Removal of organic compounds from shale gas flowback water.
Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P; Rijnaarts, Huub H M
2018-07-01
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John
2009-12-01
The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.
Nonaqueous purification of mixed nitrate heat transfer media
Fiorucci, Louis C.; Morgan, Michael J.
1983-12-20
A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.
Polishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis
Zhou, Jinxiang; Baker, Brian O.; Grimsley, Charles T.; Husson, Scott M.
2016-01-01
This article reports findings on the use of nanofiltration (NF) and reverse osmosis (RO) for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water permeate quality of ten commercial NF and RO membranes. All membranes tested were effective in reducing total dissolved salts (TDS) and chemical oxygen demand (COD); however, only two membranes (Koch MPF-34 and Toray 70UB) gave sufficiently stable flux values to warrant longer term cross-flow filtration studies. Cross-flow flux measurements, scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that both membranes were eventually fouled by organic and inorganic foulants; however, the Toray 70UB RO membrane yielded a capacity of 1600 L/m2 prior to cleaning. A preliminary economic analysis compared the estimated costs of energy and consumables for a dual-stage UF/RO membrane process and dissolved air floatation (DAF) and found membrane process costs could be less than about 40% of the current DAF process. PMID:26978407
Freeman, S R; Poore, M H; Huntington, G B; Middleton, T F
2008-01-01
Finding appropriate disposal techniques for waste products is one of many challenges facing the poultry-processing industry. One waste generated in significant quantities is dissolved air floatation sludge, a product of wastewater treatment. Converting dissolved air floatation sludge into a dry feed product (meal) for incorporation into livestock feed appears to be a viable solution. This meal, called secondary protein nutrients (SPN), is high in protein (45% CP), fat (28% crude fat), and minerals. The protein consists of 85% B(2) and B(3) fractions, which are moderately to slowly degradable in the rumen, and therefore may potentially escape ruminal degradation and be available for digestion in the lower gastrointestinal tract. The goal of this research was to evaluate SPN as an alternative to traditional protein sources for ruminants by substituting it on an equivalent N basis for soybean meal in cattle and meat goat diets (0, 25, 50, 75, and 100% for cattle; 0, 20, and 40% for goats). When included in corn silage-based steer diets, increasing SPN resulted in linear and quadratic declines in both DMI and ADG (P < 0.001). Dry matter intake diminished with inclusion rates above 50%, and ADG were reduced after inclusion of SPN reached 25% of added N. Feed efficiency (the reciprocal of the efficiency of gain, which is represented by G:F) declined linearly (P < 0.001) with each incremental increase in SPN. Addition of up to 40% added N as SPN in goat diets caused no change in DMI, digestibility of DM or fiber, or N retention. Ruminal VFA concentrations showed little variation in either species. Increasing the proportion of SPN in the feed caused linear declines in ruminal NH(3) in steers (P < 0.001). Increasing SPN in goat diets, however, resulted in only a trend toward reductions of this parameter (P = 0.14). The decreases observed may have resulted from decreasing ruminal protein degradability or increasing fat caused by increasing the proportion of SPN in the feed. Urinary urea N as a percentage of urinary N showed significant declines in cattle, but not in goats, over the ranges of SPN offered. These results indicate that SPN can be included in diets for ruminants to supply up to 40% of supplemental N with little negative impact on animal performance.
Wheelchair cushion effect on skin temperature, heat flux, and relative humidity.
Stewart, S F; Palmieri, V; Cochran, G V
1980-05-01
For patients subject to decubitus ulcers, wheelchair cushions should be prescribed with knowledge of the cushion's effect on the thermal as well as mechanical environment of the skin. To define thermal effects that may be encountered during routine use, tests werr made on 24 commercially available cushions. Skin temperature, heat flux and relative humidity were measured under the ischial tuberosities of a normal 24-year-old man during a 1-hour period of sitting on each cushion. After 1 hour, skin temperatures increased by means of 3.4 C and 2.8 C on foams and viscoelastic foams and there were slight decreases in heat flux as compared with control values in air. On gels, skin temperatures remained constant and heat flux increased, while water "floatation" pads caused a mean skin temperature decreased of 2.7 C along with a marked increase in heat flux. Relative humidity at the skin cushion interface increased by 10.4%, 22.8% and 19.8% on foams, gels and water floatation pads, as compared with room air values. Representative cushions from each of the general types (foam, viscoelastic foam, gel and water floatation) also were subjected to 2-hour tests which indicated the measured parameters continued to change asymptotically.
Continuous removal of ore floatation reagents by an anaerobic-aerobic biological filter.
Cheng, Huang; Lin, Hai; Huo, Hanxin; Dong, Yingbo; Xue, Qiuyu; Cao, Lixia
2012-06-01
A laboratory scale up-flow anaerobic-aerobic biological filter was constructed to treat synthetic ore floatation wastewater. Volcanic stone was applied as packing media for aerobic section. Biodegradation of some common ore floatation reagents as potassium ethyl xanthate dithiophosphate and turpentine were evaluated. An average COD reduction rate of 88.7% for potassium ethyl xanthate by the biofilter was obtained at HRT of 6h, air water flow ratio of 10:1 and pH of 7. Its effluent COD concentration varied between 17 and 43 mg/L. Xanthates and dithiophosphate were found to be easily biodegradable, whereas turpentine was not favorable for microorganism to digest. The performance of the reactor fluctuated slightly within the temperature range of 10-35 °C. Operation of the biofilter was sensitive to influent pH values. A neutral to weak basic influent was preferred for biofilter to maintain an efficient operation. Anaerobic treatment was able to enhance the biodegradability of influents significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fracture, inflation and floatation embolisation of PTCA balloon.
O'Neill, Louisa; Sowbhaga, Vinay; Owens, Patrick
2015-01-09
This case outlines an unusual complication of coronary intervention, the likely mechanisms leading to this and possible retrieval options. It is the first case to the best of our knowledge reporting this complication. A 78-year-old Caucasian man underwent coronary stenting. During the procedure kinking and subsequent fracture of a non-compliant percutaneous transluminal coronary angioplasty (PTCA) balloon occurred. Injection of contrast down the guide to opacify the coronary arteries resulted in 'inflation' of the balloon with air, and embolisation of the inflated balloon into the proximal left anterior descending artery. The embolised balloon was retrieved by removal of the guide catheter and wire as a unit. The patient had a good angiographic outcome. This case highlights risks associated with usage of kinked balloons catheters, and describes for the first time to our knowledge, the inflation of a PTCA balloon with air from its shaft within the catheter, causing 'floatation' embolisation into the coronary artery. 2015 BMJ Publishing Group Ltd.
ROHO Dry floatation technology: implications for clinical practice.
Stephen-Haynes, Jackie
2009-09-01
This article discusses the aetiology of pressure ulcers, the clinical and financial cost of pressure ulcer prevention and the need for pressure reducing equipment. The role of Dry floatation in pressure ulcer prevention and management is explored. How Dry floatation technology works is discussed and its use within clinical practice is highlighted. The evidence to support Dry floatation is presented.
Airport cleanup rises above problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pressly, N.; Lucas, B.; Frumer, B.
Engineers used a treatment combination to improve the in-situ bioremediation system`s efficiency in removing underground fuel leaks at JFK Airport. John F. Kennedy International Airport, in New York City, on Jamaica Bay, has an above-ground storage capacity of about 32 million gallons of jet fuel, which flow through about 50 miles of high-pressure underground pipe to the central terminal area. EAch terminal`s fuel hydrant system was the major source os subsurface contamination at the site. The site is covered by 1 to 1.5 feet of reinforced concrete pavement. Liquid phase jet fuel (free product) was measured on the water tablemore » with true thickness ranging from less than 1 inch to 1 foot. After analysis of core samples, contamination was found adsorbed to the soil with maximum levels at the water table. This article describes the clean up, covering the following topics: microbial conditions during system operation; above-ground treatment challenges: free product emulsification, presence of biomass; evaluation of enhancements: dissolved air floatation, coagulation and flocculation, retention time adjustments; conclusions.« less
A pilot study to evaluate the effects of floatation spa treatment on patients with osteoarthritis.
Hill, S; Eckett, M J; Paterson, C; Harkness, E F
1999-12-01
To conduct a preliminary investigation of the effects on floatation spa therapy on quality of life in patients with osteoarthritis to see if controlled trials are warranted. Uncontrolled clinical trial. Private floatation spa therapy centre. Fourteen patients with chronic osteoarthritis of the weight-bearing joints, of whom four dropped out. Six weekly sessions of floatation spa therapy. SF36, AIMS2 and MYMOP quality-of-life questionnaires. All patients improved. Differences between baseline and discharge scores showed statistically significant improvement for MYMOP, but not AIMS2 or SF-36. Controlled trials of floatation spa therapy for patients with osteoarthritis are warranted.
Clarifying the Misconception about the Principle of Floatation
ERIC Educational Resources Information Center
Yadav, Manoj K.
2014-01-01
This paper aims to clarify the misconception about the violation of the principle of floatation. Improper understanding of the definition of "displaced fluid" by a floating body leads to the misconception. With the help of simple experiments, this article shows that there is no violation of the principle of floatation.
Raab, J; Gruzelier, J
1994-05-01
Two groups of 16 subjects, 8 of each gender, were examined on two occasions, one group before and after restricted environmental stimulation with floatation, and the other group without floatation was the control group. They were examined with a tactile object discrimination task carried out with each hand separately while blindfolded, and with a recognition memory test for words and unfamiliar faces, a test validated on neurological patients with left and right hemispheric lesions respectively. Consistent with both tasks the floatation group showed a significantly greater enhancement of right hemispheric processing after floatation than was found when retesting the controls. The results were distinguished from previous research on hypnosis where the same relative state of hemispheric imbalance was achieved with the same tasks, but largely through inhibitory influences on the left hemisphere.
NASA Astrophysics Data System (ADS)
Hosseini, B.; Fauria, K.; Manga, M.; Carey, R.; Soule, S. A.
2016-12-01
During the 2015 MESH (Mapping, Exploration, and Sampling at Havre) expedition to the submarine Havre caldera volcano, we collected pumice from the 2012 eruption. Here, we report pumice volume, porosity, and floatation time from measurements on 32 clasts (0.2-16 g) that provide insight into the eruption dynamics and mechanisms that deposited these clasts on the seafloor. We measured pumice volume using photogrammetry, capturing 100-180 images per sample. We used a series of open-source software—VisualSFM and MeshLab—to process the images and construct volume models. Combined with measurements of mass, we can determine pumice porosity. We calculated a mean porosity of 0.86+/-0.03 for the 32 samples. The lowest measured porosity of 0.78 was from a fragment of a giant 1.5-m diameter pumice clast. In addition to quantifying pumice volume and porosity, we conducted floatation experiments in which we cleaned, dried, and set the 32 samples on water and measured the time required for each clast to sink. Pumice floatation times varied from 0.8-226 days. We found that pumice floatation time scales with both pumice volume and porosity. These trends are consistent with a gas trapping mechanism for cold pumice floatation and suggest that pumice porosity, in addition to pumice volume, exerts an important control on the floatation time and fate of floating pumice. Despite the wide range of floatation times for these clasts, the proximal to vent collection suggests that these pumice (with the possible exception of the giant pumice fragment) were deposited on the seafloor soon after the 2012 eruption and never reached the ocean surface.
Sharifi, M; Lauer, J; Pompili, V J; Dillon, J C
1999-11-01
In this report, we describe an alternative method to the conventional arteriographic techniques of the left internal mammary artery (LIMA) graft using a balloon-tipped floatation catheter placed within the left subclavian artery. The floatation catheter will serve as both an occluder of the subclavian artery as well as a port for contrast injection. It may be effectively employed in the rare instances where direct cannulation of the LIMA graft is not possible.
Capillary and Gas Trapping Controls on Pumice Buoyancy in Water
NASA Astrophysics Data System (ADS)
Fauria, K. E.; Manga, M.; Wei, Z.
2016-12-01
Pumice can float on water for months to years. The longevity of pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography images of partially saturated pumice to demonstrate that gas trapping occurs in both ambient-temperature and hot (500°C) pumice. Furthermore, we show that the distribution of trapped gas clusters matches percolation theory predictions. Finally, we propose that diffusion out of trapped gaseous bubbles determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time scales like τ L2/(Dθ2) where is the floatation time, L is the characteristic length of the pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation.
Feinstein, Justin S; Khalsa, Sahib S; Yeh, Hung; Al Zoubi, Obada; Arevian, Armen C; Wohlrab, Colleen; Pantino, Marie K; Cartmell, Laci J; Simmons, W Kyle; Stein, Murray B; Paulus, Martin P
2018-06-01
Floatation-REST (Reduced Environmental Stimulation Therapy), an intervention that attenuates exteroceptive sensory input to the nervous system, has recently been found to reduce state anxiety across a diverse clinical sample with high levels of anxiety sensitivity (AS). To further examine this anxiolytic effect, the present study investigated the affective and physiological changes induced by Floatation-REST and assessed whether individuals with high AS experienced any alterations in their awareness for interoceptive sensation while immersed in an environment lacking exteroceptive sensation. Using a within-subject crossover design, 31 participants with high AS were randomly assigned to undergo a 90-minute session of Floatation-REST or an exteroceptive comparison condition. Measures of self-reported affect and interoceptive awareness were collected before and after each session, and blood pressure was measured during each session. Relative to the comparison condition, Floatation-REST generated a significant anxiolytic effect characterized by reductions in state anxiety and muscle tension and increases in feelings of relaxation and serenity (p < .001 for all variables). Significant blood pressure reductions were evident throughout the float session and reached the lowest point during the diastole phase (average reduction >12 mm Hg). The float environment also significantly enhanced awareness and attention for cardiorespiratory sensations. Floatation-REST induced a state of relaxation and heightened interoceptive awareness in a clinical sample with high AS. The paradoxical nature of the anxiolytic effect in this sample is discussed in relation to Wolpe's theory of reciprocal inhibition and the regulation of distress via sustained attention to present moment visceral sensations such as the breath. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Assessing fullness of asthma patients' aerosol inhalers.
