmonisation (ICH) or associated countries in the same dosage form; and (d) if the test product contains sorbitol, sodium laurilsulfate, or propylene glycol, the test product needs to be qualitatively and quantitatively identical to its comparator with respect to these excipients [corrected].. Copyright © 2011 Wiley-Liss, Inc.

  15. Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets.

    PubMed

    Martinez, Pamela Robles; Goyanes, Alvaro; Basit, Abdul W; Gaisford, Simon

    2018-06-08

    Additive manufacturing (3D printing) permits the fabrication of tablets in shapes unattainable by powder compaction, and so the effects of geometry on drug release behavior is easily assessed. Here, tablets (printlets) comprising of paracetamol dispersed in polyethylene glycol were printed using stereolithographic 3D printing. A number of geometric shapes were produced (cube, disc, pyramid, sphere and torus) with either constant surface area (SA) or constant surface area/volume ratio (SA/V). Dissolution testing showed that printlets with constant SA/V ratio released drug at the same rate, while those with constant SA released drug at different rates. A series of tori with increasing SA/V ratio (from 0.5 to 2.4) were printed, and it was found that dissolution rate increased as the SA/V ratio increased. The data show that printlets can be fabricated in multiple shapes and that dissolution performance can be maintained if the SA/V ratio is constant or that dissolution performance of printlets can be fine-tuned by varying SA/V ratio. The results suggest that 3D printing is therefore a suitable manufacturing method for personalized dosage forms.

  16. Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug.

    PubMed

    Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling

    2014-02-01

    Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.

  17. Physiological Parameters for Oral Delivery and In vitro Testing

    PubMed Central

    Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.

    2010-01-01

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152

  18. Flow-injection system for automated dissolution testing of isoniazid tablets with chemiluminescence detection.

    PubMed

    Li, B; Zhang, Z; Liu, W

    2001-05-30

    A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.

  19. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.

    PubMed

    Wang, J; Flanagan, D R

    1999-07-01

    Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.

  20. Regulatory Perspectives on Strength-Dependent Dissolution Profiles and Biowaiver Approaches for Immediate Release (IR) Oral Tablets in New Drug Applications.

    PubMed

    Suarez-Sharp, Sandra; Delvadia, Poonam R; Dorantes, Angelica; Duan, John; Externbrink, Anna; Gao, Zongming; Ghosh, Tapash; Miksinski, Sarah Pope; Seo, Paul

    2016-05-01

    Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.

  1. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro-in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation.

    PubMed

    Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo

    2017-01-03

    Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.

  2. Hydrodynamic investigation of USP dissolution test apparatus II.

    PubMed

    Bai, Ge; Armenante, Piero M; Plank, Russell V; Gentzler, Michael; Ford, Kenneth; Harmon, Paul

    2007-09-01

    The USP Apparatus II is the device commonly used to conduct dissolution testing in the pharmaceutical industry. Despite its widespread use, dissolution testing remains susceptible to significant error and test failures, and limited information is available on the hydrodynamics of this apparatus. In this work, laser-Doppler velocimetry (LDV) and computational fluid dynamics (CFD) were used, respectively, to experimentally map and computationally predict the velocity distribution inside a standard USP Apparatus II under the typical operating conditions mandated by the dissolution test procedure. The flow in the apparatus is strongly dominated by the tangential component of the velocity. Secondary flows consist of an upper and lower recirculation loop in the vertical plane, above and below the impeller, respectively. A low recirculation zone was observed in the lower part of the hemispherical vessel bottom where the tablet dissolution process takes place. The radial and axial velocities in the region just below the impeller were found to be very small. This is the most critical region of the apparatus since the dissolving tablet will likely be at this location during the dissolution test. The velocities in this region change significantly over short distances along the vessel bottom. This implies that small variations in the location of the tablet on the vessel bottom caused by the randomness of the tablet descent through the liquid are likely to result in significantly different velocities and velocity gradients near the tablet. This is likely to introduce variability in the test. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  3. A novel microdialysis-dissolution/permeation system for testing oral dosage forms: A proof-of-concept study.

    PubMed

    Fong, Sophia Yui Kau; Poulsen, Jessie; Brandl, Martin; Bauer-Brandl, Annette

    2017-01-01

    A novel microdialysis-dissolution/permeation (M-D/P) system was developed for the biopharmaceutical assessment of oral drug formulations. This system consists of a side-by-side diffusion chamber, a microdialysis unit fixed within the dissolution chamber for continuous sampling, and a biomimetic Permeapad® as the intestinal barrier. In the M-D/P system, the concentration of the molecularly dissolved drug (with MWCO <20kDa) was measured over time in the dissolution compartment (representing the gastrointestinal tract) while the concentration of the permeated drug was measured in the acceptor compartment (representing the blood). The kinetics of both the dissolution process and the permeation process were simultaneously quantified under circumstances that mimic physiological conditions. For the current proof-of-concept study, hydrocortisone (HCS) in the form of slowly dissolving solvate crystals and buffer and the biorelevant fasted state simulated intestinal fluids (FaSSIF), were employed as the model drug and dissolution media, respectively. The applicability of the M-D/P system to dissolution and permeation profiling of HCS in buffer and in FaSSIF has been successfully demonstrated. Compared to the conventional direct sampling method (using filter of 0.1-0.45μm), sampling by the M-D/P system exhibited distinct advantages, including (1) showing minimal disturbance of the permeation process, (2) differentiating "molecularly" dissolved drugs from "apparently" dissolved drugs during dissolution of HCS in FaSSIF, and (3) being less laborious and having better sampling temporal resolution. M-D/P system appeared to be a promising, simple and routine tool that allows for the researchers' intensive comprehension of the interplay of dissolution and permeation thus helping for better oral formulation screening and as an ultimate goal, for better dosage forms assessment. Copyright © 2016. Published by Elsevier B.V.

  4. Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland

    2017-06-10

    The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Statistical Considerations Concerning Dissimilar Regulatory Requirements for Dissolution Similarity Assessment. The Example of Immediate-Release Dosage Forms.

    PubMed

    Jasińska-Stroschein, Magdalena; Kurczewska, Urszula; Orszulak-Michalak, Daria

    2017-05-01

    When performing in vitro dissolution testing, especially in the area of biowaivers, it is necessary to follow regulatory guidelines to minimize the risk of an unsafe or ineffective product being approved. The present study examines model-independent and model-dependent methods of comparing dissolution profiles based on various compared and contrasted international guidelines. Dissolution profiles for immediate release solid oral dosage forms were generated. The test material comprised tablets containing several substances, with at least 85% of the labeled amount dissolved within 15 min, 20-30 min, or 45 min. Dissolution profile similarity can vary with regard to the following criteria: time point selection (including the last time point), coefficient of variation, and statistical method selection. Variation between regulatory guidance and statistical methods can raise methodological questions and result potentially in a different outcome when reporting dissolution profile testing. The harmonization of existing guidelines would address existing problems concerning the interpretation of regulatory recommendations and research findings. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Development and evaluation of new multiple-unit levodopa sustained-release floating dosage forms.

    PubMed

    Goole, J; Vanderbist, F; Amighi, K

    2007-04-04

    This work relates to the development and the in vitro evaluation of sustained-release minitablets (MT), prepared by melt granulation and subsequent compression, which are designed to float over an extended period of time. Levodopa was used as a model drug. The importance of the composition and manufacturing parameters of the MT on their floating and dissolution properties was then examined. The investigation showed that MT composition and MT diameter had the greatest influence on drug release, which was sustained for more than 8h. By using the same formulation, the best floating properties were obtained with 3mm MT prepared at low compression forces ranging between 50 and 100N. Their resultant-weight (RW) values were always higher than those obtained with a marketed HBS dosage form within 13h. When they were filled into gelatin capsules, no sticking was observed. By evaluating the dissolution profiles of levodopa at different pH values, it was found that dissolution profiles depend more on the prolonged-release ability of Methocel K15M than on the pH-dependent solubility of levodopa. Finally, the robustness of the floating MT was assessed by testing the drug release variability in function of the stirring conditions during dissolution tests.

  8. Indomethacin-Kollidon VA64 Extrudates: A Mechanistic Study of pH-Dependent Controlled Release.

    PubMed

    Tres, Francesco; Treacher, Kevin; Booth, Jonathan; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2016-03-07

    Because of its weakly acidic nature (pKa of 4.5), indomethacin presents an aqueous solubility that significantly increases when changing from acidic to neutral/alkaline pH (1.5 μg/mL at pH 1.2 and 105.2 μg/mL at pH 7.4). We have therefore investigated the impact of the dissolution medium pH on the dissolution performance of indomethacin:Kollidon VA64 extrudates. The impact of the drug loading on the dissolution properties of these systems was also examined (5%, 15%, 30%, 50%, 70%, and 90% drug loading). Time-resolved Raman spectroscopy along with in-line UV-vis spectrophotometry was employed to directly relate changes in dissolution behavior to physicochemical changes that occur to the extrudate during the test. The dissolution tests were performed in pH 2 HCl (to mimic the stomach conditions), and this was then switched during the experiment to pH 6.8 phosphate buffer (to simulate the poststomach conditions). The rotating disc dissolution rate test was also used to simultaneously measure the dissolution rate of both the drug and the polymer. We found that in pH 2 HCl buffer, for the 15% or higher drug-loaded extrudates, Kollidon VA64 preferentially dissolves from the exterior of the compact leaving an amorphous drug-rich hydrophobic shell, which, similarly to an enteric coating, inhibits the drug release. The in situ formation of an enteric coating has been previously hypothesized, and this has been the first time that is directly observed in a pH-variable dissolution test. The dissolution medium switch to pH 6.8 phosphate buffer, due to the large increase of the aqueous solubility of indomethacin at this pH, leads to rapid dissolution of the material forming the coating and therefore total drug release. In contrast, the 5% extrudate is fully hydrated and quickly dissolves at low pH pointing to a dissolution performance dependent on highly water-soluble Kollidon VA64.

  9. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  10. [Efficient Pharmaceutical Formulation Designs and Their Development Using Mathematical and Statistical Analysis].

    PubMed

    Iwao, Yasunori

    2015-01-01

    With the aim of directly predicting the functionality and mechanism of pharmaceutical excipients, we investigated an analysis method based on available surface area (S(t)), which is the surface area of a drug in direct contact with the external solvent during dissolution. First, to study the effect of lubricant concentration on the dissolution rate of acetaminophen (APAP), the dissolution behaviors as well as the change over time in S(t) of APAP tablets were examined. In the dissolution tests, a retarded dissolution of APAP was not observed with new lubricant triglycerin full behenate (TR-FB), whereas magnesium stearate (Mg-St) retarded the dissolution. The S(t) profiles for APAP with Mg-St at>0.5% showed downward curvature indicating a gradual decrease in surface area over time. Conversely, with TR-FB, even when its concentration was increased, the S(t) profile for APAP had a maximum value. The differences between Mg-St and TR-FB could be explained by the differences in extensibility deriving from their morphology. Next, we evaluated the effect of disintegtant concentration using five disintegrants. When disintegrant was added to ethenzamide tablet formulation, an increase in the dissolution rate and S(t) dependent on disintegrant concentration was observed, according to the type of disintegrant. It was found that the water absorption ability of disintegrants had strong correlations with the parameters of S(t). Taken together, this study demonstrates that analysis of S(t) can directly provide useful information, especially about the functionality of pharmaceutical excipients.

  11. Defining level A IVIVC dissolution specifications based on individual in vitro dissolution profiles of a controlled release formulation.

    PubMed

    González-García, I; García-Arieta, A; Merino-Sanjuan, M; Mangas-Sanjuan, V; Bermejo, M

    2018-07-01

    Regulatory guidelines recommend that, when a level A IVIVC is established, dissolution specification should be established using averaged data and the maximum difference between AUC and C max between the reference and test formulations cannot be greater than 20%. However, averaging data assumes a loss of information and may reflect a bias in the results. The objective of the current work is to present a new approach to establish dissolution specifications using a new methodology (individual approach) instead of average data (classical approach). Different scenarios were established based on the relationship between in vitro-in vivo dissolution rate coefficient using a level A IVIVC of a controlled release formulation. Then, in order to compare this new approach with the classical one, six additional batches were simulated. For each batch, 1000 simulations of a dissolution assay were run. C max ratios between the reference formulation and each batch were calculated showing that the individual approach was more sensitive and able to detect differences between the reference and the batch formulation compared to the classical approach. Additionally, the new methodology displays wider dissolution specification limits than the classical approach, ensuring that any tablet from the new batch would generate in vivo profiles which its AUC or C max ratio will be out of the 0.8-1.25 range, taking into account the in vitro and in vivo variability of the new batches developed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A comparison of the effect of temperature and moisture on the solid dispersions: aging and crystallization.

    PubMed

    Tian, Bin; Zhang, Ling; Pan, Zhendong; Gou, Jingxin; Zhang, Yu; Tang, Xing

    2014-11-20

    The purpose of this work was to compare the effect of temperature and relative humidity (RH) on the physical stability and dissolution of solid dispersions. Cinnarizine-Soluplus(®) solid dispersions (SDs) at three different drug loadings (10, 20 and 35 wt%) were prepared by hot melt extrusion and exposed to stress conditions: high temperatures (40 and 60 °C), high relative humidities (75% and 94% RH) and accelerated conditions (40 °C/75% RH) for 30 days, or stored at 25 °C for up to 5 months. Changes in solid state and dissolution of SDs were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and dissolution testing. For samples under stress conditions, the results showed a reduced dissolution and a recrystallization of the drug with an increased crystallinity in the order of 40 °C/75% RH, >60 °C/0% RH, >25 °C/94% RH, >40 °C/0% RH, >25 °C/75% RH. For samples stored at 25 °C, nonlinear physical aging was observed and the dissolution also decreased although the SDs were still amorphous. The results indicated that temperature and humidity seemed to have comparable effects on the crystallization of cinnarizine-Soluplus(®) SDs. It is not reasonable to regard recrystallization as a sign of reduced dissolution, and glass transition temperature (Tg) may be a good indicator of the changes in dissolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Assessment of pharmaceutical quality of furosemide tablets from multinational markets.

    PubMed

    Qureshi, S A; McGilveray, I J

    1998-11-01

    This report describes results of a collaborative study in which samples of the 40-mg strength of furosemide tablets were evaluated following a common protocol based on British (BP), European (Ph. Eur.), and US Pharmacopoeial (USP) specifications. Several tests, including identification, uniformity of mass, and dissolution, were performed. In total, excluding Lasix lots, results for 162 lots obtained from 115 manufacturers or suppliers were submitted. Also, 23 laboratories identified and submitted data for 34 lots of Lasix products available in their countries. There were no reported abnormalities in the physical test requirements of the products analyzed. The summaries (n, mean, and 95% CI) of the assay results for the "standard sample" (a common sample), Lasix lots from participating countries, and for all other furosemide products, respectively, are as follows: 30, 99.8%, 96-104; 33, 100.0%, 94-106; and 162, 99.6, 94-105. About half (approximately 62%) of the reported uniformity of mass results based on tablet weights were in the range 150-175 mg/tablet. However, there appears to be notable variability in tablet weights that would result in significant differences in the ratios (0.14 to 0.40) of active ingredient to excipient. The reported disintegration times ranged from 0 (instantaneous) to 18 min, with most less than 1 min. The drug dissolution testing was conducted with phosphate buffer at pH 5.8 (USP recommended). Another test was conducted with acetate buffer at pH 4.6 (noncompendial). There appears to be remarkable similarity in overall percentage of drug release from the three types of products (standard sample, Lasix lots, and other products). Although apparently there is a very wide spread in dissolution characteristics of the products tested, the analyses of variance did not detect differences among the products tested and, to this extent, would not indicate differences in bioavailability characteristics for most of these products. It is observed that about 20-38% of the variability in dissolution testing is not product related (i.e., it is from the dissolution testing itself), while the remaining 62-80% variability is product related (manufacturing, formulation, etc). The results of this multinational collaborative study showed that most of the furosemide products available in different countries met the required pharmaceutical quality standards, including drug-release characteristics. Based on an extensive statistical analysis, the main concern from the study was that the high variability in drug dissolution testing would require wide tolerance standards (e.g., pharmacopoeial standards). This may result in lack of needed discriminating ability of the test in revealing the impacts of formulation and manufacturing changes on in vitro, and perhaps in vivo, drug-release characteristics.

  14. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Relationship Between the Evolution of an Internal Structure and Drug Dissolution from Controlled-Release Matrix Tablets.

    PubMed

    Kulinowski, Piotr; Hudy, Wiktor; Mendyk, Aleksander; Juszczyk, Ewelina; Węglarz, Władysław P; Jachowicz, Renata; Dorożyński, Przemysław

    2016-06-01

    In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.

  16. Characterization and taste-masking evaluation of acetaminophen granules: comparison between different preparation methods in a high-shear mixer.

    PubMed

    Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; Voinovich, Dario; González-Rodríguez, Marisa L; Magarotto, Lorenzo; Rodriguez, Lorenzo

    2004-02-01

    The aim of this study was to prepare and to investigate acetaminophen taste-masked granules obtained in a high-shear mixer using three different wet granulation methods (method A: water granulation, method B: granulation with a polyvinylpyrrolidone (PVP) binding solution and method C: steam granulation). The studied formulation was: acetaminophen 15%, alpha-lactose monohydrate 30%, cornstarch 45%, polyvinylpyrrolidone K30 5% and orange flavour 5% (w/w). In vitro dissolution studies, performed at pH 6.8, showed that steam granules enabled the lower dissolution rate in comparison to the water and binding solution granules; these results were then confirmed by their lower surface reactivity (D(R)) during the dissolution process. Moreover, the results of the gustatory sensation test performed by six volunteers confirmed the taste-masking effects of the granules, especially steam granules (P<0.001). Morphological, fractal and porosity analysis were then performed to explain the dissolution profiles and the results of the gustatory sensation test. Scanning electron microscopy (SEM) analysis revealed the smoother and the more regular surface of steam granules with respect to the samples obtained using methods A and B; these results were also confirmed by their lower fractal dimension (D(s)) and porosity values. Finally, differential scanning calorimetry (DSC) results showed a shift of the melting point of the drug, which was due to the simple mixing of the components and not to the granulation processes. In conclusion, the steam granulation technique resulted a suitable method to comply the purpose of this work, without modifying the availability of the drug.

  17. Kozeny-Carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets.

    PubMed

    Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir

    2017-07-01

    This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability k perm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The k perm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants k d . Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI 95% ) revealed significant differences between k d values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f 2 ) test. The final relationship between k d and k perm was found to be hyperbolic, signifying the initial effect of k perm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between k d and k perm . The later being relatable with porosity and specific surface area can be determined by nondestructive tests.

  18. Formulation studies for mirtazapine orally disintegrating tablets.

    PubMed

    Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen

    2016-01-01

    Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab). Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900 mL 0.1 N HCl medium, 900 mL pH 6.8 phosphate buffer or 900 mL pH 4.5 acetate buffer at 37 ± 0.2 °C as dissolution medium. Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media. Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles. Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.

  19. EFFECT OF MAGNESIUM STEARATE CONCENTRATION ON DISSOLUTION PROPERTIES OF RANITIDINE HYDROCHLORIDE COATED TABLETS

    PubMed Central

    Uzunović, Alija; Vranić, Edina

    2007-01-01

    Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates. The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked. During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation), previously proposed by Moore and Flanner. Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response. PMID:17848158

  20. Assessing the risk of pH-dependent absorption for new molecular entities: a novel in vitro dissolution test, physicochemical analysis, and risk assessment strategy.

    PubMed

    Mathias, Neil R; Xu, Yan; Patel, Dhaval; Grass, Michael; Caldwell, Brett; Jager, Casey; Mullin, Jim; Hansen, Luke; Crison, John; Saari, Amy; Gesenberg, Christoph; Morrison, John; Vig, Balvinder; Raghavan, Krishnaswamy

    2013-11-04

    Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others. To study this, an API-sparing, two-stage, in vitro microdissolution test was developed to generate drug dissolution, supersaturation, and precipitation kinetic data under conditions that mimic the dynamic pH changes in the gastrointestinal tract. In vitro dissolution was assessed for a chemically diverse set of compounds under high pH and low pH, analogous to elevated and normal gastric pH conditions observed in pH-modifier cotreated and untreated subjects, respectively. Represented as a ratio between the conditions, the in vitro pH-effect correlated linearly with clinical pH-effect based on the Cmax ratio and in a non-linear relationship based on AUC ratio. Additionally, several in silico approaches that use the in vitro dissolution data were found to be reasonably predictive of the clinical pH-effect. To explore the hypothesis that physicochemical properties are predictors of clinical pH-effect, statistical correlation analyses were conducted using linear sequential feature selection and partial least-squares regression. Physicochemical parameters did not show statistically significant linear correlations to clinical pH-effect for this data set, which highlights the complexity and poorly understood nature of the interplay between parameters. Finally, a strategy is proposed for implementation early in clinical development, to systematically assess the risk of clinical pH-effect for new molecular entities that integrates physicochemical analysis and in vitro, in vivo and in silico methods.

  1. IDENTIFICATION OF PHARMACEUTICAL EXCIPIENT BEHAVIOR OF CHICKPEA (CICER ARIETINUM) STARCH IN GLICLAZIDE IMMEDIATE RELEASE TABLETS.

    PubMed

    Meka, Venkata Srikanth; Yee, Phung; Sheshala, Ravi

    2016-01-01

    In the past few years, there are number of researchers carrying out their research on the excipients derived from polysaccharides and some of these researches show that natural excipients are comparable and can serve as an alternative to the synthetic excipients. Hence, the objectives of this research are to characterize the naturally sourced chickpea starch powder and to study the pharmaceutical excipient behavior of chickpea starch in gliclazide immediate release (IR) tablets. In this research, the binding properties of chickpea starch were compared to that of povidone, whereas the disintegrant properties of chickpea starch were compared to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Flow property of chickpea starch was assessed with the measurement of bulk density, tapped density, compressibility index and angle of repose. Calibration curve for gliclazide in phosphate buffer pH 7.4 was developed. Gliclazide IR tablets were then produced with direct compression method. Physicochemical characteristics of the tablets, including thickness, tablet weight uniformity, hardness, disintegration time and friability were evaluated. Then, in vitro dissolution studies were performed by following United States Pharmacopeia (USP) dissolution method. The dissolution results were analyzed and compared with t30, t50, dissolution efficiency (DE). Lastly, drug-excipient compatibility studies, including Fourier transform infrared (FTIR) spectroscopic analysis and differential scanning calorimetric (DSC) analysis were carried out. Fair flow property was observed in the chickpea starch powder. Furthermore, the tablets produced passed all the tests in physicochemical characteristics evaluation except hardness and disintegration test. Additionally, in vitro dissolution studies show that chickpea starch acted as a disintegrant instead of a binder in gliclazide IR tablets and its disintegrant properties were comparable to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Besides that, gliclazide was also compatible with the excipients used. Chickpea starch acted as a disintegrant in gliclazide IR tablets, instead of a binder. Therefore, chickpea starch can be a promising disintegrant in gliclazide IR tablets.

  2. The dynamics of household dissolution and change in socio-economic position: A survival model in a rural South Africa

    PubMed Central

    Sartorius, Kurt; Sartorius, Benn KD; Collinson, Mark A; Tollman, Stephen M

    2014-01-01

    This paper investigates household dissolution and changes in asset wealth (socio-economic position) in a rural South African community containing settled refugees. Survival analysis applied to a longitudinal dataset indicated that the covariates increasing the risk of forced household dissolution were a reduction in socio-economic position (asset wealth), adult deaths and the permanent outmigration of more than 40% of the household. Conversely, the risk of dissolution was reduced by bigger households, state grants and older household heads. Significant spatial clusters of former refugee villages also showed a higher risk of dissolution after 20 years of permanent residence. A discussion of the dynamics of dissolution showed how an outflow/inflow of household assets (socio-economic position) was precipitated by each of the selected covariates. The paper shows how an understanding of the dynamics of forced household dissolution, combined with the use of geo-spatial mapping, can inform inter-disciplinary policy in a rural community. PMID:25937697

  3. The dynamics of household dissolution and change in socio-economic position: A survival model in a rural South Africa.

    PubMed

    Sartorius, Kurt; Sartorius, Benn Kd; Collinson, Mark A; Tollman, Stephen M

    2014-11-02

    This paper investigates household dissolution and changes in asset wealth (socio-economic position) in a rural South African community containing settled refugees. Survival analysis applied to a longitudinal dataset indicated that the covariates increasing the risk of forced household dissolution were a reduction in socio-economic position (asset wealth), adult deaths and the permanent outmigration of more than 40% of the household. Conversely, the risk of dissolution was reduced by bigger households, state grants and older household heads. Significant spatial clusters of former refugee villages also showed a higher risk of dissolution after 20 years of permanent residence. A discussion of the dynamics of dissolution showed how an outflow/inflow of household assets (socio-economic position) was precipitated by each of the selected covariates. The paper shows how an understanding of the dynamics of forced household dissolution, combined with the use of geo-spatial mapping, can inform inter-disciplinary policy in a rural community.

  4. Formulation and Pharmacokinetic Evaluation of Polymeric Dispersions Containing Valsartan.

    PubMed

    Chella, Naveen; Daravath, Bhaskar; Kumar, Dinesh; Tadikonda, Rama Rao

    2016-10-01

    Valsartan exhibits poor aqueous solubility and dissolution rate limited absorption. The lower solubility in the upper part of gastrointestinal tract (pH-dependant solubility) where its absorption window exists further contributes to the low oral bioavailability of valsartan. The present work was aimed to improve the in vivo pharmacokinetics of valsartan by preparing amorphous polymeric dispersions using Eudragit E 100 as carrier. Eudragit E 100 is a cationic polymer soluble in gastric fluid up to pH 5.0 and exhibits pH-dependent release. Hence, the dispersions prepared using Eudragit E 100 rapidly dissolves at lower pH presenting drug in molecularly dispersed and soluble form at its absorption site. Polymeric solid dispersions were prepared in different drug-to-carrier ratios. The prepared dispersions were evaluated for drug-carrier interactions, solid-state transitions and drug-release properties with the help of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and in vitro dissolution studies. The optimized formulation containing valsartan was tested in rats for bioavailability and pharmacokinetic parameters and compared with that of valsartan pure drug. The results from FTIR studies indicated no interactions between drug and excipients. DSC studies confirmed reduction in crystallinity of drug. The dissolution studies performed in 0.1 N HCl showed significant improvement (p < 0.05) in the dissolution of valsartan. In vivo pharmacokinetic studies showed 199 % relative bioavailability with significant improvement (p < 0.05) in area under the curve compared to valsartan pure drug. Eudragit E 100 can be used to improve the dissolution of drugs that show low solubility at lower pH and thereby enhancing the bioavailability.

  5. Discriminative Dissolution Method for Benzoyl Metronidazole Oral Suspension.

    PubMed

    da Silva, Aline Santos; da Rosa Silva, Carlos Eduardo; Paula, Fávero Reisdorfer; da Silva, Fabiana Ernestina Barcellos

    2016-06-01

    A dissolution method for benzoyl metronidazole (BMZ) oral suspensions was developed and validated using a high-performance liquid chromatography (HPLC) method. After determination of sink conditions, dissolution profiles were evaluated using different dissolution media and agitation speeds. The sample insertion mode in dissolution media was also evaluated. The best conditions were obtained using a paddle, 50 rpm stirring speed, simulated gastric fluid (without pepsin) as the dissolution medium, and sample insertion by a syringe. These conditions were suitable for providing sink conditions and discriminatory power between different formulations. Through the tested conditions, the results can be considered specific, linear, precise, accurate, and robust. The dissolution profiles of five samples were compared using the similarity factor (f 2) and dissolution efficiency. The dissolution kinetics were evaluated and described by the Weibull model. Whereas there is no monograph for this pharmaceutical formulation, the dissolution method proposed can be considered suitable for quality control and dissolution profile comparison of different commercial formulations.

  6. Quality of omeprazole purchased via the Internet and personally imported into Japan: comparison with products sampled in other Asian countries.

    PubMed

    Rahman, Mohammad Sofiqur; Yoshida, Naoko; Sugiura, Sakura; Tsuboi, Hirohito; Keila, Tep; Kiet, Heng Bun; Zin, Theingi; Tanimoto, Tsuyoshi; Kimura, Kazuko

    2018-03-01

    To evaluate the quality of omeprazole personally imported into Japan via the Internet and to compare the quality of these samples with previously collected samples from two other Asian countries. The samples were evaluated by observation, authenticity investigation and pharmacopoeial quality analysis. Quality comparison of some selected samples was carried out by dissolution profiling, Raman spectroscopy and principle component analysis (PCA). Observation of the Internet sites and samples revealed some discrepancies including the delivery of a wrong sample and the selling of omeprazole without a prescription, although it is a prescription medicine. Among the 28 samples analysed, all passed the identification test, 26 (93%) passed the quantity and content uniformity tests and all passed the dissolution test. Dissolution profiling confirmed that all the personally imported omeprazole samples remained intact in the acid medium. On the other hand, six samples from two of the same manufacturers, previously collected during surveys in Cambodia and Myanmar, frequently showed premature omeprazole release in acid. Raman spectroscopy and PCA showed significant variation between omeprazole formulations in personally imported samples and the samples from Cambodia and Myanmar. Our results indicate that the pharmaceutical quality of omeprazole purchased through the Internet was sufficient, as determined by pharmacopeial tests. However, omeprazole formulations distributed in different market segments by the same manufacturers were of diverse quality. Measures are needed to ensure consistent quality of products and to prevent entry of substandard products into the legitimate supply chain. © 2018 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  7. Dissolution enhancement of gliclazide using pH change approach in presence of twelve stabilizers with various physico-chemical properties.

    PubMed

    Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali

    2009-01-01

    The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.

  8. Development and validation of dissolution study of sustained release dextromethorphan hydrobromide tablets.

    PubMed

    Rajan, Sekar; Colaco, Socorrina; Ramesh, N; Meyyanathan, Subramania Nainar; Elango, K

    2014-02-01

    This study describes the development and validation of dissolution tests for sustained release Dextromethorphan hydrobromide tablets using an HPLC method. Chromatographic separation was achieved on a C18 column utilizing 0.5% triethylamine (pH 7.5) and acetonitrile in the ratio of 50:50. The detection wavelength was 280 nm. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The suitable conditions were clearly decided after testing sink conditions, dissolution medium and agitation intensity. The most excellent dissolution conditions tested, for the Dextromethorphan hydrobromide was applied to appraise the dissolution profiles. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The method was established to have sufficient intermediate precision as similar separation was achieved on another instrument handled by different operators. Mean Recovery was 101.82%. Intra precisions for three different concentrations were 1.23, 1.10 0.72 and 1.57, 1.69, 0.95 and inter run precisions were % RSD 0.83, 1.36 and 1.57%, respectively. The method was successfully applied for dissolution study of the developed Dextromethorphan hydrobromide tablets.

  9. Development of a Suitable Dissolution Method for the Combined Tablet Formulation of Atorvastatin and Ezetimibe by RP-LC Method.

    PubMed

    Ozkan Cansel, Kose; Ozgur, Esim; Sevinc, Kurbanoglu; Ayhan, Savaser; Ozkan, Sibel A; Yalcin, Ozkan

    2016-01-01

    Pharmaceutical preparations of ezetimibe and atorvastatin are generally used to regulate the lipid level in blood. It decreases the secondary events for patients with high cholesterol and clinical cardiovascular disease such as non-fatal or fatal heart attack. There is no any pharmacopoeia method available for the dissolution testing recommended by the FDA. Development of dissolution tests method is very critical parameter especially for the pharmaceutical preparations that contain Class II drugs (slightly soluble, good permeable). In the proposed method, the effects of pH and surfactant on the dissolution of poorly water soluble combined drug therapy with a different pKa values in an in vitro environment is investigated. The content of our study was designed to answer these open-ended questions. The optimized test conditions achieved under sink conditions with USP apparatus 2 at a paddle rotation speed of 75 rpm and 900 ml in 0.01 M Acetate buffer (pH= 6.8) containing 0.45% SDS as a dissolution medium. Quantification of dissolution samples were analyzed with a new fully validated RP-LC method with UV detection at 242 nm.

  10. Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel.

    PubMed

    Okino, L A; Siqueira, E L; Santos, M; Bombana, A C; Figueiredo, J A P

    2004-01-01

    To evaluate the activity of various root canal irrigants on bovine pulp tissue. The irrigants tested were: 0.5, 1.0 and 2.5% sodium hypochlorite; 2% aqueous solution of chlorhexidine digluconate; 2% chlorhexidine digluconate gel (Natrosol); and distilled water as control. Bovine pulp fragments were weighed and placed in contact with 20 mL of each tested substance in a centrifuge at 150 r.p.m. until total dissolution. Dissolution speed was calculated by dividing pulp weight by dissolution time. Statistical analysis was performed using the Kruskal-Wallis test. Distilled water and both solutions of chlorhexidine did not dissolve the pulp tissue within 6 h. Mean dissolution speeds for 0.5, 1.0 and 2.5% sodium hypochlorite solutions were 0.31, 0.43 and 0.55 mg min(-1), respectively. The solvent ability of chlorhexidine solutions was similar to that of distilled water. The results for sodium hypochlorite solutions, chlorhexidine solutions and distilled water were statistically different (P>0.01). Both chlorhexidine preparations and distilled water were not able to dissolve pulp tissue. All sodium hypochlorite solutions were efficient in dissolving pulp tissue; the dissolution speed varied with the concentration of the solution.

  11. Biowaiver extension potential and IVIVC for BCS Class II drugs by formulation design: Case study for cyclosporine self-microemulsifying formulation.

    PubMed

    Yang, Su-Geun

    2010-11-01

    The objective of this work was to suggest the biowaiver potential of biopharmaceutical classification system (BCS) Class II drugs in self-microemulsifying drug delivery systems (SMEDDS) which are known to increase the solubility, dissolution and oral absorption of water-insoluble drugs. Cyclosporine was selected as a representative BCS Class II drug. New generic candidate of cyclosporine SMEDDS (test) was applied for the study with brand SMEDDS (reference I) and cyclosporine self-emulsifying drug delivery systems (SEDDS, reference II). Solubility and dissolution of cyclosporine from SMEDDS were critically enhanced, which were the similar behaviors with BCS class I drug. The test showed the identical dissolution rate and the equivalent bioavailability (0.34, 0.42 and 0.68 of p values for AUC₀(→)₂₄(h), C(max) and T(max), respectively) with the reference I. Based on the results, level A in vitro-in vivo correlation (IVIVC) was established from these two SMEDDS formulations. This study serves as a good example for speculating the biowaiver extension potential of BCS Class II drugs specifically in solubilizing formulation such as SMEDDS.

  12. A comparative pH-dissolution profile study of selected commercial levothyroxine products using inductively coupled plasma mass spectrometry.

    PubMed

    Pabla, Dimple; Akhlaghi, Fatemeh; Zia, Hossein

    2009-05-01

    Levothyroxine (T4) is a narrow therapeutic index drug with classic bioequivalence problem between various available products. Dissolution of a drug is a crucial step in its oral absorption and bioavailability. The dissolution of T4 from three commercial solid oral dosage forms: Synthroid (SYN), generic levothyroxine sodium by Sandoz Inc. (GEN) and Tirosint (TIR) was studied using a sensitive ICP-MS assay. All the three products showed variable and pH-dependent dissolution behaviors. The absence of surfactant from the dissolution media decreased the percent T4 dissolved for all the three products by 26-95% (at 30 min). SYN dissolution showed the most pH dependency, whereas GEN and TIR showed the fastest and highest dissolution, respectively. TIR was the most consistent one, and was minimally affected by pH and/or by the presence of surfactant. Furthermore, dissolution of T4 decreased considerably with increase in the pH, which suggests a possible physical interaction in patients concurrently on T4 and gastric pH altering drugs, such as proton pump inhibitors. Variable dissolution of T4 products can, therefore, impact the oral absorption and bioavailability of T4 and may result in bioequivalence problems between various available products.

  13. Oral Solid Dosage Form Disintegration Testing - The Forgotten Test.

    PubMed

    Al-Gousous, Jozef; Langguth, Peter

    2015-09-01

    Since its inception in the 1930s, disintegration testing has become an important quality control (QC) test in pharmaceutical industry, and disintegration test procedures for various dosage forms have been described by the different pharmacopoeias, with harmonization among them still not quite complete. However, because of the fact that complete disintegration does not necessarily imply complete dissolution, much more research has been focused on dissolution rather than on disintegration testing. Nevertheless, owing to its simplicity, disintegration testing seems to be an attractive replacement to dissolution testing as recognized by the International Conference on Harmonization guidelines, in some cases. Therefore, with proper research being carried out to overcome the associated challenges, the full potential of disintegration testing could be tapped saving considerable efforts allocated to QC testing and quality assurance. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence

    PubMed Central

    Wen, H; Fan, J; Vince, B; Li, T; Gao, W; Kinjo, M; Brown, J; Sun, W; Jiang, W; Lionberger, R

    2017-01-01

    We demonstrate the use of modeling and simulation to investigate bioequivalence (BE) concerns raised about generic warfarin products. To test the hypothesis that the loss of isopropyl alcohol and slow dissolution in acidic pH has significant impact on the pharmacokinetics of warfarin sodium tablets, we conducted physiologically based pharmacokinetic absorption modeling and simulation using formulation factors or in vitro dissolution profiles as input parameters. Sensitivity analyses indicated that warfarin pharmacokinetics was not sensitive to solubility, particle size, density, or dissolution rate in pH 4.5, but was affected by dissolution rate in pH 6.8 and potency. Virtual BE studies suggested that stressed warfarin sodium tablets with slow dissolution rate in pH 4.5 but having similar dissolution rate in pH 6.8 would be bioequivalent to the unstressed warfarin sodium tablets. A four‐way, crossover, single‐dose BE study in healthy subjects was conducted to test the same hypothesis and confirmed the simulation conclusion. PMID:28379643

  15. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine.

    PubMed

    Culen, Martin; Rezacova, Anna; Jampilek, Josef; Dohnal, Jiri

    2013-09-01

    Development of new pharmaceutical compounds and dosage forms often requires in vitro dissolution testing with the closest similarity to the human gastrointestinal (GI) tract. To create such conditions, one needs a suitable dissolution apparatus and the appropriate data on the human GI physiology. This review discusses technological approaches applicable in biorelevant dissolutions as well as the physiology of stomach and small intestine in both fasted and fed state, that is, volumes of contents, transit times for water/food and various solid oral dosage forms, pH, osmolality, surface tension, buffer capacity, and concentrations of bile salts, phospholipids, enzymes, and Ca(2+) ions. The information is aimed to provide clear suggestions on how these conditions should be set in a dynamic biorelevant dissolution test. Copyright © 2013 Wiley Periodicals, Inc.

  16. Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer.

    PubMed

    Fagerlund, S; Hupa, L; Hupa, M

    2013-02-01

    A continuous flow measurement system with sensitive on-line ion analysis has been applied to study the initial dissolution behaviour of biocompatible glasses in Tris. Altogether 16 glasses with widely varying compositions were studied. The measurement system allowed for quantitative determination of the time-dependent rates of dissolution of sodium, potassium, calcium, magnesium, silicon and phosphorus during the first 10-15 min in contact with Tris solution. The dissolution rates of the different ions showed significant glass to glass variations, but all glasses studied showed one of four distinct dissolution patterns. The ion dissolution rates after an exposure of 1000 s, expressed as the normalized surface-specific mass loss rates, were compared with the in vitro and in vivo reactivity of the glasses as predicted by models in the literature. The results showed a clear correlation between the dissolution rates of the glasses in Tris and their reactivity as measured by other different methods. Consequently, the measured short-term dissolution patterns could be used to determine which glasses are suitable as bioactive, biodegradable, or inert biomaterials for medical devices. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. [Evaluation of Dissolution Profiles of Famotidine from Over-the-counter Drugs].

    PubMed

    Saito, Yuji; Adachi, Naoki; Kato, Miki; Nadai, Masayuki

    2018-03-27

      In recent years, self-medication has started to receive more attention in Japan owing to increasing medical costs and health awareness among people. One of the main roles of pharmacists in self-medication is to provide appropriate information regarding over-the-counter (OTC) drugs. However, pharmacists promoting the proper use of OTC drugs have little information on their formulation properties. In this study, we performed dissolution tests on both OTC drugs and ethical drug (ED) containing famotidine, and evaluated the differences in their dissolution profiles. Marked differences in dissolution profiles of OTC drugs were observed in test solutions at pH 1.2, 4.0, and 6.8 and in water. To evaluate the differences quantitatively, we calculated the lag time and dissolution rate constant from the dissolution profiles. Significant differences in lag times and dissolution rate constants between some OTC drugs and ED were observed. We also used similarity factor (f2), to quantify the similarity between dissolution profiles of OTC drugs and ED. f2 values less than 42 were observed in some OTC drugs, suggesting that these differences might influence absorption in vivo resulting in differences in their onset time and efficacy. The findings of this study will provide useful information for the promotion of proper use of OTC drugs.

  18. Dissolution-resistance of glass-added hydroxyapatite composites

    NASA Astrophysics Data System (ADS)

    Seo, Dong Seok; Lee, Jong Kook

    2009-04-01

    Hydroxyapatite (HA) has generated a great deal of interest as a promising implant material. However, its poor mechanical properties induced by severe dissolution in biological milieu limit medical applications and lead to clinical failure. In this study, HA ceramics with 30P2O5-30CaO-40Na2O glass (1.0 wt.% and 2.5 wt.%) were prepared to improve the resistance of monophase HA. The monophase HA sintered body showed microstructural degradation due to grain boundary dissolution in buffered water. However, the dissolution-resistance of HA/glass composites was significantly improved and showed no apparent evidence of dissolution. This suggests that a less soluble glass phase should be placed at grain boundaries to protect HA from dissolution.

  19. Mechanism of Urea Crystal Dissolution in Water from Molecular Dynamics Simulation.

    PubMed

    Anand, Abhinav; Patey, G N

    2018-01-25

    Molecular dynamics simulations are used to determine the mechanism of urea crystal dissolution in water under sink conditions. Crystals of cubic and tablet shapes are considered, and results are reported for four commonly used water models. The dissolution rates for different water models can differ considerably, but the overall dissolution mechanism remains the same. Urea dissolution occurs in three stages: a relatively fast initial stage, a slower intermediate stage, and a final stage. We show that the long intermediate stage is well described by classical rate laws, which assume that the dissolution rate is proportional to the active surface area. By carrying out simulations at different temperatures, we show that urea dissolution is an activated process, with an activation energy of ∼32 kJ mol -1 . Our simulations give no indication of a significant diffusion layer, and we conclude that the detachment of molecules from the crystal is the rate-determining step for dissolution. The results we report for urea are consistent with earlier observations for the dissolution of NaCl crystals. This suggests that the three-stage mechanism and classical rate laws might apply to the dissolution of other ionic and molecular crystals.

  20. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    PubMed

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  1. Testing signal enhancement mechanisms in the dissolution NMR of acetone

    NASA Astrophysics Data System (ADS)

    Alonso-Valdesueiro, Javier; Elliott, Stuart J.; Bengs, Christian; Meier, Benno; Levitt, Malcolm H.

    2018-01-01

    In cryogenic dissolution NMR experiments, a substance of interest is allowed to rest in a strong magnetic field at cryogenic temperature, before dissolving the substance in a warm solvent, transferring it to a high-resolution NMR spectrometer, and observing the solution-state NMR spectrum. In some cases, negative enhancements of the 13C NMR signals are observed, which have been attributed to quantum-rotor-induced polarization. We show that in the case of acetone (propan-2-one) the negative signal enhancements of the methyl 13C sites may be understood by invoking conventional cross-relaxation within the methyl groups. The 1H nuclei acquire a relative large net polarization through thermal equilibration in a magnetic field at low temperature, facilitated by the methyl rotation which acts as a relaxation sink; after dissolution, the 1H magnetization slowly returns to thermal equilibrium at high temperature, in part by cross-relaxation processes, which induce a transient negative polarization of nearby 13C nuclei. We provide evidence for this mechanism experimentally and theoretically by saturating the 1H magnetization using a radiofrequency field pulse sequence before dissolution and comparing the 13 C magnetization evolution after dissolution with the results obtained from a conventional 1 H-13 C cross relaxation model of the CH3 moieties in acetone.

  2. Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration

    NASA Astrophysics Data System (ADS)

    Aiello, A.; Azzati, M.; Benamati, G.; Gessi, A.; Long, B.; Scaddozzo, G.

    2004-11-01

    The corrosion behaviours of austenitic steel AISI 316L and martensitic steel T91 were investigated in flowing lead-bismuth eutectic (LBE) at 400 °C. The tests were performed in the LECOR and CHEOPE III loops, which stood for the low oxygen concentration and high oxygen concentration in LBE, respectively. The results obtained shows that steels were affected by dissolution at the condition of low oxygen concentration ( C[O 2] = 10 -8-10 -10 wt%) and were oxidized at the condition of high oxygen concentration ( C[O 2] = 10 -5-10 -6 wt%). The oxide layers detected are able to protect the steels from dissolution in LBE. Under the test condition adopted, the austenitic steel behaved more resistant to corrosion induced by LBE than the martensitic steel.

  3. [Troubleshooting of bioinequivalence of compound valsartan tablets].

    PubMed

    Shao, Da; Zhang, Yi-Fan; Zhan, Yan; Chen, Xiao-Yan; Zhong, Da-Fang

    2014-04-01

    The study aims to evaluate the bioequivalence of valsartan hydrochlorothiazide tablets, and to investigate the potential cause of bioinequivalence. This was a single-center study with an open, randomized double-way crossover design. Test and reference preparations containing 160 mg of valsartan and 25 mg of hydrochlorothiazide were given to 36 healthy male volunteers. Plasma concentrations of valsartan and hydrochlorothiazide were determined simultaneously by LC-MS/MS. The pharmacokinetic parameters and relative bioavailability were calculated, while the bioequivalence between test and reference preparations were evaluated. The dissolution profiles of test and reference preparations in four different mediums were determined via dissolution test and HPLC. The similarity was investigated according to the similarity factors (f2). The F(o-t) and F(0-infinity) were (139.4 +/- 65.2)% and (137.5 +/- 61.2)% for valsartan of test preparations. It led to get the conclusion that test and reference preparations were not bioequivalent for valsartan. A significant difference was observed between test and reference tablets in the valsartan dissolution test of pH 1.2 hydrochloric acid solution. The key factor of the bioinequivalence might be that dissolution of valsartan in acid medium has marked difference between two preparations.

  4. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  5. Oxidation of platinum nickel nanowires to improve durability of oxygen-reducing electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Pylypenko, Svitlana; Dameron, Arrelaine; ...

    2016-01-12

    In this study, the impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealedmore » Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200°C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution.« less

  6. Fixed-dose combination orally disintegrating tablets to treat cardiovascular disease: formulation, in vitro characterization and physiologically based pharmacokinetic modeling to assess bioavailability.

    PubMed

    Dennison, Thomas J; Smith, Julian C; Badhan, Raj K; Mohammed, Afzal R

    2017-01-01

    Cardiovascular disease (CVD) is the leading cause of death among men and women worldwide. In CVD, hypertension and dyslipidemia commonly coexist and are managed through coadministration of amlodipine and atorvastatin, respectively. The case for fixed-dose combination (FDC) oral dosage forms and orally disintegrating tablet (ODT) technology to enhance outcomes and compliance is strong. This work follows the development and characterization of single and FDC ODTs containing amlodipine and atorvastatin, followed by bioequivalence comparison between these single and FDC formulations, using in vitro dissolution and Caco-2 apparent permeability (P app ) and in silico physiologically based pharmacokinetic modeling approaches. ODTs containing amlodipine (5 mg) and atorvastatin (10 mg) either alone or in combination rapidly disintegrated (<30 s) while displaying a radial crushing strength in excess of 100 N and friability ≤1%. In vitro dissolution test was performed in fasted and fed-state simulated intestinal fluid (FeSSIF) and analyzed using high-performance liquid chromatography. Dissolution profiles for single and FDC ODTs were compared using US FDA recommended difference (f 1 ) and similarity (f 2 ) factor testing for bioequivalence. In all cases, there was no difference in active pharmaceutical ingredient dissolution between single or FDC ODTs, with the exception of amlodipine in FeSSIF. Pharmacokinetic clinical trial simulations were conducted using Simcyp (Version 14), incorporating P app and dissolution data. Simulated clinical trials in healthy volunteers showed no difference in bioavailability based on pharmacokinetic parameters between single and combination doses with either active pharmaceutical ingredient. An increase in C max and AUC for atorvastatin in fed subjects was attributed to extended transit along the gut lumen and reduced atorvastatin metabolism due to lower CYP3A4 expression at more distal small intestine absorption sites. The results demonstrated bioequivalence of an FDC ODT for amlodipine and atorvastatin, while highlighting several limitations of f 1 and f 2 bioequivalence testing and strengths of mechanistic pharmacokinetic modeling for oral drug absorption.

  7. Fixed-dose combination orally disintegrating tablets to treat cardiovascular disease: formulation, in vitro characterization and physiologically based pharmacokinetic modeling to assess bioavailability

    PubMed Central

    Dennison, Thomas J; Smith, Julian C; Badhan, Raj K; Mohammed, Afzal R

    2017-01-01

    Cardiovascular disease (CVD) is the leading cause of death among men and women worldwide. In CVD, hypertension and dyslipidemia commonly coexist and are managed through coadministration of amlodipine and atorvastatin, respectively. The case for fixed-dose combination (FDC) oral dosage forms and orally disintegrating tablet (ODT) technology to enhance outcomes and compliance is strong. This work follows the development and characterization of single and FDC ODTs containing amlodipine and atorvastatin, followed by bioequivalence comparison between these single and FDC formulations, using in vitro dissolution and Caco-2 apparent permeability (Papp) and in silico physiologically based pharmacokinetic modeling approaches. ODTs containing amlodipine (5 mg) and atorvastatin (10 mg) either alone or in combination rapidly disintegrated (<30 s) while displaying a radial crushing strength in excess of 100 N and friability ≤1%. In vitro dissolution test was performed in fasted and fed-state simulated intestinal fluid (FeSSIF) and analyzed using high-performance liquid chromatography. Dissolution profiles for single and FDC ODTs were compared using US FDA recommended difference (f1) and similarity (f2) factor testing for bioequivalence. In all cases, there was no difference in active pharmaceutical ingredient dissolution between single or FDC ODTs, with the exception of amlodipine in FeSSIF. Pharmacokinetic clinical trial simulations were conducted using Simcyp (Version 14), incorporating Papp and dissolution data. Simulated clinical trials in healthy volunteers showed no difference in bioavailability based on pharmacokinetic parameters between single and combination doses with either active pharmaceutical ingredient. An increase in Cmax and AUC for atorvastatin in fed subjects was attributed to extended transit along the gut lumen and reduced atorvastatin metabolism due to lower CYP3A4 expression at more distal small intestine absorption sites. The results demonstrated bioequivalence of an FDC ODT for amlodipine and atorvastatin, while highlighting several limitations of f1 and f2 bioequivalence testing and strengths of mechanistic pharmacokinetic modeling for oral drug absorption. PMID:28352156

  8. Extraction and quantitative analysis of iodine in solid and solution matrixes.

    PubMed

    Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S

    2005-11-01

    129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.

  9. Development and validation of a discriminative dissolution method for atorvastatin calcium tablets using in vivo data by LC and UV methods.

    PubMed

    Machado, J C; Lange, A D; Todeschini, V; Volpato, N M

    2014-02-01

    A dissolution method to analyze atorvastatin tablets using in vivo data for RP and test pilot (PB) was developed and validated. The appropriate conditions were determined after solubility tests using different media, and sink conditions were established. The conditions used were equipment paddle at 50 rpm and 900 mL of potassium phosphate buffer pH 6.0 as dissolution medium. In vivo release profiles were obtained from the bioequivalence study of RP and the generic candidate PB. The fraction of dose absorbed was calculated using the Loo-Riegelman method. It was necessary to use a scale factor of time similar to 6.0, to associate the values of absorbed fraction and dissolved fraction, obtaining an in vivo-in vitro correlation level A. The dissolution method to quantify the amount of drug dissolved was validated using high-performance liquid chromatography and ultraviolet spectrophotometry, and validated according to the USP protocol. The discriminative power of dissolution conditions was assessed using two different pilot batches of atorvastatin tablets (PA and PB) and RP. The dissolution test was validated and may be used as a discriminating method in quality control and in the development of the new formulations.

  10. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS): A rapid test for enteric coating thickness and integrity of controlled release pellet formulations.

    PubMed

    Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara

    2018-06-10

    There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An investigation into the influence of experimental conditions on in vitro drug release from immediate-release tablets of levothyroxine sodium and its relation to oral bioavailability.

    PubMed

    Kocic, Ivana; Homsek, Irena; Dacevic, Mirjana; Parojcic, Jelena; Miljkovic, Branislava

    2011-09-01

    The aim of this study was to investigate the influence of experimental conditions on levothyroxine sodium release from two immediate-release tablet formulations which narrowly passed the standard requirements for bioequivalence studies. The in vivo study was conducted as randomised, single-dose, two-way cross-over pharmacokinetic study in 24 healthy subjects. The in vitro study was performed using various dissolution media, and obtained dissolution profiles were compared using the similarity factor value. Drug solubility in different media was also determined. The in vivo results showed narrowly passing bioequivalence. Considering that levothyroxine sodium is classified as Class III drug according to the Biopharmaceutics Classification System, drug bioavailability will be less sensitive to the variation in its dissolution characteristics and it can be assumed that the differences observed in vitro in some of investigated media probably do not have significant influence on the absorption process, as long as rapid and complete dissolution exists. The study results indicate that the current regulatory criteria for the value of similarity factor in comparative dissolution testing, as well as request for very rapid dissolution (more than 85% of drug dissolved in 15 min), are very restricted for immediate-release dosage forms containing highly soluble drug substance and need further investigation. The obtained results also add to the existing debate on the appropriateness of the current bioequivalence standards for levothyroxine sodium products.

  12. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions.

    PubMed

    Dontireddy, Rakesh; Crean, Abina M

    2011-10-01

    Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (T(g)) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in T(g) from the predicted values calculated using the Couchman-Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.

  13. Self-Healing Materials for Ecotribology

    PubMed Central

    Shi, Shih-Chen; Huang, Teng-Feng

    2017-01-01

    Hydroxypropyl methylcellulose (HPMC) is a biopolymer that is biodegradable, environmentally friendly, and bio-friendly. Owing to its unique chemical structure, HPMC can reduce the coefficient of friction (COF) and frictional wear and thus possesses excellent lubrication properties. HPMC has good dissolvability in specific solvents. The present research focuses on the reversible dissolution reaction subsequent to the film formation of HPMC, with a view to the healing and lubrication properties of thin films. Raman spectroscopy was used to test the film-forming properties of HPMC and the dissolution characteristics of various solvents. In this study, the solvents were water, methanol, ethanol, and acetone. The results showed that the HPMC film had the highest dissolvability in water. The ball-on-disk wear test was used to analyze the lubrication properties of HPMC, and the results showed that HPMC had the same COF and lubrication properties as the original film after being subjected to the water healing treatment. The HPMC film can be reused, recycled, and refilled, making it an ideal lubricant for next-generation ecotribology. PMID:28772449

  14. Development of a biphasic dissolution test for Deferasirox dispersible tablets and its application in establishing an in vitro-in vivo correlation.

    PubMed

    Al Durdunji, Amal; AlKhatib, Hatim S; Al-Ghazawi, Mutasim

    2016-05-01

    In a biphasic dissolution medium, the integration of the in vitro dissolution of a drug in an aqueous phase and its subsequent partitioning into an organic phase is hypothesized to simulate the in vivo drug absorption. Such a methodology is expected to improve the probability of achieving a successful in vitro-in vivo correlation. Dissolution of Dispersible tablets of Deferasirox, a biopharmaceutics classification system type II compound, was studied in a biphasic dissolution medium using a flow-through dissolution apparatus coupled to a paddle apparatus. The experimental parameters associated with dissolution were optimized to discriminate between Deferasirox dispersible tablets of different formulations. The dissolution profiles obtained from this system were subsequently used to construct a level A in vitro-in vivo correlation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Tissue dissolution by a novel multisonic ultracleaning system and sodium hypochlorite.

    PubMed

    Haapasalo, Markus; Wang, Zhejun; Shen, Ya; Curtis, Allison; Patel, Payal; Khakpour, Mehrzad

    2014-08-01

    This study aimed to evaluate the effectiveness of a novel Multisonic Ultracleaning System (Sonendo Inc, Laguna Hills, CA) in tissue dissolution in comparison with conventional irrigation devices. Pieces of bovine muscle tissue (68 ± 2 mg) were placed in 0.7-mL test tubes (height: 23.60 mm, inner diameter: 6.00 mm, outer diameter: 7.75 mm) and exposed to 5 minutes of irrigation by different devices. Endodontic devices included the Multisonic Ultracleaning System, the Piezon Master 700 (EMS, Dallas, TX) ultrasonic system with agitation, the EndoVac negative-pressure irrigation system (SybronEndo, Orange, CA), and a conventional positive-pressure 27-G irrigation needle at a flow rate of 10 mL/min. The systems were tested with 0.5%, 3%, and 6% sodium hypochlorite (NaOCl) at room temperature (21°C) as well as 40°C. Irrigation with sterile water was used as a control. The mass of tissue specimens was measured and recorded before and after the use of each device, and if the specimen was completely dissolved visually within 5 minutes, the dissolution time was recorded. The rate of tissue dissolution (%/s) was then calculated. The Multisonic Ultracleaning System had the fastest rate of tissue dissolution (P < .05), at 1.0% ± 0.1% per second using 0.5% NaOCl, 2.3% ± 0.9% per second using 3% NaOCl, and 2.9% ± 0.7% per second using 6% NaOCl. This tissue dissolution rate was more than 8 times greater than the second fastest device tested (P < .01), the Piezon Master 700 ultrasonic system, which resulted in a tissue dissolution rate of 0.328% ± 0.002% per second using 6% NaOCl at 40°C. For all irrigation devices tested, the rate of tissue dissolution increased with a higher concentration and temperature of the NaOCl solution. The novel Multisonic Ultracleaning System achieved a significantly faster tissue dissolution rate when compared with the other systems examined in vitro. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Formulation Predictive Dissolution (fPD) Testing to Advance Oral Drug Product Development: an Introduction to the US FDA Funded '21st Century BA/BE' Project.

    PubMed

    Hens, Bart; Sinko, Patrick; Job, Nicholas; Dean, Meagan; Al-Gousous, Jozef; Salehi, Niloufar; Ziff, Robert M; Tsume, Yasuhiro; Bermejo, Marival; Paixão, Paulo; Brasseur, James G; Yu, Alex; Talattof, Arjang; Benninghoff, Gail; Langguth, Peter; Lennernäs, Hans; Hasler, William L; Marciani, Luca; Dickens, Joseph; Shedden, Kerby; Sun, Duxin; Amidon, Gregory E; Amidon, Gordon L

    2018-06-23

    Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions. Copyright © 2018. Published by Elsevier B.V.

  17. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    PubMed

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.

  18. Multiple-layer compression-coated tablets: formulation and humidity studies of novel chewable amoxicillin/clavulanate tablet formulations.

    PubMed

    Wardrop, J; Jaber, A B; Ayres, J W

    1998-08-01

    The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.

  19. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    NASA Astrophysics Data System (ADS)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  20. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies

    NASA Astrophysics Data System (ADS)

    Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret

    2014-08-01

    The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior that strongly depended on the surrounding conditions. Agglomeration of ZnO particles in physiological media is a complex function of particle coating, used dispersants and serum proteins if supplemented. The present study gives a clear guideline how to prepare and handle suspensions with ZnO for in vitro testing and allows the correlation between the chemical-physical particles behavior with findings from toxicological tests.

  1. In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation

    NASA Astrophysics Data System (ADS)

    Wall-Palmer, Deborah; Smart, Christopher W.; Hart, Malcolm B.

    2013-12-01

    Recent concern over the effects of ocean acidification upon calcifying organisms has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Both in-situ and laboratory studies have shown that an increased dissolved CO2 concentration, leading to decreased water pH and low carbonate concentration, causes reduced calcification rates and enhanced dissolution in the shells of living pteropods. In fossil records unaffected by post-depositional dissolution, this in-life shell dissolution can be detected. Here we present the first evidence of variations of in-life pteropod shell dissolution due to variations in surface water carbonate concentration during the Late Pleistocene by analysing the surface layer of pteropod shells in marine sediment cores from the Caribbean Sea and Indian Ocean. In-life shell dissolution was determined by applying the Limacina Dissolution Index (LDX) to the sub-tropical pteropod Limacina inflata. Average shell size information shows that high in-life dissolution is accompanied by smaller shell sizes in L. inflata, which may indicate a reduction in calcification rate. Comparison of the LDX profile to Late Pleistocene Vostok atmospheric CO2 concentrations, shows that in-life pteropod dissolution is closely associated to variations in past ocean carbonate saturation. This study confirms the findings of laboratory studies, showing enhanced shell dissolution and reduced calcification in living pteropods when surface ocean carbonate concentrations were lower. Results also demonstrate that oceanic pH levels that were less acidic and changing less rapidly than those predicted for the 21st Century, negatively affected pteropods during the Late Pleistocene.

  2. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution.

    PubMed

    Potter, Russell M; Olang, Nassreen

    2013-04-12

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating.

  3. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution

    PubMed Central

    2013-01-01

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating. PMID:23587247

  4. [The in vitro dissolution of total composition of the tablet of rhizomes of Ligusticum chuanxiong components and in vitro-in vivo correlation by the method of area under the absorbance-wavelength curve].

    PubMed

    Lai, Hong-qiang; Hu, Yue; Li, Xiao-dong

    2015-06-01

    To discuss the availability of evaluation on the dissolution studies of the multicomponents in traditional Chinese medicine, the in vitro dissolution of total composition of the tablet of rhizomes of Ligusticum chuanxiong components and its correlation with the in vivo were studied by the method of area under the absorbance-wavelength curve (AUAWC). Taken the tablet of rhizomes of Ligusticum chuanxiong components which is composed of sodium ferulate and ligustrazine hydrochloride as subject model, the dissolution tests were carried out with basket method. The plasma concentrations of tablets in different rats were determined by AUAWC at different interval times. The in vivo absorption percentage was calculated by Wagner-Nelson equation to evaluate the in vitro and in vivo correlation. According to the results, the cumulative dissolution in vitro of total composition of tablets of rhizomes of Ligusticum chuanxiong components at 60 min was 90.65% in water by AUAWC. The in vivo pharmacokinetics is fitted with an one-compartment model. The linear equation based on the cumulative dissolution rate (fr) and absorption percentage (fa) at 5, 10, 20, 30 and 60 min was fa = 0.819 7 fr+0.183 and the correlation coefficient was 0.959 5, which showed a good correlation between the in vitro dissolution and the in vivo absorption percentage. The method of AUAWC can be used accurately, feasibly and conveniently to evaluate the in vitro and in vivo correlation of total composition of tablets of rhizomes of Ligusticum chuanxiong components, which will provide better guidance to study the in vitro and in vivo correlation of sustained release preparation etc under complex system of traditional Chinese medicine in the future.

  5. 75 FR 8081 - Patrick J. Lais: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ..., among other things, subpotent burn spray, aspirin that had failed dissolution testing, and antacid... as ``Uncoated Aspirin.'' This drug failed its final dissolution testing. Neither Mr. Lais nor the... coated the failed aspirin and renumbered the lot. Part of this lot then was packaged as ``Coated Aspirin...

  6. Addition of Sodium Bicarbonate to Irrigation Solution May Assist in Dissolution of Uric Acid Fragments During Ureteroscopy.

    PubMed

    Paonessa, Jessica E; Williams, James C; Lingeman, James E

    2018-04-01

    We hypothesized that adding sodium bicarbonate (bicarb) to normal saline (NS) irrigation during ureteroscopy in patients with uric acid (UA) nephrolithiasis may assist in dissolving small stone fragments produced during laser lithotripsy. In vitro testing was performed to determine whether dissolution of UA fragments could be accomplished within 1 hour. In total 100% UA renal calculi were fragmented, filtered, and separated by size. Fragment sizes were <0.5 mm and 0.5 to 1 mm. Similar amounts of stone material were agitated in solution at room temperature. Four solutions were tested (NS, NS +1 ampule bicarb/L, NS +2, NS +3). Both groups were filtered to remove solutions after fixed periods. Filtered specimens were dried and weighed. Fragment dissolution rates were calculated as percent removed per hour. Additional testing was performed to determine whether increasing the temperature of solution affected dissolution rates. For fragments <0.5 mm, adding 2 or 3 bicarb ampules/L NS produced a dissolution rate averaging 91% ± 29% per hour. This rate averaged 226% faster than NS alone. With fragments 0.5 to 1 mm, addition of 2 or 3 bicarb ampules/L NS yielded a dissolution rate averaging 22% ± 7% per hour, which was nearly five times higher than NS alone. There was a trend for an increase in mean dissolution rate with higher temperature but this increase was not significant (p = 0.30). The addition of bicarbonate to NS more than doubles the dissolution rate of UA stone fragments and fragments less than 0.5 mm can be completely dissolved within 1 hour. Addition of bicarb to NS irrigation is a simple and inexpensive approach that may assist in the dissolution of UA fragments produced during ureteroscopic laser lithotripsy. Further studies are needed to determine whether a clinical benefit exists.

  7. Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock

    NASA Astrophysics Data System (ADS)

    Li, Wei; Einstein, Herbert H.

    2017-11-01

    When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.

  8. Chemometrics-assisted spectrophotometric green method for correcting interferences in biowaiver studies: Application to assay and dissolution profiling study of donepezil hydrochloride tablets

    NASA Astrophysics Data System (ADS)

    Korany, Mohamed A.; Mahgoub, Hoda; Haggag, Rim S.; Ragab, Marwa A. A.; Elmallah, Osama A.

    2018-06-01

    A green, simple and cost effective chemometric UV-Vis spectrophotometric method has been developed and validated for correcting interferences that arise during conducting biowaiver studies. Chemometric manipulation has been done for enhancing the results of direct absorbance, resulting from very low concentrations (high incidence of background noise interference) of earlier points in the dissolution timing in case of dissolution profile using first and second derivative (D1 & D2) methods and their corresponding Fourier function convoluted methods (D1/FF& D2/FF). The method applied for biowaiver study of Donepezil Hydrochloride (DH) as a representative model was done by comparing two different dosage forms containing 5 mg DH per tablet as an application of a developed chemometric method for correcting interferences as well as for the assay and dissolution testing in its tablet dosage form. The results showed that first derivative technique can be used for enhancement of the data in case of low concentration range of DH (1-8 μg mL-1) in the three different pH dissolution media which were used to estimate the low drug concentrations dissolved at the early points in the biowaiver study. Furthermore, the results showed similarity in phosphate buffer pH 6.8 and dissimilarity in the other 2 pH media. The method was validated according to ICH guidelines and USP monograph for both assays (HCl of pH 1.2) and dissolution study in 3 pH media (HCl of pH 1.2, acetate buffer of pH 4.5 and phosphate buffer of pH 6.8). Finally, the assessment of the method greenness was done using two different assessment techniques: National Environmental Method Index label and Eco scale methods. Both techniques ascertained the greenness of the proposed method.

  9. Chemometrics-assisted spectrophotometric green method for correcting interferences in biowaiver studies: Application to assay and dissolution profiling study of donepezil hydrochloride tablets.

    PubMed

    Korany, Mohamed A; Mahgoub, Hoda; Haggag, Rim S; Ragab, Marwa A A; Elmallah, Osama A

    2018-06-15

    A green, simple and cost effective chemometric UV-Vis spectrophotometric method has been developed and validated for correcting interferences that arise during conducting biowaiver studies. Chemometric manipulation has been done for enhancing the results of direct absorbance, resulting from very low concentrations (high incidence of background noise interference) of earlier points in the dissolution timing in case of dissolution profile using first and second derivative (D1 & D2) methods and their corresponding Fourier function convoluted methods (D1/FF& D2/FF). The method applied for biowaiver study of Donepezil Hydrochloride (DH) as a representative model was done by comparing two different dosage forms containing 5mg DH per tablet as an application of a developed chemometric method for correcting interferences as well as for the assay and dissolution testing in its tablet dosage form. The results showed that first derivative technique can be used for enhancement of the data in case of low concentration range of DH (1-8μgmL -1 ) in the three different pH dissolution media which were used to estimate the low drug concentrations dissolved at the early points in the biowaiver study. Furthermore, the results showed similarity in phosphate buffer pH6.8 and dissimilarity in the other 2pH media. The method was validated according to ICH guidelines and USP monograph for both assays (HCl of pH1.2) and dissolution study in 3pH media (HCl of pH1.2, acetate buffer of pH4.5 and phosphate buffer of pH6.8). Finally, the assessment of the method greenness was done using two different assessment techniques: National Environmental Method Index label and Eco scale methods. Both techniques ascertained the greenness of the proposed method. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development.

    PubMed

    Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S

    2010-10-04

    Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.

  11. Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.

    PubMed

    Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun

    2014-12-02

    This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.

  12. Physicochemical characterization and in vivo evaluation of poloxamer-based solid suppository containing diclofenac sodium in rats.

    PubMed

    Yong, Chul Soon; Oh, Yu-Kyoung; Kim, Yong-Il; Kim, Jong Oh; Yoo, Bong-Kyu; Rhee, Jong-Dal; Lee, Kang Choon; Kim, Dae-Duk; Park, Young-Joon; Kim, Chong-Kook; Choi, Han-Gon

    2005-09-14

    To develop a poloxamer-based solid suppository with poloxamer mixtures, the melting point of various formulations composed of poloxamer 124 (P 124) and poloxamer 188 (P 188) were investigated. The dissolution and pharmacokinetic study of diclofenac sodium delivered by the poloxamer-based suppository were performed. Furthermore, the identification test in the rectum and morphology test of rectal tissues were carried out after its rectal administration in rats. The poloxamer mixtures composed of P 124 and P 188 were homogeneous phases. Very small amounts of P 188 affected the melting point of poloxamer mixtures. In particular, the poloxamer mixture [P 124/P 188 (97/3%)] with the melting point of about 32 degrees C was a solid form at room temperature and instantly melted at physiological temperature. Very small amounts of P 188 hardly affected the dissolution rates of diclofenac sodium from the suppository. Dissolution mechanism analysis showed the dissolution of diclofenac sodium was proportional to the time. The poloxamer-based suppository gave significantly higher initial plasma concentrations and faster T(max) of diclofenac sodium than did conventional PEG-based suppository, indicating that the drug from poloxamer-based suppository could be absorbed faster than that from PEG-based one in rats. It retained in the rectum for at least 4 h and could not irritate or damage the rectal tissues of rats. Thus, the poloxamer-based solid suppository with P 124 and P 188 was a mucoadhesive, safe and effective rectal dosage form for diclofenac sodium.

  13. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  14. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE PAGES

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...

    2017-09-22

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  15. Catalysis and chemical mechanisms of calcite dissolution in seawater.

    PubMed

    Subhas, Adam V; Adkins, Jess F; Rollins, Nick E; Naviaux, John; Erez, Jonathan; Berelson, William M

    2017-07-18

    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13 C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13 C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.

  16. In situ dissolution analysis of pharmaceutical dosage forms using coherent anti-Stokes Raman scattering (CARS) microscopy

    NASA Astrophysics Data System (ADS)

    Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, C. J.

    2014-02-01

    A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were collected every 1.12s for the duration of the dissolution experiment. Hyperspectral CARS images were obtained pre- and postdissolution by rapidly imaging while sweeping the wavelength of the OPO in discrete steps so that each frame in the data stack corresponds to a vibrational frequency. An image-processing routine projects this hyperspectral data into a single image wherein each compound appears with a unique color. Dissolution was conducted using theophylline and cimetidine-naproxen co-amorphous mixture. After 15 minutes of theophylline dissolution, hyperspectral imaging showed a conversion of theophylline anhydrate to the monohydrate, confirmed by a peak shift in the CARS spectra. CARS dissolution images showed that monohydrate crystal growth began immediately and reached a maximum with complete surface coverage at about 300s. This result correlated with the UV dissolution data where surface crystal growth on theophylline compacts resulted in a rapidly reducing dissolution rate during the first 300s. Co-amorphous cimetidinenaproxen didn't appear to crystallize during dissolution. We observed solid-state conversions on the compact's surface in situ during dissolution. Hyperspectral CARS imaging allowed visual discrimination between the solid-state forms on the compact's surface. In the case of theophylline we were able to correlate the solid-state change with a change in dissolution rate.

  17. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    PubMed

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  18. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188.

    PubMed

    Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin

    2014-04-01

    Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  19. Low temperature dissolution flowsheet for plutonium metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.; Almond, P. M.; Rudisill, T. S.

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO 2 production utilizes boiling HNO 3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H 2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  20. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viamajala, S.; Peyton, B. M.; Richards, L. A.

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energymore » of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.« less

  2. Development and validation of a discriminative dissolution test for nimesulide suspensions.

    PubMed

    da Fonseca, Laís Bastos; Labastie, Márcio; de Sousa, Valéria Pereira; Volpato, Nadia Maria

    2009-01-01

    The dissolution test for oral dosage forms has recently widened to a variety of special dosage forms such as suspensions. For class II drugs, such as nimesulide (NMS), this study is very important because formulation problems may compromise drug bioavailability. In the present work, tests with four brands of commercially available NMS (RA, TS, TB, and TC) have been performed in order to study their dissolution at different conditions. The suspensions have been characterized relatively to particle size, pH, and density besides NMS assay and the amount of drug in solution in the suspension vehicles. The dissolution study was conducted using the following media: simulated intestinal fluid, pH 6.8, containing polysorbate 80 (P80) or sodium lauryl sulfate (SLS); phosphate buffer, pH 7.4, with P80 and aqueous solution of SLS. Concerning the quantitative analysis, the UV-VIS spectrophotometry could have been used in substitution to high-performance liquid chromatography since the methodology had been adequately validated. The influence of the drug particle size distribution was significant on the dissolution profiles of NMS formulations, confirming to be a factor that should be strictly controlled in the development of oral suspensions.

  3. Parental Education and Family Dissolution: A Cross‐National and Cohort Comparison

    PubMed Central

    Härkönen, Juho

    2018-01-01

    This is the first study to systematically analyze whether the association between parental education and family dissolution varies cross‐nationally and over time. The authors use meta‐analytic tools to study cross‐national variation between 17 countries with data from the Generations and Gender Study and Harmonized Histories. The association shows considerable cross‐national variation, but is positive in most countries. The association between parental education and family dissolution has become less positive or even negative in six countries. The findings show that the association between parental education and family dissolution is generally positive or nil, even if the association between own education and family dissolution is in many countries increasingly negative. The authors find suggestive evidence that the association is related to the crude divorce rate, but not to the generosity of the welfare state in these countries. The implications of these findings for understanding the stratification in family dissolution are discussed. PMID:29657335

  4. Convective dissolution of carbon dioxide in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.

    2010-11-01

    Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.

  5. Influence of Prosolv and Prosolv:Mannitol 200 direct compression fillers on the physicomechanical properties of atorvastatin oral dispersible tablets.

    PubMed

    Gowda, Veeran; Pabari, Ritesh M; Kelly, John G; Ramtoola, Zebunnissa

    2015-06-01

    The objective of the present study was to evaluate the influence of Prosolv® and Prosolv®: Mannitol 200 direct compression (DC) fillers on the physicomechanical characteristics of oral dispersible tablets (ODTs) of crystalline atorvastatin calcium. ODTs were formulated by DC and were analyzed for weight uniformity, hardness, friability, drug content, disintegration and dissolution. Three disintegration time (DT) test methods; European Pharmacopoeia (EP) method for conventional tablets (Method 1), a modification of this method (Method 2) and the EP method for oral lyophilisates (Method 3) were compared as part of this study. All ODTs showed low weight variation of <2.5%. Prosolv® only ODTs showed the highest tablet hardness of ∼ 73 N, hardness decreased with increasing mannitol content. Friability of all formulations was <1% although friability of Prosolv®:Mannitol ODTs was higher than for pure Prosolv®. DT of all ODTs was <30 s. Method 2 showed the fastest DT. Method 3 was non-discriminatory giving a DT of 13-15 s for all formulations. Atorvastatin dissolution from all ODTs was >60% within 5 min despite the drug being crystalline. Prosolv® and Prosolv®:Mannitol-based ODTs are suitable for ODT formulations by DC to give ODTs with high mechanical strength, rapid disintegration and dissolution.