Rickenbach, M A; Julious, S A
1994-07-01
The importance of regular medication in order to control asthma symptoms is recognized. However, there is no accurate mechanism for assessing the fullness of aerosol inhalers. The contribution to asthma morbidity of unexpectedly running out of inhaled medication is unknown. A study was undertaken to determine how patients assess inhaler fullness and the accuracy of their assessments, and to evaluate the floatation method of assessing inhaler fullness. An interview survey of 98 patients (51% of those invited to take part), using 289 inhalers, was completed at one general practice in Hampshire. One third of participants said they had difficulty assessing aerosol inhaler fullness and those aged 60 years and over were found to be more inaccurate in assessing fullness than younger participants. Shaking the inhaler to feel the contents move was the commonest method of assessment. When placed in water, an inhaler canister floating on its side with a corner of the canister valve exposed to air indicates that the canister is less than 15% full (sensitivity 90%, specificity 99%). Floating a canister in water provides an objective measurement of aerosol inhaler fullness. Providing the method is recommended by the aerosol inhaler manufacturer, general practitioners should demonstrate the floatation method to patients experiencing difficulty in assessing inhaler fullness.
Trapped bubbles keep pumice afloat and gas diffusion makes pumice sink
NASA Astrophysics Data System (ADS)
Fauria, Kristen E.; Manga, Michael; Wei, Zihan
2017-02-01
Pumice can float on water for months to years - long enough for pumice to travel across oceans and facilitate the spread of species. Long-lived pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography to image partially saturated pumice and demonstrate that non-condensable gas trapping occurs in both ambient temperature and hot (500 °C) pumice. Furthermore, we show that the size distribution of trapped gas clusters matches predictions of percolation theory. Finally, we propose that diffusion of trapped gas determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time τ scales as τ ∝ L2/Dθ2 where L is the characteristic length of pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation. A mechanistic understanding of pumice floatation is a step towards understanding how pumice is partitioned into floating and sinking components and provides an estimate for the lifetime of pumice rafts in the ocean.
Koompapong, Khuanchai; Sutthikornchai, Chantira
2009-01-01
Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 101, 102, and 103 per 10 µl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 102 per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting. PMID:19967082
Koompapong, Khuanchai; Sutthikornchai, Chantira; Sukthana, Yowalark
2009-12-01
Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, 10(1), 10(2), and 10(3) per 10 microl were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < 10(2) per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.
Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan
2012-01-01
A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.
Pollution control of industrial wastewater from soap and oil industries: a case study.
Abdel-Gawad, S; Abdel-Shafy, M
2002-01-01
Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.
Examining the short-term anxiolytic and antidepressant effect of Floatation-REST
Khalsa, Sahib S.; Yeh, Hung-wen; Wohlrab, Colleen; Simmons, W. Kyle; Stein, Murray B.; Paulus, Martin P.
2018-01-01
Floatation-REST (Reduced Environmental Stimulation Therapy) reduces sensory input to the nervous system through the act of floating supine in a pool of water saturated with Epsom salt. The float experience is calibrated so that sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational and proprioceptive channels are minimized, as is most movement and speech. This open-label study aimed to examine whether Floatation-REST would attenuate symptoms of anxiety, stress, and depression in a clinical sample. Fifty participants were recruited across a spectrum of anxiety and stress-related disorders (posttraumatic stress, generalized anxiety, panic, agoraphobia, and social anxiety), most (n = 46) with comorbid unipolar depression. Measures of self-reported affect were collected immediately before and after a 1-hour float session, with the primary outcome measure being the pre- to post-float change score on the Spielberger State Anxiety Inventory. Irrespective of diagnosis, Floatation-REST substantially reduced state anxiety (estimated Cohen’s d > 2). Moreover, participants reported significant reductions in stress, muscle tension, pain, depression and negative affect, accompanied by a significant improvement in mood characterized by increases in serenity, relaxation, happiness and overall well-being (p < .0001 for all variables). In reference to a group of 30 non-anxious participants, the effects were found to be more robust in the anxious sample and approaching non-anxious levels during the post-float period. Further analysis revealed that the most severely anxious participants reported the largest effects. Overall, the procedure was well-tolerated, with no major safety concerns stemming from this single session. The findings from this initial study need to be replicated in larger controlled trials, but suggest that Floatation-REST may be a promising technique for transiently reducing the suffering in those with anxiety and depression. Trial registration: ClinicalTrials.gov NCT03051074 PMID:29394251
Examining the short-term anxiolytic and antidepressant effect of Floatation-REST.
Feinstein, Justin S; Khalsa, Sahib S; Yeh, Hung-Wen; Wohlrab, Colleen; Simmons, W Kyle; Stein, Murray B; Paulus, Martin P
2018-01-01
Floatation-REST (Reduced Environmental Stimulation Therapy) reduces sensory input to the nervous system through the act of floating supine in a pool of water saturated with Epsom salt. The float experience is calibrated so that sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational and proprioceptive channels are minimized, as is most movement and speech. This open-label study aimed to examine whether Floatation-REST would attenuate symptoms of anxiety, stress, and depression in a clinical sample. Fifty participants were recruited across a spectrum of anxiety and stress-related disorders (posttraumatic stress, generalized anxiety, panic, agoraphobia, and social anxiety), most (n = 46) with comorbid unipolar depression. Measures of self-reported affect were collected immediately before and after a 1-hour float session, with the primary outcome measure being the pre- to post-float change score on the Spielberger State Anxiety Inventory. Irrespective of diagnosis, Floatation-REST substantially reduced state anxiety (estimated Cohen's d > 2). Moreover, participants reported significant reductions in stress, muscle tension, pain, depression and negative affect, accompanied by a significant improvement in mood characterized by increases in serenity, relaxation, happiness and overall well-being (p < .0001 for all variables). In reference to a group of 30 non-anxious participants, the effects were found to be more robust in the anxious sample and approaching non-anxious levels during the post-float period. Further analysis revealed that the most severely anxious participants reported the largest effects. Overall, the procedure was well-tolerated, with no major safety concerns stemming from this single session. The findings from this initial study need to be replicated in larger controlled trials, but suggest that Floatation-REST may be a promising technique for transiently reducing the suffering in those with anxiety and depression. ClinicalTrials.gov NCT03051074.
Eberle, Veronika A; Schoelkopf, Joachim; Gane, Patrick A C; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim
2014-07-16
Gastroretentive drug delivery systems (GRDDS) play an important role in the delivery of drug substances to the upper part of the gastrointestinal tract; they offer a possibility to overcome the limited gastric residence time of conventional dosage forms. The aim of the study was to understand drug-release and floatation mechanisms of a floating GRDDS based on functionalized calcium carbonate (FCC). The inherently low apparent density of the excipient (approx. 0.6 g/cm(3)) enabled a mechanism of floatation. The higher specific surface of FCC (approx. 70 m(2)) allowed sufficient hardness of resulting compacts. The floating mechanism of GRDDS was simulated in silico under simulated acidic and neutral conditions, and the results were compared to those obtained in vitro. United States Pharmacopeia (USP) dissolution methods are of limited usefulness for evaluating floating behavior and drug release of floating dosage forms. Therefore, we developed a custom-built stomach model to simultaneously analyze floating characteristics and drug release. In silico dissolution and floatation profiles of the FCC-based tablet were simulated using a three-dimensional cellular automata-based model. In simulated gastric fluid, the FCC-based tablets showed instant floatation. The compacts stayed afloat during the measurement in 0.1 N HCl and eroded completely while releasing the model drug substance. When water was used as dissolution medium, the tablets had no floating lag time and sank down during the measurement, resulting in a change of release kinetics. Floating dosage forms based on FCC appear promising. It was possible to manufacture floating tablets featuring a density of less than unity and sufficient hardness for further processing. In silico dissolution simulation offered a possibility to understand floating behavior and drug-release mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessing fullness of asthma patients' aerosol inhalers.
Rickenbach, M A; Julious, S A
1994-01-01
BACKGROUND. The importance of regular medication in order to control asthma symptoms is recognized. However, there is no accurate mechanism for assessing the fullness of aerosol inhalers. The contribution to asthma morbidity of unexpectedly running out of inhaled medication is unknown. AIM. A study was undertaken to determine how patients assess inhaler fullness and the accuracy of their assessments, and to evaluate the floatation method of assessing inhaler fullness. METHOD. An interview survey of 98 patients (51% of those invited to take part), using 289 inhalers, was completed at one general practice in Hampshire. RESULTS. One third of participants said they had difficulty assessing aerosol inhaler fullness and those aged 60 years and over were found to be more inaccurate in assessing fullness than younger participants. Shaking the inhaler to feel the contents move was the commonest method of assessment. When placed in water, an inhaler canister floating on its side with a corner of the canister valve exposed to air indicates that the canister is less than 15% full (sensitivity 90%, specificity 99%). CONCLUSION. Floating a canister in water provides an objective measurement of aerosol inhaler fullness. Providing the method is recommended by the aerosol inhaler manufacturer, general practitioners should demonstrate the floatation method to patients experiencing difficulty in assessing inhaler fullness. PMID:7619099
Wang, Kun; Jiang, Jia; Lv, Xinping; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei; Yu, Yong
2018-03-01
Based on the foaming property of the honey, a rapid, simple, and effective method solvent floatation (SF) was developed and firstly applied to the extraction and separation of triazine herbicides in honey. The analytes were determined by high-performance liquid chromatography. Some parameters affecting the extraction efficiencies, such as the type and volume of extraction solvent, type of salt, amount of (NH 4 ) 2 SO 4 , pH value of sample solution, gas flow rate, and floatation time, were investigated and optimized. The limits of detection for analytes are in the range of 0.16-0.56 μg kg -1 . The recoveries and relative standard deviations for determining triazines in five real honey samples are in the range of 78.2-112.9 and 0.2-9.2%, respectively.
Beneficiation and leaching study of a muti-Au carrier and low grade refractory gold ore
NASA Astrophysics Data System (ADS)
Li, W. J.; Song, Y. S.; Chen, Y.; Cai, L. L.; Zhou, G. Y.
2017-09-01
Detailed mineralogy and beneficiation and leaching study of a muti-Au carrier, low grade refractory gold ore from a beneficiation plant in Henan Province, China, was investigated. Mineral liberation analysis, scanning electron microscopy, element phase analysis and etc. by a mineral liberation analyser were used for mineralogical characterization study of this ore. The present work describes an experimental study on the effect of traditional parameters (such as grinding fineness and reagent regimes), middling processing method and flowsheet construction on the total recovery and the assay of the floatation concentrate. Two-step floatation and part of middling combined to the floatation tailing for gold leaching process resulted in high gold grade (g.t-1) and gold recovery (%) for this refractory gold ore. This process opens the possibilities of maximizing Au grade and recoveries in a muti-Au carrier and low grade refractory gold ore where low recoveries are common.
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.
Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke
2014-11-01
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wong, C K; Wade, C K
1995-07-01
Custom dry floatation cushions were used to potentially reduce iliotibial band (ITB) contractures in long-term wheelchair users. Time-series with repeated measures pretreatment and posttreatment with follow-up at 6 and 12 months. Community wheelchair users seen in private office. A volunteer sample of nine subjects diagnosed with Duchenne's or limb-girdle muscular dystrophy, nonambulatory at least 3 years, and able to lie prone were included. One subject dropped out owing to adverse effects, one for technical reasons. Seven subjects completed the study and were contacted 6 months later; two were evaluated 1 year later. The participants ranged in age from 9 to 69 years, were nonambulatory an average of 7 years, and spent 12 to 16 hours a day in their wheelchairs. Subjects used custom dry floatation (ROHO) wheelchair cushions for 9 weeks. The cushions were designed with a sunken middle portion and separately inflated lateral portions, providing adduction to the thighs. ITB contractures were measured using goniometry every 3 weeks, twice before and three times after cushion delivery. After 9 weeks, a 13 degrees average decrease in ITB contracture was noted, representing a 34% change from baseline (p < .001, 99% confidence intervals, paired one-tailed t test). Using a custom dry floatation cushion for 9 weeks reduced ITB contractures in nonambulatory muscular dystrophy patients by an average 34%. Patients with large initial ITB contractures benefited the most. Such a cushion could be used to reduce ITB contractures in similar patient populations.
The basic aerodynamics of floatation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, M.J.; Wood, D.H.
1983-09-01
The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.
Water turbine system and method of operation
Costin, Daniel P [Montpelier, VT
2011-05-10
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Water turbine system and method of operation
Costin, Daniel P [Montpelier, VT
2009-02-10
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Water turbine system and method of operation
Costin, Daniel P.
2010-06-15
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C
1986-01-01
Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.
Browne, James D; Allen, Eoin; Murphy, Jerry D
2013-01-01
This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.
On-line fast response device and method for measuring dissolved gas in a fluid
Tutu, Narinder Kumar [Manorville, NY
2011-01-11
A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.
The method for froth floatation condition recognition based on adaptive feature weighted
NASA Astrophysics Data System (ADS)
Wang, Jieran; Zhang, Jun; Tian, Jinwen; Zhang, Daimeng; Liu, Xiaomao
2018-03-01
The fusion of foam characteristics can play a complementary role in expressing the content of foam image. The weight of foam characteristics is the key to make full use of the relationship between the different features. In this paper, an Adaptive Feature Weighted Method For Froth Floatation Condition Recognition is proposed. Foam features without and with weights are both classified by using support vector machine (SVM).The classification accuracy and optimal equaling algorithm under the each ore grade are regarded as the result of the adaptive feature weighting algorithm. At the same time the effectiveness of adaptive weighted method is demonstrated.
Zhang, Rui; Li, Na; Wang, Chuanliu; Bai, Yuping; Ren, Ruibing; Gao, Shiqian; Yu, Wenzhi; Zhao, Tianqi; Zhang, Hanqi
2011-10-17
The foaming property of ionic liquids (ILs) was found and the factors that can influence foamability of the ILs were investigated. Based on the property of the ILs, the foam floatation-solid phase extraction (FF-SPE) was developed. The IL-based FF-SPE was applied to the extraction and concentration of steroid hormones, including corticosterone, 17-β-estadiol, 17-α-estradiol, 19-nortestosterone, estrone, testosterone, 17-α-hydroxyprogesterone, medroxyprogesterone, chloromadinon 17-acetate, norethisterone acetate, medroxyprogesterone-17-acetate, progesterone, 17-β-estradiol 3-benzoate and testosteron 17-propionate in water samples and then the steroid hormones were determined by high-performance liquid chromatography. The extraction and concentration were performed synchronously in 10 min. Some experimental conditions were examined and optimized. The recoveries ranged from 50.6% to 95.2% for lake water sample and from 53.4% to 98.7% for rain water sample. The precision ranged from 2.43% to 7.43% for the lake water sample and 2.07-7.01% for rain water sample. Based on the foaming property of ILs, the application of foam floatation should be widened. Copyright © 2011 Elsevier B.V. All rights reserved.
Fracture, inflation and floatation embolisation of PTCA balloon
O'Neill, Louisa; Sowbhaga, Vinay; Owens, Patrick
2015-01-01
This case outlines an unusual complication of coronary intervention, the likely mechanisms leading to this and possible retrieval options. It is the first case to the best of our knowledge reporting this complication. A 78-year-old Caucasian man underwent coronary stenting. During the procedure kinking and subsequent fracture of a non-compliant percutaneous transluminal coronary angioplasty (PTCA) balloon occurred. Injection of contrast down the guide to opacify the coronary arteries resulted in ‘inflation’ of the balloon with air, and embolisation of the inflated balloon into the proximal left anterior descending artery. The embolised balloon was retrieved by removal of the guide catheter and wire as a unit. The patient had a good angiographic outcome. This case highlights risks associated with usage of kinked balloons catheters, and describes for the first time to our knowledge, the inflation of a PTCA balloon with air from its shaft within the catheter, causing ‘floatation’ embolisation into the coronary artery. PMID:25576524
Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk; Irwin, Louis N.; Irwin, Troy
2002-11-01
The lower cloud level of the Venusian atmosphere is an environmental niche that could harbor microbial life. Particularly the mode 3 particles that are enriched in this atmospheric layer are of astrobiological interest. We propose here a sample collection mission to the atmosphere of Venus and evaluate three mission options. The first option is a Stardust-type spacecraft used for sample collection, the second option is a Rotating Probe Tether System, and the third option is a Parachute Drop - Balloon Floatation System. Given the current state of technology, the result of our preliminary analysis is that the Parachute Drop - Balloon Floatation Mission is the most feasible and practical option.
Evaluation of an active seating system for pressure relief.
Koo, T K; Mak, A F; Lee, Y L
1995-01-01
In the first part of this study, the inflation-pressure and interface-pressure profiles of an active cushion system, the Talley active air bellows cushion, were examined continuously for one complete working cycle using the dynamic pressure monitor. The relationship between the inflation pressure and the interface pressure was explored. A well-defined relationship was found in the areas directly over the air bellows. In the second part of this study, the pressure-relieving characteristics of the active cushion were assessed quantitatively and compared to two types of passive cushions--the Roho high-profile air floatation cushion and the polyurethane (PU) foam cushion. Eight non-disabled subjects were positioned on the active cushion at two inflation-pressure levels--30 mmHg and 60 mmHg, or on the Roho or the PU foam cushions. Interface pressures were recorded using the Oxford pressure monitor. For the active cushion it was shown that the higher the inflation pressure was, the better the pressure-relieving characteristics seemed to be. In general, the pressure-relieving characteristics of the active cushion were not as good as those of the passive cushions being tested. The active cushion could alter the pressures over the ischial tuberosities cyclically but the amount of pressure alternation depended on the relative position of the ischial tuberosities and the air bellows.
Effect of matrix composition and process conditions on casein-gelatin beads floating properties.
Bulgarelli, E; Forni, F; Bernabei, M T
2000-04-05
Casein-gelatin beads have been prepared by emulsification extraction method and cross-linked with D,L-glyceraldehyde in an acetone-water mixture 3:1 (v/v). Casein emulsifying properties cause air bubble incorporation and the formation of large holes in the beads. The high porosity of the matrix influences the bead properties such as drug loading, drug release and floatation. These effects have been stressed by comparison with low porous beads, artificially prepared without cavities. The percentage of casein in the matrix increases the drug loading of both low and high porous matrices, although the loading of high porous matrices is lower than that of low porous matrices. As a matter of fact, the drug should be more easily removed during washing and recovery because of the higher superficial pore area of the beads. This can explain the drug release rate increase, observed in high porous matrix, in comparison with beads without cavities. This is due to the rapid diffusion of the drug through water filled pores. The study shows that cavities act as an air reservoir and enable beads to float. Therefore, casein seems to be a material suitable to the inexpensive formation of an air reservoir for floating systems.
Intermediate eXperimental Vehicle Jettison Mechanism Engineering and Test
NASA Astrophysics Data System (ADS)
Caldirola, L.; Schmid, B.
2015-09-01
The IXV (Intermediate eXperimental Vehicle) is a project of the European Space Agency that aims to develop an autonomous atmospheric re-entry system. A flight model has been launched on a Vega rocket on the 11th of February 2015 and after descending from an altitude of 420km splashed down in the Pacific Ocean. In the frame of this project RUAG space has developed the entire cold structure and the mechanisms able to eject the panels closing the parachute and floatation balloons bays. Panels ejection allows respectively parachutes deployment, reducing the IXV re-entry speed from Mach 1.5 to few meters per second just before the splash down, and buoyancy balloons inflation which let the vehicle float on the sea surface until arrival of the recovery ship.Such panels and the relevant mechanisms had to be designed not only to guarantee the correct external aerodynamic shape needed for the flight performance, but also to provide enough stiffness and strength to the IXV structure, being capable of transfer high shear loads.Moreover the floatation doors design enclosed both the hold down and release mechanism, based on a non- explosive separation nut, and the jettison springs, therefore particular attention had to be put to prevent any damage to the panel during the release which could have potentially led to jamming of the panel itself which jeopardise the floatation balloon deployment. The chosen design was therefore based on a spherical joint, so that shear load can be withstand and bending moment on the jettison-able panels limited at the same time.Test activities have been performed at mechanism level for environmental and preliminary functional qualification, subsystem level, including dummy panel jettison and full scale IXV drop test, to complete the functional qualification and system level test to close qualification campaign.The purpose of this paper is to present the mechanism design and the activities performed to qualify at component and sub-system level the jettison mechanism of the floatation balloons doors.
Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology
NASA Astrophysics Data System (ADS)
Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.
2017-06-01
Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.
Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study
Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue
2011-01-01
In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228
Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.
Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue
2011-06-01
In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.
REMOVAL OF HUMICSUBSTANCES AND ALGAE BY DISSOLVED AIR FLOTATION
Dissolved air flotation (DAF) is used in place of conventional gravity settling as a means to separate low density floc particles from water. The following objectives were: (1) to compare DAF to conventional water treatment of coagulation-flocculation followed by gravity settling...
Comparison of McMaster and FECPAKG2 methods for counting nematode eggs in the faeces of alpacas.
Rashid, Mohammed H; Stevenson, Mark A; Waenga, Shea; Mirams, Greg; Campbell, Angus J D; Vaughan, Jane L; Jabbar, Abdul
2018-05-02
This study aimed to compare the FECPAK G2 and the McMaster techniques for counting of gastrointestinal nematode eggs in the faeces of alpacas using two floatation solutions (saturated sodium chloride and sucrose solutions). Faecal eggs counts from both techniques were compared using the Lin's concordance correlation coefficient and Bland and Altman statistics. Results showed moderate to good agreement between the two methods, with better agreement achieved when saturated sugar is used as a floatation fluid, particularly when faecal egg counts are less than 1000 eggs per gram of faeces. To the best of our knowledge this is the first study to assess agreement of measurements between McMaster and FECPAK G2 methods for estimating faecal eggs in South American camelids.
Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy
2014-07-01
High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.
Dube, T S; Ranpise, N S; Ranade, A N
2014-01-01
The objective of the present study was to fabricate and evaluate a multiparticulate oral gastroretentive dosage form of baclofen characterized by a central large cavity (hollow core) promoting unmitigated floatation with practical applications to alleviate the signs and symptoms of spasticity and muscular rigidity. Solvent diffusion and evaporation procedure were applied to prepare floating microspheres with a central large cavity using various combinations of ethylcellulose (release retardant) and HPMC K4M (release modifier) dissolved in a mixture of dichloromethane and methanol (2:1). The obtained microspheres (700-1000 µm) exhibit excellent floating ability (86 ± 2.00%) and release characteristics with entrapment efficiency of 95.2 ± 0.32%. Microspheres fabricated with ethylcellulose to HPMC K4M in the ratio 8.5:1.5 released 98.67% of the entrapped drug in 12 h. Muscle relaxation caused by baclofen microspheres impairs the rotarod performance for more than 12 h. Abdominal X-ray images showed that the gastroretention period of the floating barium sulfate- labeled microspheres was no less than 10 h. The buoyant baclofen microspheres provide a promising gastroretentive drug delivery system to deliver baclofen in spastic patients with a sustained release rate.
A simple method for the extraction and identification of light density microplastics from soil.
Zhang, Shaoliang; Yang, Xiaomei; Gertsen, Hennie; Peters, Piet; Salánki, Tamás; Geissen, Violette
2018-03-01
This article introduces a simple and cost-saving method developed to extract, distinguish and quantify light density microplastics of polyethylene (PE) and polypropylene (PP) in soil. A floatation method using distilled water was used to extract the light density microplastics from soil samples. Microplastics and impurities were identified using a heating method (3-5s at 130°C). The number and size of particles were determined using a camera (Leica DFC 425) connected to a microscope (Leica wild M3C, Type S, simple light, 6.4×). Quantification of the microplastics was conducted using a developed model. Results showed that the floatation method was effective in extracting microplastics from soils, with recovery rates of approximately 90%. After being exposed to heat, the microplastics in the soil samples melted and were transformed into circular transparent particles while other impurities, such as organic matter and silicates were not changed by the heat. Regression analysis of microplastics weight and particle volume (a calculation based on image J software analysis) after heating showed the best fit (y=1.14x+0.46, R 2 =99%, p<0.001). Recovery rates based on the empirical model method were >80%. Results from field samples collected from North-western China prove that our method of repetitive floatation and heating can be used to extract, distinguish and quantify light density polyethylene microplastics in soils. Microplastics mass can be evaluated using the empirical model. Copyright © 2017 Elsevier B.V. All rights reserved.
Casas, Marta; Strusi, Orazio Luca; Jiménez-Castellanos, M Rosa; Colombo, Paolo
2011-01-01
This paper studies the Riboflavin release from systems made of assembled modules of Dome Matrix® technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA) graft copolymers produced by two different drying methods. Two different shape modules were manufactured for this study, i.e., female and male modules, in order to facilitate their assemblage in "void configuration", a system with an internal void space. Drug release studies on void configurations based on THSEMA show faster releases than TSEMA; HPMC systems used as a comparative reference showed intermediate release. Moreover, using void configurations made with one module of TSEMA and the other of THSEMA is possible to average the drug release, without difference between the drying methods used for the polymers. With respect to the floatation characteristics, all the void configurations floated immediately and, due to the mass center of the system, the floatation position of the system was always axial with the female module up and the male down. The drug release studies performed with a sinker to force the immersion of the systems in the medium did not show differences with respect to the dissolution test without a sinker. The combination of floatation capability of the assembled modules and the prolonged drug release provided with the graft copolymers make these assembled modules candidates as controlled release gastro-retentive dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.
Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)
Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2013-01-01
Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.
Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.
Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P
2014-02-01
In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.
Closeup View - Sigma "7" Capsule - Recovery Ship
1962-10-03
S62-06175 (3 Oct. 1962) --- Closeup view of the Mercury-Atlas 8 (MA-8) Sigma 7 capsule being lowered to recovery ship's deck. Navy personnel remove the floatation device before opening the capsule. Photo credit: NASA
Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation
NASA Astrophysics Data System (ADS)
Xue, Ping; Li, Guangqiang; Qin, Qingwei
Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.
Cummings, P; Mueller, B A; Quan, L
2011-06-01
To estimate the association between wearing a personal floatation device (PFD) and death by drowning among recreational boaters. Matched cohort study analysis of Coast Guard data. United States. Recreational boaters during 2000-2006. Risk ratio (RR) for drowning death comparing boaters wearing a PFD with boaters not wearing a PFD. Approximately 4915 boater records from 1809 vessels may have been eligible for our study, but because of missing records and other problems, the analysis was restricted to 1597 boaters in 625 vessels with 878 drowning deaths. The adjusted RR was 0.51 (95% CI 0.35 to 0.74). If the estimated association is causal, wearing a PFD may potentially prevent one in two drowning deaths among recreational boaters. However, this estimate may be biased because many vessels had to be excluded from the analysis.
A Wave Glider for Studies of Biofouling and Ocean Productivity
2017-11-07
sensors for conductivity, water and air temperature , dissolved oxygen , chlorophyll-a fluorescence, wind speed and direction, barometric pressure, and...endurance, reduce fuel consumption , and reduce carbon emissions. During deployments, vessels encounter a range of planktonic assemblages and ocean...with an acoustic Doppler current profiler, an optical camera system, and standard sensors for conductivity, water and air temperature , dissolved
Modelling the global efficiency of dissolved air flotation.