  6. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.

    PubMed

    Gandhi, Aditya V; Thipsay, Priyanka; Kirthivasan, Bharat; Squillante, Emilio

    2017-11-01

    The purpose of this research was to design and characterize an immediate-release formulation of carbamazepine (CBZ), a poorly soluble anti-epileptic drug, using a porous silica carrier. Carbon dioxide in its supercritical state (2000 psi, 30-35°C) was used as an anti-solvent to precipitate CBZ onto two particle size variants of silica. Adsorption isotherms were used as a pre-formulation strategy to select optimum ratios of silica and CBZ. The obtained drug-silica formulations were characterized by dissolution studies, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). This formulation strategy resulted in a 2.4-fold improvement in dissolution rate when compared to pure drug after 30 min of dissolution testing. PXRD and DSC confirmed the amorphous nature of CBZ in the formulations as well as the differences in polymorphic forms of commercial and supercritical fluid-processed CBZ. Additionally, solid-state NMR spectroscopy showed that the spin-lattice relaxation time for bulk drug (without silica) was ∼7.5 times greater than that for silica-confined CBZ, implying that when CBZ was adsorbed onto mesoporous silica, it is structurally disordered and had higher structural mobility, a characteristic of amorphous solids. The mesoporous silica matrix prevented CBZ crystal growth by imposing spatial constraint on CBZ nuclei and hence resulted in faster dissolution compared to bulk solid drug. Adsorption onto mesoporous silica using supercritical fluid technology may be used as a novel formulation strategy for amorphization of poorly soluble compounds, in turn improving their dissolution rate.

  7. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry

  8. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Can dosage form-dependent food effects be predicted using biorelevant dissolution tests? Case example extended release nifedipine.

    PubMed

    Andreas, Cord J; Tomaszewska, Irena; Muenster, Uwe; van der Mey, Dorina; Mueck, Wolfgang; Dressman, Jennifer B

    2016-08-01

    Food intake is known to have various effects on gastrointestinal luminal conditions in terms of transit times, hydrodynamic forces and/or luminal fluid composition and can therefore affect the dissolution behavior of solid oral dosage forms. The aim of this study was to investigate and detect the dosage form-dependent food effect that has been observed for two extended-release formulations of nifedipine using in vitro dissolution tests. Two monolithic extended release formulations, the osmotic pump Adalat® XL 60mg and matrix-type Adalat® Eins 30mg formulation, were investigated with biorelevant dissolution methods using the USP apparatus III and IV under both simulated prandial states, and their corresponding quality control dissolution method. In vitro data were compared to published and unpublished in vivo data using deconvolution-based in vitro - in vivo correlation (IVIVC) approaches. Quality control dissolution methods tended to overestimate the dissolution rate due to the excessive solubilizing capabilities of the sodium dodecyl sulfate (SDS)-containing dissolution media. Using Level II biorelevant media the dosage form dependent food effect for nifedipine was described well when studied with the USP apparatus III, whereas the USP apparatus IV failed to detect the positive food effect for the matrix-type dosage form. It was demonstrated that biorelevant methods can serve as a useful tool during formulation development as they were able to qualitatively reflect the in vivo data. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Initial dissolution kinetics of cocrystal of carbamazepine with nicotinamide.

    PubMed

    Hattori, Yusuke; Sato, Maiko; Otsuka, Makoto

    2015-11-01

    Objectives of this study are investigating the initial dissolution kinetics of the cocrystal of carbamazepine (CBZ) with nicotinamide (NIC) and understanding its initial dissolution process. Cocrystal solids of CBZ with NIC were prepared by co-milling and solvent evaporation methods. The formation of cocrystal solid was verified via X-ray diffraction measurement. Dissolution tests of the solids were performed using an original flow cell and ultraviolet-visible spectroscopic detector. The spectra monitored in situ were analyzed to determine the dissolved compounds separately using the classical least squares regression method. The initial dissolution profiles were interpreted using simultaneous model of dissolution and phase changes. In the initial dissolution, CBZ in the cocrystal structure dissolved in water and it was suggested that CBZ reached a metastable intermediate state simultaneously with dissolution. The cocrystal solid prepared by solvent evaporation provided a higher rate constant of the phase change than that prepared by co-milling. Our results thus support the use of evaporation as the method of choice to produce ordered cocrystal structures. We suggest that CBZ forms dihydrate during the dissolution process; however, during the initial phase of dissolution, CBZ changes to a metastable intermediate phase. © 2015 Royal Pharmaceutical Society.

  11. Teaching Analytical Method Transfer through Developing and Validating Then Transferring Dissolution Testing Methods for Pharmaceuticals

    ERIC Educational Resources Information Center

    Kimaru, Irene; Koether, Marina; Chichester, Kimberly; Eaton, Lafayette

    2017-01-01

    Analytical method transfer (AMT) and dissolution testing are important topics required in industry that should be taught in analytical chemistry courses. Undergraduate students in senior level analytical chemistry laboratory courses at Kennesaw State University (KSU) and St. John Fisher College (SJFC) participated in development, validation, and…

  12. Development of In Vitro-In Vivo Correlation/Relationship Modeling Approaches for Immediate Release Formulations Using Compartmental Dynamic Dissolution Data from “Golem”: A Novel Apparatus

    PubMed Central

    Tuszyński, Paweł K.; Polak, Sebastian; Jachowicz, Renata; Mendyk, Aleksander; Dohnal, Jiří

    2015-01-01

    Different batches of atorvastatin, represented by two immediate release formulation designs, were studied using a novel dynamic dissolution apparatus, simulating stomach and small intestine. A universal dissolution method was employed which simulated the physiology of human gastrointestinal tract, including the precise chyme transit behavior and biorelevant conditions. The multicompartmental dissolution data allowed direct observation and qualitative discrimination of the differences resulting from highly pH dependent dissolution behavior of the tested batches. Further evaluation of results was performed using IVIVC/IVIVR development. While satisfactory correlation could not be achieved using a conventional deconvolution based-model, promising results were obtained through the use of a nonconventional approach exploiting the complex compartmental dissolution data. PMID:26120580

  13. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgasmore » composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.« less

  14. Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling.

    PubMed

    Canal, J; Delgado, J; Falcón, I; Yang, Q; Juncosa, R; Barrientos, V

    2013-01-02

    Massive chemical reactions are not expected when injecting CO(2) in siliceous sandstone reservoirs, but their performance can be challenged by small-scale reactions and other processes affecting their transport properties. We have conducted a core flooding test with a quartzarenite plug of Lower Cretaceous age representative of the secondary reservoir of the Hontomín test site. The sample, confined at high pressure, was successively injected with DIW and CO(2)-saturated DIW for 49 days while monitoring geophysical, chemical, and hydrodynamic parameters. The plug experienced little change, without evidence of secondary carbonation. However, permeability increased by a factor of 4 (0.022-0.085 mD), and the V(P)/V(S) ratio, whose change is related with microcracking, rose from ~1.68 to ~1.8. Porosity also increased (7.33-8.1%) from the beginning to the end of the experiment. Fluid/rock reactions were modeled with PHREEQC-2, and they are dominated by the dissolution of Mg-calcite. Mass balances show that ~4% of the initial carbonate was consumed. The results suggest that mineral dissolution and microcracking may have acted in a synergistic way at the beginning of the acidic flooding. However, dissolution processes concentrated in pore throats can better explain the permeability enhancement observed over longer periods of time.

  15. Dissolution of fine particle fraction from truncated Anderson cascade impactor with an enhancer cell.

    PubMed

    Tay, Justin Yong Soon; Liew, Celine Valeria; Heng, Paul Wan Sia

    2018-04-22

    Dissolution testing for inhalers were previously conducted either on unfractionated drug-carrier powders or drug of specific aerodynamic particle size. In this study, the collection of the full fine particle fraction (FPF) was attempted on a single stage. Capsules containing 30 mg of 2% salbutamol sulfate (SS) was tested to have a FPF of 9 ± 1% using the full set of Andersen cascade impactor (ACI) and a modified Rotahaler® capable of achieving 4.0 kPa pressure drop at 60 L/min air flow rate. A truncated ACI comprising the USP throat, pre-separator, stage 0, stage 4, stage F, polytetrafluoroethylene funnel (TF) and small collection plate (sCP) was found to be capable of achieving a FPF of 9% collected on TF and sCP. An adhesive tape was used to collect the FPF from the TF and sCP and held in place by an enhancer cell in a 200 mL round bottom vessel containing 50 mL Gamble's solution with 0.2 v/v, % Tween 80. Dissolution testing of SS and Seretide® showed burst release of SS and salmeterol while sustained release of fluticasone. This study demonstrated a reproducible method which may be used for evaluation of the full FPF of orally inhaled products. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Optimization of Melatonin Dissolution from Extended Release Matrices Using Artificial Neural Networking.

    PubMed

    Martarelli, D; Casettari, L; Shalaby, K S; Soliman, M E; Cespi, M; Bonacucina, G; Fagioli, L; Perinelli, D R; Lam, J K W; Palmieri, G F

    2016-01-01

    Efficacy of melatonin in treating sleep disorders has been demonstrated in numerous studies. Being with short half-life, melatonin needs to be formulated in extended-release tablets to prevent the fast drop of its plasma concentration. However, an attempt to mimic melatonin natural plasma levels during night time is challenging. In this work, Artificial Neural Networks (ANNs) were used to optimize melatonin release from hydrophilic polymer matrices. Twenty-seven different tablet formulations with different amounts of hydroxypropyl methylcellulose, xanthan gum and Carbopol®974P NF were prepared and subjected to drug release studies. Using dissolution test data as inputs for ANN designed by Visual Basic programming language, the ideal number of neurons in the hidden layer was determined trial and error methodology to guarantee the best performance of constructed ANN. Results showed that the ANN with nine neurons in the hidden layer had the best results. ANN was examined to check its predictability and then used to determine the best formula that can mimic the release of melatonin from a marketed brand using similarity fit factor. This work shows the possibility of using ANN to optimize the composition of prolonged-release melatonin tablets having dissolution profile desired.

  17. Effect of atmospheric organic complexation on iron-bearing dust solubility

    NASA Astrophysics Data System (ADS)

    Paris, R.; Desboeufs, K. V.

    2013-02-01

    Recent studies reported that the effect of organic complexation may be a potentially important process to be considered in models to estimate atmospheric iron flux to the ocean. In this study, we investigated this effect by a series of dissolution experiments on iron-bearing dust in presence or absence of various organic compounds typically found in the atmospheric waters (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances (HULIS)). Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid) caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II) concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in order oxalate > malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implied a reductive ligand-promoted dissolution. This study confirmed that oxalate is the most effective ligand playing on dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution in atmospheric conditions.

  18. The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments.

    PubMed

    Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D

    2017-05-01

    Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.

  19. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    NASA Astrophysics Data System (ADS)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  20. Catalysis and chemical mechanisms of calcite dissolution in seawater

    PubMed Central

    Adkins, Jess F.; Rollins, Nick E.; Naviaux, John; Erez, Jonathan; Berelson, William M.

    2017-01-01

    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric CO2 on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of 𝜹13C in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution–precipitation shifts significantly toward a dissolution-dominated mechanism below about Ω= 0.7. Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of CO2 is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid–solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at Ω= 0.7, which we interpret as the onset of homogeneous etch pit nucleation. PMID:28720698

  1. Pattern of Hydroxyapatite Crystal Growth on Bleached Enamel Following the Application of Two Antioxidants: An Atomic Force Microscope Study.

    PubMed

    Bhusari, Chitra P; Sharma, Divya S

    This study observed the topographical pattern of hydroxyapatite deposition and growth (D&G) on bleached enamel following application of two antioxidants (sodium ascorbate and catalase) using atomic force microscope. Twenty enamel specimens (4×3×2mm), prepared from extracted impacted third molars, were mounted in self-cure acrylic and randomly grouped as: Group I-untreated; Group II- 35%H 2 O 2 ; Group III- 35%H 2 O 2 + artificial saliva; Group IV- 35%H 2 O 2 + catalase+ artificial saliva; Group V- 35%H 2 O 2 + sodium ascorbate+ artificial saliva. Groups I and II were observed immediately after treatment. Groups III-V were observed after 72 hrs. Roughness average was also calculated and analyzed with non-parametric Kruskall-Wallis ANOVA and Mann-Whitney tests. H 2 O 2 dissolved matrix, exposed hydroxyapatite crystals (HACs), causing dissolution on the sides of and within HACs and opening up of nano-spaces. Artificial saliva showed growth of dissoluted crystals. Antioxidants+saliva showed potentiated remineralization by D&G on dissoluted HACs of bleached enamel. Catalase potentiated blockshaped, while sodium ascorbate the needle-shaped crystals with stair-pattern of crystallization. Evidence of oxygen bubbles was a new finding with catalase. Maximum roughness average was in group V followed by group II > group IV > group III > group I. Post-bleaching application of catalase and sodium ascorbate potentiated remineralization by saliva, but in different patterns. None of the tested antioxidant could return the original topography of enamel.

  2. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.

  3. Can crystal engineering be as beneficial as micronisation and overcome its pitfalls?: A case study with cilostazol.

    PubMed

    Sai Gouthami, Kodukula; Kumar, Dinesh; Thipparaboina, Rajesh; Chavan, Rahul B; Shastri, Nalini R

    2015-08-01

    Improvement in dissolution of the drugs having poor solubility is a challenge in pharmaceutical industry. Micronization is one technique, employed for dissolution enhancement of cilostazol, a BCS class II drug. However, the obtained micronized drug possesses poor flowability. The aim of this study was to improve the dissolution rate and flow properties of cilostazol by crystal engineering, using habit modification method and compare with micronized cilostazol bulk drug. Simulation studies were performed to predict the effect of solvents on cilostazol crystal habit. Cilostazol crystals with different habits were prepared by solvent:anti-solvent crystallization technique. SEM, FTIR, DSC, TGA and PXRD were used for solid state characterization. The results revealed that cilostazol re-crystallized from methanol-hexane system were hexagonal and ethanol-hexane system gave rods. Cilostazol engineered habits showed increased dissolution rate than unprocessed drug but similar dissolution rate when compared to micronized cilostazol. Micronized cilostazol showed a dissolution efficiency of 75.58% where as cilostazol recrystallized from methanol-hexane and ethanol-hexane systems resulted in a dissolution efficiency of 72.63% and 68.63%, respectively. In addition, crystal engineering resulted in improved flow properties of re-crystallized habits when compared to micronized form of the drug. In conclusion, crystal engineering by habit modification show potential for dissolution enhancement with an added advantage of improved flow properties over micronization technique, for poorly soluble drugs like cilostazol. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  5. Applications of terahertz-pulsed technology in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Taday, Philip F.

    2010-02-01

    Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.

  6. Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations.

    PubMed

    Ono, Asami; Sugano, Kiyohiko

    2014-11-20

    The aim of this study was to compare the dissolution profiles of oral disintegrating tablets (ODTs) and immediate release (IR) formulations in order to experimentally validate the regulatory biowaiver scheme (BWS) for biopharmaceutical classification system (BCS) class III drugs. We examined six drugs that show clinical bioequivalence between the ODTs and IR formulations: taltirelin, olopatadine, droxidopa, famotidine, fexofenadine, and hydrochlorothiazide. The dissolution profiles of these drugs were evaluated using the compendium paddle apparatus at pH 1.2 and 6.8. Taltirelin and olopatadine showed very rapid dissolution and met the dissolution criteria in the BWS, whereas droxidopa, famotidine, fexofenadine, and hydrochlorothiazide did not. Furthermore, in the case of famotidine, fexofenadine, and hydrochlorothiazide, the ODTs and IR formulations showed dissimilar dissolution profiles. The dose-to-solubility ratio (D:S) of these drugs was larger than that of the other drugs. The results of this study suggest that extension of the BCS-BWS to ODTs and IR formulations of BCS class III drugs is appropriate. Furthermore, for BCS class III drugs with relatively high D:S, clinical bioequivalence would be achievable even when two formulations showed different dissolution profiles in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. 75 FR 17148 - International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...] International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts... Recommendation of Pharmacopoeial Texts for Use in the ICH Regions; Annex 7: Dissolution Test General Chapter... results of the ICH Q4B evaluation of the Dissolution Test General Chapter harmonized text from each of the...

  8. Autotrophic denitrification supported by biotite dissolution in crystalline aquifers (1): New insights from short-term batch experiments.

    PubMed

    Aquilina, Luc; Roques, Clément; Boisson, Alexandre; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Pauwels, Hélène; Pételet-Giraud, Emmanuelle; Pettenati, Marie; Dufresne, Alexis; Bethencourt, Lorine; Bour, Olivier

    2018-04-01

    We investigate denitrification mechanisms through batch experiments using crushed rock and groundwater from a granitic aquifer subject to long term pumping (Ploemeur, France). Except for sterilized experiments, extensive denitrification reaction induces NO 3 decreases ranging from 0.3 to 0.6mmol/L. Carbon concentrations, either organic or inorganic, remain relatively stable and do not document potential heterotrophic denitrification. Batch experiments show a clear effect of mineral dissolution which is documented through cation (K, Na, Ca) and Fluoride production. These productions are tightly related to denitrification progress during the experiment. Conversely, limited amounts of SO 4 , systematically lower than autotrophic denitrification coupled to sulfur oxidation stoichiometry, are produced during the experiments which indicates that sulfur oxidation is not likely even when pyrite is added to the experiments. Analysis of cation ratios, both in isolated minerals of the granite and within water of the batch, allow the mineral dissolution during the experiments to be quantified. Using cation ratios, we show that batch experiments are characterized mainly by biotite dissolution. As biotite contains 21 to 30% of Fe and 0.3 to 1.7% of F, it constitutes a potential source for these two elements. Denitrification could be attributed to the oxidation of Fe(II) contained in biotite. We computed the amount of K and F produced through biotite dissolution when entirely attributing denitrification to biotite dissolution. Computed amounts show that this process may account for the observed K and F produced. We interpret these results as the development of microbial activity which induces mineral dissolution in order to uptake Fe(II) which is used for denitrification. Although pyrite is probably available, SO 4 and cation measurements favor a large biotite dissolution reaction which could account for all the observed Fe production. Chemical composition of groundwater produced from the Ploemeur site indicates similar denitrification processes although original composition shows mainly plagioclase dissolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Alternate Fuel Cycle Technologies/Thorium Fuel Cycle Technology Programs. Quarterly report for period 1 April--30 June 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondra, B.L.

    1978-08-01

    Voloxidation and dissolution studies: rotary-kiln heat-transfer tests are under way using a small rotary kiln along with the development of a mathematical model to determine kiln-heat-flux profiles necessary to maintain a desired temperature gradient. The erosion/corrosion test for evaluating materials of construction is operational. Fuel from a BWR (Big Rock Point) yielded more fine solid residue on dissolution than in previous tests with PWR fuel. Two additional parametric voloxidation tests with H.B. Robinson fuel compared air vs pure oxygen atmospheres at 550{sup 0}C; overall tritium release and subsequent fuel dissolution were equivalent. Thorium dissolution studies: the dissolution rate of thoriamore » in fluoride-catalyzed 8 to 14 M HNO{sub 3} (100{sup 0}C) was max between 0.04 to 0.06 M HF; at higher fluoride concentrations, ThF{sub 4}.5H{sub 2}O precipitated. The rate of zircaloy dissolution continued to increase with increasing fluoride concentration. Stainless-steel-clad (Th,U)0{sub 2} fuel rods irradiated in the NRX reactor were sheared, voloxidized, and dissolved. {le}10% of the tritium was released during voloxidation in air at 600{sup 0}C. Carbon-14 removal from off-gas and fixation: carbon dioxide removal with Linde 13X molecular sieves to less than 100 ppB was experimentally verified using 300 ppM CO in air. Decontamination factors from 3000 to 7500 were obtained for CO{sub 2} removal in the gas-slurry stirred-tank reactor with CA(OH){sub 2}.or Ba(0H){sub 2}/sup .8H2O./. With Ba(OH){sub 2}.H{sub 2}0{sup 2} in a fixed-bed column, decontamination factors of about 30,000 were obtained.« less

  10. Quantifying Mass Transfer Processes in Groundwater as a Function of Molecular Structure Variation for Multicomponent NAPL Sources

    NASA Astrophysics Data System (ADS)

    Abbott, J. B., III; Tick, G. R.; Greenberg, R. R.; Carroll, K. C.

    2017-12-01

    The remediation of nonaqueous liquid (NAPL) contamination sources in groundwater has been shown to be challenging and have limited success in the field. The presence of multicomponent NAPL sources further complicates the remediation due to variability of mass-transfer (dissolution) behavior as a result of compositional and molecular structure variations between the different compounds within the NAPL phase. This study investigates the effects of the contaminant of concern (COC) composition and the bulk-NAPL components molecular structure (i.e. carbon chain length, aliphatic and aromatic) on dissolution and aqueous phase concentrations in groundwater. The specific COCs tested include trichloroethene (TCE), toluene (TOL), and perfluorooctanoic acid (PFOA). Each COC was tested in a series of binary batch experiments using insoluble bulk NAPL including n-hexane (HEX), n-decane (DEC), and n-hexadecane (HEXDEC). These equilibrium batch tests were performed to understand how different carbon-chain-length (NAPL) systems affect resulting COC aqueous phase concentrations. The experiments were conducted with four different COC mole fractions mixed within the bulk-NAPL derivatives (0.1:0.9, 0.05:0.95, 0.01:0.99, 0.001:0.999). Raoult's Law was used to assess the relative ideality of the mass transfer processes for each binary equilibrium dissolution experiment. Preliminary results indicate that as mole fraction of the COC decreases (composition effects), greater deviance from dissolution ideality occurs. It was also shown that greater variation in molecular structure (i.e. greater carbon chain length of bulk-NAPL with COC and aromatic COC presence) exhibited greater dissolution nonideality via Raoult's Law analysis. For instance, TOL (aromatic structure) showed greater nonideality than TCE (aliphatic structure) in the presence of the different bulk-NAPL derivatives (i.e. of various aliphatic carbon chains lengths). The results suggest that the prediction of aqueous phase concentration, from complex multicomponent NAPL sources, is highly dependent upon both composition and molecular structure variations of COC-NAPL mixtures, and such impacts should be taken into account when designing and evaluating a remediation strategy and/or predicting COC concentrations from a source zone region.

  11. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.

    PubMed

    Jug, Mario; Hafner, Anita; Lovrić, Jasmina; Kregar, Maja Lusina; Pepić, Ivan; Vanić, Željka; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena

    2018-01-05

    In vitro dissolution/release tests are an important tool in the drug product development phase as well as in its quality control and the regulatory approval process. Mucosal drug delivery systems are aimed to provide both local and systemic drug action via mucosal surfaces of the body and exhibit significant differences in formulation design, as well as in their physicochemical and release characteristics. Therefore it is not possible to devise a single test system which would be suitable for release testing of such complex dosage forms. This article is aimed to provide a comprehensive review of both compendial and noncompendial methods used for in vitro dissolution/release testing of novel mucosal drug delivery systems aimed for ocular, nasal, oromucosal, vaginal and rectal administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparison on Response and Dissolution Rates Between Ursodeoxycholic Acid Alone or in Combination With Chenodeoxycholic Acid for Gallstone Dissolution According to Stone Density on CT Scan: Strobe Compliant Observation Study.

    PubMed

    Lee, Jae Min; Hyun, Jong Jin; Choi, In Young; Yeom, Suk Keu; Kim, Seung Young; Jung, Sung Woo; Jung, Young Kul; Koo, Ja Seol; Yim, Hyung Joon; Lee, Hong Sik; Lee, Sang Woo; Kim, Chang Duck

    2015-12-01

    Medical dissolution of gallstone is usually performed on radiolucent gallstones in a functioning gallbladder. However, absence of visible gallstone on plain abdominal x-ray does not always preclude calcification. This study aims to compare the response and dissolution rates between ursodeoxycholic acid (UDCA) alone or in combination with chenodeoxycholic acid (CDCA) according to stone density on computed tomography (CT) scan. A total of 126 patients underwent dissolution therapy with either UDCA alone or combination of CDCA and UDCA (CNU) from December 2010 to March 2014 at Korea University Ansan Hospital. In the end, 81 patients (CNU group = 44, UDCA group = 37) completed dissolution therapy for 6 months. Dissolution rate (percentage reduction in the gallstone volume) and response to therapy (complete dissolution or partial dissolution defined as reduction in stone volume of >50%) were compared between the 2 groups. Dissolution and response rates of sludge was also compared between the 2 groups. The overall response rate was 50.6% (CNU group 43.2% vs UDCA group 59.5%, P = 0.14), and the overall dissolution rate was 48.34% (CNU group 41.5% vs UDCA group 56.5%, P = 0.13). When analyzed according to stone density, response rate was 33.3%, 87.1%, 30.0%, and 6.2% for hypodense, isodense, hyperdense, and calcified stones, respectively. Response rate (85.7% vs 88.2%, P = 0.83) and dissolution rate (81.01% vs 85.38%, P = 0.17) of isodense stones were similar between CNU and UDCA group. When only sludge was considered, the overall response rate was 87.5% (CNU group 71.4% vs UDCA group 94.1%, P = 0.19), and the overall dissolution rate was 85.42% (CNU group 67.9% vs UDCA group 92.7%, P = 0.23). Patients with isodense gallstones and sludge showed much better response to dissolution therapy with CNU and UDCA showing comparable efficacy. Therefore, CT scan should be performed before medication therapy if stone dissolution is intended.

  13. Comparison and analysis of theoretical models for diffusion-controlled dissolution.

    PubMed

    Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G

    2012-05-07

    Dissolution models require, at their core, an accurate diffusion model. The accuracy of the model for diffusion-dominated dissolution is particularly important with the trend toward micro- and nanoscale drug particles. Often such models are based on the concept of a "diffusion layer." Here a framework is developed for diffusion-dominated dissolution models, and we discuss the inadequacy of classical models that are based on an unphysical constant diffusion layer thickness assumption, or do not correctly modify dissolution rate due to "confinement effects": (1) the increase in bulk concentration from confinement of the dissolution process, (2) the modification of the flux model (the Sherwood number) by confinement. We derive the exact mathematical solution for a spherical particle in a confined fluid with impermeable boundaries. Using this solution, we analyze the accuracy of a time-dependent "infinite domain model" (IDM) and "quasi steady-state model" (QSM), both formally derived for infinite domains but which can be applied in approximate fashion to confined dissolution with proper adjustment of a concentration parameter. We show that dissolution rate is sensitive to the degree of confinement or, equivalently, to the total concentration C(tot). The most practical model, the QSM, is shown to be very accurate for most applications and, consequently, can be used with confidence in design-level dissolution models so long as confinement is accurately treated. The QSM predicts the ratio of diffusion layer thickness to particle radius (the Sherwood number) as a constant plus a correction that depends on the degree of confinement. The QSM also predicts that the time required for complete saturation or dissolution in diffusion-controlled dissolution experiments is singular (i.e., infinite) when total concentration equals the solubility. Using the QSM, we show that measured differences in dissolution rate in a diffusion-controlled dissolution experiment are a result of differences in the degree of confinement on the increase in bulk concentration independent of container geometry and polydisperse vs single particle dissolution. We conclude that the constant diffusion-layer thickness assumption is incorrect in principle and should be replaced by the QSM with accurate treatment of confinement in models of diffusion-controlled dissolution.

  14. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals.

    PubMed

    Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2016-06-30

    The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    PubMed

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration. © 2014 S. Karger AG, Basel.

  16. High temperature dissolution of oxides in complexing media

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam

    2011-12-01

    Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.

  17. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less

  18. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  19. Role of cellulose ether polymers on ibuprofen release from matrix tablets.

    PubMed

    Vueba, M L; Batista de Carvalho, L A E; Veiga, F; Sousa, J J; Pina, Maria Eugénia

    2005-08-01

    Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and beta-cyclodextrin (beta-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE(20 h)), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models-Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.

  20. Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

    PubMed

    Karkossa, Frank; Klein, Sandra

    2017-10-01

    The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.

  1. Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies.

    PubMed

    Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy

    2017-09-18

    In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous silica-based dosage forms improve bioavailability of poorly soluble drugs in pigs: case example fenofibrate.

    PubMed

    O'Shea, Joseph P; Nagarsekar, Kalpa; Wieber, Alena; Witt, Vanessa; Herbert, Elisabeth; O'Driscoll, Caitriona M; Saal, Christoph; Lubda, Dieter; Griffin, Brendan T; Dressman, Jennifer B

    2017-10-01

    Mesoporous silicas (SLC) have demonstrated considerable potential to improve bioavailability of poorly soluble drugs by facilitating rapid dissolution and generating supersaturation. The addition of certain polymers can further enhance the dissolution of these formulations by preventing drug precipitation. This study uses fenofibrate as a model drug to investigate the performance of an SLC-based formulation, delivered with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as a precipitation inhibitor, in pigs. The ability of biorelevant dissolution testing to predict the in vivo performance was also assessed. Fenofibrate-loaded mesoporous silica (FF-SLC), together with HPMCAS, displayed significant improvements in biorelevant dissolution tests relative to a reference formulation consisting of a physical mixture of crystalline fenofibrate with HPMCAS. In vivo assessment in fasted pigs demonstrated bioavailabilities of 86.69 ± 35.37% with combination of FF-SLC and HPMCAS in capsule form and 75.47 ± 14.58% as a suspension, compared to 19.92 ± 9.89% with the reference formulation. A positive correlation was identified between bioavailability and dissolution efficiency. The substantial improvements in bioavailability of fenofibrate from the SLC-based formulations confirm the ability of this formulation strategy to overcome the dissolution and solubility limitations, further raising the prospects of a future commercially available SLC-based formulation. © 2017 Royal Pharmaceutical Society.

  3. Correlation of dissolution and disintegration results for an immediate-release tablet.

    PubMed

    Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming

    2018-02-20

    The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Significance of a Shelf-wide Dissolution Event during the Paleocene-Eocene Thermal Maximum, Maryland and New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Bralower, T. J.; Kump, L. R.; Robinson, M. M.; Self-Trail, J. M.; Zachos, J. C.

    2016-12-01

    Continental-shelf sediments of the US Atlantic margin experienced a brief episode of carbonate dissolution during the onset of the Paleocene-Eocene Thermal Maximum (PETM). Dissolution is represented by reduced percentages of carbonate, and calcareous microfossil distribution and preservation trends, in cores from Maryland and New Jersey. The base and the top of the dissolution zone are abrupt compared to the gradual nature of the onset of the carbon isotope excursion (CIE). The thickness of the dissolution zone varies from 9 cm in the Bass River core (outer paleoshelf) to 1.6 m in the CamDor core (middle paleoshelf). The decrease in %CaCO3 suggests dissolution locally removed 83 to 100% of the initial biogenic carbonate. Shelf-wide dissolution during the onset of the PETM may be a regional event, associated, for example, with eutrophication. Samples from across the paleoshelf contain abundant fine-grained framboidal pyrite, which suggests photic-zone euxinia occurred before, during, and after the dissolution event. Dissolution may also be associated with oxidation of this pyrite during later exposure to oxidizing groundwaters, although the restricted duration of the dissolution interval argues against this. Alternatively, the dissolution event may have global significance related to surface ocean-water acidification or shoaling of the calcite compensation depth (CCD) to shelf depths. The event began near the onset of the CIE on the shelf, whereas dissolution in deep-sea sections began later. Earlier shelf dissolution is consistent with surface ocean acidification while later deep-sea dissolution is thought to be associated with shoaling of the CCD. In our presentation, we weigh evidence for each of these possibilities and test them using the global dataset.

  5. Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery.

    PubMed

    Kawakami, Kohsaku

    2017-06-01

    Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.

  6. Enhancement of ibuprofen dissolution via wet granulation with beta-cyclodextrin.

    PubMed

    Ghorab, M K; Adeyeye, M C

    2001-08-01

    The purpose was to investigate the effect of wet granulation with beta-cyclodextrin (betaCD) on the enhancement of ibuprofen (IBU) dissolution. The effect of the granulation variables on the physical properties as well as the dissolution of tablets prepared from these granules was also examined. Granulation was performed using three granulating solvents: water, ethanol (95 vol%), and isopropanol. Granules were either oven-dried for 2 h or air-dried for 3 days. The granules or respective physical mixtures were compressed into tablets. Powder X-ray diffraction showed that oven-dried granulation resulted in less amorphous entities thatfacilitated IBU-betaCD complexation in solution and enhanced the dissolution of the corresponding tablets compared to the physical mixture with or without oven drying. In contrast, air-dried granulation did not cause any differences in the X-ray diffraction pattern (crystallinity) or the dissolution compared to the physical mixture without drying. Isopropanol and water, as granulating solvents, enhanced the dissolution of the oven-dried batches more than ethanol. The Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) data showed that tablets prepared from oven-dried granules, but not air-dried granules, had lower AH values and percent loss in weight, respectively, than those prepared from the physical mixture as a result of the expulsion of the water molecules from the betaCD cavity and enhancement of the complexation in solution. These results showed that oven-dried granulation of IBU and betaCD provided faster IBU dissolution than the physical mixture; air-dried granulation did not substantially affect the dissolution of IBU.

  7. PEP Support: Laboratory Scale Leaching and Permeate Stability Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.

    2010-05-21

    This report documents results from a variety of activities requested by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The activities related to caustic leaching, oxidative leaching, permeate precipitation behavior of waste as well as chromium (Cr) leaching are: • Model Input Boehmite Leaching Tests • Pretreatment Engineering Platform (PEP) Support Leaching Tests • PEP Parallel Leaching Tests • Precipitation Study Results • Cr Caustic and Oxidative Leaching Tests. Leaching test activities using the PEP simulant provided input to a boehmite dissolution model and determined the effect of temperature on mass loss during caustic leaching, the reaction rate constantmore » for the boehmite dissolution, and the effect of aeration in enhancing the chromium dissolution during caustic leaching. Other tests were performed in parallel with the PEP tests to support the development of scaling factors for caustic and oxidative leaching. Another study determined if precipitate formed in the wash solution after the caustic leach in the PEP. Finally, the leaching characteristics of different chromium compounds under different conditions were examined to determine the best one to use in further testing.« less

  8. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole.

    PubMed

    Taupitz, Thomas; Dressman, Jennifer B; Buchanan, Charles M; Klein, Sandra

    2013-04-01

    The aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®. Ternary complexes were prepared by addition of Soluplus®, a new highly water soluble polymer, during the formation of the itraconazole/cyclodextrin complex. A solid dispersion made of itraconazole and Soluplus® was also studied as a control. Solid state analysis was performed for all formulations and for pure itraconazole using powder X-ray diffraction (pX-RD) and differential scanning calorimetry (DSC). Solubility tests indicated that with all formulation approaches, the aqueous solubility of itraconazole formed with hydroxypropyl-β-cyclodextrin (HP-β-CD) or hydroxybutenyl-β-cyclodextrin (HBen-β-CD) and Soluplus® proved to be the most favourable formulation approaches. Whereas the marketed formulation and the pure drug showed very poor dissolution, both of these ternary inclusion complexes resulted in fast and extensive release of itraconazole in all test media. Using the results of the dissolution experiments, a newly developed physiologically based pharmacokinetic (PBPK) in silico model was applied to compare the in vivo behaviour of Sporanox® with the predicted performance of the most promising ternary complexes from the in vitro studies. The PBPK modelling predicted that the bioavailability of itraconazole is likely to be increased after oral administration of ternary complex formulations, especially when itraconazole is formulated as a ternary complex comprising HP-β-CD or HBen-β-CD and Soluplus®. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer

    NASA Astrophysics Data System (ADS)

    Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang

    2017-05-01

    The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.

  10. Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters.

    PubMed

    Becková, Vera; Malátová, Irena

    2008-01-01

    Kinetics of dissolution of (238)U, (234)U and (230)Th dust deposited on filters from personal alpha dosemeters was studied by means of a 26-d in vitro dissolution test with a serum ultrafiltrate simulant. Dosemeters had been used by miners at the uranium mine 'Dolní Rozínka' at Rozná, Czech Republic. The sampling flow-rate as declared by the producer is 4 l h(-1) and the sampling period is typically 1 month. Studied filters contained 125 +/- 6 mBq (238)U in equilibrium with (234)U and (230)Th; no (232)Th series nuclides were found. Half-time of rapid dissolution of 1.4 d for (238)U and (234)U and slow dissolution half-times of 173 and 116 d were found for (238)U and (234)U, respectively. No detectable dissolution of (230)Th was found.

  11. Aluminum Target Dissolution in Support of the Pu-238 Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These datamore » have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  12. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used tomore » analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.« less

  13. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  14. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  15. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hay, Michael S.

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less

  16. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  17. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  18. Level A in vitro-in vivo correlation: Application to establish a dissolution test for artemether and lumefantrine tablets.