Leppinen, D M; Dalziel, S B; Linden, P F
2001-01-01
The purpose of this paper is to examine how the efficiency of dissolved air flotation is affected by the size of bubbles and particles. The rise speed of bubble/particle agglomerates is modelled as a function of bubble and particle size, while the kinematics of the bubble attachment process is modelled using the population balance approach adopted by Matsui, Fukushi and Tambo. It is found that flotation, in general, is enhanced by the use of larger particles and larger bubbles. In particular, it is concluded that for the ultra-high surface loading rates of 25 m/hr or more planned for future flotation tanks, bubble size will have to be increased by a factor of two over the size currently employed in many facilities during dissolved air flotation.
29 CFR 1915.158 - Lifesaving equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment (PPE) § 1915.158 Lifesaving equipment. (a) Personal flotation devices. (1) PFDs (life preservers, life... Equipment Specifications. (2) Prior to each use, personal floatation devices shall be inspected for dry rot...
29 CFR 1915.158 - Lifesaving equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment (PPE) § 1915.158 Lifesaving equipment. (a) Personal flotation devices. (1) PFDs (life preservers, life... Equipment Specifications. (2) Prior to each use, personal floatation devices shall be inspected for dry rot...
Bilung, Lesley Maurice; Tahar, Ahmad Syatir; Yunos, Nur Emyliana; Apun, Kasing; Lim, Yvonne Ai-Lian; Nillian, Elexson; Hashim, Hashimatul Fatma
2017-01-01
Cryptosporidiosis and cyclosporiasis are caused by waterborne coccidian protozoan parasites of the genera Cryptosporidium and Cyclospora, respectively. This study was conducted to detect Cryptosporidium and Cyclospora oocysts from environmental water abstracted by drinking water treatment plants and recreational activities in Sarawak, Malaysia. Water samples (12 each) were collected from Sungai Sarawak Kanan in Bau and Sungai Sarawak Kiri in Batu Kitang, respectively. In addition, 6 water samples each were collected from Ranchan Recreational Park and UNIMAS Lake at Universiti Malaysia Sarawak, Kota Samarahan, respectively. Water physicochemical parameters were also recorded. All samples were concentrated by the iron sulfate flocculation method followed by the sucrose floatation technique. Cryptosporidium and Cyclospora were detected by modified Ziehl-Neelsen technique. Correlation of the parasites distribution with water physicochemical parameters was analysed using bivariate Pearson correlation. Based on the 24 total samples of environmental water abstracted by drinking water treatment plants, all the samples (24/24; 100%) were positive with Cryptosporidium , and only 2 samples (2/24; 8.33%) were positive with Cyclospora . Based on the 12 total samples of water for recreational activities, 4 samples (4/12; 33%) were positive with Cryptosporidium , while 2 samples (2/12; 17%) were positive with Cyclospora . Cryptosporidium oocysts were negatively correlated with dissolved oxygen (DO).
Tahar, Ahmad Syatir; Yunos, Nur Emyliana; Apun, Kasing; Nillian, Elexson; Hashim, Hashimatul Fatma
2017-01-01
Cryptosporidiosis and cyclosporiasis are caused by waterborne coccidian protozoan parasites of the genera Cryptosporidium and Cyclospora, respectively. This study was conducted to detect Cryptosporidium and Cyclospora oocysts from environmental water abstracted by drinking water treatment plants and recreational activities in Sarawak, Malaysia. Water samples (12 each) were collected from Sungai Sarawak Kanan in Bau and Sungai Sarawak Kiri in Batu Kitang, respectively. In addition, 6 water samples each were collected from Ranchan Recreational Park and UNIMAS Lake at Universiti Malaysia Sarawak, Kota Samarahan, respectively. Water physicochemical parameters were also recorded. All samples were concentrated by the iron sulfate flocculation method followed by the sucrose floatation technique. Cryptosporidium and Cyclospora were detected by modified Ziehl-Neelsen technique. Correlation of the parasites distribution with water physicochemical parameters was analysed using bivariate Pearson correlation. Based on the 24 total samples of environmental water abstracted by drinking water treatment plants, all the samples (24/24; 100%) were positive with Cryptosporidium, and only 2 samples (2/24; 8.33%) were positive with Cyclospora. Based on the 12 total samples of water for recreational activities, 4 samples (4/12; 33%) were positive with Cryptosporidium, while 2 samples (2/12; 17%) were positive with Cyclospora. Cryptosporidium oocysts were negatively correlated with dissolved oxygen (DO). PMID:29234679
ERIC Educational Resources Information Center
Akcay, Behiye
2004-01-01
The chief purpose of this activity is to strengthen students' understanding of concepts of floatation such as surface area and pressure (weight per unit area) via snowshoes. Students brainstorm, make predictions, perform calculations, and practice communication skills through interviewing elders and experts. This activity lets students see the…
Oba, Peter; Ejobi, Francis; Omadang, Leonard; Chamai, Martin; Okwi, Andrew Livex; Othieno, Emmanuel; Inangolet, Francis Olaki; Ocaido, Michael
2016-02-01
A cross sectional study was conducted in Moroto and Bukedea districts of Uganda from May to September 2013 to determine the prevalence and risk factors of Echinococcus granulosus infection in dogs. Fresh dog faecal samples were collected, preserved in 70 % ethanol, and later screened for presence of taeniid eggs using zinc chloride floatation method. Positive samples were confirmed by a copro-PCR (polymerase chain reaction) for E. granulosus using NADH dehydrogenase sub-unit 1 gene (NADH1) as a target molecular marker. Structured questionnaires and focus group discussions were used to collect quantitative and qualitative data for risk factor identification. Study sub-counties were selected by simple random sampling. Overall apparent prevalence of taeniid infection in dogs of 14.9 % (39/261, confidence interval 10.6-19.2) in both districts was recorded using the faecal floatation test. The sensitivity of the faecal floatation test was found to be 78 % (25/32), while the specificity was 93 % (215/229). Copro-PCR results revealed a true prevalence of 14.4 % (9.91-19.0, 95 % CI) in dogs in Moroto district and 7.4 % (2.14-12.60, 95 % CI) in Bukedea district. The overall true prevalence of cystic echinococcosis (CE) was 12.2 % (8.70-15.76, 95 % CI) in both districts. The major risk factors identified using logistic regression were uncontrolled access of dogs to animal slaughter facilities, higher cattle herd sizes and lack of knowledge about the disease. It was recommended that restricting dog access to infected tissues and public health education about epidemiology of CE should be done.
Wolffs, Petra; Norling, Börje; Rådström, Peter
2005-03-01
Real-time PCR technology is increasingly used for detection and quantification of pathogens in food samples. A main disadvantage of nucleic acid detection is the inability to distinguish between signals originating from viable cells and DNA released from dead cells. In order to gain knowledge concerning risks of false-positive results due to detection of DNA originating from dead cells, quantitative PCR (qPCR) was used to investigate the degradation kinetics of free DNA in four types of meat samples. Results showed that the fastest degradation rate was observed (1 log unit per 0.5 h) in chicken homogenate, whereas the slowest rate was observed in pork rinse (1 log unit per 120.5 h). Overall results indicated that degradation occurred faster in chicken samples than in pork samples and faster at higher temperatures. Based on these results, it was concluded that, especially in pork samples, there is a risk of false-positive PCR results. This was confirmed in a quantitative study on cell death and signal persistence over a period of 28 days, employing three different methods, i.e. viable counts, direct qPCR, and finally floatation, a recently developed discontinuous density centrifugation method, followed by qPCR. Results showed that direct qPCR resulted in an overestimation of up to 10 times of the amount of cells in the samples compared to viable counts, due to detection of DNA from dead cells. However, after using floatation prior to qPCR, results resembled the viable count data. This indicates that by using of floatation as a sample treatment step prior to qPCR, the risk of false-positive PCR results due to detection of dead cells, can be minimized.
Segev, Gilad; Rojas, Alicia; Lavy, Eran; Yaffe, Marganit; Aroch, Itamar; Baneth, Gad
2018-03-05
Dogs are the definitive hosts of Spirocerca lupi. Spirocercosis is treated by prolonged avermectin administration by injection or daily oral doses. In this prospective, double-blinded, placebo-controlled, clinical trial, the efficacy of imidacloprid and moxidectin spot-on formulation (Advocate®) was compared to injectable doramectin (Dectomax®). Dogs diagnosed with benign esophageal spirocercosis were divided randomly into doramectin (400 μg/kg IM) or moxidectin and imidacloprid spot-on (2.5-6.25 mg/kg and 10-25 mg/kg, respectively) groups and treated weekly for 12 consecutive weeks. Dogs were followed for 20 weeks by physical examination, owners' questionnaire, blood work, fecal floatation, PCR and endoscopy. All the doramectin group dogs (n = 10) completed the treatment and follow-up, and the disease had completely resolved in all by week 12. Of the Advocate® group (n = 10), four had complete resolution at week 12, four had partial resolution, one dog did not respond to treatment, and one dog was switched to the doramectin protocol on week 5 due to persistent severe clinical signs. PCR analysis was more sensitive in detecting S. lupi eggs compared to fecal floatation. Discrepancies were detected on 22 occasions, of which on 20 occasions, the PCR was positive while fecal floatation was negative, and only on two occasions the PCR results were negative while fecal flotation was positive. The present results indicate that weekly Advocate® spot-on administration may be effective for treating benign esophageal spirocercosis, but is less effective than the currently used injectable doramectin therapy at the dose and duration used herein.
Tchou, Isabelle; Sabido, Odile; Lambert, Claude; Misery, Laurent; Garraud, Olivier; Genin, Christian
2003-03-03
Epidermis and surface epithelium-dendritic cells comprise of immature cells termed Langerhans cells (LCs), which express characteristically the Birbeck granules, along with surface markers such as CD1a. These cells can capture a pathogen and then migrate and differentiate to a more mature stage. During this maturation process, dentritic cells express surface markers differentially. In physio-pathological models of infection where LCs are involved, it is critically important to ensure that the LCs tested in vitro are still immature and are not artefactually matured-dentritic cells. For experimental purposes, LCs were isolated from skin epidermis obtained from patients undergoing plastic surgery. This work thus aimed at collecting fresh LCs ex vivo and at testing the cells for phenotypic and functional characteristics of the immature stage. After mechanic disruption of the epidermis and proceeding for single cell suspension obtaining, two methods for purification were tested in parallel: (a) a positive immuno-magnetic separation by anti-CD1a-coated beads and (b) a purely mechanic purification system based on a three-step Ficoll floatation process. Both systems were equally efficient in terms of purification and yield. By using flow cytometry phenotyping, we have demonstrated that the use of magnetic beads led to some degree of maturation of CD1a(+) LCs, contrary to the repeated Ficoll floatation. This work calls attention for the use of certain monoclonal antibodies such as anti-CD1a to purify immature dendritic cells as they pre-activate these cells. Pre-activation would render a number of assays on the early events of LC physiology invalid, contrary to the purification of fresh skin epidermis LCs by means of a repeated Ficoll floatation.
24 CFR 3285.302 - Flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... loads associated with design flood and wind events or combined wind and flood events, and homes must be installed on foundation supports that are designed and anchored to prevent floatation, collapse, or lateral... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard...
36 CFR 3.7 - What are the NPS Personal Floatation Device (PFD) requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.7 What are the NPS Personal... designated times and/or during designated water based activities in accordance with §§ 1.5 and 1.7 of this...
36 CFR 3.7 - What are the NPS Personal Floatation Device (PFD) requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.7 What are the NPS Personal... designated times and/or during designated water based activities in accordance with §§ 1.5 and 1.7 of this...
Maintenance Manual for the Automated Airdrop Information Retrieval System; Human Factors Database
1994-09-01
Sensorimotor Abilities Loss of Cognitive/Perceptual Abilities Treatment drug therapy physical therapy cognitive therapy biofeedback therapy 63 9...Device (AOD) Oxygen System oxygen mask oxygen hose oxygen cylinders on/off valve prebreather Floatation Devices life preserver Scuba Gear Ankle Braces
Conversion of microalgae to jet fuel: process design and simulation.
Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J
2014-09-01
Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Zhaonan; Liu, Zheng; Hu, Xiaomin
2017-05-01
The method of treating pharmaceutical wastewater by electro-coagulation with Al/Fe periodically reversing (ECPR) was proposed based on traditional electrochemical method. The principle of ECPR was generalized. Mechanism of ECPR to treat berberine pharmaceutical wastewater was investigated. Treatability and mechanism studies were conducted under laboratory conditions. For berberine wastewater (800 mg/L), decolourization efficiency and COD removal efficiency were highest to 98% and 95% respectively when voltage was 8V, reaction time was 60 min, alternating period was 10 S electrolyte concentration was 0.015 mol/L, stirring speed was 750 rpm, pH value was 3-10 and distance between two plates was 0.6 cm. For removal berberine, flocculation, floatation and oxidation provided 73%, 8% and 18% removal efficiency, which can be inferred by analysing UV-visible absorption spectrum, acidification experiment, EDTA shielding experiment, structure-activity relationship, oxidation and floatation. Meanwhile decolourization and COD removal conformed to apparent pseudo-first order and zero-order kinetics for 200mg/L and 400-1000 mg/L berberine wastewater respectively.
Module assemblage technology for floating systems: in vitro flotation and in vivo gastro-retention.
Strusi, Orazio Luca; Sonvico, Fabio; Bettini, Ruggero; Santi, Patrizia; Colombo, Gaia; Barata, Pedro; Oliveira, Ana; Santos, Delfim; Colombo, Paolo
2008-07-14
The aim of this research was to study, in vitro by resultant-weight measurement and in vivo by gamma-scintigraphy experiments in humans, the floatation behavior of systems obtained by modules assembled in void configuration. The assembled system technology allowed the manufacturing of a system characterized by the presence of an internal void space that provided an apparent density lower than water. The gastro-retention times of floating assembled systems were determined in comparison with non-floating systems having the same mass and composition. In vitro the floatation of the system started immediately after immersion in water and lasted for more than 5 h. The in vivo studies confirmed that the in vitro floating ability of void configuration was maintained also in the human stomach where the system stayed for periods of time ranging from 2.5 to 5.0 h, depending on the food regimen and the sex of the subject. Reiterate eating and drinking further prolonged the stomach residence time.