    PubMed

    Rivelli, Graziella Gomes; Ricoy, Letícia Brandão Magalhães; César, Isabela Costa; Fernandes, Christian; Pianetti, Gérson Antônio

    2018-06-05

    Malaria is the most incident parasite infection worldwide. Artemisinin based combination therapy (ACT) has been proposed as a promising treatment for malaria, and artemether + lumefantrine (20 + 120 mg) is the recommended association in endemic areas. Despite its widespread use, there is still scarce information about dissolution of artemether and lumefantrine, reflecting in the absence of a specific method in pharmacopoeias and international compendia. Because the of their low solubility, both artemether and lumefantrine are candidates for in vitro-in vivo correlation (IVIVC) studies. Previous equilibrium solubility studies have been carried out for both drugs using the shake-flask method and dissolution profiles. Experiments were conducted with a range of parameters such as medium composition, pH and surfactants. In vivo data obtained in a previous pharmacokinetic study was used to select the optimum conditions for dissolution test, based on IVIVC. For drug quantitation, a selective method by high performance liquid chromatography was optimized and validated. For this dosage form, the best dissolution conditions found for artemether were: paddles, 900 mL of dissolution medium containing phosphate buffer pH 6.8 with 1.0% sodium lauryl sulfate and rotation speed of 100 rpm. The same was obtained for lumefantrine, except the dissolution medium, which was pH 1.2 with 1.0% polysorbate 80. After obtaining the curve of in vitro dissolved fraction versus in vivo absorbed fraction, the calculated coefficient of determination (R squared) was close to 1.00 for both drugs, indicating a level A correlation. Therefore, a novel method for assessing dissolution of arthemeter and lumefantrine tablets was established and validated. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The effect of electrolytes on dolomite dissolution: nanoscale observations using in situ Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Urosevic, Maja; Ruiz-Agudo, Encarnacion; Putnis, Christine V.; Cardell, Carolina; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2010-05-01

    Dissolution of carbonate minerals is one of the main chemical reactions occurring at shallow levels in the crust of the Earth and has a paramount importance for a wide range of geological and biological processes. Calcite (CaCO3), and to a lesser extent dolomite (CaMg(CO3)2), are the major carbonate minerals in sedimentary rocks and building stone materials. The dissolution of calcite has been thoroughly investigated over a range of conditions and solution compositions. In contrast, dolomite dissolution studies have been traditionally hampered by its low reaction rates compared to calcite and its poorly constrained relationship between cation ordering and reactivity (Morse and Arvidson, 2002). Yet important questions like the so-called 'dolomite problem' (e.g. Higgins and Hu, 2005) remain unresolved and more experimental work is needed in order to understand the role of other dissolved species, such as soluble salts, on the kinetics and mechanism of dolomite dissolution and precipitation. We have explored the effect of different electrolytes on the dissolution rate of dolomite by using in situ Atomic Force Microcopy (AFM). Experiments were carried out by passing alkali halide, nitrate and sulfate salt solutions (NaCl, KCl, LiCl, NaI, NaNO3 and Na2SO4) with different ionic strengths (IS = 10-3, 10-2 and 10-1) over dolomite {1014} cleavage surfaces. We show that all electrolytes tested enhance dolomite dissolution. Moreover, the morphology and density of etch pits are controlled by the presence of different ions in solution. The etch pit spreading rate and dolomite dissolution rate depend on both (1) the nature of the electrolyte and (2) the ionic strength. This is in agreement with recent experimental studies on calcite dissolution (Ruiz-Agudo et al., 2010). This study highlights the role of electrolytes in dolomite dissolution and points to a common behavior for carbonate minerals. Our results suggest that soluble salts may play a critical role in the weathering of carbonate rocks, both in the natural environment, as well as in stone buildings and statuary, where the amount of solutes in pore waters is significant and can vary depending on evaporation and condensation phenomena. References Higgins, S.R.; Hu, X. Self-limiting growth on dolomite: Experimental observations with in situ atomic force microscopy. Geochimica et Cosmochimica Acta, 2005, 69 (8), 2085-2094. Morse, J.W.; Arvidson, R.S. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 2002, 58, 51-84. Ruiz-Agudo, E.; Kowacz, M.; Putnis, C.V.; Putnis, A. The role of background electrolytes on the kinetics and mechanism of calcite dissolution. Geochimica et Cosmochimica Acta, 2010, 74, 1256-1267.

  20. Drug formulations intended for the global market should be tested for stability under tropical climatic conditions.

    PubMed

    Risha, P G; Vervaet, C; Vergote, G; Bortel, L Van; Remon, J P

    2003-06-01

    The quality of drugs imported into developing countries having a tropical climate may be adversely affected if their formulations have not been optimized for stability under these conditions. The present study investigated the influence of tropical climate conditions (class IV: 40 degrees C, 75% relative humidity) on the drug content, in vitro dissolution and oral bioavailability of different formulations of two essential drugs marketed in Tanzania: diclofenac sodium and ciprofloxacin tablets. Before and after 3 and 6 months storage under class IV conditions the drug content and in vitro dissolution were evaluated using United States Pharmacopoeia (USP) 24 methods. Following a randomized four-period cross-over study, the pharmacokinetic parameters of drug formulations stored for 3 months under class IV conditions were compared with those stored at ambient conditions. Drug content and drug release from all tested ciprofloxacin formulations were within USP-24 requirements and remained stable during storage at simulated tropical conditions. Oral bioavailability was also not influenced by tropical conditions. The dissolution rate of two diclofenac formulations (Diclo 50 manufactured by Camden and Dicloflame 50 manufactured by Intas) reduced significantly during storage under class IV conditions. After oral administration Camden tablets stored for 3 months under class IV conditions showed a reduction in C(max) (90% CI of C(max) ratio: 0.59 - 0.76). This reduction was smaller than expected based on the in vitro tests. Some drug formulations imported into Tanzania are not optimized for stability in a tropical climate. Manufacturers and regulatory authorities should pay more attention to the WHO recommendations for testing the stability of drugs under tropical climate conditions. Efforts should be made to improve the in vitro tests to better predict the bioavailability.

  1. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    NASA Astrophysics Data System (ADS)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  2. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Factors Affecting the Dissolution of Indomethacin Solid Dispersions.

    PubMed

    Zhang, Wei; Zhang, Chen-Ning; He, Yue; Duan, Ban-Yan; Yang, Guang-Yi; Ma, Wei-Dong; Zhang, Yong-Hong

    2017-11-01

    The aim of this study was to investigate the influence of factors such as carrier type, drug/carrier ratio, binary carriers, and preparation method on the dissolution of an insoluble drug, indomethacin (IM), under supersaturation conditions. Using a solvent evaporation (SE) method, poloxamer 188 and PVP K30 showed better dissolution among the selected carriers. Furthermore, as the ratio of carriers increased (drug/carrier ratio from 1:0.5 to 1:2), the dissolution rate increased especially in almost two times poloxamer 188 solid dispersions (SDs), while the reverse results were observed for PVP K30 SDs. For the binary carrier SD, a lower dissolution was found. Under hot melt extrusion (HME), the dissolution of poloxamer 188 SD and PVP K30 SD was 0.83- and 0.94-folds lower than that using SE, respectively, while the binary carrier SD showed the best dissolution. For poloxamer 188 SDs, the drug's crystal form changed when using SE, while no crystal form change was observed using HME. IM was amorphous in PVP K30 SDs prepared by both methods. For binary carrier systems, amorphous and crystalline drugs coexisted in SD using SE, and negligible amorphous IM was in SD using HME. This study indicated that a higher amorphous proportion in SD did not correlate with higher dissolution rate, and other factors, such as carrier type, particle size, and density, were also critical.

  4. Calcium Carbonate Dissolution Above the Lysocline: Implications of Copepod Grazing on Coccolithophores

    NASA Astrophysics Data System (ADS)

    White, M. M.; Waller, J. D.; Lubelczyk, L.; Drapeau, D.; Bowler, B.; Wyeth, A.; Fields, D.; Balch, W. M.

    2016-02-01

    Copepod-coccolithophore predator-prey interactions are of great importance because they facilitate the export of particulate inorganic and organic carbon (PIC and POC) from the surface ocean. Coccolith dissolution in acidic copepod guts has been proposed as a possible explanation for the paradox of PIC dissolution above the lysocline, but warrants further investigation. Using a new application of the 14C-microdiffusion technique, we investigated the dissolution of coccoliths in copepod guts. We considered both an estuarine predator-prey model (Acartia tonsa and Pleurochrysis carterae) and an open ocean predator-prey model (Calanus finmarchicus and Emiliania huxleyi). Additionally, we considered the impacts of pCO2 on this process to advance our understanding of the effects of ocean acidification on trophic interactions. In the estuarine predator-prey model, fecal pellets produced immediately after previously-starved copepods grazed on P. carterae had PIC/POC ratios 27-40 % lower than that of the algae, indicating PIC dissolution within the copepod gut, with no impact of pCO2 on this dissolution. Subsequent fecal pellets showed increasing PIC/POC, suggesting that calcite dissolution decreases as the gut fills. The open ocean predator-prey model showed equivocal results, indicating high variability among individual grazing behavior, and therefore no consistent impact of copepod grazing on coccolith dissolution above the lysocline in the open ocean. We will further discuss the effects of fecal pellet PIC/POC ratios on sinking rate.

  5. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOEpatents

    Kephart, Alan R.

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  6. Shell preservation of Limacina inflata (Pteropoda) in surface sediments from the Central and South Atlantic Ocean: a new proxy to determine the aragonite saturation state of water masses

    NASA Astrophysics Data System (ADS)

    Gerhardt, Sabine; Henrich, Rüdiger

    2001-08-01

    Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive "metabolic" aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and δ13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO 2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.

  7. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807

  8. Investigation of Deteriorated Dissolution of Amorphous Itraconazole: Description of Incompatibility with Magnesium Stearate and Possible Solutions.

    PubMed

    Démuth, B; Galata, D L; Szabó, E; Nagy, B; Farkas, A; Balogh, A; Hirsch, E; Pataki, H; Rapi, Z; Bezúr, L; Vigh, T; Verreck, G; Szalay, Z; Demeter, Á; Marosi, G; Nagy, Z K

    2017-11-06

    Disadvantageous crystallization phenomenon of amorphous itraconazole (ITR) occurring in the course of dissolution process was investigated in this work. A perfectly amorphous form (solid dispersion) of the drug was generated by the electroblowing method (with vinylpyrrolidone-vinyl acetate copolymer), and the obtained fibers were formulated into tablets. Incomplete dissolution of the tablets was noticed under the circumstances of the standard dissolution test, after which a precipitated material could be filtered. The filtrate consisted of ITR and stearic acid since no magnesium content was detectable in it. In parallel with dissolution, ITR forms an insoluble associate, stabilized by hydrogen bonding, with stearic acid deriving from magnesium stearate. This is why dissolution curves do not have the plateaus at 100%. Two ways are viable to tackle this issue: change the lubricant (with sodium stearyl fumarate >95% dissolution can be accomplished) or alter the polymer in the solid dispersion to a type being able to form hydrogen bonds with ITR (e.g., hydroxypropyl methylcellulose). This work draws attention to one possible phenomenon that can lead to a deterioration of originally good dissolution of an amorphous solid dispersion.

  9. Health behaviors and union dissolution among parents of young children: Differences by marital status

    PubMed Central

    Meyer, Jess M.

    2017-01-01

    Previous research finds that marriage is associated with better health and lower mortality, and one of the mechanisms underlying this association is health-related selection out of marriage. Using longitudinal survey data from 2,348 couples from the Fragile Families and Child Wellbeing Study, we examine whether certain health behaviors—smoking and binge drinking—are associated with risk of union dissolution among couples with young children. We use discrete time hazard models to test whether associations between health behaviors and union dissolution differ between married and cohabiting parents. We find no statistically significant association between binge drinking and union dissolution for either cohabiting or married couples. Parental smoking, however, is associated with union dissolution. On average, married and cohabiting couples in which both parents smoke have a higher risk of union dissolution than couples in which neither parent smokes. Additionally, father’s smoking (in couples in which the mother does not smoke) is associated with union dissolution, but only for married couples. These findings illustrate the importance of considering the health behaviors of both partners and provide further evidence of differences in union dissolution dynamics between married and cohabiting couples. PMID:28796826

  10. Health behaviors and union dissolution among parents of young children: Differences by marital status.

    PubMed

    Meyer, Jess M; Percheski, Christine

    2017-01-01

    Previous research finds that marriage is associated with better health and lower mortality, and one of the mechanisms underlying this association is health-related selection out of marriage. Using longitudinal survey data from 2,348 couples from the Fragile Families and Child Wellbeing Study, we examine whether certain health behaviors-smoking and binge drinking-are associated with risk of union dissolution among couples with young children. We use discrete time hazard models to test whether associations between health behaviors and union dissolution differ between married and cohabiting parents. We find no statistically significant association between binge drinking and union dissolution for either cohabiting or married couples. Parental smoking, however, is associated with union dissolution. On average, married and cohabiting couples in which both parents smoke have a higher risk of union dissolution than couples in which neither parent smokes. Additionally, father's smoking (in couples in which the mother does not smoke) is associated with union dissolution, but only for married couples. These findings illustrate the importance of considering the health behaviors of both partners and provide further evidence of differences in union dissolution dynamics between married and cohabiting couples.

  11. An understanding of modified release matrix tablets behavior during drug dissolution as the key for prediction of pharmaceutical product performance - case study of multimodal characterization of quetiapine fumarate tablets.

    PubMed

    Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Dorożyński, Przemysław P

    2015-04-30

    Motivation for the study was the lack of dedicated and effective research and development (R&D) in vitro methods for oral, generic, modified release formulations. The purpose of the research was to assess multimodal in vitro methodology for further bioequivalence study risk minimization. Principal results of the study are as follows: (i) Pharmaceutically equivalent quetiapine fumarate extended release dosage form of Seroquel XR was developed using a quality by design/design of experiment (QbD/DoE) paradigm. (ii) The developed formulation was then compared with originator using X-ray microtomography, magnetic resonance imaging and texture analysis. Despite similarity in terms of compendial dissolution test, developed and original dosage forms differed in micro/meso structure and consequently in mechanical properties. (iii) These differences were found to be the key factors of failure of biorelevant dissolution test using the stress dissolution apparatus. Major conclusions are as follows: (i) Imaging methods allow to assess internal features of the hydrating extended release matrix and together with the stress dissolution test allow to rationalize the design of generic formulations at the in vitro level. (ii) Technological impact on formulation properties e.g., on pore formation in hydrating matrices cannot be overlooked when designing modified release dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of atmospheric organic complexation on iron-bearing dust solubility

    NASA Astrophysics Data System (ADS)

    Paris, R.; Desboeufs, K. V.

    2013-05-01

    Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS) typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid) caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II) concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  13. Preparation, characterization and in vitro evaluation of solid dispersions containing docetaxel.

    PubMed

    Chen, Jie; Qiu, Liyan; Hu, Minxin; Jin, Yi; Han, Jieru

    2008-06-01

    Solid dispersions using water-soluble carriers were studied for improving the dissolution of docetaxel, a poorly soluble compound. In order to obtain the most optimized formulation, we prepared many solid dispersions with different carriers, different solvents, or at a series of drug-to-carrier ratios, and compared their dissolution. The accumulative dissolution of docetaxel from poloxamer 188 was more excellent than that from PVP(k30) and glyceryl monostearate, and the dissolution of docetaxel from solid dispersion was markedly higher than that of pure docetaxel; meanwhile the increased dissolution was partly dependent on the ratios of docetaxel and poloxamer 188. The ethanol used to prepare solid dispersion is of more significant effect on the dissolution of docetaxel than that of acetone. The docetaxel/poloxamer 188 system was characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and environmental scanning electron microscope (ESEM). The results of DSC, XRD, and ESEM analyses of docetaxel/poloxamer 188 system showed that there are intermolecular interactions between docetaxel and poloxamer, and the crystallinity of docetaxel disappeared. These results show that solid dispersion is a promising approach of developing docetaxel drug formulates.

  14. Consumer vinegar test for determining calcium disintegration.

    PubMed

    Mason, N A; Patel, J D; Dressman, J B; Shimp, L A

    1992-09-01

    A consumer test and standardized methods were compared for measuring the disintegration of calcium tablets, and the disintegration results were compared with results of dissolution testing to determine the ability of the consumer test of disintegration to predict bioavailability of calcium. Disintegration of 17 calcium supplement products, in tablet form, was studied in Simulated Gastric Fluid Test Solution, USP, without pepsin (GF), in distilled water, and in white distilled vinegar. For disintegration testing with GF and with distilled water, six tablets of each product were placed in an apparatus and immersed in the solution at 37 degrees C for 60 minutes. Six tablets of each product were tested in 200 mL of vinegar at room temperature for 30 minutes. Disintegration was determined by visual observation. Seven products were tested for dissolution in GF or water. Three samples of each product were tested at intervals over 120 minutes for calcium content. Results of testing with an ion-selective electrode were converted to milligrams and compared with the calcium content of the tablets (as claimed on the package label). The mean disintegration times of various calcium products in vinegar ranged from 1.8 to greater than 30 minutes. The mean time in distilled water and GF ranged from 1.6 to greater than 60 minutes and from 1.0 to greater than 60 minutes, respectively. Results were in agreement in 87% to 93% of cases between the consumer vinegar test and the standardized disintegration test methods, a significant correlation. No correlation was found between disintegration time and the extent of dissolution. The disintegration and dissolution of commercially available calcium tablets was highly variable.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Computational hydrodynamic comparison of a mini vessel and a USP 2 dissolution testing system to predict the dynamic operating conditions for similarity of dissolution performance.

    PubMed

    Wang, Bing; Bredael, Gerard; Armenante, Piero M

    2018-03-25

    The hydrodynamic characteristics of a mini vessel and a USP 2 dissolution testing system were obtained and compared to predict the tablet-liquid mass transfer coefficient from velocity distributions near the tablet and establish the dynamic operating conditions under which dissolution in mini vessels could be conducted to generate concentration profiles similar to those in the USP 2. Velocity profiles were obtained experimentally using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was used to predict the velocity distribution and strain rate around a model tablet. A CFD-based mass transfer model was also developed. When plotted against strain rate, the predicted tablet-liquid mass transfer coefficient was found to be independent of the system where it was obtained, implying that a tablet would dissolve at the same rate in both systems provided that the concentration gradient between the tablet surface and the bulk is the same, the tablet surface area per unit liquid volume is identical, and the two systems are operated at the appropriate agitation speeds specified in this work. The results of this work will help dissolution scientists operate mini vessels so as to predict the dissolution profiles in the USP 2, especially during the early stages of drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.

    PubMed

    Shiko, G; Gladden, L F; Sederman, A J; Connolly, P C; Butler, J M

    2011-03-01

    We present a detailed study of hydrodynamics inside the flow-through dissolution apparatus when operated according to USP recommendations. The pulsatile flow inside the flow-through cell was measured quantitatively using magnetic resonance imaging (MRI) at a spatial resolution of 234 × 234 μm(2) and slice thickness of 1 mm. We report the experimental protocols developed for in situ MRI studies and the effect that the operating conditions and tablet orientation have on the hydrodynamics inside commercial flow cells. It was found that the flow field inside the dissolution cells was, at most operating conditions, heterogeneous, rather than fully developed laminar flow, and characterised by re-circulation and backward flow. A model tablet was shown to be contacted by a wide distribution of local velocities as a function of position and orientation in the flow cell. The use of 1 mm beads acted as a distributor of the flow but did not suffice to ensure a fully developed laminar flow profile. These results emphasise the necessity to understand the influence of test conditions on dissolution behaviour in defining robust flow-through dissolution methods. Copyright © 2010 Wiley-Liss, Inc.

  18. Improving past sea surface temperature reconstructions from the Southern Hemisphere oceans using planktonic foraminiferal census data

    NASA Astrophysics Data System (ADS)

    Haddam, N. A.; Michel, E.; Siani, G.; Cortese, G.; Bostock, H. C.; Duprat, J. M.; Isguder, G.

    2016-06-01

    We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere oceans (SHO) from 15°S to 64°S. The SHO database combines three existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/ΔCO32- threshold of ~3800 m/ΔCO32- = ~ -10 to -5 µmol/kg for the Pacific and Indian Oceans and ~4000 m/ΔCO32- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core tops beyond these thresholds from the SHO database. This database has 598 core tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect how dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core tops. We used this database to reconstruct summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the three databases used to compile the SHO database, thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich database. We leave this data set open-ended to future additions; the new core tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.

  19. Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy

    NASA Astrophysics Data System (ADS)

    Campana, Claudia; Fidelibus, Maria Dolores

    2015-11-01

    The gypsum coastal aquifer of Lesina Marina (Puglia, southern Italy) has been affected by sinkhole formation in recent decades. Previous studies based on geomorphologic and hydrogeological data ascribed the onset of collapse phenomena to the erosion of material that fills palaeo-cavities (suffosion sinkholes). The change in the hydrodynamic conditions of groundwater induced by the excavation of a canal within the evaporite formation nearly 100 years ago was identified as the major factor in triggering the erosion, while the contribution of gypsum dissolution was considered negligible. A combined reactive-transport/density-dependent flow model was applied to the gypsum aquifer to evaluate whether gypsum dissolution rate is a dominant or insignificant factor in recent sinkhole formation under current hydrodynamic conditions. The conceptual model was first defined with a set of assumptions based on field and laboratory data along a two-dimensional transect of the aquifer, and then a density-dependent, tide-influenced flow model was set up and solved using the numerical code SEAWAT. Finally, the resulting transient flow field was used by the reactive multicomponent transport model PHT3D to estimate the gypsum dissolution rate. The validation tests show that the model accurately represents the real system, and the multi-disciplinary approach provides consistent information about the causes and evolution time of dissolution processes. The modelled porosity development rate is too low to represent a significant contribution to the recent sinkhole formation in the Lesina Marina area, although it justifies cavity formation and cavity position over geological time.

  20. Investigating the Discriminatory Power of BCS-Biowaiver in Vitro Methodology to Detect Bioavailability Differences between Immediate Release Products Containing a Class I Drug.

    PubMed

    Colón-Useche, Sarin; González-Álvarez, Isabel; Mangas-Sanjuan, Victor; González-Álvarez, Marta; Pastoriza, Pilar; Molina-Martínez, Irene; Bermejo, Marival; García-Arieta, Alfredo

    2015-09-08

    The purpose of this work is to investigate the discriminatory power of the Biopharmaceutics Classification System (BCS)-biowaiver in vitro methodology, i.e., to investigate if a BCS-biowaiver approach would have detected the Cmax differences observed between two zolpidem tablets and to identify the cause of the in vivo difference. Several dissolution conditions were tested with three zolpidem formulations: the reference (Stilnox), a bioequivalent formulation (BE), and a nonbioequivalent formulation (N-BE). Zolpidem is highly soluble at pH 1.2, 4.5, and 6.8. Its permeability in Caco-2 cells is higher than that of metoprolol and its transport mechanism is passive diffusion. None of the excipients (alone or in combination) showed any effect on permeability. All formulations dissolved more than 85% in 15 min in the paddle apparatus at 50 rpm in all dissolution media. However, at 30 rpm the nonbioequivalent formulation exhibited a slower dissolution rate. A slower gastric emptying rate was also observed in rats for the nonbioequivalent formulation. A slower disintegration and dissolution or a delay in gastric emptying might explain the Cmax infra-bioavailability for a highly permeable drug with short half-life. The BCS-biowaiver approach would have declared bioequivalence, although the in vivo study was not conclusive but detected a 14% mean difference in Cmax that precluded the bioequivalence demonstration. Nonetheless, these findings suggest that a slower dissolution rate is more discriminatory and that rotation speeds higher than 50 rpm should not be used in BCS-biowaivers, even if a coning effect occurs.

  1. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.

    PubMed

    Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A

    2014-08-01

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. In vitro dissolution of generic immediate-release solid oral dosage forms containing BCS class I drugs: comparative assessment of metronidazole, zidovudine, and amoxicillin versus relevant comparator pharmaceutical products in South Africa and India.

    PubMed

    Reddy, Nallagundla H S; Patnala, Srinivas; Löbenberg, Raimar; Kanfer, Isadore

    2014-10-01

    Biowaivers are recommended for immediate-release solid oral dosage forms using dissolution testing as a surrogate for in vivo bioequivalence studies. Several guidance are currently available (the World Health Organization (WHO), the US FDA, and the EMEA) where the conditions are described. In this study, definitions, criteria, and methodologies according to the WHO have been applied. The dissolution performances of immediate-release metronidazole, zidovudine, and amoxicillin products purchased in South African and Indian markets were compared to the relevant comparator pharmaceutical product (CPP)/reference product. The dissolution performances were studied using US Pharmacopeia (USP) apparatus 2 (paddle) set at 75 rpm in each of three dissolution media (pH1.2, 4.5, and 6.8). Concentrations of metronidazole, zidovudine, and amoxicillin in each dissolution media were determined by HPLC. Of the 11 metronidazole products tested, only 8 could be considered as very rapidly dissolving products as defined by the WHO, whereas 2 of those products could be considered as rapidly dissolving products but did not comply with the f 2 acceptance criteria in pH 6.8. All 11 zidovudine products were very rapidly dissolving, whereas in the case of the 14 amoxicillin products tested, none of those products met any of the WHO criteria. This study indicates that not all generic products containing the same biopharmaceutics classification system (BCS) I drug and in similar strength and dosage form are necessarily in vitro equivalent. Hence, there is a need for ongoing market surveillance to determine whether marketed generic products containing BCS I drugs meet the release requirements to confirm their in vitro bioequivalence to the respective reference product.

  3. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    We compare dissolution rates of pure, porous, compacted, and oil-contaminated sI methane hydrate and sII methane-ethane hydrate to rates measured previously on pure, compacted, sI methane hydrate and sI carbon dioxide hydrate (Rehder et al., Fall AGU 2001). Laboratory-synthesized test specimens were used in both studies, allowing characterization of test materials prior to their transport and exposure to seawater at 1030-meter depth on the Monterey Canyon seafloor, off coastal Moss Landing, CA. Although pressure and temperature (P-T) conditions at this site are within the nominal P-T equilibrium fields of all gas hydrates tested here, the seawater is undersaturated with respect to the hydrate-forming gas species. Hence, samples dissolve with time, at a rate dependent on water current flow. Four samples were deployed in this second experiment: (1) pure, 30% porous methane hydrate; (2) pure, compacted methane hydrate; (3) pure methane hydrate compacted and then contaminated with a low-T mineral oil; and (4) pure, compacted sII methane-ethane hydrate with methane:ethane molar ratio 0.72. Samples were transferred by pressure vessel at 0 ° C and 15 MPa to the seafloor observatory via the MBARI remotely operated vehicle Ventana. Samples were then exposed to the deep ocean environment and monitored by HDTV camera for several hours at the beginning and end of a 25-hour period. Local current speed and direction were also measured throughout the experiment. Those samples that did not undergo complete dissolution after 25 h were successfully recovered to the laboratory for subsequent analysis by scanning electron microscopy (SEM). Previously, video analysis showed dissolution rates corresponding to 4.0 +/- 0.5 mmole CO2/m2 s for compacted CO2 hydrate samples, and 0.37 +/- 0.03 mmole CH4/m2s for compacted methane hydrate samples (Rehder et al, AGU 2001). The ratio of dissolution rates fits a simple diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site. These calculations assume that dissolution occurred only along the outer (i.e. imaged) surface of the samples. This assumption is now validated by SEM analysis of recovered samples from the second dive, showing little to no internal alteration of compacted material following their partial dissolution. Quantitative comparison of results from the two dives poses challenges due to variations in sample size and orientation. However, both compacted methane hydrate samples from the second dive in fact exhibited comparable behavior to that measured in the previous experiment; the oily sample did not dissolve at a slower rate, as might be expected if a hydrophobic contaminant inhibits seawater contact. Surprisingly, the porous methane hydrate exhibited significantly slower face retreat than its compacted counterparts. The sII methane-ethane hydrate dissolved measurably slower than all other samples, consistent with the solubility properties of its guest components. While these results represent only a first step in emulating the more complex interactions of seawater with naturally occurring hydrate-bearing sediments, such end member studies should aid preliminary modelling investigations of the chemical stability and lifetime of gas hydrates exposed at the seafloor.

  4. Molecular-level elucidation of saccharin-assisted rapid dissolution and high supersaturation level of drug from Eudragit® E solid dispersion.

    PubMed

    Ueda, Keisuke; Kanaya, Harunobu; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2018-03-01

    In this work, the effect of saccharin (SAC) addition on the dissolution and supersaturation level of phenytoin (PHT)/Eudragit® E (EUD-E) solid dispersion (SD) at neutral pH was examined. The PHT/EUD-E SD showed a much slower dissolution of PHT compared to the PHT/EUD-E/SAC SD. EUD-E formed a gel layer after the dispersion of the PHT/EUD-E SD into an aqueous medium, resulting in a slow dissolution of PHT. Pre-dissolving SAC in the aqueous medium significantly improved the dissolution of the PHT/EUD-E SD. Solid-state 13 C NMR measurements showed an ionic interaction between the tertiary amino group of EUD-E and the amide group of SAC in the EUD-E gel layer. Consequently, the ionized EUD-E could easily dissolve from the gel layer, promoting PHT dissolution. Solution-state 1 H NMR measurements revealed the presence of ionic interactions between SAC and the amino group of EUD-E in the PHT/EUD-E/SAC solution. In contrast, interactions between PHT and the hydrophobic group of EUD-E strongly inhibited the crystallization of the former from its supersaturated solution. The PHT supersaturated solution was formed from the PHT/EUD-E/SAC SD by the fast dissolution of PHT and the strong crystallization inhibition effect of EUD-E after aqueous dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    NASA Astrophysics Data System (ADS)

    Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.

    2018-03-01

    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.

  6. Dissolution of Oxygen Precipitate Nuclei in n-Type CZ-Si Wafers to Improve Their Material Quality: Experimental Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Basnyat, Prakash; Devayajanam, Srinivas

    2017-01-01

    We present experimental results which show that oxygen-related precipitate nuclei (OPN) present in p-doped, n-type, Czochralski wafers can be dissolved using a flash-annealing process, yielding very high quality wafers for high-efficiency solar cells. Flash annealing consists of heating a wafer in an optical furnace to temperature between 1150 and 1250 degrees C for a short time. This process produces a large increase in the minority carrier lifetime (MCLT) and homogenizes each wafer. We have tested wafers from different axial locations of two ingots. All wafers reach nearly the same high value of MCLT. The OPN dissolution is confirmed by oxygenmore » analysis using Fourier transform infrared spectra and injection-level dependence of MCLT.« less

  7. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. [Effect of Food Thickeners on the Disintegration, Dissolution, and Drug Activity of Rapid Oral-disintegrating Tablets].

    PubMed

    Tomita, Takashi; Kohda, Yukinao; Kudo, Kenzo

    2018-01-01

     For patients with dysphagia in medical facilities and nursing homes, food thickeners are routinely used to aid the ingestion of medicines such as tablets. However, some types of thickeners affect the disintegration and dissolution of tablets, such as rapidly-disintegrating magnesium oxide tablets and donepezil hydrochloride orally disintegrating tablets. Additionally, delayed disintegration and dissolution of tablets affect a drug's efficacy. As an example, with Voglibose orally disintegrating tablets, marked differences are observed in changes in glucose levels during glucose tolerance testing. When using food thickeners to aid tablet ingestion, it is therefore necessary to select a product that has little effect on drug disintegration, dissolution, and activity.

  9. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition

    PubMed Central

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-01

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection. PMID:24413195

  10. Artificial weathering as a function of CO2 injection in Pahang Sandstone Malaysia: investigation of dissolution rate in surficial condition.

    PubMed

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-13

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  11. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition

    NASA Astrophysics Data System (ADS)

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-01

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  12. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  13. Bioequivalence and in vitro antimicrobial activity between generic and brand-name levofloxacin.

    PubMed

    Sun, Hsin-Yun; Liao, Hsiao-Wei; Sheng, Meng-Huei; Tai, Hui-Min; Kuo, Ching-Hua; Sheng, Wang-Huei

    2016-07-01

    Generic agents play a crucial role in reducing the cost of medical care in many countries. However, the therapeutic equivalence remains a great concern. Our study aims to assess the in vitro antimicrobial activity and bioequivalence between generic and brand-name levofloxacin. Enantiomeric purity test, dissolution test, and in vitro antimicrobial susceptibility against seven clinically important pathogens by the agar dilution method were employed to assess the similarity between four generic products and brand-name levofloxacin (Daiichi Sankyo). All the generic and brand-name levofloxacin passed enantiomeric purity test. The results of dissolution tests were not similar among the generic products and the brand-name levofloxacin. Compared with the generic products, the brand-name levofloxacin had the smallest mean variations (-25% to 13%) with reference standard (United States Pharmacopeia levofloxacin Reference Standards). Variations were observed particularly in dissolution profiles and in vitro activity between generic products and brand-name levofloxacin. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dissolution Studies of Papaverine Hydrochloride from Tablets in Three Pharmacopoeia Apparatuses.

    PubMed

    Polski, Andrzej; Kasperek, Regina; Rogowska, Magdalena; Iwaniak, Karol; Sobòtka-Polska, Karolina; Poleszak, Ewa

    2015-01-01

    In tablet production, the most important aspects are the physical properties of the tablets and their dissolution studies, which can be performed in four pharmacopoeial apparatuses. There are differences between them in construction and action, so differences in the results obtained are possible. The aim of the study was to compare the release of a model drug substance (papaverine hydrochloride) from tablets in three pharmacopoeial dissolution apparatus: a basket, a paddle (closed system) and flow-through cell (open system). The one series of tablets were produced by direct compression in a tablet press. The physical properties of the tablets (weight and size uniformity test, friability and hardness tests, disintegration time test), drug content and the release study of papaverine hydrochloride from tablets were studied in three dissolution apparatuses. The content of the active substance was studied spectrophotometrically. All tablets met the pharmacopoeic requirements. Over 80% of the model substance released from the tablets after 14 min in flow through the cell apparatus, while in the basket and paddle apparatuses after about 7 min 30 sec. After 20 min, the amount of the substance released in all apparatuses was over 90%. The release profiles of the drug substance in paddle and basket apparatuses were similar, while in the flow-through cell apparatus it was slightly slower. When the study conditions and composition of the tablets are the same, the release profile of the drug can be affected by the type of dissolution apparatus.

  15. Brokenhearts: Dissolution of Romantic Relationships.

    ERIC Educational Resources Information Center

    Meeker, F. B.; La Fong, Carl

    Results of an investigation examining the dissolution of romantic relationships are analyzed. Men and women (N=105) who had ended romantic relationships were surveyed in structured individual interviews. Commonalities and differences in respondents' perceptions of the experience were examined. Specific tests were made of a corollary to Waller's…

  16. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  17. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  18. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  19. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  20. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...

  1. [Dissolution behavior of Fuzi Lizhong pill based on simultaneous determination of two components in Glycyrrhizae Radix et Rhizoma].

    PubMed

    Jiang, Mao-Yuan; Zhang, Zhen; Shi, Jin-Feng; Zhang, Jin-Ming; Fu, Chao-Mei; Lin, Xia; Liu, Yu-Mei

    2018-03-01

    To preliminarily investigate the dissolution behavior of Fuzi Lizhong pill, provide the basis for its quality control and lay foundation for in vivo dissolution behavior by determining the dissolution rate of liquiritin and glycyrrhizic acid. High-performance liquid chromatography (HPLC) method for simultaneous content determination of the two active ingredients of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was established; The dissolution amount of these two active ingredients in fifteen batches of Fuzi Lizhong pill from five manufacturers was obtained at different time points, and then the cumulative dissolution rate was calculated and cumulative dissolution curve was drawn. The similarity of cumulative dissolution curve of different batches was evaluated based on the same factory, and the similarity of cumulative dissolution curve of different factories was evaluated based on the same active ingredients. The dissolution model of Fuzi Lizhong pill based on two kinds of active ingredients was established by fitting with the dissolution data. The best dissolution medium was 0.25% sodium lauryl sulfate. The dissolution behavior of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was basically the same and sustained release in 48 h. Three batches of the factories (factory 2, factory 3, factory 4 and factory 5) appeared to be similar in dissolution behavior, indicating similarity in dissolution behavior in most factories. Two of the three batches from factory 1 appeared to be not similar in dissolution behavior of liquiritin and glycyrrhizic acid. The dissolution data of the effective ingredients from different factories were same in fitting, and Weibull model was the best model in these batches. Fuzi Lizhong pill in 15 batches from 5 factories showed sustained release in 48 h, proving obviously slow releasing characteristics "pill is lenitive and keeps a long-time efficacy". The generally good dissolution behavior also suggested that quality of different batches from most factories was stable. The dissolution behavior of liquiritin and glycyrrhizic acid in different factories was different, suggesting that the source of medicinal materials and preparation technology parameters in five factories were different. Copyright© by the Chinese Pharmaceutical Association.

  2. Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions

    NASA Astrophysics Data System (ADS)

    Serrano-Purroy, D.; Casas, I.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; Clarens, F.; Giménez, J.; de Pablo, J.; Martínez-Esparza, A.

    2013-03-01

    The leaching of a high-burn-up spent nuclear fuel (48 MWd/KgU) has been studied in a carbonate-containing solution and under oxic conditions using a Continuously Stirred Tank Flow-Through Reactor (CSTR). Two samples of the fuel, one prepared from the centre of the pellet (labelled CORE) and another one from the fuel pellet periphery, enriched with the so-called High Burn-Up Structure (HBS, labelled OUT) have been used.For uranium and actinides, the results showed that U, Np, Am and Cm gave very similar normalized dissolution rates, while Pu showed slower dissolution rates for both samples. In addition, dissolution rates were consistently two to four times lower for OUT sample compared to CORE sample.Considering the fission products release the main results are that Y, Tc, La and Nd dissolved very similar to uranium; while Cs, Sr, Mo and Rb have up to 10 times higher dissolution rates. Rh, Ru and Zr seemed to have lower dissolution rates than uranium. The lowest dissolution rates were found for OUT sample.Three different contributions were detected on uranium release, modelled and attributed to oxidation layer, fines and matrix release.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; De Andrade, Vincent; Feng, Zhange

    The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion-mineral interactions during dissolution under far-from equilibrium conditions remains limited. Here we show that calcite (CaCO 3) exhibits a rich array of dissolution features in the presence of Pb. During the initial stage, calcite exhibits non-classical surface features characterized as micro pyramids developed spontaneously in acidic Pb-bearing solutions. Subsequent pseudomorphic growth of cerussite (PbCO 3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded amore » cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution-precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing micro structures observed in naturally-occurring and synthetic carbonate minerals by dissolution. In addition, heterogeneous micro-environments created in transport limited reactions under pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.« less

  4. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this diffusion is itself controlled by the structural modifications required by the addition of new components to the melt. Comparison of quartz dissolution rates in similar melts shows that dissolution is much faster for quartz than for sapphire and that dissolution rates show the same correlation with silica activity and viscosity. We suggest that diffusive fluxes are related to changes in melt structure and the nature of the reaction that incorporates the added component. For the slow eigendirection, SiO2 addition occurs by a single reaction whereas Al2O3 addition requires a more complex two part reaction in which Al is accommodated by charge balance with Ca until Al is in excess of that which can be charge balanced. The Alxs incorporation reaction, is slower than the Si incorporation reaction which inhibits sapphire dissolution relative to quartz in melts of the same composition.