NASA Technical Reports Server (NTRS)
Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.
1982-01-01
The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.
46 CFR 197.346 - Diver's equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communications cable is at least equal to that required for the lifeline, the communications cable can serve as... reserve cylinder connected and ready for use; (2) A face mask; (3) An inflatable floatation device; (4) A... fittings, the control valve, the lifeline, communications cable, and a pneumofathometer; and (4) Be...
78 FR 52407 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... the flotation gear. (A) Unfold and visually inspect the float assemblies for any cuts, tears... inflating valve and inspect the fabric panels and girts for any cuts, tears, punctures, or abrasion. If there is a cut, tear, puncture, or any abrasion, repair the float. (2) For emergency floatation gear...
Excess air during aquifer storage and recovery in an arid basin (Las Vegas Valley, USA)
NASA Astrophysics Data System (ADS)
Solomon, D. Kip; Cole, Erin; Leising, Joseph F.
2011-02-01
The Las Vegas Valley Water District in Nevada, USA, has operated an artificial recharge (AR) program since 1989. In summer 2001, observations of gas exsolving from tap water prompted a study that revealed total dissolved gas (TDG) pressures approaching 2 atm with a gas composition that it is predominantly air. Measurements of TDG pressure at well heads and in the distribution system indicated two potential mechanisms for elevated TDG pressures: (1) air entrainment during AR operations, and (2) temperature changes between the winter recharge season and the summer withdrawal season. Air entrainment during pumping was investigated by intentionally allowing the forebay (upstream reservoir) of a large pumping station to drawdown to the point of vortex formation. This resulted in up to a 0.7 atm increase in TDG pressure. In general, the solubility of gases in water decreases as the temperature increases. In the Las Vegas Valley, water that acquired a modest amount of dissolved gas during winter artificial recharge operations experienced an increase in dissolved gas pressure (0.04 atm/°C) as the water warmed in the subsurface. A combination of air entrainment during AR operations and its amplification by temperature increase after recharge can account for most of the observed amounts of excess gas at this site.
Modeling of Methane Migration in Shallow Aquifers from Shale Gas Well Drilling.
Zhang, Liwei; Soeder, Daniel J
2016-05-01
The vertical portion of a shale gas well, known as the "tophole" is often drilled using an air-hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3-D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high-pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre-existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane. © 2015, National Ground Water Association.
SOURCE ASSESSMENT: RECLAIMING OF WASTE SOLVENTS, STATE OF THE ART
This document reviews the state of the art of air emissions from the reclaiming of waste solvents. The composition, quantity, and rate of emissions are described. Waste solvents are organic dissolving agents which are contaminated with suspended and dissolved solids, organics, wa...
The effect of pre-treatments to the nickel limonite leaching using dissolved gaseous SO2-air
NASA Astrophysics Data System (ADS)
Wulandari, W.; Soerawidjaja, T. H.; Alifiani, D.; Rangga, D. A.
2018-01-01
Nickel limonite leaching has been subjected to a number of studies, one of the method is by using dissolved gaseous SO2-air. The selectivity of nickel over iron extracted from leaching using dissolved gaseous SO2-air is advantageous, however the nickel that can be recovered is limited. This paper studies pre-treatments that is applied to the nickel ore prior leaching in order to increase the recovery of dissolved nickel from nickel limonite ore. There two pre-treatments that were carried out in this research, roasting and alkali-roasting using Na2CO3. The extraction was carried out for 180 min with pH 2, 3, 4, and 5 and temperature 30, 55, and 80 °C. It is found that the highest yield is achieved at pH 2 and 80 °C with nickel recovery of 61.39%. At pH 2, for alkali-roasting pre-treatment, the nickel yield raised from 28.17% to 100% and for roasting pre-treatment the nickel yield increased from 20.42% to 61.39%. However, at pH 2, the nickel to iron selectivity decreased from 96272 to 534 for roasting pre-treatment and from 1.8 to 1 for alkali-roasting pre-treatment.
A small-scale, portable method for extracting microplastics from marine sediments.
Coppock, Rachel L; Cole, Matthew; Lindeque, Penelope K; Queirós, Ana M; Galloway, Tamara S
2017-11-01
Microplastics (plastic particles, 0.1 μm-5 mm in size) are widespread marine pollutants, accumulating in benthic sediments and shorelines the world over. To gain a clearer understanding of microplastic availability to marine life, and the risks they pose to the health of benthic communities, ecological processes and food security, it is important to obtain accurate measures of microplastic abundance in marine sediments. To date, methods for extracting microplastics from marine sediments have been disadvantaged by complexity, expense, low extraction efficiencies and incompatibility with very fine sediments. Here we present a new, portable method to separate microplastics from sediments of differing types, using the principle of density floatation. The Sediment-Microplastic Isolation (SMI) unit is a custom-built apparatus which consistently extracted microplastics from sediments in a single step, with a mean efficiency of 95.8% (±SE 1.6%; min 70%, max 100%). Zinc chloride, at a density of 1.5 g cm -3 , was deemed an effective and relatively inexpensive floatation media, allowing fine sediment to settle whilst simultaneously enabling floatation of dense polymers. The method was validated by artificially spiking sediment with low and high density microplastics, and its environmental relevance was further tested by extracting plastics present in natural sediment samples from sites ranging in sediment type; fine silt/clay (mean size 10.25 ± SD 3.02 μm) to coarse sand (mean size 149.3 ± SD 49.9 μm). The method presented here is cheap, reproducible and is easily portable, lending itself for use in the laboratory and in the field, eg. on board research vessels. By employing this method, accurate estimates of microplastic type, distribution and abundance in natural sediments can be achieved, with the potential to further our understanding of the availability of microplastics to benthic organisms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Investigation of air solubility in jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Rupprecht, S. D.; Faeth, G. M.
1981-01-01
The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.
CYCLING OF DISSOLVED ELEMENTAL MERCURY IN ARCTIC ALASKAN LAKES. (R829796)
Aqueous production and water-air exchange of elemental mercury (Hg0) are important features of the environmental cycling of Hg. We investigated Hg0 cycling in ten Arctic Alaskan lakes that spanned a wide range in physicochemical characteristics. Dissolved...
Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.
McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer
2016-09-06
Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.
Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.
Reddy, K R; Adams, J A
2000-02-25
This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.
ERIC Educational Resources Information Center
Chan, Charlene J.; Salaita, Khalid
2012-01-01
Demonstrating how surface chemistry and self-assembled monolayers (SAMs) control the macroscopic properties of materials is challenging as it often necessitates the use of specialized instrumentation. In this hands-on experiment, students directly measure a macroscopic property, the floatation of glass coverslips on water as a function of…
Droplet-born air blowing: novel dissolving microneedle fabrication.
Kim, Jung Dong; Kim, Miroo; Yang, Huisuk; Lee, Kwang; Jung, Hyungil
2013-09-28
The microneedle-mediated drug delivery system has been developed to provide painless self-administration of drugs in a patient-friendly manner. Current dissolving microneedle fabrication methods, however, require harsh conditions for biological drugs and also have problems standardizing the drug dose. Here, we suggested the droplet-born air blowing (DAB) method, which provides gentle (4-25 °C) and fast (≤10min) microneedle fabrication conditions without drug loss. The amount of drug in the microneedle can be controlled by the pressure and time of droplet dispenser and the air blowing shapes this droplet to the microneedle, providing a force sufficient to penetrate skin. Also, the introduction of a base structure of two layered DAB-microneedle could provide complete drug delivery without wasting of drug. The DAB-based insulin loaded microneedle shows similar bioavailability (96.6±2.4%) and down regulation of glucose level compared with subcutaneous injection. We anticipate that DAB described herein will be suitable to design dissolving microneedles for use in biological drug delivery to patients. Copyright © 2013 Elsevier B.V. All rights reserved.
McDonough, Carrie A; Khairy, Mohammed A; Muir, Derek C G; Lohmann, Rainer
2014-07-15
Polyethylene passive samplers (PEs) were used to measure concentrations of gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water throughout the lower Great Lakes during summer and fall of 2011. Atmospheric Σ15PAH concentrations ranged from 2.1 ng/m3 in Cape Vincent (NY) to 76.4 ng/m3 in downtown Cleveland (OH). Aqueous Σ18PAH concentrations ranged from 2.4 ng/L at an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH). Gaseous PAH concentrations correlated strongly with population within 3-40 km of the sampling site depending on the compound considered, suggesting that urban centers are a primary source of gaseous PAHs (except retene) in the lower Great Lakes region. The significance of distant population (within 20 km) versus local population (within 3 km) increased with subcooled liquid vapor pressure. Most dissolved aqueous PAHs did not correlate significantly with population, nor were they consistently related to river discharge, wastewater effluents, or precipitation. Air-water exchange calculations implied that diffusive exchange was a source of phenanthrene to surface waters, while acenaphthylene volatilized out of the lakes. Comparison of air-water fluxes with temperature suggested that the significance of urban centers as sources of dissolved PAHs via diffusive exchange may decrease in warmer months.
Lakghomi, B; Lawryshyn, Y; Hofmann, R
2015-01-01
Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.
An investigation of air solubility in Jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1981-01-01
Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.
Automated Airdrop Information Retrieval System-Human Fact ors Database (AAIRS-HFD) (Users Manual)
1994-09-01
creeps, or chokes) Pressure Change Disorders Loss of Sensorimotor Abilities Loss of Cognitive/Perceptual Abilities Treatment drug therapy ...physical therapy cognitive therapy biofeedback therapy 73 9. Psychological Factors Situational Awareness altitude awareness Visual/Spatial...on/off valve prebreather Floatation Devices life preserver Scuba Gear Ankle Braces Knee Braces/Pads 82 7. Cargo/Resupply Parachute Assembly
Priya, S; Srinivasan, P; Gopalakrishnan, R K
2012-01-01
The thoria dissolver, used for separation of (233)U from reactor-irradiated thorium metal and thorium oxide rods, is no longer operational. It was decided to carry out assessment of the radiological status of the dissolver cell for planning of the future decommissioning/dismantling operations. The dissolver interiors are expected to be contaminated with the dissolution remains of irradiated thorium oxide rods in addition to some of the partially dissolved thoria pellets. Hence, (220)Rn, a daughter product of (228)Th is of major radiological concern. Airborne activity of thoron daughters (212)Pb (Th-B) and (212)Bi (Th-C) was estimated by air sampling followed by high-resolution gamma spectrometry of filter papers. By measuring the full-energy peaks counts in the energy windows of (212)Pb, (212)Bi and (208)Tl, concentrations of thoron progeny in the sampled air were estimated by applying the respective intrinsic peak efficiency factors and suitable correction factors for the equilibration effects of (212)Pb and (212)Bi in the filter paper during the delay between sampling and counting. Then the thoron working level (TWL) was evaluated using the International Commission on Radiological Protection (ICRP) methodology. Finally, the potential effective dose to the workers, due to inhalation of thoron and its progeny during dismantling operations was assessed by using dose conversion factors recommended by ICRP. Analysis of filter papers showed a maximum airborne thoron progeny concentration of 30 TWLs inside the dissolver.
PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM
Gaudin, A.M.; Dasher, J.
1958-06-10
ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.
Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange
NASA Astrophysics Data System (ADS)
Poindexter, C.; Variano, E. A.
2010-12-01
Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.
Fluxes of inorganic carbon from two forested catchments in the Appalachian mountains
Fred Worrall; Wayne T. Swank; Tim Burt
2005-01-01
This study uses long-term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved C02 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear-felled during the period of the study. The study shows that: (1...
Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul
2006-03-01
The molecular-weight distribution (MWD) of wastewater dissolved-organic carbon (DOC) was determined in samples from seven full-scale wastewater-treatment plants (WWTPs) that use different biological treatments (air activated sludge [air-AS], pure-oxygen AS [O2-AS], and trickling filters). The research objective was to determine how different biological treatments influenced the MWD of wastewater DOC. Primary sedimentation effluent DOC from most of the WWTPs exhibited a skewed distribution toward the low-molecular-weight fraction (MWF) (40 to 50%, < 0.5 K Daltons [KDa]). The Air-AS effluent DOC exhibited a centrally clustered distribution, with the majority of DOC in the intermediate MWF (0.5 to 3 KDa). The O2-AS effluent DOC exhibited a skewed distribution toward the high MWF (> 3 KDa). The removal of DOC by air- and O2-AS bacteria followed trends predicted by a macromolecule degradation model. Trickling-filter effluent DOC exhibited a skewed distribution toward the high MWF (50% DOC, > 3 KDa).
Qualification of the Tropical Rainfall Measuring Mission Solar Array Deployment System
NASA Technical Reports Server (NTRS)
Lawrence, Jon
1998-01-01
The Tropical Rainfall Measuring Mission (TRMM) solar arrays are placed into orbital configuration by a complex deployment system. Its two wings each comprise twin seven square solar panels located by a twelve foot articulated boom. The four spring-driven hinge lines per wing are rate-limited by viscous dampers. The wings are stowed against the spacecraft kinematically, and released by five pyrotechnically-actuated mechanisms. Since deployment failure would be catastrophic, a total of 17 deployment tests were completed to qualify the system for the worst cast launch environment. This successful testing culminated in the flawless deployment of the solar arrays on orbit, 15 minutes after launch in November 1997. The custom gravity negation system used to perform deployment testing is modular to allow its setup in several locations, including the launch site in Japan. Both platform and height can be varied, to meet the requirements of the test configuration and the test facility. Its air pad floatation system meets tight packaging requirements, allowing installation while stowed against the spacecraft without breaking any flight interfaces, and avoiding interference during motion. This system was designed concurrently with the deployment system, to facilitate its installation, to aid in the integration of the flight system to the spacecraft, while demonstrating deployment capabilities. Critical parameters for successful testing were alignment of deployment axes and tables to gravity, alignment of table seams to minimize discontinuities, and minimizing pressure drops in the air supply system. Orbital performance was similar to that predicted by ground testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz
Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurementsmore » for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.« less
NASA Astrophysics Data System (ADS)
Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.