  5. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose.

    PubMed

    Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars

    2016-02-01

    In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.

  6. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    PubMed

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs.

    PubMed

    Borba, Paola Aline Amarante; Pinotti, Marihá; de Campos, Carlos Eduardo Maduro; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2016-02-10

    The solid dispersion technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs, however it depends on a suitable carrier selection. The work explored the use of the biopolymer sodium alginate (SA) as a potential carrier in solid dispersions (SD). The data demonstrated that SA was able to improve the biopharmaceutical properties of the BCS II drug telmisartan (TEL) of low solubility even using relative small drug:polymer ratio. A solid state grinding process was used to prepare the solid dispersions (SD) during 45 min. The SD were prepared in different proportions of drug and carrier of 1:1, 1:3, 1:5, 1:7 and 1:9 (mass/mass). DSC, XRPD, FTIR and Raman confirmed the presence of molecular interactions between TEL and the carrier. FTIR supports the presence of hydrogen bonds between TEL and the carrier. SD_1:5, SD_1:7 and SD_1:9 enhanced the dissolution rate of the drug releasing more than 80% of the drug in just 30 min (83%, 84% and 87%). The the t-test results demonstrated equal dissolution efficiency values for SD_1:7 and Micardis(®), however the similarity (f2) and difference (f1) fit factors showed that the SD and Micardis(®) are statistically different. The physical stability studies demonstrated that SD using sodium alginate as a carrier remained unchanged during the period of 90 days at room temperature, showing that the sodium alginate acts as a good anti plasticizer agent, preventing the drug recrystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  9. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  10. Continuous wavelet transforms for the simultaneous quantitative analysis and dissolution testing of lamivudine-zidovudine tablets.

    PubMed

    Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli

    2013-01-01

    Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.

  11. Kinetics Study on the Effect of NaCl on the CaSO4 Dissolution Behavior

    NASA Astrophysics Data System (ADS)

    Song, Jingyao; Shi, Peiyang; Wang, Yeguang; Jiang, Maofa

    2018-01-01

    The study of the dissolution kinetics of CaSO4 is essential for the control of the dissolution and recrystallization behavior of CaSO4. In this work, the kinetic behavior of CaSO4 dissolved in NaCl solution was investigated by means of conductivity meter. The results show that with the increase of concentration of NaCl, the temperature rise and the time prolonged, the dissolution rate of dihydrate CaSO4 gradually increases, and the dissolved apparent activation energy is gradually decreased. When the NaCl concentration is 1.8%, the dissolution kinetic equation is 1-(1-α) 1/3=5.46*10-4exp (-9147/RT) t; When the NaCl concentration is 3.0%, the dissolution kinetic equation is 1-(1-α) 1/3=2.81×10-4 exp (-6753/RT)t; When the NaCl concentration is 3.6%, the dissolution kinetic equation is 1-(1-α) 1/3=3.07×l0-4exp(-6103/RT)t.

  12. Short-time dissolution mechanisms of kaolinitic tropical soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malengreau, N.; Sposito, Garrison

    1996-03-01

    Previous research on the short-time dissolution behavior of kaolinitic Oxisols suggested pH-dependent kinetics involving ligand-promoted dissolution, metal readsorption, and colloidal dispersion, with soil organic matter conjectured to play a decisive role. A novel combination of spectroscopy, lightscattering, and batch dissolution experiments, conducted at controlled pH and ionic strength over five dissolution periods ranging from 1 to 12 h, was applied to evaluate this mechanism for samples of a representative kaolinitic Oxisol; collected at both forested and cultivated field sites (leading to significant differences in organic matter content and field soil pH). The overall characteristics of the pH-dependent net release kineticsmore » of Al, Fe, and Si by the soil samples, for any dissolution period in the range investigated, were determined by the pH value at which colloid dispersion commenced, which decreased significantly as the soil organic matter content increased. Plots of log(Si/Al released) (or Si/Fe released) vs. -log [H+] ([H+] is proton concentration) were superimposable for all dissolution periods studied, rising to a plateau value above the point of zero net charge of the soils (pH 3.2). Light-scattering and X-ray diffraction data showed conclusively that this plateau represented the release of siliceous colloids containing kaolinite and X-ray amorphous material. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and electron spin resonance spectroscopy, applied to the soil samples before and after dissolution, and after conventional chemical extractions to remove Al, C, Fe, and Si, showed that kaolinite and iron oxide phases (the latter being highly Al-substituted and present in both coatings and occlusions) were essentially unaltered by dissolution, even at -log [H+] = 2, whereas substantial dissolution loss of soil quartz occurred. Diffuse reflectance spectroscopy gave strong evidence that C in these soils occurs principally in discrete solid phases, not as a reactive coating on mineral surfaces.« less

  13. Adolescent Sexuality and the Risk of Marital Dissolution

    ERIC Educational Resources Information Center

    Paik, Anthony

    2011-01-01

    This research investigates whether first sexual intercourse during adolescence is associated with increased risk of first marriage dissolution and tests whether the results are consistent with causal or selection explanations. Drawing on a sample of 3,793 ever-married women from the 2002 National Survey of Family Growth, this study estimated…

  14. Biopharmaceutic Risk Assessment of Brand and Generic Lamotrigine Tablets.

    PubMed

    Vaithianathan, Soundarya; Raman, Siddarth; Jiang, Wenlei; Ting, Tricia Y; Kane, Maureen A; Polli, James E

    2015-07-06

    The therapeutic equivalence of generic and brand name antiepileptic drugs has been questioned by neurologists and the epilepsy community. A potential contributor to such concerns is pharmaceutical quality. The objective was to assess the biopharmaceutic risk of brand name Lamictal 100 mg tablets and generic lamotrigine 100 mg tablets from several manufacturers. Lamotrigine was characterized in terms of the Biopharmaceutics Classification System (BCS), including aqueous solubility and Caco-2 permeability. A panel of pharmaceutical quality tests was also performed on three batches of Lamictal, three batches of Teva generic, and one batch of each of four other generics: appearance, identity, assay, impurity, uniformity of dosage units, disintegration, dissolution, friability, and loss on drying. These market surveillance results indicate that all brand name and generic lamotrigine 100 mg tablets passed all tests and showed acceptable pharmaceutical quality and low biopharmaceutic risk. Lamotrigine was classified as a BCS class IIb drug, exhibiting pH-dependent aqueous solubility and dissolution. At pH 1.2 and 4.5, lamotrigine exhibited high solubility, whereas lamotrigine exhibited low solubility at pH 6.8, including non-sink dissolution. Lamotrigine showed high Caco-2 permeability. The apparent permeability (Papp) of lamotrigine was (73.7 ± 8.7) × 10(-6) cm/s in the apical-to-basolateral (AP-BL) direction and (41.4 ± 1.6) × 10(-6) cm/s in the BL-AP direction, which were higher than metoprolol's AP-BL Papp of (21.2 ± 0.9) × 10(-6) cm/s and BL-AP Papp of (34.6 ± 4.6) × 10(-6) cm/s. Overall, lamotrigine's favorable biopharmaceutics from a drug substance perspective and favorable quality characteristics from a tablet formulation perspective suggest that multisource lamotrigine tablets exhibit a low biopharmaceutic risk.

  15. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  16. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  17. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug.

    PubMed

    Yu, Deng-Guang; Gao, Li-Dong; White, Kenneth; Branford-White, Christopher; Lu, Wei-Yue; Zhu, Li-Min

    2010-11-01

    To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.

  18. Effects of pore forming agents of potassium bicarbonate and drug loading method against dissolution mechanisms of amoxicillin drugs encapsulated in hydrogel full-Ipn chitosan-poly(N-vinylcaprolactam) as a floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil

    2018-04-01

    The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.

  19. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less

  20. Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Ma, Chao; Wu, Zhenkai; Liang, He; Yan, Peng; Song, Jia; Ma, Nan; Zhao, Qinghua

    2015-11-01

    Nanofibers have attracted increasing attention in drug delivery and other biomedical applications due to their some special properties. The present study aims to prepare a fiber-based nanosolid dispersion system to enhance the bioavailability of curcumin (CUR). CUR-loaded polyvinyl pyrrolidone (CUR@PVP) nanofibers were successfully prepared via electrospinning. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibers, and the SEM image showed that the drug-loaded nanofibers were smooth, and no CUR clusters were found on the surface of the nanofibers. The results of X-ray diffraction (XRD) demonstrated that the CUR was evenly distributed in the nanofibers in an amorphous state. Fourier transform infrared (FTIR) spectroscopy analysis indicated that intermolecular hydrogen bonding occurred between the CUR and the polymer matrix. In vitro dissolution profiles showed that CUR@PVP nanofiber could be quickly dissolved in phosphate-buffered saline (PBS) solution, while negligible dissolution was observed in pure CUR sample. Importantly, in vitro cell viability assays and in vivo animal tests revealed that the nanosolid dispersion system dramatically enhanced the bioavailability and showed effective anticancer effect of the CUR.

  1. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans

    Treesearch

    Rudolf Jaffe; Yan Ding; Jutta Niggemann; Anssi V. Vahatalo; Aron Stubbins; Robert G. M. Spencer; John Campbell; Thorsten Dittmar

    2013-01-01

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent...

  2. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles.

    PubMed

    Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel

    2013-12-15

    In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Isotretinoin Oil-Based Capsule Formulation Optimization

    PubMed Central

    Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886

  4. Comparison of the In Vivo Pharmacokinetics and In Vitro Dissolution of Raltegravir in HIV Patients Receiving the Drug by Swallowing or by Chewing

    PubMed Central

    Baldelli, Sara; Cerea, Matteo; Landonio, Simona; Meraviglia, Paola; Simioni, Emanuela; Cozzi, Valeria; Fucile, Serena; Gazzaniga, Andrea; Clementi, Emilio; Galli, Massimo; Rizzardini, Giuliano; Gervasoni, Cristina

    2012-01-01

    The pharmacokinetics of raltegravir (RAL) in HIV patients is characterized by high interpatient/intrapatient variability. We investigated the potential contribution of the drug pharmaceutical formulation to RAL pharmacokinetics. We first compared in vivo the pharmacokinetics of RAL for 67 patients to whom the drug was administered by swallowing the intact tablet with those obtained from 13 HIV-infected patients who chewed the RAL tablet due to swallowing difficulties. Subsequently, we evaluated in vitro the dissolution of RAL tablets under different conditions. In the in vivo study, we found that patients given RAL by chewing the tablets presented pharmacokinetic profiles characterized by significantly higher RAL absorption than did patients receiving the drug by swallowing. The in vitro studies showed that when the whole tablets were exposed to an acidic medium, the release of RAL was very low, whereas when the tablets were crushed, the profiles presented significantly higher concentrations of RAL. Crushed tablets tested in water or in a pH 6.8 buffer exhibited prompt and complete dissolution of RAL. HIV-infected patients receiving RAL by chewing the tablet showed higher drug absorption and reduced pharmacokinetic variability compared with patients swallowing the intact tablet. This is related to problems in tablet disintegration and to erratic drug absorption. The amelioration of the RAL pharmaceutical formulation could improve drug pharmacokinetics. PMID:22964253

  5. Impact of IrRu Oxygen Evolution Reaction Catalysts on Pt Nanostructured Thin Films under Start-Up/Shutdown Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, David A; More, Karren Leslie; Atanasoska, Liliana

    Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopymore » were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.« less

  6. Use of the co-grinding method to enhance the dissolution behavior of a poorly water-soluble drug: generation of solvent-free drug-polymer solid dispersions.

    PubMed

    Yang, Caiqin; Xu, Xiujuan; Wang, Jing; An, Zhiqian

    2012-01-01

    The solid dispersion (SD) technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs. In the present work, SDs of the Ca2+ channel blocker dipfluzine (DF) with polyvinylpyrrolidone K30 (PVP) and poloxamer 188 (PLXM) were prepared by the powder solid co-grinding method under a solvent-free condition. The properties of all SDs and physical mixtures were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, scanning electron microscopy, dissolution test, and particles size determination. Eutectic compounds were produced between the DF and PLXM matrix during the co-grinding process, whereas glass suspension formed in the SDs with PVP carrier. Hydrogen bond formation was not observed between DF and carriers and DF was microcrystalline state in the PVP and PLXM matrices. The solubility of DF in different concentration of carriers at 25, 31, and 37°C was investigated; the values obtained were used to calculate the thermodynamic parameters of interaction between DF and carriers. The Gibbs free energy (ΔrGθ) values were negative, indicating the spontaneous nature of dispersing DF into the carriers. Moreover, entropy is the drive force when DF disperses into the matrix of PVP, while, enthalpy-driven dispersing encounters in the PLXM carrier. All the SDs of DF/carriers showed a considerably higher dissolution rate than pure DF and the corresponding physical mixtures. The cumulative dissolution rate at 10 min of the SD with a 1 : 3 DF/carrier ratio increased 5.1-fold for PVP and 5.5-fold for PLXM.

  7. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko

    2014-11-01

    The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.

  8. A New Method to Determine the Half-Life for Penicillin Using Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Li, Z. X.; Zhao, W. W.

    2015-01-01

    The dissolution process of penicillin in normal saline and isotonic glucose solution was reported using a microcalorimeter. Both the integral and differential heats of solution were measured. The quantitative relationships between the amount of heat released and the quantity of dissolved penicillin were established. Meanwhile, the kinetics and the half-life of the dissolution processes as well as the enthalpy of solution, the entropy of dissolution, and the free energy of dissolution were determined. The results showed that a change of the solvent from normal saline to isotonic glucose solution had little effect on the half-life of penicillin in the dissolution process, and there was no significant difference between the stabilities of penicillin in isotonic glucose solution and normal saline. Moreover, the dissolution process of penicillin in isotonic glucose solution followed the first-order kinetics. These results could provide a theoretical basis for the clinical applications of penicillin.

  9. Effect of guest drug character encapsulated in the cavity and intermolecular spaces of γ-cyclodextrins on the dissolution property of ternary γ-cyclodextrin complex.

    PubMed

    Liu, Nan; Higashi, Kenjirou; Ueda, Keisuke; Moribe, Kunikazu

    2017-10-15

    Various ternary Guest 2/(Guest 1/γ-cyclodextrin (CD)) complexes were prepared using a cogrinding and subsequent heating method, wherein Guest 1 was incorporated in the cavity of γ-CD and Guest 2 was incorporated into the intermolecular spaces between γ-CD columns. Dissolution fluxes of Guest 1 and Guest 2 from all ternary complexes were almost identical. The dissolution flux of flurbiprofen (Guest 1) from the ternary complexes depended on the solubility of Guest 2 drugs (naproxen

  10. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    PubMed

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  11. Evolution of a mini-scale biphasic dissolution model: Impact of model parameters on partitioning of dissolved API and modelling of in vivo-relevant kinetics.

    PubMed

    Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G

    2016-08-01

    Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    PubMed Central

    Sun, Jiao; Wang, Fan; Sui, Yue; She, Zhennan; Zhai, Wenjun; Wang, Chunling; Deng, Yihui

    2012-01-01

    In this paper work, four naked nanocrystals (size range 80–700 nm) were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold. PMID:23166438

  13. Impact of dissolution on the sedimentary record of the Paleocene-Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Bralower, Timothy J.; Kelly, D. Clay; Gibbs, Samantha; Farley, Kenneth; Eccles, Laurie; Lindemann, T. Logan; Smith, Gregory J.

    2014-09-01

    The input of massive amounts of carbon to the atmosphere and ocean at the Paleocene-Eocene Thermal Maximum (PETM; ˜55.53 Ma) resulted in pervasive carbonate dissolution at the seafloor. At many sites this dissolution also penetrated into the underlying sediment column. The magnitude of dissolution at and below the seafloor, a process known as chemical erosion, and its effect on the stratigraphy of the PETM, are notoriously difficult to constrain. Here, we illuminate the impact of dissolution by analyzing the complete spectrum of sedimentological grain sizes across the PETM at three deep-sea sites characterized by a range of bottom water dissolution intensity. We show that the grain size spectrum provides a measure of the sediment fraction lost during dissolution. We compare these data with dissolution and other proxy records, electron micrograph observations of samples and lithology. The complete data set indicates that the two sites with slower carbonate accumulation, and less active bioturbation, are characterized by significant chemical erosion. At the third site, higher carbonate accumulation rates, more active bioturbation, and possibly winnowing have limited the impacts of dissolution. However, grain size data suggest that bioturbation and winnowing were not sufficiently intense to diminish the fidelity of isotopic and microfossil assemblage records.

  14. Stirring effect on kaolinite dissolution rate

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Ganor, Jiwchar

    2001-10-01

    Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.

  15. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.

    PubMed

    Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F

    2001-03-01

    This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite.

  16. Spousal Dissimilarity, Race, and Marital Dissolution

    ERIC Educational Resources Information Center

    Clarkwest, Andrew

    2007-01-01

    I test the claims that spousal differences in ideational, behavioral, and other traits contribute to elevated rates of marital dissolution among African Americans. Using data from 3 waves of the National Survey of Families and Households (N = 5,424), I find that African American spouses experience high levels of dissimilarity in traits that may…

  17. Premarital Cohabitation and Marital Dissolution: An Examination of Recent Marriages

    ERIC Educational Resources Information Center

    Manning, Wendy D.; Cohen, Jessica A.

    2012-01-01

    An ongoing question remains for family researchers: Why does a positive association between cohabitation and marital dissolution exist when one of the primary reasons to cohabit is to test relationship compatibility? Drawing on recently collected data from the 2006-2008 National Survey of Family Growth, the authors examined whether premarital…

  18. Pb 2+–Calcite Interactions under Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic Growth of Cerussite

    DOE PAGES

    Yuan, Ke; De Andrade, Vincent; Feng, Zhange; ...

    2018-01-04

    The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion-mineral interactions during dissolution under far-from equilibrium conditions remains limited. Here we show that calcite (CaCO 3) exhibits a rich array of dissolution features in the presence of Pb. During the initial stage, calcite exhibits non-classical surface features characterized as micro pyramids developed spontaneously in acidic Pb-bearing solutions. Subsequent pseudomorphic growth of cerussite (PbCO 3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded amore » cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution-precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing micro structures observed in naturally-occurring and synthetic carbonate minerals by dissolution. In addition, heterogeneous micro-environments created in transport limited reactions under pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.« less

  19. Chemoinformetrical evaluation of dissolution property of indomethacin tablets by near-infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Tanabe, Hideaki; Osaki, Kazuo; Otsuka, Kuniko; Ozaki, Yukihiro

    2007-04-01

    The purpose of this study was to use near-infrared spectrometry (NIR) with chemoinformetrics to predict the change of dissolution properties in indomethacin (IMC) tablets during the manufacturing process. A comparative evaluation of the dissolution properties of the tablets was performed by the diffused reflectance (DRNIR) and transmittance (TNIR) NIR spectroscopic methods. Various kinds of IMC tablets (200 mg) were obtained from a powder (20 mg of IMC, 18 mg of microcrystalline cellulose, 160 mg of lactose, and 2 mg of magnesium stearate) under various compression pressures (60-398 MPa). Dissolution tests were performed in phosphate buffer, and the time required for 75% dissolution (T75) and mean dissolution time (MDT) were calculated. DRNIR and TNIR spectra were recorded, and the both NIR spectra used to establish a calibration model for predicting the dissolution properties by principal component regression analysis (PCR). The T75 and MDT increased as the compression pressure increased, since tablet porosity decreased with increasing pressure. Intensity of the DRNIR spectra of the compressed tablets decreased as the compression pressure increased. However, the intensity of TNIR spectra increased along with the pressure. The calibration models used to evaluate the dissolution properties of tablets were established by using PCR based on both DRNIR and TNIR spectra of the tablets. The multiple correlation coefficients of the relationship between the actual and predictive T75 by the DRNIR and TNIR methods were 0.831 and 0.962, respectively. It is possible to predict the dissolution properties of pharmaceutical preparations using both DRNIR and TNIR chemoinformetric methods. The TNIR method was more accurate for predictions of the dissolution behavior of tablets than the DRNIR method. (c) 2007 Wiley-Liss, Inc.

  20. Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

    NASA Astrophysics Data System (ADS)

    Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.

    2017-12-01

    UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.

  1. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions.

    PubMed

    Sakai, Toshiro; Hirai, Daiki; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-05

    The effects of tablet preparation and subsequent film coating with amorphous solid dispersion (ASD) particles that were composed of a drug with poor water solubility and hydrophilic polymers were investigated. ASD particles were prepared with a drug and vinylpyrrolidone-vinyl acetate copolymer (PVPVA) or polyvinylpyrrolidone (PVP) at a weight ratio of 1:1 or 1:2 using a melt extrusion technique. Tablets were prepared by conventional direct compression followed by pan coating. A mathematical model based on the Noyes-Whitney equation assuming that stable crystals precipitated at the changeable surface area of the solid-liquid interface used to estimate drug dissolution kinetics in a non-sink dissolution condition. All the ASD particles showed a maximum dissolution concentration approximately ten times higher than that of the crystalline drug. The ASD particles with PVPVA showed higher precipitation rate with lower polymer ratio, while PVP did not precipitate within 960 min regardless of the polymer ratio, suggesting the ASD particles of 1:1 drug:PVPVA (ASD-1) were the most unstable among the ASD particles considered. The dissolution of a core tablet with ASD-1 showed less supersaturation and a much higher precipitation rate than those of ASD-1 particles. However, a film-coated tablet or core tablet with a trace amount of hydroxypropylmethylcellulose (HPMC) showed a similar dissolution profile to that of the ASD-1 particles, indicating HPMC had a remarkable precipitation inhibition effect. Overall, these results suggest that tablet preparation with ASD may adversely affect the maintenance of supersaturation; however, this effect can be mitigated by adding an appropriate precipitation inhibitor to the formulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Solubility Enhancement of Raloxifene Using Inclusion Complexes and Cogrinding Method

    PubMed Central

    Patil, Payal H.; Belgamwar, Veena S.; Patil, Pratibha R.; Surana, Sanjay J.

    2013-01-01

    The objective of the present work was to enhance the solubility and dissolution of practically water-insoluble drug raloxifene HCl (RLX), for the same two approaches that were used. In the first approach, drug was kneaded with hydroxypropyl-β-cyclodextrin (HPβCD), and in the second one drug was cogrinded with modified guar gum (MGG). The drug-cyclodextrin complex and drug-MGG cogrind mixtures were characterized by differential scanning calorimetry, X-ray diffraction studies, scanning electron microscopy, and Fourier transform infrared spectroscopy. The solubility and dissolution study reveals that solubility and dissolution rate of RLX remarkably increased in both methods. It was concluded that the prepared inclusion complex showed a remarkable increase in solubility and dissolution of poorly water-soluble drug raloxifene. In the cogrinding mixture, a natural modified gum is used as a surfactant and enhances the solubility and dissolution of RLX without requiring addition of organic solvent or high temperature for its preparation; thus, process is less cumbersome and cost effective. But when both methods were compared; HPβCD complexation method showed significant enhancement of drug solubility. PMID:26555984

  3. Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement

    PubMed Central

    Barvaliya, Manish; Zhang, Lu; Anovadiya, Ashish; Brahmbhatt, Harshad; Paul, Parimal; Tripathi, Chandrabhanu

    2018-01-01

    The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. PMID:29438297

  4. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    PubMed

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    PubMed

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  6. Predicting dense nonaqueous phase liquid dissolution using a simplified source depletion model parameterized with partitioning tracers

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-07-01

    Simulations of nonpartitioning and partitioning tracer tests were used to parameterize the equilibrium stream tube model (ESM) that predicts the dissolution dynamics of dense nonaqueous phase liquids (DNAPLs) as a function of the Lagrangian properties of DNAPL source zones. Lagrangian, or stream-tube-based, approaches characterize source zones with as few as two trajectory-integrated parameters, in contrast to the potentially thousands of parameters required to describe the point-by-point variability in permeability and DNAPL in traditional Eulerian modeling approaches. The spill and subsequent dissolution of DNAPLs were simulated in two-dimensional domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1, and 3) using the multiphase flow and transport simulator UTCHEM. Nonpartitioning and partitioning tracers were used to characterize the Lagrangian properties (travel time and trajectory-integrated DNAPL content statistics) of DNAPL source zones, which were in turn shown to be sufficient for accurate prediction of source dissolution behavior using the ESM throughout the relatively broad range of hydraulic conductivity variances tested here. The results were found to be relatively insensitive to travel time variability, suggesting that dissolution could be accurately predicted even if the travel time variance was only coarsely estimated. Estimation of the ESM parameters was also demonstrated using an approximate technique based on Eulerian data in the absence of tracer data; however, determining the minimum amount of such data required remains for future work. Finally, the stream tube model was shown to be a more unique predictor of dissolution behavior than approaches based on the ganglia-to-pool model for source zone characterization.

  7. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  8. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration.

    PubMed

    Xin, Baoping; Jiang, Wenfeng; Aslam, Hina; Zhang, Kai; Liu, Changhao; Wang, Renqing; Wang, Yutao

    2012-02-01

    In this work, bioleaching was used to extract valuable Zn and Mn from spent Zn-Mn batteries. The results showed that 96% of Zn extraction was achieved within 24h regardless of energy source types and bioleaching bacteria species. However, initial pH had a remarkable influence on Zn release, extraction dose sharply decreased from 2200 to 500mg/l when the initial pH value increased from 1.5 to 3.0 or higher. In contrast to Zn, all the tested factors evidently affected Mn extraction; the maximum released dose of 3020mg/l was obtained under the optimum conditions. The acidic dissolution by biogenic H(2)SO(4) by the non-contact mechanism was responsible for Zn extraction, while Mn extraction was owed to both contact/biological and non-contact mechanisms. The combined action of acidic dissolution of soluble Mn(2+) by biogenic H(2)SO(4) and reductive dissolution of insoluble Mn(4+) by Fe(2+) resulted in 60% of Mn extraction, while contact of microbial cells with the spent battery material and incubation for more than 7days was required to achieve the maximum extraction of Mn. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. On-line monitoring of in-vitro oral bioaccessibility tests as front-end to liquid chromatography for determination of chlorogenic acid isomers in dietary supplements.

    PubMed

    Kremr, Daniel; Cocovi-Solberg, David J; Bajerová, Petra; Ventura, Karel; Miró, Manuel

    2017-05-01

    A novel fully automated in-vitro oral dissolution test assay as a front-end to liquid chromatography has been developed and validated for on-line chemical profiling and monitoring of temporal release profiles of three caffeoylquinic acid (CQA) isomers, namely, 3-CQA,4-CQA and 5-CQA, known as chlorogenic acids, in dietary supplements. Tangential-flow filtration is harnessed as a sample processing approach for on-line handling of CQA containing extracts of hard gelatin capsules and introduction of protein-free samples into the liquid chromatograph. Oral bioaccessibility/dissolution test assays were performed at 37.0±0.5°C as per US Pharmacopeia recommendations using pepsin with activity of ca. 749,000 USP units/L in 0.1mol/L HCl as the extraction medium and a paddle apparatus stirred at 50rpm. CQA release rates and steady-state dissolution conditions were determined accurately by fitting the chromatographic datasets, namely, the average cumulative concentrations of bioaccessible pools of every individual isomer monitored during 200min, with temporal resolutions of ≥10min, to a first-order dissolution kinetic model. Distinct solid-to-liquid phase ratios in the mimicry of physiological extraction conditions were assessed. Relative standard deviations for intra-day repeatability and inter-day intermediate precision of 5-CQA within the 5-40µg/mL concentration range were <3.4% and <5.5%, respectively. Trueness of the automatic flow method for determination of 5-CQA released from dietary supplements in gastric fluid surrogate was demonstrated by spike recoveries, spanning from 91.5-104.0%, upon completion of the dissolution process. The proposed hyphenated setup was resorted for evaluating potential differences in dissolution profiles and content of the three most abundant chlorogenic acid isomers in dietary supplements from varied manufacturers. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions.

    PubMed

    Van Nijlen, T; Brennan, K; Van den Mooter, G; Blaton, N; Kinget, R; Augustijns, P

    2003-03-26

    The purpose of this study was to enhance the dissolution rate of artemisinin in order to improve the intestinal absorption characteristics. The effect of: (1) micronisation and (2) formation of solid dispersions with PVPK25 was assessed in an in vitro dissolution system [dissolution medium: water (90%), ethanol (10%) and sodium lauryl sulphate (0.1%)]. Coulter counter analysis was used to measure particle size. X-ray diffraction and DSC were used to analyse the physical state of the powders. Micronisation by means of a jet mill and supercritical fluid technology resulted in a significant decrease in particle size as compared to untreated artemisinin. All powders appeared to be crystalline. The dissolution rate of the micronised forms improved in comparison to the untreated form, but showed no difference in comparison to mechanically ground artemisinin. Solid dispersions of artemisinin with PVPK25 as a carrier were prepared by the solvent method. Both X-ray diffraction and DSC showed that the amorphous state was reached when the amount of PVPK25 was increased to 67%. The dissolution rate of solid dispersions with at least 67% of PVPK25 was significantly improved in comparison to untreated and mechanically ground artemisinin. Modulation of the dissolution rate of artemisinin was obtained by both particle size reduction and formation of solid dispersions. The effect of particle size reduction on the dissolution rate was limited. Solid dispersions could be prepared by using a relatively small amount of PVPK25. The formation of solid dispersions with PVPK25 as a carrier appears to be a promising method to improve the intestinal absorption characteristics of artemisinin. Copyright 2003 Elsevier Science B.V.

  11. A Cyclic Dissolution Test for Understanding Water Quality of Effluent from Rock Muck under Rain Events

    NASA Astrophysics Data System (ADS)

    Urakoshi, T.; Kawagoe, T.; Ohta, T.

    2017-12-01

    Effluent from rock muck piles consisting of waste rock, as a by-product of construction, sometimes contains heavy metals that affects human health and environment. Rain is the key to estimate water quality of the effluent because infiltrated rain to piles reacts with minerals of rocks. Thus, we newly proposed a dissolution test, namely cyclic injection test, considering rain events, as the following steps: Firstly, we crushed rock sample to particles of size of between 2 and 20 mm, and filled them into the column with 54 mm in diameter and 300 mm in length. Secondly, we saturated void in the column with pure water. One hour after, we opened a valve of the bottom of the column, and collected effluent. Thirdly, we preserved the column for 14 days. After then, we injected 200 ml of pure water from the top of the column within about 15 minutes, and collected efflent. We repeated injection of pure water every 14 days. We conducted the cyclic injection test for altered volcanic rock sample, and observed that the effluent just after the injection showed highest concentration. This result indicated that dissolved chemicals were released from minerals to capillary water after an injection, and advected outside of the column at the next injection.

  12. Haste Makes Waste: The Interplay Between Dissolution and Precipitation of Supersaturating Formulations.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-11-01

    Contrary to the early philosophy of supersaturating formulation design for oral solid dosage forms, current evidence shows that an exceedingly high rate of supersaturation generation could result in a suboptimal in vitro dissolution profile and subsequently could reduce the in vivo oral bioavailability of amorphous solid dispersions. In this commentary, we outline recent research efforts on the specific effects of the rate and extent of supersaturation generation on the overall kinetic solubility profiles of supersaturating formulations. Additional insights into an appropriate definition of sink versus nonsink dissolution conditions and the solubility advantage of amorphous pharmaceuticals are also highlighted. The interplay between dissolution and precipitation kinetics should be carefully considered in designing a suitable supersaturating formulation to best improve the dissolution behavior and oral bioavailability of poorly water-soluble drugs.

  13. Does the stepwave model predict mica dissolution kinetics?

    NASA Astrophysics Data System (ADS)

    Kurganskaya, Inna; Arvidson, Rolf S.; Fischer, Cornelius; Luttge, Andreas

    2012-11-01

    The micas are a unique class of minerals because of their layered structure. A frequent question arising in mica dissolution studies is whether this layered structure radically changes the dissolution mechanism. We address this question here, using data from VSI and AFM experiments involving muscovite to evaluate crystallographic controls on mica dissolution. These data provide insight into the dissolution process, and reveal important links to patterns of dissolution observed in framework minerals. Under our experimental conditions (pH 9.4, 155 °C), the minimal global rate of normal surface retreat observed in VSI data was 1.42 × 10-10 mol/m2/s (σ = 27%) while the local rate observed at deep etch pits reached 416 × 10-10 mol/m2/s (σ = 49%). Complementary AFM data clearly show crystallographic control of mica dissolution, both in terms of step advance and the geometric influence of interlayer rotation (stacking periodicity). These observations indicate that basal/edge surface area ratios are highly variable and change continuously over the course of reaction, thus obviating their utility as characteristic parameters defining mica reactivity. Instead, these observations of overall dissolution rate and the influence of screw dislocations illustrate the link between atomic step movement and overall dissolution rate defined by surface retreat normal to the mica surface. Considered in light of similar observations available elsewhere in the literature, these relationships provide support for application of the stepwave model to mica dissolution kinetics. This approach provides a basic mechanistic link between the dissolution kinetics of phyllosilicates, framework silicates, and related minerals, and suggests a resolution to the general problem of mica reactivity.

  14. Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin.

    PubMed

    Zhang, Yue; Addison, Owen; Yu, Fei; Troconis, Brendy C Rincon; Scully, John R; Davenport, Alison J

    2018-02-16

    There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H 2 O 2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H 2 O 2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H 2 O 2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H 2 O 2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm 2 ) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.

  15. Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals

    USGS Publications Warehouse

    Friedly, J.C.; Kent, D.B.; Davis, J.A.

    2002-01-01

    Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results suggest that the published solubility for ferrihydrite reasonably approximates the Fe solubility of the hydroxypolymer coatings on the sediments. Aluminum may be somewhat more soluble than represented by the equilibrium constant for gibbsite, and its dissolution may be rate controlled when reacting with Ca - EDTA complexes.

  16. Influence of Coformer Stoichiometric Ratio on Pharmaceutical Cocrystal Dissolution: Three Cocrystals of Carbamazepine/4-Aminobenzoic Acid.

    PubMed

    Li, Zi; Matzger, Adam J

    2016-03-07

    Cocrystallization is a technique to optimize solid forms that shows great potential to improve the solubility of active pharmaceutical ingredients (APIs). In some systems, an API can form cocrystals in multiple stoichiometries with the same coformer. However, it remains unclear how coformer stoichiometry influences solubility. This paper investigates the pharmaceutical:coformer pair carbamazepine (CBZ)/p-aminobenzoic acid (PABA); both CBZ/PABA 1:1 and 2:1 cocrystals are known, and a novel 4:1 CBZ/PABA cocrystal is reported here. The 4:1 cocrystal is structurally characterized, and phase stability data suggest that it is a thermodynamically unstable form. Dissolution experiments show that there is no correlation between the cocrystal stoichiometry and dissolution rate in this system. On the other hand, with the relatively weak intermolecular interactions, metastable forms can be beneficial to dissolution rate, which suggests that more effort should be devoted to cocrystal production with kinetic growth methods.

  17. Results of Characterization and Retrieval Testing on Tank 241-C-110 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    2013-09-30

    Nine samples of heel solids from tank 241-C-110 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, the sample solids were primarily white to light-brown with minor dark-colored inclusions. The maximum dimension of the majority of the solids was <2 mm; however, numerous pieces of aggregate, microcrystalline, and crystalline solids with maximum dimensions ranging from 5-70 mm were observed. In general, the larger pieces of aggregate solids were strongly cemented. Natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}°19H{sub 2}O] was the dominant solid phase identified in the heel solids. Results of chemical analyses suggested that 85-87 wt%more » of the heel solids were the fluoridephosphate double salt. The average bulk density measured for the heel solids was 1.689 g/mL; the reference density of natrophosphate is 1.71 g/mL. Dissolution tests on composite samples indicate that 94 to 97 wt% of the tank 241-C-110 heel solids can be retrieved by dissolution in water. Dissolution and recovery of the soluble components in 1 kg (0.59 L) of the heel solids required the addition of ≈9.5 kg (9.5 L) of water at 15 °C and ≈4.4 kg (4.45 L) of water at 45 °C. Calculations performed using the Environmental Simulation Program indicate that dissolution of the ≈0.86 kg of natrophosphate in each kilogram of the tank 241-C-110 heel solids would require ≈9.45 kg of water at 15 °C and ≈4.25 kg of water at 45 °C. The slightly larger quantities of water determined to be required to retrieve the soluble components in 1 kg of the heel solids are consistent with that required for the dissolution of solids composed mainly of natrophosphate with a major portion of the balance consisting of highly soluble sodium salts. At least 98% of the structural water, soluble phosphate, sodium, fluoride, nitrate, carbonate, nitrite, sulfate, oxalate, and chloride in the test composites was dissolved and recovered in the dissolution tests. Most of the {sup 99}Tc and {sup 137}Cs present in the initial heel solids composites was removed in the water dissolution tests. The estimated activities/weights of {sup 129}I, {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U in the dry residual solids were <25% of the weights/activities in the initial composite solids. Gibbsite and nordstrandite [both Al(OH){sub 3}] were the major solid phases identified in the solids remaining after completion of the dissolution tests. Chemical analysis indicated that the residual solids may have contained up to 62 wt% Al(OH){sub 3}. Significant quantities of unidentified phosphate-, iron-, bismuth-, silicon-, and strontium- bearing species were also present in the residual solids. The reference density of gibbsite (and nordstrandite) is 2.42 g/mL. The measured density of the residual solids, 2.65 g/mL, would be a reasonable value for solids containing gibbsite as the major component with minor quantities of other, higher density solids. Sieve analysis indicated that 22.2 wt% of the residual solids were discrete particles >710 μm in size, and 77.8 wt% were particulates <710 μm in size. Light-scattering measurements suggested that nearly all of the <710-μm particulates with diameters >12 μm were weakly bound aggregates of particles with diameters <2 μm. The <710-μm residual solids settled very slowly when dispersed in reagent water. The physical appearance of a suspension containing ≈0.4 vol% of the solids in pure water changed very little over a period of 46.5 hours. It should be noted that the distribution of particle sizes in the residual solids and the observed settling behavior were both strongly influenced by the procedures followed in the dissolution tests.« less

  18. Anti-inflammation effects of Sophora flavescens nanoparticles.

    PubMed

    Han, Chun-Chao; Wang, Yingzi

    2012-08-01

    The roots of Sophora flavescens was reported to possess many pharmacological activities including anti-inflammatory, antiashmatic, antithelmintic, free radical scavenging and antimicrobial activities. However, the low saturated solubility and dissolution velocity of S. flavescens lead to poor bioavailability. The S. flavescens nanoparticles (SFNP) were prepared by a combination of ultrasound and hydrolysis developed by the authors. The drug dissolution profiles of SFNP in both pH 6.8 and pH 2 media showed complete dissolution within 30 min. The seropharmacology study showed that oral S. flavescens absorption in the SFNP was significantly increased. Anti-inflammation assay revealed the therapeutic efficiency of S. flavescens significantly enhanced upon nanoparticle formation.

  19. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules III. Effects of the dissolution condition on the release process.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2006-08-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the entire release properties. As the first step, the dissolution test under various conditions is selected for the in vitro test, and usually the results are analyzed following Drug Approval and Licensing Procedures. In this test, 3 time points for each release ratio, such as 0.2-0.4, 0.4-0.6, and over 0.7, respectively, should be selected in advance. These are analyzed as to whether their values are inside or outside the prescribed aims at each time point. This method is very simple and useful but the details of the release properties can not be clarified or confirmed. The validity of the dissolution test in analysis using a combination of the square-root time law and cube-root law equations to understand all the drug release properties was confirmed by comparing the simulated value with that measured in the previous papers. Dissolution tests under various conditions affecting drug release properties in the human body were then examined, and the results were analyzed by both methods to identify their strengths and weaknesses. Hereafter, the control of pharmaceutical preparation, the manufacturing process, and understanding the drug release properties will be more efficient. It is considered that analysis using the combination of the square-root time law and cube-root law equations is very useful and efficient. The accuracy of predicting drug release properties in the human body was improved and clarified.

  20. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT(®) EPO.

    PubMed

    Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji

    2012-10-01

    The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.

  1. Preliminary studies of the CHIM electrogeochemical method at the Kokomo Mine, Russell Gulch, Colorado

    USGS Publications Warehouse

    Smith, D.B.; Hoover, D.B.; Sanzolone, R.F.

    1993-01-01

    The CHIM electrogeochemical exploration technique was developed in the former Soviet Union about 20 years ago and is claimed to be effective in exploration for concealed mineral deposits that are not detectable by other geochemical or geophysical techniques. The method involves providing a high-voltage direct current to an anode and an array of special collector cathodes. Cations mobile in the electric field are collected at the cathodes and their concentrations determined. The U.S. Geological Survey started a study of the CHIM method by conducting tests over a precious- and base-metal-bearing quartz vein covered with 3 m of colluvial soil and weathered bedrock near the Kokomo Mine, Colorado. The tests show that the CHIM method gives better definition of the vein than conventional soil geochemistry based on a total-dissolution technique. The CHIM technique gives reproducible geochemical anomaly patterns, but the absolute concentrations depend on local site variability as well as temporal variations. Weak partial dissolutions of soils at the Kokomo Mine by an enzyme leach, a dilute acetic acid leach, and a dilute hydrochloric acid leach show results comparable to those from the CHIM method. This supports the idea that the CHIM technique is essentially a weak in-situ partial extraction involving only ions able to move in a weak electric field. ?? 1993.

  2. Comparative release studies on suppositories using the basket, paddle, dialysis tubing and flow-through cell methods I. Acetaminophen in a lipophilic base suppository.

    PubMed

    Hori, Seiichi; Kawada, Tsubasa; Kogure, Sanae; Yabu, Shinako; Mori, Kenji; Akimoto, Masayuki

    2017-02-01

    The release characteristics of lipophilic suppositories containing acetaminophen (AAP) were examined using four types of dissolution methods: the basket, paddle, dialysis tubing (DT) and flow-through cell (FTC) methods. The suitability of each apparatus for quality control in AAP compounded suppositories was evaluated using statistical procedures. More than 80% of the drug was released over 60 min in all the release methods studied, with the exception of the basket method. Reproducible and faster release was achieved using the paddle method at 100 and 200 rpm, whereas poor release occurred with the basket method. The mean dissolution time (MDT), maximum dissolved quantity of AAP at the end of the sampling time (Q) and dissolution efficiency (DE) were calculated by model-independent methods. The FTC method with a single chamber used in this study was also appreciable for AAP suppositories (Q of 100%, MDT of 71-91 min and DE of 75-80%). The DT apparatus is considered similar to the FTC apparatus from a quality control perspective for judging the release properties of lipophilic base suppositories containing AAP. However, even the single chamber FTC used in this study has potential as an in vitro drug release test for suppositories. The comparative dissolution method is expected to become one of the valuable tools for selecting an adequate dissolution test.

  3. Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity.

    PubMed

    Guncheva, Maya; Stippler, Erika

    2017-05-01

    Proteolytic enzymes are often used in dissolution testing of cross-linked gelatin capsules that do not conform to the dissolution specification. Their catalytic activity, however, can be affected when they are added to a dissolution media containing solubility enhancers, such as surfactants. The aim of this study was to assess the activity of pancreatic proteases in presence of four commonly used surfactants. We found that pancreatin exhibits remarkable proteolytic activity in the presence of Tween 80, even at the concentrations as high as 250 times its critical micelle concentration (cmc) in water, whereas, Triton X-100 enhanced the proteolytic activity of pancreatin when added at concentrations above its cmc in water. Both surfactants are non-ionic surfactants. On the other hand, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which are ionic surfactants, have a detrimental effect on the proteolytic activity of pancreatin. For example, a 50% reduction of the pancreatin activity was found in samples which contain a minor amount of SDS (0.05% w/v) in comparison to a surfactant-free reaction. Additionally, no activity was observed for the pancreatin-SDS samples which were incubated for 30 min at 40°C prior to testing. CTAB had an impact on pancreatin activity at concentrations higher than its cmc. Data from this manuscript can be used as a benchmark for optimization of the dissolution procedures that require use of both surfactants and enzymes.

  4. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.

    2016-06-01

    In modeling of geological carbon storage, dissolution of supercritical CO2 (scCO2) is often assumed to be instantaneous with equilibrium phase partitioning. In contrast, recent core-scale imbibition experiments have shown a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In this study, eight pore-scale scCO2 dissolution experiments in a 2D heterogeneous, sandstone-analogue micromodel were conducted at supercritical conditions (9 MPa and 40 °C). The micromodel was first saturated with deionized (DI) water and drained by injecting scCO2 to establish a stable scCO2 saturation. DI water was then injected at constant flow rates after scCO2 drainage was completed. Highmore » resolution time-lapse images of scCO2 and water distributions were obtained during imbibition and dissolution, aided by a scCO2-soluble fluorescent dye introduced with scCO2 during drainage. These images were used to estimate scCO2 saturations and scCO2 depletion rates. Experimental results show that (1) a time-independent, varying number of water-flow channels are created during imbibition and later dominant dissolution by the random nature of water flow at the micromodel inlet, and (2) a time-dependent number of water-flow channels are created by coupled imbibition and dissolution following completion of dominant imbibition. The number of water-flow paths, constant or transient in nature, greatly affects the overall depletion rate of scCO2 by dissolution. The average mass fraction of dissolved CO2 (dsCO2) in water effluent varies from 0.38% to 2.72% of CO2 solubility, indicating non-equilibrium scCO2 dissolution in the millimeter-scale pore network. In general, the transient depletion rate decreases as trapped, discontinuous scCO2 bubbles and clusters within water-flow paths dissolve, then remains low with dissolution of large bypassed scCO2 clusters at their interfaces with longitudinal water flow, and finally increases with coupled transverse water flow and enhanced dissolution of large scCO2 clusters. The three stages of scCO2 depletion, common to experiments with time-independent water-flow paths, are revealed by zoom-in image analysis of individual scCO2 bubbles and clusters. The measured relative permeability of water, affected by scCO2 dissolution and bi-modal permeability, shows a non-monotonic dependence on saturation. The results for experiments with different injection rates imply that the non-equilibrium nature of scCO2 dissolution becomes less important when water flow is relatively low and the time scale for dissolution is large, and more pronounced when heterogeneity is strong.« less

  5. Dissolution Behaviour of Metal Elements from Several Types of E-waste Using Leaching Test

    NASA Astrophysics Data System (ADS)

    Nor, Nik Hisyamudin Muhd; Amira Nordin, Nurul; Mohamad, Fariza; Jaibee, Shafizan; Ismail, Al Emran; Omar, Badrul; Fauzi Ahmad, Mohd; Rahim, Abd Khalil Abd; Kamaruddin, Muhamad Khalif Ikhwan Mohd; Turan, Faiz Mohd; Abu Bakar, Elmi; Yokoyama, Seiji

    2017-08-01

    Rapid development of the electrical and electronic was increasing annually due to the demand by the human being. Increasing production of electrical and electronic product led to the increasing of electric and electronic waste or can be called as the e-waste. The UN Environment Programme estimates that the world generates 20-50 million tons of the e-waste each year and the amount is raising three times faster than other forms of municipal waste. This study is focusing on the investigation of the dissolution behaviour of metal element from several types of e-waste by hydrometallurgical process. Leaching test was conducted on the e-waste by using acid as the reagent solution. Prior to the leaching test, manual dismantling, separation, and crushing process were carried out to the e-waste. The e-waste were characterized by Scanning Electron Microcopy (SEM) and the Energy Dispersive X-ray Spectroscopy (EDX) to define the elements inside the sample of e-waste. While the liquid residue from leaching test was analyzed by using Inductively Couple Plasma-Mass Spectrometer (ICP-MS) to define the dissolution behaviour of the metal element that contain in the e-waste. It was found that the longest time for dismantling process was the dismantling of laptop. The dissolution behaviour of Fe, Al, Zn and Pb elements in the e-waste has affected to the increase of pH. The increasing pH led to the reduction of the metals element during leaching process.

  6. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells.

    PubMed

    Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2012-08-15

    Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Divorce and Adult Psychological Well-Being: Clarifying the Role of Gender and Child Age

    ERIC Educational Resources Information Center

    Williams, Kristi; Dunne-Bryant, Alexandra

    2006-01-01

    Substantial evidence indicates that marital dissolution has negative consequences for adult well-being. Because most research focuses on the average consequences of divorce, we know very little about factors that moderate this association. The present study tests the hypothesis that the effects of marital dissolution on adult well-being are…

  8. Variations in Divorce Rates by Community Size: A Test of the Social Integration Explanation.

    ERIC Educational Resources Information Center

    Shelton, Beth Anne

    1987-01-01

    Found a strong correlation between residential mobility rate and a measure of marital dissolution. Concluded that community size and marital dissolution correlated positively because of higher levels of residential mobility in large cities and urban areas than in small cities and rural areas. Found high residential mobility both an indicator and a…

  9. Using a Word Association Test for the Assessment of High School Students' Cognitive Structures on Dissolution

    ERIC Educational Resources Information Center

    Derman, Aysegul; Eilks, Ingo

    2016-01-01

    Understanding students' cognitive structures in a specific knowledge domain helps to determine the ''what, how and why'' features of such knowledge, so that we can take these structures into consideration in teaching. The purpose of the present study was to identify students' cognitive structures about solution and dissolution concepts. The study…

  10. Students' Understanding of Salt Dissolution: Visualizing Animation in the Chemistry Classroom

    NASA Astrophysics Data System (ADS)

    Malkoc, Ummuhan

    The present study explored the effect of animation implementation in learning a chemistry topic. 135 high school students taking chemistry class were selected for this study (quasi-experimental groups = 67 and control groups = 68). Independent samples t-tests were run to compare animation and control groups between and within the schools. The over-arching finding of this research indicated that when science teachers used animations while teaching salt dissolution phenomena, students will benefit the application of animations. In addition, the findings informed the TPACK framework on the idea that visual tools are important in students' understanding of salt dissolution concepts.

  11. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    PubMed

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  12. Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.

  13. Hydrogen interactions in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  14. Calcite Dissolution Kinetics

    NASA Astrophysics Data System (ADS)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations <=0.04 g/L) to enhance the dissolution rate at low degrees of undersaturation by >500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral composition and surface area, solution carbonate chemistry, temperature and pressure are factors the impact carbonate dissolution rates in natural settings. We suggest that these parameters be considered in CO2 mitigation strategies.

  15. Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives

    NASA Astrophysics Data System (ADS)

    Nokhodchi, A.; Bolourtchian, N.; Dinarvand, R.

    2005-02-01

    Carbamazepine (CBZ) crystals were grown from pure ethanol solutions containing various additives (PEG 4000, PVP K30 or Tween 80). Physical characteristics of the crystals were studied for the morphology of crystals using scanning electron microscope, for the identification of polymorphism by X-ray powder diffraction (XRPD) and FT-IR, and for thermodynamic properties using differential scanning calorimetery (DSC). The dissolution behaviour of various carbamazepine crystals was also studied by dissolution apparatus II at pH 7.4 containing 1% sodium lauryl sulphate (SLS). The scanning electron micrograph (SEM) studies showed that the presence of the additives in the solutions growth medium affected the morphology and size of carbamazepine crystals. SEMs of untreated and treated carbamazepine crystals obtained from alcohol containing PEG 4000, PVP K30 or Tween 80 showed that the crystal shape of untreated carbamazepine is flaky or thin plate-like, whereas the crystals obtained from alcohol containing no additive, PEG 4000, PVP K30 or Tween 80 are polyhedral prismatic, block-shaped, polyhedral or hexagonal, respectively. XRPD, FT-IR and DSC results showed that the untreated CBZ was form III and recrystallization of CBZ in the absence or presence of the additives did not cause any polymorphic changes. The results showed that the higher dissolution rate and compact strength were observed for the crystals obtained in the presence of PVP K30. The presence of the additives in crystallization medium alters crystal morphology of carbamazepine, but only the samples crystallized in the presence of PVP K30 showed an improvement in dissolution rate and tensile strength.

  16. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates ( Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted "near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.

  17. In vitro dissolution kinetic study of theophylline from hydrophilic and hydrophobic matrices.

    PubMed

    Maswadeh, Hamzah M; Semreen, Mohammad H; Abdulhalim, Abdulatif A

    2006-01-01

    Oral dosage forms containing 300 mg theophylline in matrix type tablets, were prepared by direct compression method using two kinds of matrices, glycerylbehenate (hydrophobic), and (hydroxypropyl)methyl cellulose (hydrophilic). The in vitro release kinetics of these formulations were studied at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process were studied by analyzing the dissolution data using four kinetic equations, the zero-order equation, the first-order equation, the Higuchi square root equation and the Hixson-Crowell cube root law. The analysis of the dissolution kinetic data for the theophylline preparations in this study shows that it follows the first order kinetics and the release process involves erosion / diffusion and an alteration in the surface area and diameter of the matrix system, as well as in the diffusion path length from the matrix drug load during the dissolution process. This relation is best described by the use of both the first-order equation and the Hixson-Crowell cube root law.

  18. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  19. Estimating rock and slag wool fiber dissolution rate from composition.

    PubMed

    Eastes, W; Potter, R M; Hadley, J G

    2000-12-01

    A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.

  20. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.

    PubMed

    Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G

    2010-08-22

    As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.

  1. Improved stability and oral bioavailability of Ganneng dropping pills following transforming lignans of herpetospermum caudigerum into nanosuspensions.

    PubMed

    Li, Juan-Juan; Cheng, Ling; Shen, Gang; Qiu, Ling; Shen, Cheng-Ying; Zheng, Juan; Xu, Rong; Yuan, Hai-Long

    2018-01-01

    The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC 0-t , C max and decrease in T max when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol.

    PubMed

    Miao, Xiaoqing; Sun, Changshan; Jiang, Tongying; Zheng, Li; Wang, Tianyi; Wang, Siling

    2011-01-01

    The aim of this study was to develop cilostazol (CLT) nanocrystals intended to improve its dissolution rate and enhance its bioavailability. In this study, CLT nanosuspension was prepared by the anti-solvent and high-pressure homogenization method. The effects of the production parameters, such as the stabilizer concentration, pressure and number of cycles, were investigated. Characterization of the product was performed by scanning electron microscopy (SEM), Nitrogen adsorption, differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), X-ray Photoelectron Spectroscopy (XPS), particle size analysis and dissolution testing. Additionally, the comparison studies of oral bioavailability in beagle dogs of three type tables were performed. The images of SEM showed a spherical smooth CLT powder, and Nitrogen adsorption test revealed spray dried powder were porous with high BET surface area compared with that of raw CLT. DSC and XRPD results demonstrated that the combination of preferred polymorph B and C of CLT were prepared successfully, the saturation solubility of the nanosized crystalline powder is about 5 fold greater than that of raw CLT, and the dissolution rate was enhanced 4 fold than that of raw CLT. The Cmax and AUC0-48h of CLT nanosized crystalline tablets were 2.1 fold and 1.9 fold, and 3.0 fold and 2.3 fold compared with those of the nanosized tablets and commercial tablets, respectively. The anti-solvent-high-pressure homogenization technique was employed successfully to produce cilostazol nanosuspensions. The bioavailability of CLT tablets prepared using spray dried nanosized crystalline powder after oral administration to dogs was markedly increased compared with that produced by nanosized tablets and commercial tablets, because of its greater dissolution rate owing to its transition of the crystalline state to form C and form B, reduced particle size and porous structure with increased surface area.

  3. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  4. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  5. In vitro acellular dissolution of mineral fibres: A comparative study.

    PubMed

    Gualtieri, Alessandro F; Pollastri, Simone; Bursi Gandolfi, Nicola; Gualtieri, Magdalena Lassinantti

    2018-05-04

    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months.

  6. Enhancement of Loperamide Dissolution Rate by Liquisolid Compact Technique.

    PubMed

    Venkateswarlu, Kambham; Preethi, Jami Komala; Chandrasekhar, Kothapalli Bonnoth

    2016-09-01

    Purpose: The aim of present study was to improve the dissolution rate of poorly soluble drug Loperamide (LPM) by liquisolid compact technique. Methods: Liquisolid compacts of LPM were prepared using Propylene glycol (PG) as a solvent, Avicel pH 102 as carrier, Aerosil as coating material and Sodium Starch Glycolate (SSG) as superdisintegrant. Interactions between the drug and excipients were examined by Fourier Transform Infrared (FTIR) spectroscopy. The dissolution studies for LPM liquisolid formulation, marketed product and pure drug were carried out in pH 1.2 HCl buffer as dissolution media. Results: Results confirmed the absence of chemical interactions between the drug and excipients. From the solubility studies, it was observed the LPM was highly soluble in PG thereby it was selected as a solvent. The dissolution efficiency of LPM at 15 min was increased from 9.99 % for pure drug and 54.57% for marketed product to 86.81% for the tablets prepared by liquisolid compact technique. Stability studies showed no significant change in percent cumulative drug release, hardness, disintegration time, friability and drug content for 3 months. Conclusion: Formulation F2 showed significant increase in dissolution rate compared to the marketed product at pH 1.2 where LPM is largely absorbed. Around 90% of the drug was released from F2 in 30 min compared to the marketed product and it might be due to the increased wetting and surface area of the particles. Hence, the liquisolid compact technique appears to be a promising approach for improving the dissolution rate of poorly soluble drug.

  7. In Vitro and In Vivo Evaluation of Casein as a Drug Carrier for Enzymatically Triggered Dissolution Enhancement from Solid Dispersions.

    PubMed

    Bani-Jaber, Ahmad; Alshawabkeh, Iyad; Abdullah, Samaa; Hamdan, Imad; Ardakani, Adel; Habash, Maha

    2017-07-01

    Due to its unique properties, such as biodegradability, biocompatibility, high amphiphilic property, and micelle formation, casein (CS) has been increasingly studied for drug delivery. We used CS as a drug carrier in solid dispersions (SDs) and evaluated the effect of its degradation by trypsin on drug dissolution from the dispersions. SDs of CS and mefenamic acid (MA) were prepared by physical mixing, kneading, and coprecipitation methods. In comparison to pure MA, the dispersions were evaluated for drug-protein interaction, loss of drug crystalinity, and drug morphology by differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Drug dissolution from the dispersions was evaluated in simulated intestinal fluid as enzyme free and trypsin-enriched media. Furthermore, in vivo drug absorption of MA from CS-MA coprecipitate was evaluated in rats, in comparison with a reference SD of polyethylene glycol and MA (PEG-MA SD). Relative to other CS preparations, CS-MA coprecipitate showed the highest loss of drug crystallinity, drug micronization, and CS-MA interaction. CS remarkably enhanced the dissolution rate and extent of MA from the physical and kneaded mixtures. However, the highest dissolution enhancement was obtained when MA was coprecipitated with CS. Trypsin that can hydrolyze CS during dissolution resulted in further enhancement of MA dissolution from the physical and kneaded mixtures. However, a corresponding retardation effect was obtained for the coprecipitate. In correlation with in vitro drug release, CS-MA coprecipitate also showed significantly higher MA bioavailability in rats than PEG-MA SD.

  8. Enhanced dissolution and bioavailability of Nateglinide by microenvironmental pH-regulated ternary solid dispersion: in-vitro and in-vivo evaluation.

    PubMed

    Wairkar, Sarika; Gaud, Ram; Jadhav, Namdeo

    2017-09-01

    Nateglinide, an Antidiabetic drug (BCS II), shows pH-dependent solubility and variable bioavailability. The purpose of study was to increase dissolution and bioavailability of Nateglinide by development of its microenvironmental pH-regulated ternary solid dispersion (MeSD). MeSD formulation of Nateglinide, poloxamer-188 and Na 2 CO 3 was prepared by melt dispersion in 1 : 2 : 0.2 w/w ratio and further characterised for solubility, In-vitro dissolution, microenvironmental pH, crystallinity/amorphism, physicochemical interactions, bioavailability in Wistar rats. Solubility of Nateglinide was increased notably in MeSD, and its in-vitro dissolution study showed fourfold increase in the dissolution, particularly in 1.2 pH buffer. Prominent reduction in the peak intensity of X-ray powder diffraction (XRPD) and absence of endotherm in DSC thermogram confirmed the amorphism of Nateglinide in MeSD. Attenuated total reflectance Fourier transform infrared spectra revealed the hydrogen bond interactions between Nateglinide and poloxamer-188. In-vivo study indicated that MeSD exhibited fourfold increase in area under curve over Nateglinide. Tmax of MeSD was observed at 0.25 h, which is beneficial for efficient management of postprandial sugar. Instead of mere transformation of the Nateglinide to its amorphous form as evidenced by DSC and XRPD, formation of a soluble carboxylate compound of Nateglinide in MeSD was predominantly responsible for dissolution and bioavailability enhancement. The study demonstrates the utility of MeSD in achieving pH-independent dissolution, reduced T max and enhanced bioavailability of Nateglinide. © 2017 Royal Pharmaceutical Society.

  9. Effect of iron on inhibition of acid demineralisation of bovine dental enamel in vitro.

    PubMed

    Buzalaf, Marília Afonso Rabelo; de Moraes Italiani, Flávia; Kato, Melissa Thiemi; Martinhon, Cleide Cristina Rodrigues; Magalhães, Ana Carolina

    2006-10-01

    Iron ions (Fe(2+)) have been shown to be cariostatic in many studies particularly by their ability to reduce bacterial metabolism. Nevertheless, the role of iron ions on dissolution of enamel is unexplored. The aim of the present study was therefore to investigate the protective effect of increasing concentrations (0-120mmol/L) of Fe(2+) on the dissolution of enamel. Enamel powder was subjected to acetic acid made with increasing concentrations with respect to FeSO(4)x7H(2)O. In order to determine the amount of enamel dissolved, the phosphate released in the medium was analysed spectrophotometrically using the Fiske-Subarrow method. Data were tested using Kruskall-Wall and Dunn's tests (p<0.05). The degree of protection was found to approach maximum at about 15mmol/L Fe(2+). Higher concentrations of Fe(2+) did not have an extra effect on inhibition of dissolution of enamel powder. In the next step, the protective effect of 15mmol/L Fe(2+) against mineral dissolution of the bovine enamel was evaluated using a simple abiotic model system. Enamel blocks were exposed to a sequence of seven plastic vials, each containing 1mL of 10mmol/L acetic acid. The acid in vial 4 was made 15mmol/L with respect to FeSO(4)x7H(2)O. The mineral dissolved during each challenge was thus determined by phosphate released as described above. Data were tested using two-way ANOVA (p<0.05). Lower demineralisation (around 45%) was found in vial 4 (with Fe) that continued stable until vial 7. Thus, our data suggest that Fe(2+) can be effective on inhibition of dissolution of enamel and that this effect may be durable.

  10. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    NASA Astrophysics Data System (ADS)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  12. Potential for leaching of arsenic from excavated rock after different drying treatments.

    PubMed

    Li, Jining; Kosugi, Tomoya; Riya, Shohei; Hashimoto, Yohey; Hou, Hong; Terada, Akihiko; Hosomi, Masaaki

    2016-07-01

    Leaching of arsenic (As) from excavated rock subjected to different drying methods is compared using sequential leaching tests and rapid small-scale column tests combined with a sequential extraction procedure. Although the total As content in the rock was low (8.81 mg kg(-1)), its resulting concentration in the leachate when leached at a liquid-to-solid ratio of 10 L kg(-1) exceeded the environmental standard (10 μg L(-1)). As existed mainly in dissolved forms in the leachates. All of the drying procedures applied in this study increased the leaching of As, with freeze-drying leading to the largest increase. Water extraction of As using the two tests showed different leaching behaviors as a function of the liquid-to-solid ratio, and achieved average extractions of up to 35.7% and 25.8% total As, respectively. Dissolution of As from the mineral surfaces and subsequent re-adsorption controlled the short-term release of As; dissolution of Fe, Al, and dissolved organic carbon played important roles in long-term As leaching. Results of the sequential extraction procedure showed that use of 0.05 M (NH4)2SO4 underestimates the readily soluble As. Long-term water extraction removed almost all of the non-specifically sorbed As and most of the specifically sorbed As. The concept of pollution potential indices, which are easily determined by the sequential leaching test, is proposed in this study and is considered for possible use in assessing efficacy of treatment of excavated rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PHARMACEUTICAL QUALITY OF GENERIC ATORVASTATIN PRODUCTS COMPARED WITH THE INNOVATOR PRODUCT: A NEED FOR REVISING PRICING POLICY IN PALESTINE.

    PubMed

    Shawahna, Ramzi; Hroub, Abdel Kareem; Abed, Eliama; Jibali, Sondos; Al-Saghir, Ruba; Zaid, Abdel Naser

    2016-01-01

    Atorvastatin reduces morbidity and mortality due to cardiovascular events. This study was conducted to assess the prices and pharmaceutical quality of innovator atorvastatin 20 mg with its locally available generics in Palestine and to assess the suitability of their interchangeability. The prices of innovator and generic atorvastatin 20 mg were determined and compared. Innovator atorvastatin and four generic products were tested for their pharmaceutical quality. Tablets were tested for their drug contents, weight uniformity, hardness, disintegration and dissolution. Three out of four generics were less expensive than the innovator. Pharmaceutical quality assessments were satisfactory and within limits for all atorvastatin tested products. The average weight ranged from 206.6 ± 8.40 to 330 ± 3.92 mg and the %RSDs were within the permitted limits as per USP. Tablet hardness ranged from 102 ± 1.41 to 197.4 ± 6.88 kg and drug contents ranged from 92.2% to 105.3%. All products disintegrated within permitted time limits and showed very rapid dissolution. Products released more than 85% of their drug contents in less than 15 min. Our results showed that all tested innovator and generic atorvastatin products were of good pharmaceutical quality. Despite the lack of in vivo evaluation, our results indicate that these products are equivalent in vitro. Considering the in vitro release characteristics, these products might be used interchangeably. However, regulatory authorities permit the use of in vitro data in establishing similarity between immediate release oral dosage forms containing biopharmaceutical classification system class I and III drugs only.

  14. A novel dissolution method for evaluation of polysaccharide based colon specific delivery systems: A suitable alternative to animal sacrifice.

    PubMed

    Singh, Sachin Kumar; Yadav, Ankit Kumar; Prudhviraj, G; Gulati, Monica; Kaur, Puneet; Vaidya, Yogyata

    2015-06-20

    The most extensively used test for predicting in-vivo release kinetics of a drug from its orally administered dosage forms is dissolution testing. For polysaccharide based, colon targeted oral delivery systems, the entire path of the gut traversed by the dosage form needs to be simulated for assessing its in-vivo dissolution pattern. This includes the dissolution testing sequentially in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). For SGF and SIF, simple and standardized composition is well-known. However, preparation of SCF requires addition of either the colonic contents of rodents or human faecal slurry. A method is proposed, wherein a mixture of five probiotics cultured in the presence of a prebiotic under anaerobic conditions is able to surrogate the colonic fluid. Release profiles of drug from colon targeted delivery systems in this medium were studied and compared to those generated in the conventionally used media containing rodent caecal contents and human faecal slurry. The results from the three studies were found to be quite similar. These findings suggest that the proposed medium may prove to be useful not only as a biorelevant and discriminatory method but may also help in achieving the 3Rs objective regarding the ethical use of animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Preformulation studies and optimization of sodium alginate based floating drug delivery system for eradication of Helicobacter pylori.

    PubMed

    Diós, Péter; Nagy, Sándor; Pál, Szilárd; Pernecker, Tivadar; Kocsis, Béla; Budán, Ferenc; Horváth, Ildikó; Szigeti, Krisztián; Bölcskei, Kata; Máthé, Domokos; Dévay, Attila

    2015-10-01

    The aim of this study was to design a local, floating, mucoadhesive drug delivery system containing metronidazole for Helicobacter pylori eradication. Face-centered central composite design (with three factors, in three levels) was used for evaluation and optimization of in vitro floating and dissolution studies. Sodium alginate (X1), low substituted hydroxypropyl cellulose (L-HPC B1, X2) and sodium bicarbonate (X3) concentrations were the independent variables in the development of effervescent floating tablets. All tablets showed acceptable physicochemical properties. Statistical analysis revealed that tablets with 5.00% sodium alginate, 38.63% L-HPC B1 and 8.45% sodium bicarbonate content showed promising in vitro floating and dissolution properties for further examinations. Optimized floating tablets expressed remarkable floating force. Their in vitro dissolution studies were compared with two commercially available non-floating metronidazole products and then microbiologically detected dissolution, ex vivo detachment force, rheological mucoadhesion studies and compatibility studies were carried out. Remarkable similarity (f1, f2) between in vitro spectrophotometrically and microbiologically detected dissolutions was found. Studies revealed significant ex vivo mucoadhesion of optimized tablets, which was considerably increased by L-HPC. In vivo X-ray CT studies of optimized tablets showed 8h gastroretention in rats represented by an animation prepared by special CT technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In Vitro Dissolution Tests of Plutonium and Americium Containing Contamination Originating From ZPPR Fuel Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William F. Bauer; Brian K. Schuetz; Gary M. Huestis

    2012-09-01

    Assessing the extent of internal dose is of concern whenever workers are exposed to airborne radionuclides or other contaminants. Internal dose determinations depend upon a reasonable estimate of the expected biological half-life of the contaminants in the respiratory tract. One issue with refractory elements is determining the dissolution rate of the element. Actinides such as plutonium (Pu) and Americium (Am) tend to be very refractory and can have biological half-lives of tens of years. In the event of an exposure, the dissolution rates of the radionuclides of interest needs to be assessed in order to assign the proper internal dosemore » estimates. During the November 2011 incident at the Idaho National Laboratory (INL) involving a ZPPR fuel plate, air filters in a constant air monitor (CAM) and a giraffe filter apparatus captured airborne particulate matter. These filters were used in dissolution rate experiments to determine the apparent dissolution half-life of Pu and Am in simulated biological fluids. This report describes these experiments and the results. The dissolution rates were found to follow a three term exponential decay equation. Differences were noted depending upon the nature of the biological fluid simulant. Overall, greater than 95% of the Pu and 93% of the Am were in a very slow dissolving component with dissolution half-lives of over 10 years.« less

  17. Pinaverium Bromide: Development and Validation of Spectrophotometric Methods for Assay and Dissolution Studies.

    PubMed

    Martins, Danielly da Fonte Carvalho; Florindo, Lorena Coimbra; Machado, Anna Karolina Mouzer da Silva; Todeschini, Vítor; Sangoi, Maximiliano da Silva

    2017-11-01

    This study presents the development and validation of UV spectrophotometric methods for the determination of pinaverium bromide (PB) in tablet assay and dissolution studies. The methods were satisfactorily validated according to International Conference on Harmonization guidelines. The response was linear (r2 > 0.99) in the concentration ranges of 2-14 μg/mL at 213 nm and 10-70 μg/mL at 243 nm. The LOD and LOQ were 0.39 and 1.31 μg/mL, respectively, at 213 nm. For the 243 nm method, the LOD and LOQ were 2.93 and 9.77 μg/mL, respectively. Precision was evaluated by RSD, and the obtained results were lower than 2%. Adequate accuracy was also obtained. The methods proved to be robust using a full factorial design evaluation. For PB dissolution studies, the best conditions were achieved using a United States Pharmacopeia Dissolution Apparatus 2 (paddle) at 50 rpm and with 900 mL 0.1 M hydrochloric acid as the dissolution medium, presenting satisfactory results during the validation tests. In addition, the kinetic parameters of drug release were investigated using model-dependent methods, and the dissolution profiles were best described by the first-order model. Therefore, the proposed methods were successfully applied for the assay and dissolution analysis of PB in commercial tablets.

  18. Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.

    PubMed

    Bastidas, D M; Cano, E; Mora, E M

    2005-06-01

    The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.

  19. Dissolution enhancement of chlorzoxazone using cogrinding technique

    PubMed Central

    Raval, Mihir K.; Patel, Jaydeep M.; Parikh, Rajesh K.; Sheth, Navin R.

    2015-01-01

    Purpose: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. Materials and Methods: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. Results: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). Conclusions: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability. PMID:26682195

  20. Dissolution Rate Enhancement of Repaglinide Using Dietary Fiber as a Promising Carrier.

    PubMed

    Chatap, Vivekanand K; Patil, Savita D

    2016-01-01

    In present investigation, an innovative attempt has been made to enhance the solubility and dissolution rate of Repaglinide (RPGD) using hydrothermally treated water insoluble dietary bamboo fibers (HVBF) as potential nutraceutical used in the treatment of diabetes mellitus. RPGD was selected as a model drug due to its low aqueous solubility and dissolution rate. Characterization of HVBF demonstrated the outstanding features like high surface area, maximum drug loading and increase dissolution rate and making HVBF as an excellent drug carrier. RHVBF (Repaglinide loaded HVBF) tablets were prepared using direct compression method. Pre and post-compression parameters for blend and tablets were studied and found within acceptable limits. RHVBF and tablet showed significantly improved dissolution rate, when compared with pure crystalline RPGD, physical mixture, RVBF and commercial marketed tablet. This fact was further supported by FT-IR, DSC, XRPD and FESEM studies followed by in-vitro drug release profile. Stability studies showed no changes after exposing to accelerated conditions for a period of 3 months with respect to physical characteristics and in-vitro drug release studies. In a nut shell, it can be concluded that HVBF is a novel, smart and promising carrier for poorly water soluble drugs, when administered orally.

  1. Determining the dissolution rates of actinide glasses: A time and temperature Product Consistency Test study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W.E.; Best, D.R.

    1995-12-01

    Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recoverymore » of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.« less

  2. Dissolution and coarsening of polydisperse, polymorph drug particles liberated from a disintegrating finished dosage form: Theoretical considerations.

    PubMed

    Horkovics-Kovats, Stefan

    2016-08-25

    In order to improve the bioavailability of substances with limited water-solubility, they are often formulated as nanoparticles. Nanoparticles show enhanced dissolution properties when compared to large particles. In this paper a dissolution theory is presented that comprehensively describes the dissolution properties of both large- and nanoparticles. It comprises non-sink conditions and arbitrary shaped isometrically dissolving particles, considering particle-size-independent dissolution layer thickness and several polymorphic drug forms. The known root-laws of dissolution kinetics happen to be special cases that depend on particle-size in relation to the diffusion layer thickness i.e. whether the particles are much larger, comparable, or much smaller than the diffusion layer thickness. The presented theory explains the improved dissolution properties of nanoparticles, such as their increased solubility, almost immediate dissolution, and the dissolution kinetics which is independent from hydrodynamic conditions. For polydisperse, polymorphic particles of arbitrary shapes that are liberated from a disintegrating finished dosage form, the Ostwald ripening (coarsening of particles and transition of metastable polymorphic forms into a more stable crystalline form) is described as water mediated mass transport. The presented theory points to certain limitations of the Ostwald-Freundlich equation for nanoparticles and provides their better characterization. This way it may contribute to a more specifically targeted development of finished dosage forms and may help to reduce the bias of toxicological and environmental assessments especially for drugs that are formed as nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of dissolution media pH and USP1 basket speed on erosion and disintegration characteristics of immediate release metformin hydrochloride tablets.