2014-12-01
Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.
1991-04-01
hold large quantities of air in solution at high pressures and at 8000 psi CTFE holds 500 times its volume of standard atmospheric air. Since air...cart bleeding can be expected to reduce dissolved air to about 1.5 times the amount held at atmospheric pressure. This is more than adequate for...aircraft hydraulic systems while circulating fluid through the cart reservoir which is vented to atmosphere . After open loop air bleeding, the aircraft
Rossi, Alessandra; Conti, Chiara; Colombo, Gaia; Castrati, Luca; Scarpignato, Carmelo; Barata, Pedro; Sandri, Giuseppina; Caramella, Carla; Bettini, Ruggero; Buttini, Francesca; Colombo, Paolo
2016-01-01
Release modules of amoxicillin and clarithromycin combined in a single dosage form designed to float in the gastric content and to sustain the intra-gastric concentrations of these two antibiotics used for the eradication of Helicobacter pylori have been studied. The modules having a disc shape with curved bases were formulated as hydrophilic matrices. Two modules of clarithromycin were assembled by sticking the concave base of one module to the concave base of the other, creating an internal void chamber. The final dosage form was a floating assembly of three modules of clarithromycin and two of amoxicillin in which the drug release mechanism did not interfere with the floatation mechanism. The assembled system showed immediate in vitro floatation at pH 1.2, lasting 5 h. The in vitro antibiotics release profiles from individual modules and assembled systems exhibited linear release rate during buoyancy for at least 8 h. The predicted antibiotic concentrations in the stomach maintained for long time levels significantly higher than the respective minimum inhibitory concentrations (MIC). In addition, an in vivo absorption study performed on beagle dogs confirmed the slow release of clarithromycin and amoxicillin from the assembled system during the assembly's permanence in the stomach for at least 4 h.
Apparatus for restraining and transporting dies
Allison, James W.; LaBarre, Timothy L.
1994-01-01
Apparatus for restraining and transporting dies in punch press operations is provided. A floatation platen for supporting a die on the platen's upper surface has a plurality of recessed gas exhaust ports on the platen's lower surface. A source of pressurized gas delivers gas to a platen manifold, for delivery to orifices located in the gas exhaust ports. The flow of gas is controlled by a first valve adjacent the gas source and a second valve adjacent the manifold, with the second valve being used to control the gas flow during movement of the die. In this fashion, a die may be moved on a cushion of air from one workstation to a selected second workstation. A moveable hydraulically operated restraining fixture is also provided, for clamping the die in position during the compacting phase, and for releasing the die after completion of the compacting phase by releasing the hydraulic pressure on the restraining fixture. When pressure in the hydraulic cylinders on the restraining fixture is reversed, the restraining fixture will retract so that there is no contact between the die and the restraining fixture, thereby allowing the die to be removed from a first workstation and moved to a second selected workstation.
Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.
Stops, Frances; Fell, John T; Collett, John H; Martini, Luigi G
2008-02-28
Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula. The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations. Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13h, and the density of the calcium alginate beads was <1.000gcm(-3). Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid. The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.
Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana
2015-10-20
The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R
2012-03-15
The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.
NASA Astrophysics Data System (ADS)
Hopkins, Frances; Bell, Thomas; Yang, Mingxi
2017-04-01
Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.
On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm
NASA Astrophysics Data System (ADS)
Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.
2017-04-01
Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.
Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dachs, J.; Eisenreich, S.J.; Baker, J.E.
1999-10-15
A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production resultsmore » in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.« less
Justus, B.G.
2005-01-01
Little Rock Air Force Base is the largest C-130 base in the Air Force and is the only C-130 training base in the Department of Defense. Little Rock Air Force Base is located in central Arkansas near the eastern edge of the Ouachita Mountains, near the Mississippi Alluvial Plain, and within the Arkansas Valley Ecoregion. Habitats include upland pine forests, upland deciduous forest, broad-leaved deciduous swamps, and two small freshwater lakes?Big Base Lake and Little Base Lake. Big Base and Little Base Lakes are used primarily for recreational fishing by base personnel and the civilian public. Under normal (rainfall) conditions, Big Base Lake has a surface area of approximately 39 acres while surface area of Little Base Lake is approximately 1 acre. Little Rock Air Force Base personnel are responsible for managing the fishery in these two lakes and since 1999 have started a nutrient enhancement program that involves sporadically adding fertilizer to Big Base Lake. As a means of determining the relations between water quality and primary production, Little Rock Air Force Base personnel have a need for biological (phytoplankton density), chemical (dissolved-oxygen and nutrient concentrations), and physical (water temperature and light transparency) data. To address these monitoring needs, the U.S. Geological Survey in cooperation with Little Rock Air Force Base, conducted a study to collect and analyze biological, chemical, and physical data. The U.S. Geological Survey sampled water quality in Big Base Lake and Little Base Lake on nine occasions from July 2003 through June 2004. Because of the difference in size, two sampling sites were established on Big Base Lake, while only one site was established on Little Base Lake. Lake profile data for Big Base Lake indicate that low dissolved- oxygen concentrations in the hypolimnion probably constrain most fish species to the upper 5-6 feet of depth during the summer stratification period. Dissolved-oxygen concentrations in Big Base Lake below a depth of 6 feet generally were less than 3 milligrams per liter for summer months that were sampled in 2003 and 2004. Some evidence indicates that phosphorus was limiting primary production during the sampling period. Dissolved nitrogen constituents frequently were detected in water samples (indicating availability) but dissolved phosphorus constituents-orthophosphorus and dissolved phosphorus-were not detected in any samples collected at the two lakes. The absence of dissolved phosphorus constituents and presence of total phosphorus indicates that all phosphorus was bound to suspended material (sediment particles and living organisms). Nitrogen:phosphorus ratios on most sampling occasions tended to be slightly higher than 16:1, which can be interpreted as further indication that phosphorus could be limiting primary production to some extent. An alkalinity of 20 milligrams per liter of calcium carbonate or higher is recommended to optimize nutrient availability and buffering capacity in recreational fishing lakes and ponds. Median values for water samples collected at the three sites ranged from 12-13 milligrams per liter of calcium carbonate. Alkalinities ranged from 9-60 milligrams per liter of calcium carbonate, but 13 of 17 samples collected at the deepest site had alkalinities less than 20 milligrams per liter of calcium carbonate. Results of three trophic-state indices, and a general trophic classification, as well as abundant green algae and large growths of blue-green algae indicate that Big Base Lake may be eutrophic. Trophic-state index values calculated using total phosphorus, chlorophyll a, and Secchi disc measurements from both lakes generally exceeded criteria at which lakes are considered to be eutrophic. A second method of determining lake trophic status-the general trophic classification-categorized the three sampling sites as mesotrophic or eutrophic. Green algae were found to be in abundance throughout mos
McDonald, Cory P.; Stets, Edward; Striegl, Robert G.; Butman, David
2013-01-01
Accurate quantification of CO2 flux across the air-water interface and identification of the mechanisms driving CO2 concentrations in lakes and reservoirs is critical to integrating aquatic systems into large-scale carbon budgets, and to predicting the response of these systems to changes in climate or terrestrial carbon cycling. Large-scale estimates of the role of lakes and reservoirs in the carbon cycle, however, typically must rely on aggregation of spatially and temporally inconsistent data from disparate sources. We performed a spatially comprehensive analysis of CO2 concentration and air-water fluxes in lakes and reservoirs of the contiguous United States using large, consistent data sets, and modeled the relative contribution of inorganic and organic carbon loading to vertical CO2 fluxes. Approximately 70% of lakes and reservoirs are supersaturated with respect to the atmosphere during the summer (June–September). Although there is considerable interregional and intraregional variability, lakes and reservoirs represent a net source of CO2 to the atmosphere of approximately 40 Gg C d–1 during the summer. While in-lake CO2 concentrations correlate with indicators of in-lake net ecosystem productivity, virtually no relationship exists between dissolved organic carbon and pCO2,aq. Modeling suggests that hydrologic dissolved inorganic carbon supports pCO2,aq in most supersaturated systems (to the extent that 12% of supersaturated systems simultaneously exhibit positive net ecosystem productivity), and also supports primary production in most CO2-undersaturated systems. Dissolved inorganic carbon loading appears to be an important determinant of CO2concentrations and fluxes across the air-water interface in the majority of lakes and reservoirs in the contiguous United States.
An experimental study on the cavitation of water with dissolved gases
NASA Astrophysics Data System (ADS)
Li, Buxuan; Gu, Youwei; Chen, Min
2017-12-01
Cavitation inception is generally determined by the tensile strengths of liquids. Investigations on the tensile strength of water, which is essential in many fields, will help understand the promotion/prevention of cavitation and related applications in water. Previous experimental studies, however, vary in their conclusions about the value of tensile strength of water; the difference is commonly attributed to the existence of impurities in water. Dissolved gases, especially oxygen and nitrogen from the air, are one of the most common kinds of impurities in water. The influence of these gases on the tensile strength of water is still unclear. This study investigated the effects of dissolved gases on water cavitation through experiments. Cavitation in water is generated by acoustic method. Water samples are prepared with dissolved oxygen and nitrogen in different gas concentrations. Results show that under the same temperature, the tensile strength of water with dissolved oxygen or nitrogen decreases with increased gas concentration compared with that of ultrapure water. Under the same gas concentration and temperature, water with dissolved oxygen shows a lower tensile strength than that with dissolved nitrogen. Possible reasons of these results are also discussed.
Rathje, A O; Marcero, D H
1976-05-01
Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... volume of hydrocarbon in air); and (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 parts per million by volume methane or n-hexane. (e) Negative pressure... between 6.95 and 7.05. (4) To prepare the 0.1 normality (N) sodium thiosulfate solution, dissolve 25 g of...
Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...
Singh, Bhupinder; Garg, Babita; Chaturvedi, Subhash Chand; Arora, Sharry; Mandsaurwale, Rachana; Kapil, Rishi; Singh, Baljinder
2012-05-01
The current studies entail successful formulation of optimized gastroretentive tablets of lamivudine using the floating-bioadhesive potential of carbomers and cellulosic polymers, and their subsequent in-vitro and in-vivo evaluation in animals and humans. Effervescent floating-bioadhesive hydrophilic matrices were prepared and evaluated for in-vitro drug release, floatation and ex-vivo bioadhesive strength. The optimal composition of polymer blends was systematically chosen using central composite design and overlay plots. Pharmacokinetic studies were carried out in rabbits, and various levels of in-vitro/in-vivo correlation (IVIVC) were established. In-vivo gamma scintigraphic studies were performed in human volunteers using (99m) Tc to evaluate formulation retention in the gastric milieu. The optimized formulation exhibited excellent bioadhesive and floatational characteristics besides possessing adequate drug-release control and pharmacokinetic extension of plasma levels. The successful establishment of various levels of IVIVC substantiated the judicious choice of in-vitro dissolution media for simulating the in-vivo conditions. In-vivo gamma scintigraphic studies ratified the gastroretentive characteristics of the optimized formulation with a retention time of 5 h or more. Besides unravelling the polymer synergism, the study helped in developing an optimal once-a-day gastroretentive drug delivery system with improved bioavailability potential exhibiting excellent swelling, floating and bioadhesive characteristics. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Liu, Quan; Fassihi, Reza
2008-02-04
A composite gastro-retentive matrix for zero-order delivery of highly soluble drug alfuzosin hydrochloride (10mg) has been designed and characterized. Two systems containing polyethylene oxide (PEO), hydroxypropylmethylcellulose (HPMC), sodium bicarbonate, citric acid and polyvinyl pyrrolidone were dry blended and compressed into triple layer and bi-layer composite matrices. Dissolution studies using the USP 27 paddle method at 100 and 50rpm in pH 2.0 and 6.8 were performed using UV spectroscopy at 244nm, with automatic sampling over a 24h period using a marketed product as a reference to calculate the "f(2)" factor. Textural characteristics of each layer, the composite matrix as a whole, and floatation potential were determined under conditions similar to dissolution. Percent matrix swelling and erosion along with digital images were also obtained. Both systems proved to be effective in providing prolonged floatation, zero-order release, and complete disentanglement and erosion based on the analysis of data with "f(2)" of 68 and 71 for PEO and HPMC based systems, respectively. The kinetics of drug release, swelling and erosion, and dynamics of textural changes during dissolution for the designed composite systems offer a novel approach for developing gastro-retentive drug delivery system that has potential to enhance bioavailability and site-specific delivery to the proximal small intestine.
Incinerator ash dissolution model for the system: Plutonium, nitric acid and hydrofluoric acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E V
1988-06-01
This research accomplished two goals. The first was to develop a computer program to simulate a cascade dissolver system. This program would be used to predict the bulk rate of dissolution in incinerator ash. The other goal was to verify the model in a single-stage dissolver system using Dy/sub 2/O/sub 3/. PuO/sub 2/ (and all of the species in the incinerator ash) was assumed to exist as spherical particles. A model was used to calculate the bulk rate of plutonium oxide dissolution using fluoride as a catalyst. Once the bulk rate of PuO/sub 2/ dissolution and the dissolution rate ofmore » all soluble species were calculated, mass and energy balances were written. A computer program simulating the cascade dissolver system was then developed. Tests were conducted on a single-stage dissolver. A simulated incinerator ash mixture was made and added to the dissolver. CaF/sub 2/ was added to the mixture as a catalyst. A 9M HNO/sub 3/ solution was pumped into the dissolver system. Samples of the dissolver effluent were analyzed for dissolved and F concentrations. The computer program proved satisfactory in predicting the F concentrations in the dissolver effluent. The experimental sparge air flow rate was predicted to within 5.5%. The experimental percentage of solids dissolved (51.34%) compared favorably to the percentage of incinerator ash dissolved (47%) in previous work. No general conclusions on model verification could be reached. 56 refs., 11 figs., 24 tabs.« less
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, H.