    PubMed

    Desai, Divyakant; Wong, Benjamin; Huang, Yande; Tang, Dan; Hemenway, Jeffrey; Paruchuri, Srinivasa; Guo, Hang; Hsieh, Daniel; Timmins, Peter

    2015-01-01

    To investigate the influence of the pH of the dissolution medium on immediate release 850 mg metformin hydrochloride tablets. A traditional wet granulation method was used to manufacture metformin hydrochloride tablets with or without a disintegrant. Tablet dissolution was conducted using the USP apparatus I at 100 rpm. In spite of its pH-independent high solubility, metformin hydrochloride tablets dissolved significantly slower in 0.1 N HCl (pH 1.2) and 50 mM pH 4.5 acetate buffer compared with 50 mM pH 6.8 phosphate buffer, the dissolution medium in the USP. Metformin hydrochloride API compressed into a round 1200 mg disk showed a similar trend. When basket rotation speed was increased from 100 to 250 rpm, the dissolution of metformin hydrochloride tablets was similar in all three media. Incorporation of 2% w/w crospovidone in the tablet formulation improved the dissolution although the pH-dependent trend was still evident, but incorporation of 2% w/w croscarmellose sodium resulted in rapid pH-independent tablet dissolution. In absence of a disintegrant in the tablet formulation, the dissolution was governed by the erosion-diffusion process. Even for a highly soluble drug, a super-disintegrant was needed in the formulation to overcome the diffusion layer limitation and change the dissolution mechanism from erosion-diffusion to disintegration.

  4. Environmental characterisation of coal mine waste rock in the field: an example from New Zealand

    NASA Astrophysics Data System (ADS)

    Hughes, J.; Craw, D.; Peake, B.; Lindsay, P.; Weber, P.

    2007-08-01

    Characterisation of mine waste rock with respect to acid generation potential is a necessary part of routine mine operations, so that environmentally benign waste rock stacks can be constructed for permanent storage. Standard static characterisation techniques, such as acid neutralisation capacity (ANC), maximum potential acidity, and associated acid-base accounting, require laboratory tests that can be difficult to obtain rapidly at remote mine sites. We show that a combination of paste pH and a simple portable carbonate dissolution test, both techniques that can be done in the field in a 15 min time-frame, is useful for distinguishing rocks that are potentially acid-forming from those that are acid-neutralising. Use of these techniques could allow characterisation of mine wastes at the metre scale during mine excavation operations. Our application of these techniques to pyrite-bearing (total S = 1-4 wt%) but variably calcareous coal mine overburden shows that there is a strong correlation between the portable carbonate dissolution technique and laboratory-determined ANC measurements (range of 0-10 wt% calcite equivalent). Paste pH measurements on the same rocks are bimodal, with high-sulphur, low-calcite rocks yielding pH near 3 after 10 min, whereas high-ANC rocks yield paste pH of 7-8. In our coal mine example, the field tests were most effective when used in conjunction with stratigraphy. However, the same field tests have potential for routine use in any mine in which distinction of acid-generating rocks from acid-neutralising rocks is required. Calibration of field-based acid-base accounting characteristics of the rocks with laboratory-based static and/or kinetic tests is still necessary.

  5. Theoretical study of the dissolution kinetics of galena and cerussite in an abandoned mining area (Zaida mine, Morocco)

    NASA Astrophysics Data System (ADS)

    El Alaoui, Lamiae; Dekayir, Abdelilah

    2018-05-01

    In the abandoned mine in Zaida, the pit lakes filled with water constitute significant water reserves. In these lakes, the waters are permanently in contact with ore deposit (cerussite and galena). The modelling of the interaction of waters with this mineralization shows that cerussite dissolves more rapidly than galena. This dissolution is controlled by the pH and dissolved oxygen concentration in solution. The lead concentrations recorded in these lakes come largely from the dissolution of cerussite.

  6. Fiberglass goes green: Developing phosphate glass for use in biodegradable composites

    NASA Astrophysics Data System (ADS)

    Arendt, Christina Lee

    Composite materials, such as the glass fiber reinforced polyester thermosets known as "fiberglass," are used in many applications. However, recycling processes for these materials are inefficient and not widely available. Specially engineered degradable polymers offer an opportunity to redesign these composites. Additionally, the composite could be tailored to be multi-use, such that upon degradation, the resulting products could be used as part of a zeoponic substrate (artificial soil) for growing plants. Such a material would be beneficial for long-duration space missions, terraforming, or in other agricultural applications. The research presented in this dissertation focuses on developing phosphate glass for use as the fiber reinforcement for such a composite. Due to the under-utilization of phosphate systems, there is a lack of thermodynamic data on these systems. The modified associate species method of phase diagram calculation was used in an attempt to gain more information about the desired system, as it is a good predictor of the phase relations in oxide melts, slags, and glasses and requires less data than other methods. Further research into the thermodynamic properties of phosphates is still needed to develop accurate phase diagrams and melting temperatures for this system. Seventeen glass formulations were developed and melted. Six of these formulations were chosen for dissolution testing. Of these six, Glass 17 was chosen for intensive testing and characterization. This glass was tested in water, hydrochloric acid solutions, and citric acid solutions. The weight loss was measured and ICP-OES was performed on the leachate solution. Scanning electron microscopy (SEM) and X-ray diffraction were performed on the tested specimens. Shrinking-core models were fit to the dissolution data. Fibers were drawn from the glass and characterized using SEM. The data shows that this glass is not dissolving congruently, as is expected of phosphate glasses. Instead, selective leaching is occurring, leading to the development of a non-protective surface layer during dissolution.

  7. Biowaiver monographs for immediate release solid oral dosage forms: piroxicam.

    PubMed

    Shohin, Igor E; Kulinich, Julia I; Ramenskaya, Galina V; Abrahamsson, Bertil; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Groot, D W; Barends, Dirk M; Dressman, Jennifer B

    2014-02-01

    Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing piroxicam in the free acid form are reviewed. Piroxicam solubility and permeability, its therapeutic use and therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions and reported BE/bioavailability (BA), and corresponding dissolution data are taken into consideration. The available data suggest that according to the current biopharmaceutics classification system (BCS) and all current guidances, piroxicam would be assigned to BCS Class II. The extent of piroxicam absorption seems not to depend on manufacturing conditions or excipients, so the risk of bioinequivalence in terms of area under the curve (AUC) is very low, but the rate of absorption (i.e., BE in terms of Cmax ) can be affected by the formulation. Current in vitro dissolution methods may not always reflect differences in terms of Cmax for BCS Class II weak acids; however, minor differences in absorption rate of piroxicam would not subject the patient to unacceptable risks: as piroxicam products may be taken before or after meals, the rate of absorption cannot be considered crucial to drug action. Therefore, a biowaiver for IR piroxicam solid oral dosage form is considered feasible, provided that (a) the test product contains only excipients, which are also present in IR solid oral drug products containing piroxicam, which have been approved in ICH or associated countries, for instance, those presented in Table 3 of this paper; (b) both the test and comparator drug products dissolve 85% in 30 min or less at pH 1.2, 4.5, and 6.8; and (c) the test product and comparator show dissolution profile similarity in pH 1.2, 4.5, and 6.8. When not all of these conditions can be fulfilled, BE of the products should be established in vivo. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Preparation of Spray-Dried Soy Isoflavone-Loaded Gelatin Microspheres for Enhancement of Dissolution: Formulation, Characterization and in Vitro Evaluation

    PubMed Central

    Panizzon, Gean Pier; Bueno, Fernanda Giacomini; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Dias Filho, Benedito Prado

    2014-01-01

    The most bioactive soy isoflavones (SI), daidzein (DAI) and genistein (GEN) have poor water solubility, which reduces their bioavailability and health benefits and limits their use in industry. The goal of this study was to develop and characterize a new gelatin matrix to microencapsulate DAI and GEN from soy extract (SE) by spray drying, in order to obtain solid dispersions to overcome solubility problems and to allow controlled release. The influences of 1:2 (MP2) and 1:3 (MP3) SE/polymer ratios on the solid state, yield, morphology, encapsulation efficiency, particle size distribution, release kinetics and cumulative release were evaluated. Analyses showed integral microparticles and high drug content. MP3 and MP2 yield were 43.6% and 55.9%, respectively, with similar mean size (p > 0.05), respectively. X-ray diffraction revealed the amorphous solid state of SE. In vitro release tests showed that dissolution was drastically increased. The results indicated that SE microencapsulation might offer a good system to control SI release, as an alternative to improve bioavailability and industrial applications. PMID:25494200

  9. In Vitro-In Vivo Predictive Dissolution-Permeation-Absorption Dynamics of Highly Permeable Drug Extended-Release Tablets via Drug Dissolution/Absorption Simulating System and pH Alteration.

    PubMed

    Li, Zi-Qiang; Tian, Shuang; Gu, Hui; Wu, Zeng-Guang; Nyagblordzro, Makafui; Feng, Guo; He, Xin

    2018-05-01

    Each of dissolution and permeation may be a rate-limiting factor in the absorption of oral drug delivery. But the current dissolution test rarely took into consideration of the permeation property. Drug dissolution/absorption simulating system (DDASS) valuably gave an insight into the combination of drug dissolution and permeation processes happening in human gastrointestinal tract. The simulated gastric/intestinal fluid of DDASS was improved in this study to realize the influence of dynamic pH change on the complete oral dosage form. To assess the effectiveness of DDASS, six high-permeability drugs were chosen as model drugs, including theophylline (pK a1  = 3.50, pK a2  = 8.60), diclofenac (pK a  = 4.15), isosorbide 5-mononitrate (pK a  = 7.00), sinomenine (pK a  = 7.98), alfuzosin (pK a  = 8.13), and metoprolol (pK a  = 9.70). A general elution and permeation relationship of their commercially available extended-release tablets was assessed as well as the relationship between the cumulative permeation and the apparent permeability. The correlations between DDASS elution and USP apparatus 2 (USP2) dissolution and also between DDASS permeation and beagle dog absorption were developed to estimate the predictability of DDASS. As a result, the common elution-dissolution relationship was established regardless of some variance in the characteristic behavior between DDASS and USP2 for drugs dependent on the pH for dissolution. Level A in vitro-in vivo correlation between DDASS permeation and dog absorption was developed for drugs with different pKa. The improved DDASS will be a promising tool to provide a screening method on the predictive dissolution-permeation-absorption dynamics of solid drug dosage forms in the early-phase formulation development.

  10. Dissolution Kinetics of Meta-Torbernite under Circum-neutral to Alkaline Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; McNamara, Bruce K.; Bacon, Diana H.

    2009-12-21

    Autunite group minerals have been identified in contaminated sediments as the long-term controlling phase of uranium. Meta-torbernite, has been identified in subsurface environments which were subjected to co-contaminant disposal practices from past nuclear weapons and fuel operations. Under these conditions the mobility of uranium in subsurface pore waters is limited by the rate of meta-torbernite dissolution; however, there are no known investigations which report the dissolution behavior of meta-torbernite. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to 1) quantify the effect of temperature (23 - 90oC) and pH (6 -10) on meta-torbernitemore » dissolution, 2) compare the dissolution of meta-torbernite to other autunite-group minerals, and 3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100X over the pH interval of 6 to 10 (eta = 0.59 ± 0.07), irrespective of temperature. The power law coefficient for meta-torbernite, eta = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, eta = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m-2 sec-1) = -4.7 x 10-13 + 4.1 x 10-10 [PO43-].« less

  11. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders.

    PubMed

    Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P

    1999-09-01

    In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B.

  12. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  13. Evaluation of palatability of 10 commercial amlodipine orally disintegrating tablets by gustatory sensation testing, OD-mate as a new disintegration apparatus and the artificial taste sensor.

    PubMed

    Uchida, Takahiro; Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Furuno, Hiroyuki; Teraoka, Makoto; Ikezaki, Hidekazu

    2013-09-01

    The purpose of this study was to evaluate and compare the palatability of 10 formulations (the original manufacturer's formulation and nine generics) of amlodipine orally disintegrating tablets (ODTs) by means of human gustatory sensation testing, disintegration/dissolution testing and the evaluation of bitterness intensity using a taste sensor. Initially, the palatability, dissolution and bitterness intensity of the ODTs were evaluated in gustatory sensation tests. Second, the disintegration times of the ODTs were measured using the OD-mate, a newly developed apparatus for measuring the disintegration of ODTs, and lastly, the bitterness intensities were evaluated using an artificial taste sensor. Using factor analysis, the factors most affecting the palatability of amlodipine ODTs were found to be disintegration and taste. There was high correlation between the disintegration times of the 10 amlodipine ODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of amlodipine ODTs 10, 20 and 30 s after starting the conventional brief dissolution test and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. The OD-mate and the taste sensor may be useful for predicting the disintegration and bitterness intensity of amlodipine ODTs in the mouth. © 2013 Royal Pharmaceutical Society.

  14. Crystal forms of the hydrogen oxalate salt of o-desmethylvenlafaxine.

    PubMed

    Dichiarante, Elena; Curzi, Marco; Giaffreda, Stefano L; Grepioni, Fabrizia; Maini, Lucia; Braga, Dario

    2015-06-01

    To prepare new crystalline forms of the antidepressant o-desmethylvenlafaxine salt as potential new commercial forms and evaluate their physicochemical properties, in particular the dissolution rate. A new hydrogen oxalate salt of o-desmethylvenlafaxine hydrogen oxalate (ODV-OX) was synthesized, and a polymorph screening was performed using different solvents and crystallization conditions. Crystalline forms were characterized by a combination of solid-state techniques: X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy and single crystal X-ray diffraction. The stability of all crystalline phases was tested under International Conference on Harmonisation (ICH) conditions (40°C and 75% Relative Humidity (RH)) for 1 week. Dissolution tests were performed on the hydrogen oxalate salt ODV-OX Form 1 and compared with dissolution test on the commercial form of the succinate salt of o-desmethylvenlafaxine. Five crystalline forms of ODV-OX were isolated, namely three hydrated forms (Form 1, Form 2, Form 3) and two anhydrous forms (Form 4 and Form 5). Comparative solubility tests on ODV-OX Form 1 and o-desmethylvenlafaxine succinate evidenced a significant increase in solubility for the hydrogen oxalate salt (142 g/l) with respect to the succinate salt (70 g/l). © 2015 Royal Pharmaceutical Society.

  15. Downflow limestone beds for treatment of net-acidic, oxic, iron-laden drainage from a flooded anthracite mine, Pennsylvania, USA: 2. Laboratory evaluation

    USGS Publications Warehouse

    Cravotta, C.A.; Ward, S.J.; Hammarstrom, J.M.

    2008-01-01

    Acidic mine drainage (AMD) containing elevated concentrations of dissolved iron and other metals can be neutralized to varying degrees by reactions with limestone in passive treatment systems. We evaluated the chemical and mineralogical characteristics and the effectiveness of calcitic and dolomitic limestone for the neutralization of net-acidic, oxic, iron-laden AMD from a flooded anthracite mine. The calcitic limestone, with CaCO3 and MgCO3 contents of 99.8 and <0.1 wt%, respectively, and the dolomitic limestone, with CaCO3 and MgCO3 contents of 60.3 and 40.2 wt%, were used to construct a downflow treatment system in 2003 at the Bell Mine, a large source of AMD and baseflow to the Schuylkill River in the Southern Anthracite Coalfield, in east-central Pennsylvania. In the winter of 2002-2003, laboratory neutralization-rate experiments evaluated the evolution of effluent quality during 2 weeks of continuous contact between AMD from the Bell Mine and the crushed calcitic or dolomitic limestone in closed, collapsible containers (cubitainers). The cubitainer tests showed that: (1) net-alkaline effluent could be achieved with detention times greater than 3 h, (2) effluent alkalinities and associated dissolution rates were equivalent for uncoated and Fe(OH)3-coated calcitic limestone, and (3) effluent alkalinities and associated dissolution rates for dolomitic limestone were about half those for calcitic limestone. The dissolution rate data for the cubitainer tests were used with data on the volume of effuent and surface area of limestone in the treatment system at the Bell Mine to evaluate the water-quality data for the first 1.5 years of operation of the treatment system. These rate models supported the interpretation of field results and indicated that treatment benefits were derived mainly from the dissolution of calcitic limestone, despite a greater quantity of dolomitic limestone within the treatment system. The dissolution-rate models were extrapolated on a decadal scale to indicate the expected decreases in the mass of limestone and associated alkalinities resulting from the long-term reaction of AMD with the treatment substrate. The models indicated the calcitic limestone would need to be replenished approaching the 5-year anniversary of treatment operations to maintain net-alkaline effluent quality. ?? 2008 Springer-Verlag.

  16. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: in vitro evaluation and in vivo simulation of novel formulations.

    PubMed

    Rasool, Bazigha Kadhim Abdul; Fahmy, Sahar Abdelsattar; Galeel, Omar Waleed Abdul

    2012-10-01

    To determine the effect of chitosan, starch powder, polyvinylpyrrolidone (PVP), Avicel PH 101 powder, Avicel PH 102 granules as a function of different concentrations on the solubility, disintegration and hence dissolution of furosemide from immediate release tablet dosage forms. The tablets were prepared by the wet granulation method and evaluated for hardness, friability, disintegration and in vitro dissolution. Chitosan 7% w/w showed the fastest disintegration of furosemide tablets among the other disintegrants studied. This was attributed to its highest swelling properties and velocity constant of water uptake. The step of adding chitosan during tablet preparation had a great effect on the physical properties and dissolution profiles of the prepared tablets with external addition of chitosan showed best results compared to best results comparing to internal-external or internal addition. The most appropriate force of compression was 4ton/cm(2). The selected formula F15 containing 7% w/w chitosan was successful and showed a high significant (p<0.001) enhancement in disintegration and dissolution behaviors of furosemide tablets in comparison with the commercially available Furosemide ® tablets. These results were supported by the simulated data where F15 formula showed the highest plasma concentration C-max 1.89mcg/mL after 0.5 hr compared to C-max 1.05mcg/mL after 1hr for the reference. The present study demonstrated that chitosan is a very good candidate to be used as a tablet disintegrant and was able to enhance the dissolution of poorly absorbable drugs.

  17. Development of a binary carrier system consisting polyethylene glycol 4000 - ethyl cellulose for ibuprofen solid dispersion

    PubMed Central

    Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya

    2017-01-01

    Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827

  18. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    PubMed

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Agartan, Elif; Trevisan, Luca; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin; Illangasekare, Tissa H.

    2015-03-01

    Dissolution trapping is one of the primary mechanisms that enhance the storage security of supercritical carbon dioxide (scCO2) in saline geologic formations. When scCO2 dissolves in formation brine produces an aqueous solution that is denser than formation brine, which leads to convective mixing driven by gravitational instabilities. Convective mixing can enhance the dissolution of CO2 and thus it can contribute to stable trapping of dissolved CO2. However, in the presence of geologic heterogeneities, diffusive mixing may also contribute to dissolution trapping. The effects of heterogeneity on mixing and its contribution to stable trapping are not well understood. The goal of this experimental study is to investigate the effects of geologic heterogeneity on mixing and stable trapping of dissolved CO2. Homogeneous and heterogeneous media experiments were conducted in a two-dimensional test tank with various packing configurations using surrogates for scCO2 (water) and brine (propylene glycol) under ambient pressure and temperature conditions. The results show that the density-driven flow in heterogeneous formations may not always cause significant convective mixing especially in layered systems containing low-permeability zones. In homogeneous formations, density-driven fingering enhances both storage in the deeper parts of the formation and contact between the host rock and dissolved CO2 for the potential mineralization. On the other hand, for layered systems, dissolved CO2 becomes immobilized in low-permeability zones with low-diffusion rates, which reduces the risk of leakage through any fault or fracture. Both cases contribute to the permanence of the dissolved plume in the formation.

  20. Preparation of theophylline-hydroxypropylmethylcellulose matrices using supercritical antisolvent precipitation: a preliminary study.

    PubMed

    Moneghini, M; Perissutti, B; Kikic, I; Grassi, M; Cortesi, A; Princivalle, F

    2006-01-01

    Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.

  1. Influence of Coformer Stoichiometric Ratio on Pharmaceutical Cocrystal Dissolution: Three Cocrystals of Carbamazepine/4-Aminobenzoic Acid

    PubMed Central

    Li, Zi; Matzger, Adam J.

    2016-01-01

    Cocrystallization is a technique to optimize solid forms that shows great potential to improve the solubility of active pharmaceutical ingredients (APIs). In some systems, an API can form cocrystals in multiple stoichiometries with the same coformer. However, it remains unclear how coformer stoichiometry influences solubility. This paper investigates the pharmaceutical:coformer pair carbamazepine (CBZ)/p-aminobenzoic acid (PABA); both CBZ/PABA 1:1 and 2:1 cocrystals are known, and a novel 4:1 CBZ/PABA cocrystal is reported here. The 4:1 cocrystal is structurally characterized, and phase stability data suggest that it is a thermodynamically unstable form. Dissolution experiments show that there is no correlation between the cocrystal stoichiometry and dissolution rate in this system. On the other hand, with the relatively weak intermolecular interactions, metastable forms can be beneficial to dissolution rate, which suggests that more effort should be devoted to cocrystal production with kinetic growth methods. PMID:26837376

  2. Calcite dissolution rate spectra measured by in situ digital holographic microscopy.

    PubMed

    Brand, Alexander S; Feng, Pan; Bullard, Jeffrey W

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ , real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s -1 . Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates ( e.g. , 0.1 µmol m -2 s -1 to 0.3 µmol m -2 s -1 ). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  3. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal.

    PubMed

    Grossjohann, Christine; Eccles, Kevin S; Maguire, Anita R; Lawrence, Simon E; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-01-17

    This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its pure components and to a physical mixture. Solubility studies were performed by measuring DBSO solubility as a function of BA concentration, and a ternary phase diagram was constructed. Dissolution was examined through intrinsic dissolution studies. Solid-state characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO solubility was increased by means of complexation with BA. For the cocrystal, the solubility of both components was decreased in comparison to pure components. The cocrystal was identified as metastable and incongruently saturating. Dissolution studies revealed that dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure compound or a physical mix, while BA release was retarded and followed square root of time kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in solution can change the stability of the complex substantially. Incongruent solubility and dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less soluble component and retardation of release of the more soluble component. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Calcite dissolution rate spectra measured by in situ digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Brand, Alexander S.; Feng, Pan; Bullard, Jeffrey W.

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ, real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s-1. Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates (e.g., 0.1 μmol m-2 s-1 to 0.3 μmol m-2 s-1). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  5. Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jinbo; Guo, Jing; Ma, Runze; Meng, Xiangzhi; Jiang, Ying

    2017-03-01

    The dissolution of sodium chloride (NaCl) in water is a frequently encountered process in our daily lives. While the NaCl dissolution process in liquid water has been extensively studied, whether and how the dissolution occurs below the freezing point is still not clear. Using a low-temperature scanning tunneling microscope (STM), here we were able to directly visualize the dissolution of Au-supported NaCl (0 0 1) bilayer islands by water at atomic level. We found that the single water molecule on the STM tip can assist the extraction of single Na+ from the NaCl surface even at 5 K, while leaving the Cl- intact. When covered with a full water monolayer, the NaCl islands started to dissolve from the step edges and also showed evidence of dissolution inside the terraces as the temperature was raised up to 145 K. At 155 K, the water molecules completely desorbed from the surface, which was accompanied with the decomposition and restructuring of the bilayer NaCl islands. Those results suggest that the dissolution of NaCl may occur well below the freezing point at the ice/NaCl interfaces and is mainly driven by the interaction between the water molecules and the Na+, which is in clear contrast with the NaCl dissolution in liquid water.

  6. Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography.

    PubMed

    Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto

    2017-06-15

    The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  8. Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing.

    PubMed

    Engel, A; Plöger, M; Mulac, D; Langer, K

    2014-01-30

    Nanoparticles composed of poly(DL-lactide-co-glycolide) (PLGA) represent promising colloidal drug carriers for improved drug targeting. Although most research activities are focused on intravenous application of these carriers the peroral administration is described to improve bioavailability of poorly soluble drugs. Based on these insights the manuscript describes a model tablet formulation for PLGA-nanoparticles and especially its analytical characterisation with regard to a nanosized drug carrier. Besides physico-chemical tablet characterisation according to pharmacopoeias the main goal of the study was the development of a suitable analytical method for the quantification of nanoparticle release from tablets. An analytical flow field-flow fractionation (AF4) method was established and validated which enables determination of nanoparticle content in solid dosage forms as well as quantification of particle release during dissolution testing. For particle detection a multi-angle light scattering (MALS) detector was coupled to the AF4-system. After dissolution testing, the presence of unaltered PLGA-nanoparticles was successfully proved by dynamic light scattering and scanning electron microscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bench Scale Saltcake Dissolution Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BECHTOLD, D.B.; PACQUET, E.A.

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity;more » saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.« less

  10. EQCM analysis of titanium corrosion in peroxide- or fluoride-containing solutions.

    PubMed

    Hattori, Masayuki; Oda, Yutaka

    2013-01-01

    Although offering superior resistance to corrosion, titanium is unable to withstand discoloration with exposure to peroxide or fluoride. The mechanism of this discoloration, however, remains to be clarified. The purpose of this study was to investigate the mechanism underlying discoloration of titanium with immersion in peroxide- or fluoride-containing solutions based on electrochemical quartz crystal microbalance (EQCM) analysis. A 9-MHz titanium-deposited quartz crystal was used as for the electrodes. Four test solutions were prepared for immersion of the electrodes: 154 mM (0.9%) NaCl; 150 mM H2O2+154 mM NaCl (pH=4 by addition of lactic acid); 150 mM H2O2+154 mM NaCl (pH=8 by addition of sodium hydroxide solution); and 48 mM (0.2%) NaF+154 mM NaCl (pH=5.0 by addition of lactic acid). A WinEchem electrochemistry software-controlled quartz crystal analyzer (QCA922) and the Potentiostat/Galvanostat (Princeton Applied Research) on Windows XP were used to measure concurrently the resonance frequency and potential of the electrodes. The EQCM data differed among solutions. In the acidulated fluoride-containing solution, the electrode showed lower open circuit potential and a gradual increase in electrode frequency, indicating a loss of mass by titanium dissolution. In the peroxide-containing solution, although open circuit potential showed no marked difference, electrode frequency showed a gentle decrease in acidic solution, indicating a gain in mass by oxidation; but an increase in alkaline solution, indicating a loss of mass by dissolution. These results confirmed that exposure to acidulated fluoride- or alkaline peroxide-containing solutions causes dissolution-induced discoloration, while that to acidulated peroxide-containing solutions resulted in the formation of an oxide film together with discoloration.

  11. An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments.

    PubMed

    Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan

    2015-07-01

    Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.

  12. The improved dissolution performance of a post processing treated spray-dried crystalline solid dispersion of poorly soluble drugs.

    PubMed

    Chan, Siok-Yee; Toh, Seok-Ming; Khan, Nasir Hayat; Chung, Yin-Ying; Cheah, Xin-Zi

    2016-11-01

    Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system. The current study investigates the effect of a post processing treatment on dissolution performance of SD in comparison to their performances upon production. Two poorly soluble drugs were spray dried into SD using polyvinyl alcohol (PVA) as hydrophilic carrier. The obtained samples were post processing treated by exposure to high humidity, i.e. 75% RH at room temperature. The physical properties and release rate of the SD system were characterized upon production and after the post-processing treatment. XRPD, Infrared and DSC results showed partial crystallinity of the fresh SD systems. Crystallinity of these products was further increased after the post-processing treatment at 75% RH. This may be attributed to the high moisture absorption of the SD system that promotes recrystallization process of the drug. However, dissolution efficiencies of the post-treated systems were higher and more consistent than the fresh SD. The unexpected dissolution trend was further supported by the results intrinsic dissolution and solubility studies. An increase of crystallinity in a post humidity treated SD did not exert detrimental effect to their dissolution profiles. A more stabilized system with a preferable enhanced dissolution rate was obtained by exposing the SD to a post processing humidity treatment.

  13. Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes

    NASA Astrophysics Data System (ADS)

    Leblois, T.; Tellier, C. R.

    1992-07-01

    We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.

  14. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)

    NASA Astrophysics Data System (ADS)

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h

  15. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yusuke; Miyairi, Yousuke; Matsuzaki, Hiroyuki; Tsunomori, Fumiaki

    2007-06-01

    Availability of an effective graphitization system is essential for the successful operation of an AMS laboratory for radiocarbon measurements. We have set up a graphitization system consisting of metal vacuum lines for cleaning CO2 sample gas which is then converted to graphite. CO2 gas from a carbonate sample is produced in vacuum in a test tube by injecting concentrated phosphoric acid. The tube is placed into a heated metal block to accelerate dissolution. However, we have observed systematic differences in the time required to convert the CO2 gas to graphite under a hydrogen atmosphere, from less than 3 h to over 10 h. We have conducted a series of experiments including background measurements and yield measurements to monitor secondary carbon contamination and changes in isotopic fractionation. All of the tests show that the carbon isotope ratios remain unaffected by the duration of the process. We also used a quadrupole mass spectrometer (QMS) to identify possible contaminant gases. Contaminant peaks were identified at high mass (larger than 60) only for long duration experiments. This suggests a possible reaction between the rubber cap and acid fumes producing a contaminant gas that impeded the reduction of CO2.

  16. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    PubMed

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  17. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation

    PubMed Central

    Liu, Dandan; Pan, Hao; He, Fengwei; Wang, Xiaoyu; Li, Jinyu; Yang, Xinggang; Pan, Weisan

    2015-01-01

    The purpose of this work was to explore the particle size reduction effect of carvedilol on dissolution and absorption. Three suspensions containing different sized particles were prepared by antisolvent precipitation method or in combination with an ultrasonication process. The suspensions were characterized for particle size, surface morphology, and crystalline state. The crystalline form of carvedilol was changed into amorphous form after antisolvent precipitation. The dissolution rate of carvedilol was significantly accelerated by a reduction in particle size. The intestinal absorption of carvedilol nanosuspensions was greatly improved in comparison with microsuspensions and solution in the in situ single-pass perfusion experiment. The in vivo evaluation demonstrated that carvedilol nanosuspensions and microsuspensions exhibited markedly increased Cmax (2.09- and 1.48-fold) and AUC0−t (2.11- and 1.51-fold), and decreased Tmax (0.34- and 0.48-fold) in contrast with carvedilol coarse suspensions. Moreover, carvedilol nanosuspensions showed good biocompatibility with the rat gastric mucosa in in vivo gastrointestinal irritation test. The entire results implicated that the dissolution rate and the oral absorption of carvedilol were significantly affected by the particle size. Particle size reduction to form nanosized particles was found to be an efficient method for improving the oral bioavailability of carvedilol. PMID:26508852

  18. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    PubMed

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  19. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  20. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation

    NASA Astrophysics Data System (ADS)

    Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah

    2018-02-01

    Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.

  1. Modelling karst aquifer evolution in fractured, porous rocks

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg

    2016-12-01

    The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.

  2. In vitro stability, potency, and dissolution of duloxetine enteric-coated pellets after exposure to applesauce, apple juice, and chocolate pudding.

    PubMed

    Wells, Kevin A; Losin, William G

    2008-07-01

    Difficulty swallowing is a common problem in the clinical setting, particularly in elderly patients, and can significantly affect an individual's ability to maintain a proper level of nutrition. The purpose of this in vitro study was to determine if mixing duloxetine enteric-coated pellets in food substances is an acceptable alternative method for administering this oral formulation to patients with swallowing difficulties. To determine whether administration in food substances with varying pH values (applesauce and apple juice, pH = approximately 3.5; chocolate pudding, pH = approximately 5.5-6.0) affects the enteric coating of the formulation, duloxetine pellets (ie, the contents of a 20-mg duloxetine capsule) were exposed to applesauce, apple juice, and chocolate pudding at room temperature and tested in triplicate for potency and impurities; for dissolution, 6 replicates were tested. To assess product stability and integrity of the enteric coating, potency, impurities, and dissolution tests of the pellets were conducted and compared with pellets not exposed to food. The duloxetine pellets were extracted from the food material using a solution of 0.1 normal (N) hydrochloric acid (HCl) prepared from concentrated HCl (commercially available) and deionized water. For the potency and impurities tests, a 40:60 solution of acetonitrile and pH 8.0 phosphate buffer was used as the sample solvent to extract the active pharmaceutical ingredient from the formulation to prepare the samples for testing. The amount of active pharmaceutical ingredient released (in vitro dissolution) from the pellets after exposure to the food substances was determined using 2 media solutions, 0.1 N HCl followed by pH 6.8 phosphate buffer. Applesauce and chocolate pudding were selected as vehicles for oral administration, while apple juice was intended to be used as a wash for a nasogastric tube. Mean (SD) potency results for the 20-mg capsule strength were 20.256 (0.066), 20.222 (0.163), and 19.961 (0.668) mg/capsule for the comparator not exposed to food, the sample exposed to applesauce, and the sample exposed to apple juice, respectively. However, exposure to chocolate pudding altered the integrity of the pellet's enteric coating (mean [SD] potency results, 17.780 [1.605] mg/capsule). Results of impurities testing suggested that none of the test foods caused significant degradation of the drug product. Mean dissolution results found that after 2 hours in 0.1 N HCl, < or = 1% of duloxetine was released from the comparator and pellets exposed to applesauce and apple juice. However, the mean dissolution profile of the sample exposed to pudding reported near-total release (90%) after 2 hours in 0.1 N HCl during the gastric challenge portion of the dissolution test. Results from this study found that the enteric coating of duloxetine pellets mixed with applesauce or apple juice was not negatively affected. The pellets were stable at room temperature for < or = 2 hours and should quantitatively allow delivery of the full capsule dose, provided that the pellet integrity is maintained (ie, not crushed, chewed, or otherwise broken). Therefore, mixing duloxetine pellets with applesauce or apple juice appears to be an acceptable vehicle for administration. However, exposing the pellets to chocolate pudding damaged the pellets' enteric coating, suggesting that pudding may be an unacceptable vehicle for administration.

  3. Degradation characteristics of polylactide in thermophilic anaerobic digestion with hyperthermophilic solubilization condition.

    PubMed

    Wang, F; Hidaka, T; Oishi, T; Osumi, S; Tsubota, J; Tsuno, H

    2011-01-01

    To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.

  4. Antisolvent crystallization of a cardiotonic drug in ionic liquids: Effect of mixing on the crystal properties

    NASA Astrophysics Data System (ADS)

    de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria

    2017-08-01

    LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.

  5. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    NASA Astrophysics Data System (ADS)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  6. Role of fiber dissolution in biological activity in rats.

    PubMed

    Eastes, W; Hadley, J G

    1994-12-01

    This report deals with the role of dissolution in removing long fibers from the lung and with a mathematical model that predicts chronic effects in rats following inhalation or intraperitoneal (i.p.) injection of fibers. Results of intratracheal instillation studies and inhalation studies in rats demonstrate clearly that long vitreous fibers dissolve in vivo at about the same rate measured in vitro in fluid designed to stimulate the extracellular lung fluid. For the glass, rock, and slag wool fibers tested, dissolution removed most of the fibers longer than 20 microns inhaled into the rats' lungs within 6 months after both short-term (5 days) and long-term (1 to 2 years) exposures. A mathematical model was developed that is based on fiber dissolution and allows one to predict the development of chronic lung diseases in rats. The model predicted the incidence of fibrosis and lung tumors in a series of recent inhalation studies and tumors following ip injection to within about the error of the experiments. The model suggests that all fibers, regardless of their dissolution rate in lung fluid, can produce tumors after ip injection because the dose can be unlimited by this route. After inhalation, in contrast, dissolution of many types of long vitreous fibers occurs rapidly, and disease does not ensue for these fibers.

  7. Naproxen Microparticulate Systems Prepared Using In Situ Crystallisation and Freeze-Drying Techniques.

    PubMed

    Solaiman, Amanda; Tatari, Adam Keenan; Elkordy, Amal Ali

    2017-07-01

    Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.

  8. Microfibrous Solid Dispersions of Poorly Water-Soluble Drugs Produced via Centrifugal Spinning: Unexpected Dissolution Behavior on Recrystallization.

    PubMed

    Marano, Stefania; Barker, Susan A; Raimi-Abraham, Bahijja T; Missaghi, Shahrzad; Rajabi-Siahboomi, Ali; Aliev, Abil E; Craig, Duncan Q M

    2017-05-01

    Temperature-controlled, solvent-free centrifugal spinning may be used as a means of rapid production of amorphous solid dispersions in the form of drug-loaded sucrose microfibers. However, due to the high content of amorphous sucrose in the formulations, such microfibers may be highly hygroscopic and unstable on storage. In this study, we explore both the effects of water uptake of the microfibers and the consequences of deliberate recrystallization for the associated dissolution profiles. The stability of sucrose microfibers loaded with three selected BCS class II model drugs (itraconazole (ITZ), olanzapine (OLZ), and piroxicam (PRX)) was investigated under four different relative humidity conditions (11, 33, 53, and 75% RH) at 25 °C for 8 months, particularly focusing on the effect of the highest level of moisture (75% RH) on the morphology, size, drug distribution, physical state, and dissolution performance of microfibers. While all samples were stable at 11% RH, at 33% RH the ITZ-sucrose system showed greater resistance against devitrification compared to the OLZ- and PRX-sucrose systems. For all three samples, the freshly prepared microfibers showed enhanced dissolution and supersaturation compared to the drug alone and physical mixes; surprisingly, the dissolution advantage was largely maintained or even enhanced (in the case of ITZ) following the moisture-induced recrystallization under 75% RH. Therefore, this study suggests that the moisture-induced recrystallization process may result in considerable dissolution enhancement compared to the drug alone, while overcoming the physical stability risks associated with the amorphous state.

  9. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study.

    PubMed

    Eskelsen, Jeremy R; Xu, Jie; Chiu, Michelle; Moon, Ji-Won; Wilkins, Branford; Graham, David E; Gu, Baohua; Pierce, Eric M

    2018-02-06

    The dissolution of metal sulfides, such as ZnS, is an important biogeochemical process affecting fate and transport of trace metals in the environment. However, current studies of in situ dissolution of metal sulfides and the effects of structural defects on dissolution are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, we have examined biogenic ZnS nanoparticles produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium in the presence or absence of silver (Ag), and abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H 2 S-rich gas or Na 2 S solution. The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ∼10 nm) than the abiogenic ones (i.e., ∼3-5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ∼3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m 2 ) have a significantly higher surface energy than the abiogenic ZnS nanoparticles (γ = 0.277 J/m 2 ). Larger defect-bearing biogenic ZnS nanoparticles were thus more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings provide new insight into the factors that affect the dissolution of metal sulfide nanoparticles in relevant natural and engineered scenarios, and have important implications for tracking the fate and transport of sulfide nanoparticles and associated metal ions in the environment. Moreover, our study exemplified the use of an in situ method (i.e., LCTEM) to investigate nanoparticle behavior (e.g., dissolution) in aqueous solutions.

  10. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhu; William E. Seyfried

    2005-01-01

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory-measured andmore » field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between lab and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO{sub 2} injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the first year of the project, we have successfully developed a sample preparation method and completed three batch feldspar dissolution experiments at 200 C and 300 bars. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure. These data allow calculating overall apparent feldspar dissolution rates and secondary mineral precipitation rates as a function of saturation states. State-of-the-art atomic resolution transmission electron microscopy (TEM), scanning electron microscopy, and electron microprobe was used to characterize the reactants (feldspars before experiments). We experimented with different sample preparation methods for TEM study, and found excellent images and chemical resolution with reactants, which shows promise of the technology and establishes the baseline for comparison with products (feldspars after the experiments). Preliminary electron microscopic characterization shows that the reacted feldspars have etch pits and are covered with secondary sheet silicate phases. Reaction-path geochemical modeling is used to interpret the experimental results. We have established the software and database, and are making great progress. Also during the first year, our education goal of graduate student training has been achieved. A Ph. D. student at Indiana University is progressing well in the degree program and has taken geochemical modeling, SEM, and TEM courses, which will facilitate research in the second and third year. A Ph. D. student at University of Minnesota is progressing well in conducting the experiments, and is near graduation. With the success of training of graduate students and excellent experimental data in the first year, we anticipate a more fruitful year in the second year.« less

  11. Understanding the Effects of Dissolution on the Mg/Ca Paleothermometer in Planktic Foraminifera: Evidence From a Novel Individual Foraminifera Method

    NASA Astrophysics Data System (ADS)

    Rongstad, Brigitta L.; Marchitto, Thomas M.; Herguera, Juan Carlos

    2017-12-01

    It is well documented that partial dissolution of planktic foraminiferal tests results in a reduction of Mg/Ca ratios, and hence of inferred calcification temperatures; however, traditional analysis techniques have made it difficult to identify the exact mechanism through which Mg is lost. Three hypotheses have been proposed as models for Mg loss for a given extent of dissolution: (1) a percent loss of Mg in individuals, (2) a molar loss of Mg in individuals, and (3) a loss of the highest-Mg (warmest) individuals from a population. It is vital to better constrain these models as they have very different implications for Mg/Ca paleotemperature dissolution corrections. Here we use a novel individual foraminifera Mg/Ca method to examine the effects of dissolution on the Mg/Ca paleothermometer in three species of planktic foraminifera, Globigerinoides ruber, Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata, from a depth transect of core tops on the Ontong Java Plateau in the western equatorial Pacific. With the exception of the most heavily dissolved population of P. obliquiloculata, our data best support a percent Mg loss model as indicated by the preservation of inferred temperature distribution shapes among the sampled populations and the close fit of the simulated percent Mg loss model to the observed data. Coupled with estimates for foraminiferal dissolution, identification of the percent Mg loss model will allow for more accurate dissolution corrections in Mg/Ca paleothermometry work.

  12. Studies on applicability of press-coated tablets using hydroxypropylcellulose (HPC) in the outer shell for timed-release preparations.

    PubMed

    Fukui, E; Uemura, K; Kobayashi, M

    2000-08-10

    Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.

  13. Study on effect of L-arginine on solubility and dissolution of Zaltoprofen: Preparation and characterization of binary and ternary cyclodextrin inclusion complexes

    NASA Astrophysics Data System (ADS)

    Sherje, Atul P.; Patel, Forum; Murahari, Manikanta; Suvarna, Vasanti; Patel, Kavitkumar

    2018-02-01

    The present study demonstrated the binary and ternary complexes of Zaltoprofen (ZPF) with β-CD and HP-β-CD. The products were characterized using solubility, in vitro dissolution, and DSC studies. The mode of interaction of guest and host was revealed through 1H NMR and FT-IR studies. A significant increase was noticed in the stability constant (Kc) and complexation efficiency (CE) of β-CD and HP-β-CD due to addition of L-Arg in ternary complexes. The ternary complexes showed greater increase in solubility and dissolution of ZPF than binary complexes. Thus, ternary system of ZPF could be an innovative approach for its solubility and dissolution enhancement.

  14. What Happens during Natural Protein Fibre Dissolution in Ionic Liquids.

    PubMed

    Chen, Jingyu; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2014-08-28

    Here, we monitor the dissolution of several natural protein fibres such as wool, human hair and silk, in various ionic liquids (ILs). The dissolution of protein-based materials using ILs is an emerging area exploring the production of new materials from waste products. Wool is a keratin fibre, which is extensively used in the textiles industry and as a result has considerable amounts of waste produced each year. Wool, along with human hair, has a unique morphology whereby the outer layer, the cuticle, is heavily cross linked with disulphide bonds, whereas silk does not have this outer layer. Here we show how ILs dissolve natural protein fibres and how the mechanism of dissolution is directly related to the structure and morphology of the wool fibre.

  15. Effect of surface modification on hydration kinetics of carbamazepine anhydrate using isothermal microcalorimetry.

    PubMed

    Otsuka, Makoto; Ishii, Mika; Matsuda, Yoshihisa

    2003-01-01

    The purpose of this research was to improve the stability of carbamazepine (CBZ) bulk powder under high humidity by surface modification. The surface-modified anhydrates of CBZ were obtained in a specially designed surface modification apparatus at 60 degrees C via the adsorption of n-butanol, and powder x-ray diffraction, Fourier-Transformed Infrared spectra, and differential scanning calorimetry were used to determine the crystalline characteristics of the samples. The hydration process of intact and surface-modified CBZ anhydrate at 97% relative humidity (RH) and 40 +/-C 1 degrees C was automatically monitored by using isothermal microcalorimetry (IMC). The dissolution test for surface-modified samples (20 mg) was performed in 900 mL of distilled water at 37 +/-C 0.5 degrees C with stirring by a paddle at 100 rpm as in the Japanese Pharmacopoeia XIII. The heat flow profiles of hydration of intact and surface-modified CBZ anhydrates at 97% RH by using IMC profiles showed a maximum peak at around 10 hours and 45 hours after 0 and 10 hours of induction, respectively. The result indicated that hydration of CBZ anhydrate was completely inhibited at the initial stage by surface modification of n-butanol and thereafter transformed into dihydrate. The hydration of surface-modified samples followed a 2-dimensional phase boundary process with an induction period (IP). The IP of intact and surface-modified samples decreased with increase of the reaction temperature, and the hydration rate constant (k) increased with increase of the temperature. The crystal growth rate constants of nuclei of the intact sample were significantly larger than the surface-modified sample's at each temperature. The activation energy (E) of nuclei formation and crystal growth process for hydration of surface-modified CBZ anhydrate were evaluated to be 20.1 and 32.5 kJ/mol, respectively, from Arrhenius plots, but the Es of intact anhydrate were 56.3 and 26.8 kJ/mol, respectively. The dissolution profiles showed that the surface-modified sample dissolved faster than the intact sample at the initial stage. The dissolution kinetics were analyzed based on the Hixon-Crowell equation, and the dissolution rate constants for intact and surface-modified anhydrates were found to be 0.0102 +/-C 0.008 mg(1/3) x min(-1) and 0.1442 +/-C 0.0482 mg(1/3) x min(-1). The surface-modified anhydrate powders were more stable than the nonmodified samples under high humidity and showed resistance against moisture. However, surface modification induced rapid dissolution in water compared to the control.

  16. Interlaboratory studies on in vitro test methods for estimating in vivo resorption of calcium phosphate ceramics.

    PubMed

    Ito, Atsuo; Sogo, Yu; Yamazaki, Atsushi; Aizawa, Mamoru; Osaka, Akiyoshi; Hayakawa, Satoshi; Kikuchi, Masanori; Yamashita, Kimihiro; Tanaka, Yumi; Tadokoro, Mika; de Sena, Lídia Ágata; Buchanan, Fraser; Ohgushi, Hajime; Bohner, Marc

    2015-10-01

    A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells. The evaluation and subsequent optimization of the resorbability of calcium phosphate are crucial in the use of resorbable calcium phosphates. Although the resorbability of calcium phosphates has usually been evaluated in vivo, establishment of a standard in vitro method that can predict in vivo resorption is beneficial for accelerating development and commercialization of new resorbable calcium phosphate materials as well as reducing use of animals. However, there are only a few studies to propose such an in vitro method within which direct comparison was carried out between in vitro and in vivo resorption. We propose here an in vitro method based on measuring dissolution rate. The efficacy and limitations of the method were evaluated by international round-robin tests as well as comparison with in vivo resorption studies for future standardization. This study was carried out as one of Versailles Projects on Advanced Materials and Standards (VAMAS). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. The effect of fuel chemistry on UO2 dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda; Hanson, Brady; Miller, William

    2016-08-01

    The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater infiltration into the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters have on the dissolution rate of unirradiated UO2 under repository conditionsmore » and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods where radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix showed a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.« less

  18. Hydrothermal Alteration of Glass from Underground Nuclear Tests: Formation and Transport of Pu-clay Colloids at the Nevada National Security Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, M.; Zhao, P.; Joseph, C.

    2015-05-27

    The testing of nuclear weapons at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), has led to the deposition of substantial quantities of plutonium into the environment. Approximately 2.8 metric tons (3.1×10 4 TBq) of Pu were deposited in the NNSS subsurface as a result of underground nuclear testing. While 3H is the most abundant anthropogenic radionuclide deposited in the NNSS subsurface (4.7×10 6 TBq), plutonium is the most abundant from a molar standpoint. The only radioactive elements in greater molar abundance are the naturally occurring K, Th, and U isotopes. 239Pu and 240Pu represent themore » majority of alpha-emitting Pu isotopes. The extreme temperatures associated with underground nuclear tests and the refractory nature of Pu results in most of the Pu (98%) being sequestered in melted rock, referred to as nuclear melt glass (Iaea, 1998). As a result, Pu release to groundwater is controlled, in large part, by the leaching (or dissolution) of nuclear melt glass over time. The factors affecting glass dissolution rates have been studied extensively. The dissolution of Pu-containing borosilicate nuclear waste glasses at 90ºC has been shown to lead to the formation of dioctahedral smectite colloids. Colloid-facilitated transport of Pu at the NNSS has been observed. Recent groundwater samples collected from a number of contaminated wells have yielded a wide range of Pu concentrations from 0.00022 to 2.0 Bq/L. While Pu concentrations tend to fall below the Maximum Contaminant Level (MCL) established by the Environmental Protection Agency (EPA) for drinking water (0.56 Bq/L), we do not yet understand what factors limit the Pu concentration or its transport behavior. To quantify the upper limit of Pu concentrations produced as a result of melt glass dissolution and determine the nature of colloids and Pu associations, we performed a 3 year nuclear melt glass dissolution experiment across a range of temperatures (25-200 °C) that represent hydrothermal conditions representative of the underground nuclear test cavities (when groundwater has re-saturated the nuclear melt glass and glass dissolution occurs). Colloid loads and Pu concentrations were monitored along with the mineralogy of both the colloids and the secondary mineral phases. The intent was to establish an upper limit for Pu concentrations at the NNSS, provide context regarding the Pu concentrations observed at the NNSS to date and the Pu concentrations that may be observed in the future. The results provide a conceptual model for the risks posed by Pu migration at the NNSS.« less

  19. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.

    PubMed

    Kim, Min-Soo; Jin, Shun-Ji; Kim, Jeong-Soo; Park, Hee Jun; Song, Ha-Seung; Neubert, Reinhard H H; Hwang, Sung-Joo

    2008-06-01

    In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.

  20. Calorimetric Studies of Precipitation and Dissolution Kinetics in Aluminum Alloys 2219 and 7075

    NASA Astrophysics Data System (ADS)

    Papazian, John M.

    1982-05-01

    Differential scanning calorimetry (DSC) was used to study the kinetics of precipitation and dissolution of metastable and stable phases in aluminum alloys 2219 and 7075. A comparison of DSC scans obtained at heating rates of 1, 5, 10, and 20 K per minute showed that, during a DSC scan, the rates of precipitation of θ' and θ in 2219 and η' and η in 7075 were limited by their reaction kinetics. Likewise, the rates of dissolution of GP zones, θ' and η', were found to be dominated by kinetics. In contrast, the dissolution of θ and η was dominated by the thermodynamic equilibrium between these phases and the matrix. Analysis of the kinetically dominated reaction peaks and their dependence on heating rate and particle size showed that the GP zone dissolution reaction could best be described by a three-dimensional volume diffusion limited rate expression with an activation energy equal to that for diffusion. The rate of formation of θ' was best described by an Avrami expression with n = 1.1, indicating that nucleation was not the rate controlling step. A pronounced dependence of the θ' formation rate on prior plastic deformation was observed and ascribed to the influence of the matrix dislocation density on diffusivity.

  1. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    PubMed Central

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  2. Comparative study on the in vitro performance of blister molded and conventional lornoxicam immediate release liquitablets: accelerated stability study and anti-inflammatory and ulcerogenic effects.

    PubMed

    El-Setouhy, Doaa Ahmed; Gamiel, Alaa Abdel-Rahman; Badawi, Alia Abd El-Latif; Osman, Afaf Sayed; Labib, Dina Ahmed

    2017-03-01

    Lornoxicam is a potent non-steroidal anti-inflammatory drug (NSAID). It shows limited solubility in the gastric pH, delayed bioavailability and pharmacodynamic effects with aggravated gastric side effects (due to longer residence in the stomach wall). To enhance dissolution of lornoxicam in the gastric fluid and expectedly absorption and pharmacological action, with less ulcerogenic effects. Formulation of immediate release (IR) lornoxicam liquitablets containing both liquid and solid release modulators (wetting agent, solubilizers and microenvironmental pH modifiers). Beside the traditional direct compression technique employed for the preparation of liquitablets a new technique, blister molding, was also used. The effect of the two different manufacturing methods on the fast release characteristics (rapid disintegration and dissolution) was studied. Stability and pharmacological activity of the optimum formula were also explored. Similarity factor pointed out the superiority of molding technique in enhancing dissolution of lornoxicam owing to significant crystallinity reduction (XRD). Optimum formula showed negligible change in drug content and dissolution profiles over 12 weeks, significantly improved anti-inflammatory activity and significantly reduced gastric ulcerative effect over pure lornoxicam and commercial formula. Blister molded lornoxicam liquitablet of improved dissolution and pharmacological activity and less gastric erosion was successfully prepared.

  3. Atypical effects of incorporated surfactants on stability and dissolution properties of amorphous polymeric dispersions.

    PubMed

    Al-Obaidi, Hisham; Lawrence, M Jayne; Buckton, Graham

    2016-11-01

    To understand the impact of ionic and non-ionic surfactants on the dissolution and stability properties of amorphous polymeric dispersions using griseofulvin (GF) as a model for poorly soluble drugs. Solid dispersions of the poorly water-soluble drug, griseofulvin (GF) and the polymers, poly(vinylpyrrolidone) (PVP) and poly(2-hydroxypropyl methacrylate) (PHPMA), have been prepared by spray drying and bead milling and the effect of the ionic and non-ionic surfactants, namely sodium dodecyl sulphate (SDS) and Tween-80, on the physico-chemical properties of the solid dispersions studied. The X-ray powder diffraction data and hot-stage microscopy showed a fast re-crystallisation of GF. While dynamic vapour sorption (DVS) measurements indicated an increased water uptake, slow dissolution rates were observed for the solid dispersions incorporating surfactants. The order by which surfactants free dispersions were prepared seemed critical as indicated by DVS and thermal analysis. Dispersions prepared by milling with SDS showed significantly better stability than spray-dried dispersions (drug remained amorphous for more than 6 months) as well as improved dissolution profile. We suggest that surfactants can hinder the dissolution by promoting aggregation of polymeric chains, however that effect depends mainly on how the particles were prepared. © 2016 Royal Pharmaceutical Society.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.

    In far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this paper is to study effects of these variables on three model waste glasses (SON68, ISG, AFCI). To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH(RT) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. The results from these tests were then used to parameterize a kinetic rate model based on transition state theory. Both the absolute dissolution rates andmore » the rate model parameters are compared with previous results. Discrepancies in the absolute dissolution rates as compared to those obtained using other test methods are discussed. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies. The results were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), which is capable of providing a robust uncertainty analysis. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, the effect of glass composition on the rate parameter values could possibly be obtained. This would allow for the possibility of predicting the forward dissolution rate of glass based solely on composition« less

  5. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems.

    PubMed

    Thomas, Dennis G; Smith, Jordan N; Thrall, Brian D; Baer, Donald R; Jolley, Hadley; Munusamy, Prabhakaran; Kodali, Vamsi; Demokritou, Philip; Cohen, Joel; Teeguarden, Justin G

    2018-01-25

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.

  6. Modeling growth and dissolution of inclusions during fusion welding of steels

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    The characteristics of inclusions in the weld metals are critical factors to determine the structure, properties and performance of weldments. The research in the present thesis applied computational modeling to study inclusion behavior considering thermodynamics and kinetics of nucleation, growth and dissolution of inclusion along its trajectory calculated from the heat transfer and fluid flow model in the weld pool. The objective of this research is to predict the characteristics of inclusions, such as composition, size distribution, and number density in the weld metal from different welding parameters and steel compositions. To synthesize the knowledge of thermodynamics and kinetics of nucleation, growth and dissolution of inclusion in the liquid metal, a set of time-temperature-transformation (TTT) diagrams are constructed to represent the effects of time and temperature on the isothermal growth and dissolution behavior of fourteen types of individual inclusions. The non-isothermal behavior of growth and dissolution of inclusions is predicted from their isothermal behavior by constructing continuous-cooling-transformation (CCT) diagrams using Scheil additive rule. A well verified fluid flow and heat transfer model developed at Penn State is used to calculate the temperature and velocity fields in the weld pool for different welding processes. A turbulent model considering enhanced viscosity and thermal conductivity (k-ε model) is applied. The calculations show that there is vigorous circulation of metal in the weld pool. The heat transfer and fluid flow model helps to understand not only the fundamentals of the physical phenomena (luring welding, but also the basis to study the growth and dissolution of inclusions. The calculations of particle tracking of thousands of inclusions show that most inclusions undergo complex gyrations and thermal cycles in the weld pool. The inclusions experience both growth and dissolution during their lifetime. Thermal cycles of thousand of inclusions nucleated in the liquid region are tracked and their growth and dissolution are calculated to estimate the final size distribution and number density of inclusions statistically. The calculations show that welding conditions and weld metal compositions affect the inclusion characteristics significantly. Good agreement between the computed and the experimentally observed inclusion size distribution indicates that the inclusion behavior in the weld pool can be understood from the fundamentals of transport phenomena and transformation kinetics.

  7. In vitro dissolution of uranium oxide by baboon alveolar macrophages.

    PubMed Central

    Poncy, J L; Metivier, H; Dhilly, M; Verry, M; Masse, R

    1992-01-01

    In vitro cellular dissolution tests for insoluble forms of uranium oxide are technically difficult with conventional methodology using adherent alveolar macrophages. The limited number of cells per flask and the slow dissolution rate in a large volume of nutritive medium are obvious restricting factors. Macrophages in suspension cannot be substituted because they represent different and poorly reproducible functional subtypes with regard to activation and enzyme secretion. Preliminary results on the dissolution of uranium oxide using immobilized alveolar macrophages are promising because large numbers of highly functional macrophages can be cultured in a limited volume. Cells were obtained by bronchoalveolar lavages performed on baboons (Papio papio) and then immobilized after the phagocytosis of uranium octoxide (U3O8) particles in alginate beads linked with Ca2+. The dissolution rate expressed as percentage of initial uranium content in cells was 0.039 +/- 0.016%/day for particles with a count median geometric diameter of 3.84 microns(sigma g = 1.84). A 2-fold increase in the dissolution rate was observed when the same number of particles was immobilized without macrophages. These results, obtained in vitro, suggest that the U3O8 preparation investigated should be assigned to inhalation class Y as recommended by the International Commission on Radiological Protection. Future experiments are intended to clarify this preliminary work and to examine the dissolution characteristics of other particles such as uranium dioxide. It is recommended that the dissolution rate should be measured over an interval of 3 weeks, which is compatible with the survival time of immobilized cells in culture and may reveal transformation states occurring with aging of the particles. PMID:1396447

  8. INFLUENCE OF TYPE AND NEUTRALISATION CAPACITY OF ANTACIDS ON DISSOLUTION RATE OF CIPROFLOXACIN AND MOXIFLOXACIN FROM TABLETS

    PubMed Central

    Uzunović, Alija; Vranić, Edina

    2009-01-01

    Dissolution rate of two fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) was analysed in presence/absence of three antacid formulations. Disintegration time and neutralisation capacity of antacid tablets were also checked. Variation in disintegration time indicated the importance of this parameter, and allowed evaluation of the influence of postponed antacid-fluoroquinolone contact. The results obtained in this study showed decreased dissolution rate of fluoroquinolone antibiotics from tablets in simultaneous presence of antacids, regardless of their type and neutralisation capacity. PMID:19284403

  9. Path Selection in the Growth of Wormholes

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Bruns, Stefan; Stipp, Susan; Sørensen, Henning

    2017-04-01

    Spontaneous growth of wormholes in natural porous media often leads to generation of highly complex flow systems with fractal morphologies. Despite extensive investigations, the underpinning mechanism for path selection during wormholing remains elusive. Here we introduce the concept of cumulative surface (CS) and show that the trajectory of a growing wormhole is one with minimum CS. Theoretical analysis shows that the CS determines the position of the dissolution front. We then show, using numerical simulation based on greyscale data of the fine grained carbonate rock chalk, that the tip of an advancing pore always follows the migration of the most far reaching dissolution front determined from the CS. The predicted dissolution behavior was verified by experimental observation of wormhole growth in chalk using in situ microtomography. The results suggest that wormholing is deterministic in nature rather than stochastic. This insight sheds light on engineering of artificial flow systems in geologic formations by exploiting self-organization in natural porous materials.

  10. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    NASA Astrophysics Data System (ADS)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of fault reactivation.

  11. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less

  12. Corrosion of dental aluminium bronze in neutral saline and saline lactic acid.

    PubMed

    Tibballs, J E; Erimescu, Raluca

    2006-09-01

    To compare the corrosion behaviours of two aluminium bronze, dental casting alloys during a standard immersion test and for immersion in neutral saline. Cast specimens of aluminium bronzes with 1.4 wt% Fe (G) and 4 wt% Fe (N) were subject to progressively longer periods (up to in total 7 days) immersed in 0.1 M saline, 0.1 M lactic acid solutions and examined by scanning electron microscopy with EDX analysis. Immersion in 0.1M neutral saline was for 7 days. In the acidic solution, exposed interdendritic volumes in alloy N corroded completely away in 7 days with dissolution of Ni-enriched precipitate species as well as the copper-rich matrix. Alloy G begins to corrode more slowly but by a similar mechanism. The number density of an Fe-enriched species is insufficient to maintain a continuous galvanic potential to the copper matrix, and dissolution becomes imperceptible. In neutral saline solution, galvanic action alone caused pit-etching, without the dissolution of either precipitate species. The upper limit for the total dissolution of metallic ions in the standard immersion test can be set at 200 microg cm(-2). Aluminium bronze dental alloys can be expected to release both copper and nickel ions into an acidic oral environment.

  13. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    PubMed

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  14. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    NASA Astrophysics Data System (ADS)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  15. Short-core acoustic resonant bar test and x-ray CT imaging on sandstone samples during super-critical CO2 flooding and dissolution

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.

    2010-12-01

    Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper petrophysical model, can be conducted with greater accuracy for determining the sc-CO2 saturation and distribution within reservoir rock, than typically predicted by the Gassmann model and/or by a natural gas reservoir analogue.

  16. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential.

    PubMed

    Telange, Darshan R; Patil, Arun T; Pethe, Anil M; Fegade, Harshal; Anand, Sridhar; Dave, Vivek S

    2017-10-15

    The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  18. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  19. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  20. Disintegration/dissolution profiles of copies of Fosamax (alendronate).

    PubMed

    Epstein, S; Cryer, B; Ragi, S; Zanchetta, J R; Walliser, J; Chow, J; Johnson, M A; Leyes, A E

    2003-01-01

    Poor quality has been reported for some generics and other copies of original products. We performed a pilot study to compare the disintegration/dissolution profiles of FOSAMAX (alendronate) 70 mg tablets with those of copies of FOSAMAX that were manufactured outside the United States. We used the standard United States Pharmacopeia (USP) disintegration method to evaluate FOSAMAX 70 mg tablets and 13 copies. At least 12 (n = 12) dosage units were tested for each product (except Fosmin, n = 10). The dissolution profiles of FOSAMAX and one representative copy were also compared. Nine copies (Osteomax, Defixal, Fosmin, Endronax, Osteomix, Genalmen, Fixopan, Osteoplus, and Fosval) disintegrated two- to ten-fold faster than FOSAMAX. Three other copies (Neobon, Regenesis, and Ostenan) disintegrated at least five-fold slower than FOSAMAX. Neobon is a softgel capsule, so special consideration was given to this different dosage form. One copy (Arendal) did not fall into either category but exhibited potentially large inter- and intra-lot variability. Dissolution of alendronate from Regenesis lagged behind that from FOSAMAX. Slower disintegration may reduce efficacy because bisphosphonates must be taken in the fasting state and contact with food or even certain beverages severely reduces bioavailability. Faster disintegration (or the use of gel-caps or other alterations to the drug formulation) could increase the risk of esophagitis, an adverse event associated with prolonged contact of the esophagus with bisphosphonates. These disintegration and dissolution results suggest that important differences may exist between FOSAMAX and its copies with regard to bioavailability, pharmacokinetics, and clinical efficacy and safety profiles. Additional testing is warranted to evaluate the pharmacokinetics and clinical safety of these copies.

  1. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability.

    PubMed

    Zakeri-Milani, Parvin; Barzegar-Jalali, Mohammad; Azimi, Mandana; Valizadeh, Hadi

    2009-09-01

    The solubility and dissolution rate of active ingredients are of major importance in preformulation studies of pharmaceutical dosage forms. In the present study, passively absorbed drugs are classified based on their intrinsic dissolution rate (IDR) and their intestinal permeabilities. IDR was determined by measuring the dissolution of a non-disintegrating disk of drug, and effective intestinal permeability of tested drugs in rat jejunum was determined using single perfusion technique. The obtained intrinsic dissolution rate values were in the range of 0.035-56.8 mg/min/cm(2) for tested drugs. The minimum and maximum intestinal permeabilities in rat intestine were determined to be 1.6 x 10(-5) and 2 x 10(-4)cm/s, respectively. Four classes of drugs were defined: Category I: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR>1(mg/min/cm(2)), Category II: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)), Category III: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR>1 (mg/min/cm(2)) and Category IV: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)). According to the results obtained and proposed classification of drugs, it is concluded that drugs could be categorized correctly based on their IDR and intestinal permeability values.

  2. Stability of surface nanobubbles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Shantanu; van der Hoef, Martin; Zhang, Xuehua; Lohse, Detlef

    2015-11-01

    We have studied the stability and dissolution of surface nanobubbles on the chemical heterogenous surface by performing Molecular Dynamics (MD) simulations of binary mixture consists of Lennard-Jones (LJ) particles. Recently our group has derived the exact expression for equilibrium contact angle of surface nanobubbles as a function of oversaturation of the gas concentration in bulk liquid and the lateral length of bubble. It has been showed that the contact line pinning and the oversaturation of gas concentration in bulk liquid is crucial in the stability of surface nanobubbles. Our simulations showed that how pinning of the three-phase contact line on the chemical heterogenous surface lead to the stability of the nanobubble. We have calculated the equilibrium contact angle by varying the gas concentration in bulk liquid and the lateral length of the bubble. Our results showed that the equilibrium contact angle follows the expression derived analytically by our group. We have also studied the bubble dissolution dynamics and showed the ''stick-jump'' mechanism which was also observed experimentally in case of dissolution of nanodrops.

  3. Pilot-scale tests of HEME and HEPA dissolution process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Z.H.; Strege, D.K.

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less

  4. Improved oral bioavailability of probucol by dry media-milling.

    PubMed

    Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning

    2017-09-01

    The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Macbeth, Tamzen; Vermeul, Vincent R.

    The effectiveness of in situ treatment using zero-valent iron to remediate sites with non-aqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene source area, combining moderate-temperature (maximum 50oC) subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate dechlorination and dissolution rates by a factor of 4 to 6 based on organic daughter products and a factor 8-16 using a chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilizationmore » at ambient groundwater temperature (~10oC) and as temperature was increased up to about 50oC. Increased reaction and contaminant dissolution were observed with increased temperature, but volatilization was minimal during the test because in situ reactions maintained low aqueous-phase TCE concentrations.« less

  6. Nanocomposite formation between alpha-glucosyl stevia and surfactant improves the dissolution profile of poorly water-soluble drug.

    PubMed

    Uchiyama, Hiromasa; Tozuka, Yuichi; Nishikawa, Masahiro; Takeuchi, Hirofumi

    2012-05-30

    The formation of a hybrid-nanocomposite using α-glucosyl stevia (Stevia-G) and surfactant was explored to improve the dissolution of flurbiprofen (FP). As reported previously, the dissolution amount of FP was enhanced in the presence of Stevia-G, induced by the formation of an FP and Stevia-G-associated nanostructure. When a small amount of sodium dodecyl sulfate (SDS) was present with Stevia-G, the amount of dissolved FP was extremely enhanced. This dissolution-enhancement effect was also observed with the cationic surfactant of dodecyl trimethyl ammonium bromide, but not with the non-ionic surfactant of n-octyl-β-D-maltopyranoside. To investigate the dissolution-enhancement effect of Stevia-G/SDS mixture, the pyrene I(1)/I(3) ratio was plotted versus the Stevia-G concentration. The pyrene I(1)/I(3) ratio of Stevia-G/SDS mixture had a sigmoidal curve at lower Stevia-G concentrations compared to the Stevia-G solution alone. These results indicate that the Stevia-G/SDS mixture provides a hydrophobic core around pyrene molecules at lower Stevia-G concentrations, leading to nanocomposite formation between Stevia-G and SDS. The nanocomposite of Stevia-G/SDS showed no cytotoxicity to Caco-2 cells at a mixture of 0.1% SDS and 1% Stevia-G solution, whereas 0.1% SDS solution showed high toxicity. These results suggest that the nanocomposite formation of Stevia-G/SDS may be useful way to enhance the dissolution of poorly water-soluble drugs without special treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Influence of formulation parameters on dissolution rate enhancement of glyburide using liquisolid technique.

    PubMed

    Singh, Sachin Kumar; Srinivasan, K K; Gowthamarajan, K; Prakash, Dev; Gaikwad, Narayan B; Singare, Dhananjay S

    2012-08-01

    The aim of this study was to investigate the use of liquisolid technique in improving the dissolution of glyburide in a solid dosage form. This study was designed to evaluate the effects of different formulation variables, i.e. type of non-volatile liquid vehicles and drug concentrations, on drug dissolution rates. The liquisolid tablets were formulated with Propylene glycol, as liquid vehicle. Microcrystalline cellulose was used as a carrier material, silica as a coating material and croscaremellose as a disintegrant. In vitro drug dissolution profiles of the liquisolid formulations were studied and compared with direct compressed non-micronized and micronized tablets of glyburide using USP II, paddle apparatus at 50 rpm for 60 min using 900 ml of 0.05 M Phosphate Buffer, pH 7.5. The stability studies showed that the dissolution profiles of liquisolid tablets prepared with propylene glycol were not affected by ageing significantly, as f2 value found between aged and fresh samples was 51.92. Differential scanning calorimetry revealed that the drug has got solubilized in the liquid vehicle. This was further supported by the powder X-ray diffraction studies of pure drug and the liquisolid powder system. It can be concluded that it is possible to load poorly soluble drug into liquisolid tablets by addition of PVP to the liquid vehicle. This is valuable for the preparation of liquisolid tablets of poorly soluble drugs. The liquisolid tablets prepared with PVP showed a remarkably improved dissolution rate in comparison with DC tablet and other formulations.

  8. Crystal faces of anhydrite (CaSO 4) and their preferential dissolution in aqueous solutions studied with AFM

    NASA Astrophysics Data System (ADS)

    Shindo, H.; Kaise, M.; Kondoh, H.; Nishihara, C.; Nozoye, H.

    Structures of cleaved surfaces of anhydrite were studied with atomic force microscopy (AFM) before and after partial dissolution in aqueous solutions of NH 4Cl and NaHSO 4. Two crystal faces showed atom-resolved images just after cleavage, (100) and (010), of which the former was roughened by the dissolution, while step structures were developed on the latter. After dissolution, steplines ran along the a- and c-axes on the (010) face, while they ran in directions inclined to these axes before. It was revealed that the arrangement of dipoles is a key factor in determining stabilities of step structures on crystal faces. On the terraces, the arrangement of oxygen atoms of the sulfate groups and calcium ions were clearly observed.

  9. What Happens during Natural Protein Fibre Dissolution in Ionic Liquids

    PubMed Central

    Chen, Jingyu; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2014-01-01

    Here, we monitor the dissolution of several natural protein fibres such as wool, human hair and silk, in various ionic liquids (ILs). The dissolution of protein-based materials using ILs is an emerging area exploring the production of new materials from waste products. Wool is a keratin fibre, which is extensively used in the textiles industry and as a result has considerable amounts of waste produced each year. Wool, along with human hair, has a unique morphology whereby the outer layer, the cuticle, is heavily cross linked with disulphide bonds, whereas silk does not have this outer layer. Here we show how ILs dissolve natural protein fibres and how the mechanism of dissolution is directly related to the structure and morphology of the wool fibre. PMID:28788183

  10. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the same ASD system induced by changes in the drug release mechanism in dissolution medium of a different pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    PubMed

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  14. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    PubMed

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Limited Carbonate Dissolution by Boring Microflora at Two Volcanically Acidified Temperate Sites: Ischia (Italy, Mediterranean Sea) and Faial (Azores, NE Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tribollet, A.; Grange, J. S.; Parra, H.; Rodolfo-Metalpa, R.; Carreiro-Silva, M.

    2018-01-01

    In situ effects of ocean acidification on carbonate dissolution by microboring flora, also called biogenic dissolution, have only been studied once in tropical environments. Naturally acidified seawaters due to CO2 vents offer a perfect setting to study these effects in temperate systems. Three sites were selected at Ischia (Italy, Mediterranean Sea) with one experiencing ambient pH and the two others a mean pHT of 7.2 and 7.5. At Faial (Azores, NE Atlantic), one site with ambient pH and one acidified site with a mean pHT of 7.4 were selected. Experiments were carried out during 1.5 months and 6 months in Azores and Ischia, respectively, to determine the effects of OA on microboring communities in various carbonate substrates. Low pH influenced negatively boring microflora development by limiting their depth of penetration and abundance in substrates. Biogenic dissolution was thus reduced by a factor 3 to 7 depending on sites and substrate types. At sites with ambient pH in Faial, biogenic dissolution contributed up to 23% to the total weight loss, while it contributed less than 1% to the total weight loss of substrates at the acidified sites. Most of the dissolution at these sites was due to chemical dissolution (often Ω ≤ 1). Such conditions maintained microboring communities at a pioneer stage with a limited depth of penetration in substrates. Our results, together with previous findings that showed an increase of biogenic dissolution at pH > 7.7, suggest that there is a pH tipping point below which microborer development and thus carbonate biogenic dissolution is strongly limited.

  16. Two-phase convective CO 2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J; Miller, D; Stone, M

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less

  18. Feed additive production by fermentation of herb Polygonum hydropiper L. and cassava pulp with simultaneous flavonoid dissolution.

    PubMed

    Song, Zhen-Tao; Zhu, Ming-Jun

    2017-03-01

    Fermentation of herb Polygonum hydropiper L. (PHL) and cassava pulp (CP) for feed additive production with simultaneous flavonoid dissolution was investigated, and a two-stage response surface methodology (RSM) based on Plackett-Burman factorial design (PB design) was used to optimize the flavonoid dissolution and protein content. Using the screening function of PB design, four different significant factors for the two response variables were acquired: factors A (CP) and B (PHL) for the flavonoid dissolution versus factors G (inoculum size) and H (fermentation time) for protein content. Then, two RSMs were used sequentially to improve the values of the two response variables separately. The mutual corroboration of the experimental results in the present study confirmed the validity of the associated experimental design. The validation experiment showed a flavonoid dissolution rate of 94.00%, and a protein content of 18.20%, gaining an increase in 21.20% and 199.10% over the control, respectively. The present study confirms the feasibility of feed additive production by Saccharomyces cerevisiae with CP and PHL and simultaneous optimization of flavonoid dissolution and protein content using a two-stage RSM. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  19. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties.

    PubMed

    Emami, Shahram; Adibkia, Khosro; Barzegar-Jalali, Mohammad; Siahi-Shadbad, Mohammadreza

    2018-04-04

    This study explores the preparation and investigation of dissolution properties of piroxicam cocrystals. Differential scanning calorimetry (DSC) was used to determine the capability of resorcinol (RES), methylparaben (MPB), and vanillin (VAN) to form cocrystals with piroxicam (PRX). Generation of cocrystals was attempted by liquid assisted grinding and slurry methods. Cocrystals were characterized by thermal methods, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. Apparent solubility, intrinsic dissolution rate (IDR), and powder dissolution profile of cocrystals were compared with anhydrous piroxicam, piroxicam monohydrate (PRXMH), and previously reported piroxicam-succinic acid cocrystal. Contact angles and particle sizes of the studied solids were also measured. Based on the DSC screening results, we prepared and characterized PRX-RES and PRX-MPB cocrystals. Interestingly, the cocrystals not only failed to improve apparent solubility and IDR of PRX but also showed lower values than PRX that were attributed to induction of phase transformation of PRX to PRXMH. In contrary, cocrystals performed better than PRX in powder dissolution studies. The higher dissolution rates of cocrystals were explained by improved wettability and reduced sizes. This study has highlighted the complexity of solid state properties of cocrystals and has provided new evidence for the in-solution stability issues of cocrystals.

  20. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    PubMed

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

Top