2015-08-01
Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air-saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a nearly complete mineralization under suboxic conditions but to only a partial mineralization under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air-saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air-saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, H.
2015-11-01
Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with photobleaching under air saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.
Cooling Performance of a Partially-Confined FC-72 Spray: The Effect of Dissolved Air (Postprint)
2007-01-01
plate FC = FC-72 fluid htr = heater conductive layer int = interface between heater substrate and insulating support post m = measured s = heater... microporous enhanced surface and a plain reference surface, and developed correlations for nucleate boiling and CHF. The results of the experiment...8Rainey, K. N., You, S. M., and Lee, S., “Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces
Two reference time scales for studying the dynamic cavitation of liquid films
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, D. E.
1992-01-01
Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.
Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang
2011-04-01
The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN. Copyright © 2011 Elsevier Ltd. All rights reserved.
Madsen, T. V.; Breinholt, M.
1995-01-01
Callitriche cophocarpa Sendtner is a heterophyllous amphibious macrophyte that produces apical rosettes of floating leaves. The importance of air contact for inorganic carbon and N uptake and for growth was investigated. Plants were grown with the floating rosette in contact with air of various humidities (10, 50, and >90% relative humidity) and with the submerged parts in N-free water at 350 [mu]M free CO2 and the roots in sediment with low or high NH3-N content. Humidity greatly affected the transpiration rate, whereas growth rate and N content were unaffected and were comparable to values measured for fully submerged shoots. Air contact had, however, a significant impact on growth when the free CO2 concentration in the water was low. Thus, the growth rate of shoots with air contact was about 3 times faster than the rate of fully submerged shoots when grown at air-equilibrium concentration of dissolved free CO2 in the water (16 [mu]M). This difference decreased with increased dissolved free CO2 concentration in the water, and the two shoot types grew at the same rate when the submerged shoots received >350 [mu]M free CO2. The quantitative importance of the floating rosette for total carbon uptake declined also with decreased ratio of floating rosette to total shoot weight. It is concluded that floating rosettes can enhance the inorganic carbon uptake of Callitriche. In contrast, air contact is of minor importance for nutrient transport. PMID:12228350
Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes.
Mladenov, N; Sommaruga, R; Morales-Baquero, R; Laurion, I; Camarero, L; Diéguez, M C; Camacho, A; Delgado, A; Torres, O; Chen, Z; Felip, M; Reche, I
2011-07-26
Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes. © 2011 Macmillan Publishers Limited. All rights reserved.
The pulmonary artery catheter: a critical reappraisal.
Gidwani, Umesh K; Mohanty, Bibhu; Chatterjee, Kanu
2013-11-01
Balloon floatation pulmonary artery catheters (PACs) have been used for hemodynamic monitoring in cardiac, medical, and surgical intensive care units since the 1970s. With the availability of newer noninvasive diagnostic modalities, particularly echocardiography, the frequency of diagnostic pulmonary artery catheterization has declined. In this review, the evolution of PACs, the results of nonrandomized and randomized studies in various clinical conditions, the uses and abuses of bedside hemodynamic monitoring, and current indications for pulmonary artery catheterization are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Development of a gastroretentive pulsatile drug delivery platform.
Thitinan, Sumalee; McConville, Jason T
2012-04-01
To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
1997-10-01
and xylene (BTEX) in the shallow groundwater system at the site. Dissolved chlorinated aliphatic hydrocarbons (CAHs) also are present in the shallow...micrograms per liter (gg/L)], RNA with LTM I should be used to complement the ROD-mandated bioventing and air sparging systems . 0 When bioventing and...The ROD identifies benzene as the primary contaminant of concern (COC) for FT-i and specifies the use of air sparging in the remediation system
Huete, A; de Los Cobos-Vasconcelos, D; Gómez-Borraz, T; Morgan-Sagastume, J M; Noyola, A
2018-06-15
The direct anaerobic treatment of municipal wastewater represents an adapted technology to the conditions of developing countries. In order to get an increased acceptance of this technology, a proper control of dissolved methane in the anaerobic effluents should be considered, as methane is a potent greenhouse gas. In this study, a pilot-scale system was operated for 168 days to recover dissolved methane from an effluent of an upflow anaerobic sludge blanket reactor and then oxidize it in a compost biofilter. The system operated at a constant air (0.9 m 3 /h ±0.09) and two air-to anaerobic effluent ratio (1:1 and 1:2). In both conditions (CH 4 concentration of 2.7 ± 0.87 and 4.3% ± 1.14, respectively) the desorption column recovered 99% of the dissolved CH 4 and approximately 30% ± 8.5 of H 2 S, whose desorption was limited due to the high pH (>8) of the effluent. The biofilter removed 70% ± 8 of the average CH 4 load (60 gCH 4 /m 3 h ± 13) and 100% of the H 2 S load at an empty bed retention time of 23 min. The average temperature inside the biofilter was 42 ± 9 °C due to the CH 4 oxidation reaction, indicating that temperature and moisture control is particularly important for CH 4 removal in compost biofilters. The system may achieve a 54% reduction of greenhouse gas emissions from dissolved CH 4 in this particular case. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of addition of degassed water on bulk nanobubbles.
Tuziuti, Toru; Yasui, Kyuichi; Kanematsu, Wataru
2018-05-01
The effects of the addition of degassed water on bulk nanobubbles (ultrafine bubbles) of air in liquid water were investigated by measuring the volumetric concentration and size distribution at different dissolved air degree of saturation (DOS) values. The proportion of degassed water mixed with water containing bulk nanobubbles was increased to prepare samples having lower DOS values. It was found that the volumetric concentration of nanobubbles mostly decreased and the average nanobubble size became larger as the DOS was decreased. In our proposed mechanism, smaller nanobubbles are selectively dissolved into the surrounding liquid by Laplace pressure due to surface tension as the DOS is reduced. These results demonstrate that stable bulk nanobubbles are present even in water undersaturated with gas. The role of nanobubble under an ultrasound is also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Field-Scale Evaluation of Monitored Natural Attenuation for Dissolved Chlorinated Solvent Plumes
2009-04-01
biological in-situ treatment, an air sparging pilot study, and a phytoremediation study. The innovative technology studies were conducted within the source... phytoremediation (June to September 1997), reductive anaerobic biological in-situ treatment technology (RABITT; 1998), and groundwater recirculation wells...u g / L ) Measured Concentrations in 1381MWS09 Air Sparge Pilot Test (1996/1997) Phytoremediation Pilot Test (1997) RABITT Pilot Test (1998
Sente, Celsus; Erume, Joseph; Naigaga, Irene; Mulindwa, Julius; Ochwo, Sylvester; Magambo, Phillip Kimuda; Namara, Benigna Gabriela; Kato, Charles Drago; Sebyatika, George; Muwonge, Kevin; Ocaido, Michael
2016-08-03
Pathogenic water dwelling protozoa such as Acanthamoeba spp., Hartmannella spp., Naegleria spp., Cryptosporidium spp. and Giardia spp. are often responsible for devastating illnesses especially in children and immunocompromised individuals, yet their presence and prevalence in certain environment in sub-Saharan Africa is still unknown to most researchers, public health officials and medical practitioners. The objective of this study was to establish the presence and prevalence of pathogenic free-living amoeba (FLA), Cryptosporidium and Giardia in Queen Elizabeth Protected Area (QEPA). Samples were collected from communal taps and natural water sites in QEPA. Physical water parameters were measured in situ. The samples were processed to detect the presence of FLA trophozoites by xenic cultivation, Cryptosporidium oocysts by Ziehl-Neelsen stain and Giardia cysts by Zinc Sulphate floatation technique. Parasites were observed microscopically, identified, counted and recorded. For FLA, genomic DNA was extracted for amplification and sequencing. Both natural and tap water sources were contaminated with FLA, Cryptosporidium spp. and Giardia spp. All protozoan parasites were more abundant in the colder rainy season except for Harmannella spp. and Naegleria spp. which occurred more in the warmer months. The prevalence of all parasites was higher in tap water than in natural water samples. There was a strong negative correlation between the presence of Acanthamoeba spp., Hartmannella spp., Cryptosporidium spp. and Giardia spp. with Dissolved Oxygen (DO) (P < 0.05). The presence of Cryptosporidium spp. showed a significant positive correlation (P < 0.05) with conductivity, pH and Total Dissolved Solids (TDS); whereas the presence of Giardia spp. had only a strong positive correlation with TDS. Molecular genotyping of FLA produced 7 Acanthamoeba, 5 Echinamoeba, 2 Hartmannella, 1 Bodomorpha, 1 Nuclearia and 1 Cercomonas partial sequences. All water collection sites were found to be contaminated with pathogenic protozoa that could possibly be the cause of a number of silent morbidities and mortalities among rural households in QEPA. This implies that water used by communities in QEPA is of poor quality and predisposes them to a variety of protozoan infections including the FLA whose public health importance was never reported, thus necessitating adoption of proper water safety measures.
Technical note: Examining ozone deposition over seawater
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Kang, Daiwen; Foley, Kristen; Schwede, Donna; Gantt, Brett; Mathur, Rohit
2016-09-01
Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic carbon, and bromide in seawater on ozone deposition. We perform a series of simulations using the hemispheric Community Multiscale Air Quality model for summer months in the Northern Hemisphere. Our results suggest that each chemical interaction enhances the ozone deposition velocity and decreases the atmospheric ozone mixing ratio over seawater. Iodide enhances the median deposition velocity over seawater by 0.023 cm s-1, dissolved organic carbon by 0.021 cm s-1, dimethylsulfide by 0.002 cm s-1, and bromide by ∼0.0006 cm s-1. Consequently, iodide decreases the median atmospheric ozone mixing ratio over seawater by 0.7 ppb, dissolved organic carbon by 0.8 ppb, dimethylsulfide by 0.1 ppb, and bromide by 0.02 ppb. In a separate model simulation, we account for the effect of dissolved salts in seawater on the Henry's law constant for ozone and find that it reduces the median deposition velocity by 0.007 cm s-1 and increases surface ozone mixing ratio by 0.2 ppb. The combined effect of these processes increases the median ozone deposition velocity over seawater by 0.040 cm s-1, lowers the atmospheric ozone mixing ratio by 5%, and slightly improves model performance relative to observations.
Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.
Pittermann, Jarmila; Sperry, John
2003-09-01
We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.
In situ treatment of arsenic-contaminated groundwater by air sparging.
Brunsting, Joseph H; McBean, Edward A
2014-04-01
Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.
Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California
Lamb, Charles E.
1980-01-01
The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)
Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel
NASA Astrophysics Data System (ADS)
Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine
2014-05-01
Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.
Optimization of Cu-Zn Massive Sulphide Flotation by Selective Reagents
NASA Astrophysics Data System (ADS)
Soltani, F.; Koleini, S. M. J.; Abdollahy, M.
2014-10-01
Selective floatation of base metal sulphide minerals can be achieved by using selective reagents. Sequential floatation of chalcopyrite-sphalerite from Taknar (Iran) massive sulphide ore with 3.5 % Zn and 1.26 % Cu was studied. D-optimal design of response surface methodology was used. Four mixed collector types (Aer238 + SIPX, Aero3477 + SIPX, TC1000 + SIPX and X231 + SIPX), two depressant systems (CuCN-ZnSO4 and dextrin-ZnSO4), pH and ZnSO4 dosage were considered as operational factors in the first stage of flotation. Different conditions of pH, CuSO4 dosage and SIPX dosage were studied for sphalerite flotation from first stage tailings. Aero238 + SIPX induced better selectivity for chalcopyrite against pyrite and sphalerite. Dextrin-ZnSO4 was as effective as CuCN-ZnSO4 in sphalerite-pyrite depression. Under optimum conditions, Cu recovery, Zn recovery and pyrite content in Cu concentrate were 88.99, 33.49 and 1.34 % by using Aero238 + SIPX as mixed collector, CuCN-ZnSO4 as depressant system, at ZnSO4 dosage of 200 g/t and pH 10.54. When CuCN was used at the first stage, CuSO4 consumption increased and Zn recovery decreased during the second stage. Maximum Zn recovery was 72.19 % by using 343.66 g/t of CuSO4, 22.22 g/t of SIPX and pH 9.99 at the second stage.
Ignition of an organic water-coal fuel droplet floating in a heated-air flow
NASA Astrophysics Data System (ADS)
Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.
2017-01-01
Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.
Patterns of entrapped air dissolution in a two-dimensional pilot-scale synthetic aquifer.
McLeod, Heather C; Roy, James W; Smith, James E
2015-01-01
Past studies of entrapped air dissolution have focused on one-dimensional laboratory columns. Here the multidimensional nature of entrapped air dissolution was investigated using an indoor tank (180 × 240 × 600 cm(3) ) simulating an unconfined sand aquifer with horizontal flow. Time domain reflectometry (TDR) probes directly measured entrapped air contents, while dissolved gas conditions were monitored with total dissolved gas pressure (PTDG ) probes. Dissolution occurred as a diffuse wedge-shaped front from the inlet downgradient, with preferential dissolution at depth. This pattern was mainly attributed to increased gas solubility, as shown by PTDG measurements. However, compression of entrapped air at greater depths, captured by TDR and leading to lower quasi-saturated hydraulic conductivities and thus greater velocities, also played a small role. Linear propagation of the dissolution front downgradient was observed at each depth, with both TDR and PTDG , with increasing rates with depth (e.g, 4.1 to 5.7× slower at 15 cm vs. 165 cm depth). PTDG values revealed equilibrium with the entrapped gas initially, being higher at greater depth and fluctuating with the barometric pressure, before declining concurrently with entrapped air contents to the lower PTDG of the source water. The observed dissolution pattern has long-term implications for a wide variety of groundwater management issues, from recharge to contaminant transport and remediation strategies, due to the persistence of entrapped air near the water table (potential timescale of years). This study also demonstrated the utility of PTDG probes for simple in situ measurements to detect entrapped air and monitor its dissolution. © 2014 Her Majesty the Queen in Right of Canada Groundwater © 2014, National Ground Water Association.
Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades
NASA Astrophysics Data System (ADS)
Ho, David T.; Ferrón, Sara; Engel, Victor C.; Anderson, William T.; Swart, Peter K.; Price, René M.; Barbero, Leticia
2017-05-01
The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source-sink dynamics was examined in these rivers during SF6 tracer release experiments. Approximately 80 % of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air-water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48 % of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10 % of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m-2 d-1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10 %.
Importance of Air Absorption During Mechanical Integrity Testing
NASA Astrophysics Data System (ADS)
Arnold, Fredric C.
1990-11-01
Wells used for injection of liquid industrial waste into deep saline aquifers are required to be periodically tested for mechanical integrity. A generally accepted method to demonstrate mechanical integrity is to pressurize the casing-tubing annulus and monitor any decline in pressure. If air is used to pressurize the annulus, uncertainty may exist in differentiating between absorption of air into water in the annulus and loss of pressure due to the absence of mechanical integrity. An analytical model of air absorbance has been derived and used to quantify the pressure decline due to dissolving and diffusion of the air in annular water. A parameteric study was made to determine when annular pressure decline due to absorption of air is significant.
TREATMENT AND SOLIDS MANAGEMENT
A variety of high-rate treatment methods show a potential to handle WWF including: physical separation with and without chemical addition (e.g., enhanced settling, fine-mesh screening, vortex separation, dual-media high-rate filtration, dissolved air flotation, activated carbon, ...
NASA Astrophysics Data System (ADS)
Wang, Zhou; Cao, Haoshu; Zhao, Shuang
2018-01-01
Based on the concept of circular economy, discarded plastic bottles stuffed with discarded cotton, clothing and sofa cushion were used as pre-filter to remove big particles (dust and coal dust) in air and 4 L tap water in discarded plastic bottle was worked as an absorbing medium to dissolve the water soluble ions in air (SO4 2-, NO3-, NH4+, Cl- and Ca2+). Moreover, the internet control design was used in this homemade indoor air haze purifier to achieve the performance of remote control and intelligent management. The experimental results showed that this indoor air haze purifier can effectively reduce the level of indoor air haze and the air quality after 20 minutes treatment is higher than that of two commercial well-known air haze purifier
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Yamashita, Tatsuya; Ando, Keita
2016-11-01
Microbubble aeration is used to dissolved gases into water and is an important technique in agriculture and industry. We can measure concentration of dissolved oxygen (DO) in aerated water by commercial DO meters. However, there do not exist commercially available techniques to measure concentration to dissolved nitrogen (DN). In the present study, we propose the method to measure DN in aerated water with the aid of Epstein-Plesset-type analysis. Gas-supersaturated tap water is produced by applying aeration with micro-sized air bubbles and is then stored in a glass container open to the atmosphere. Diffusion-driven growth of bubbles nucleated at the container surface is recorded with a video camera. The bubble growth rate is compare to the extended Epstein-Plesset theory that models mass transfer of both DO and DN into the surface-attached bubbles base on the diffusion equation. Given the DO measurements, we can obtain the DN level by fitting in the comparison.
The role of hydrodynamic transport in greenhouse gas fluxes at a wetland with emergent vegetation
NASA Astrophysics Data System (ADS)
Poindexter, C.; Gilson, E.; Knox, S. H.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.; Variano, E. A.
2013-12-01
In wetlands with emergent vegetation, the hydrodynamic transport of dissolved gases is often neglected because emergent plants transport gases directly and limit wind-driven air-water gas exchange by sheltering the water surface. Nevertheless, wetland hydrodynamics, and thermally-driven stirring in particular, have the potential to impact gas fluxes in these environments. We are evaluating the importance of hydrodynamic dissolved gas transport at a re-established marsh on Twitchell Island in the Sacramento-San Joaquin Delta (California, USA). At this marsh, the U.S. Geological Survey has previously observed rapid accumulation of organic material (carbon sequestration) as well as very high methane emissions. To assess the role of hydrodynamics in the marsh's greenhouse gas fluxes, we measured dissolved carbon dioxide and methane in the water column on a bi-weekly basis beginning in July 2012. We employed a model for air-water gas fluxes in wetlands with emergent vegetation that predicts gas transfer velocities from meteorological conditions. Modeled air-water gas fluxes were compared with net gas fluxes measured at the marsh via the eddy covariance technique. This comparison revealed that hydrodynamic transport due to thermal convection was responsible for approximately one third of net carbon dioxide and methane fluxes. The cooling at the water surface driving thermal convection occurred each night and was most pronounced during the warmest months of the year. These finding have implications for the prediction and management of greenhouse gas fluxes at re-established marshes in the Sacramento-San Joaquin Delta and other similar wetlands.
[Study on preparation of phenols gastric floating tablet].
Zhai, Xiao-Ling; Ni, Jian; Gu, Yu-Long
2008-01-01
To study the preparation of phenols gastric floating tablet. The tablets which were prepared using Eudragit IV, HPMC(K4M), MCC101 and Octadecanol as excipients were evaluated by vitro floatation and releasing performance. The pressure of preparationg was also study to select the optimal preparation. The tablets were successfully prepared in which the drug, Eudragit IV, Octadecanol were 31% respectively,and MCC101 was 7%. And 3-4 kg was found to be the eligible pressure. The study was found to be effective in the process of phenols gastric floating tablet.
Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer
2016-05-17
Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations.
Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H.
2002-01-01
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally attenuated by a combination of active anaerobic and aerobic biotransformation processes. ?? 2002 Elsevier Science B.V. All rights reserved.
Technical note: Examining ozone deposition over seawater
Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic c...
ERIC Educational Resources Information Center
Steckelberg, Marie L.; Hoadley, Michael R.; Thompson, Ray; Martin, Patricia; Bormann, Gene
2000-01-01
Introduces a research project on water quality in which students from two different high schools collaborate with university science methods students. Includes the analyses of air temperature, water temperature, fecal coliform, dissolved oxygen, phosphate level, turbidity, and pH level. Integrates biology, environmental sciences, physical…
NASA Astrophysics Data System (ADS)
Sutton, Patrick T.; Ginn, Timothy R.
2014-12-01
A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-10-01
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...
2016-08-15
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less
NASA Technical Reports Server (NTRS)
Kaplan, W. A.; Elkins, J. W.; Kolb, C. E.; Mcelroy, M. B.; Wofsy, S. C.; Duran, A. P.
1977-01-01
The N2O content of waters in the Potomac and Merrimack Rivers was measured on a number of occasions over the period April to July 1977. The concentrations of dissolved N2O exceeded those which would apply in equilibrium with air by factors ranging from about 46 in the Potomac to 1.2 in the Merrimack. Highest concentrations of dissolved N2O were associated with sewage discharges from the vicinity of Washington, D. C., and analysis indicates a relatively high yield, 1.3 to 11%, for prompt conversion of waste nitrogen to N2O. Measurements of dissolved N2O in fresh water ponds near Boston demonstrated that aquatic systems provide both strong sources and sinks for atmospheric N2O.
Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool.
Weigum, Shannon E; Xiang, Lichen; Osta, Erica; Li, Linying; López, Gabriel P
2016-09-30
Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many remote or resource-poor settings, such as field clinics or developing countries. We developed an innovative approach to isolate infectious pathogens from biological fluids using buoyant hollow silica microspheres that function as "molecular buoys" for affinity-based target capture and separation by floatation. In this process, antibody functionalized glass microspheres are mixed with a complex biological sample, such as stool. When mixing is stopped, the target-bound, low-density microspheres float to the air/liquid surface, which simultaneously isolates and concentrates the target analytes from the sample matrix. The microspheres are highly tunable in terms of size, density, and surface functionality for targeting diverse analytes with separation times of ≤2min in viscous solutions. We have applied the molecular buoy technique for isolation of a protozoan parasite that causes diarrheal illness, Cryptosporidium, directly from stool with separation efficiencies over 90% and low non-specific binding. This low-cost method for phenotypic cell/pathogen separation from complex mixtures is expected to have widespread use in clinical diagnostics as well as basic research. Copyright © 2016 Elsevier B.V. All rights reserved.
Metal | polypyrrole battery with the air regenerated positive electrode
NASA Astrophysics Data System (ADS)
Grgur, Branimir N.
2014-12-01
Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.
Development of a Sitting MicroEnvironment Simulator for wheelchair cushion assessment.
Freeto, Tyler; Cypress, Allissa; Amalraj, Sarah; Yusufishaq, Mohamed Shaif; Bogie, Kath M
2016-08-01
Pressure ulcers (PU) are a common comorbidity among wheelchair users. An appropriate wheelchair cushion is essential to relieve pressure and reduce PU development during sitting. The microenvironment, specifically excessive heat and moisture, impacts risk for PU development. An effective wheelchair cushion should maintain a healthy microenvironment at the seating interface. Measurement of heat and moisture can characterize microenvironmental conditions at the wheelchair cushion interface under load. We describe the development of a Sitting MicroEnvironment Simulator (SMES) for the reliable assessment of wheelchair cushion microenvironments. The prototype SMES was developed for use mounted on a Materials Testing Systems (MTS) 810(®) uniaxial servo-hydraulic loading rig and used to assess microenvironmental conditions for Jay Medical Jay 2(®), Roho High Profile Dry Floatation(®) and Low Profile Dry Floatation(®) cushions and a novel modular gel cushion. Each cushion was assessed for two hours in triplicate. The SMES was used to load the cushions to 300N ± 10N, with an interface surface temperature of 37 °C±1 °C and fluid delivery of 13 mL/h±1 mL/h of water. Interface temperature and humidity were measured at the left ischial tuberosity (IT) region every five minutes. Heat and moisture responses were similar for the three commercial cushions. The modular gel cushion stayed cooler for at least 15 min longer than any commercial cushion. The SMES maintained performance to technical specifications for over one hundred hours of total testing and is a reliable tool for characterizing the microenvironmental conditions of wheelchair cushions. Published by Elsevier Ltd.
Dissolved gases in the DOSECC Cajon Pass well: first year results
Evans, William C.; White, L.D.; Kharaka, Y.K.
1988-01-01
Fluid sampled from granitic rock near the 2 km depth in the DOSECC Cajon Pass well contained He, H2, CH4, C2H6, and C2 H4 in concentrations much greater than in air-saturated water. Measured pCO2 values were very low, about 10-5 atm., and the carbon isotopes (??13C = -18.9 per mil) point to an organic source such as plant root respiration for the dissolved carbonate species. No evidence of mantle volatiles was found despite proximity of the well to the San Andreas fault. -from Authors
Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.
Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P
2010-06-11
A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.
Two reference time scales for studying the dynamic cavitation of liquid films
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, David E.
1991-01-01
Two formulas, one for characteristic time of filling a void with a vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. Based on this analysis, it is seen that in an oil film bearing operating under dynamic loads, the content of cavitation region should be oil vapor rather than the air liberated from solution, if the oil is free of entrained air.
Ground-water conditions at Beale Air Force Base and vicinity, California
Page, R.W.
1980-01-01
Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)
Cetin, Banu; Odabasi, Mustafa
2007-02-01
The air-water exchange of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired air-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net air-water exchange fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.
ERIC Educational Resources Information Center
Broecker, Wallace S.
1983-01-01
The chemistry of the ocean, whose constituents interact with those of air and land to support life and influence climate, is known to have undergone changes since the last glacial epoch. Changes in dissolved oxygen, calcium ions, phosphate, carbon dioxide, carbonate ions, and bicarbonate ions are discussed. (JN)
NATURAL ATTENUATION OF FUEL HYDROCARBONS AT MULTIPLE AIR FORCE BASE DEMONSTRATION SITES
ABSTRACT
A major initiative to evaluate monitored natural attenuation (MNA) of ground-water contaminated with fuel hydrocarbons began in June, 1993, and continued through September, 1999. The main emphasis was to evaluate natural degradation mechanisms to reduce dissolved ...
Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing
2013-09-01
The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.
Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan
2015-05-15
From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methanethiol Concentrations and Sea-Air Fluxes in the Subarctic NE Pacific Ocean
NASA Astrophysics Data System (ADS)
Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.
2017-12-01
Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and sea-air fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. Sea-air fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.
Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.
2013-01-01
We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814
Sarkar, Kausik; Katiyar, Amit; Jain, Pankaj
2009-01-01
Gas diffusion from an encapsulated microbubble is modeled using an explicit linear relation for gas permeation through the encapsulation. Both the cases of single gas (air) and multiple gases (perfluorocarbon inside the bubble and air dissolved in surrounding liquid) are considered. An analytical expression for the dissolution time for an encapsulated air bubble is obtained; it showed that for small permeability the dissolution time increases linearly with decreasing permeability. A perfluorocarbon-filled contrast microbubble such as Definity was predicted to experience a transient growth due to air infusion before it dissolves in conformity with previous experimental findings. The growth phase occurs only for bubbles with a critical value of initial partial mole fraction of perfluorocarbon relative to air. With empirically obtained property values, the dissolution time of a 2.5 micron diameter (same as that of Definity) lipid coated octafluoropropane bubble with surface tension 25 mN/m predicts a lifetime of 42 minutes in an air saturated medium. The properties such as shell permeability, surface tension, relative mole fraction of octafluoropropane are varied to investigate their effects on the time scales of bubble growth and dissolution including their asymptotic scalings where appropriate. The dissolution dynamics scales with permeability, in that when the time is nondimensioanlized with permeability, curves for different permeabilities collapse on a single curve. Investigation of bubbles filled with other gases (non-octafluoropropane perfluorocarbon and sulfur hexafluoride) indicates longer dissolution time due to lower solubility and lower diffusivity for larger gas molecules. For such micron size encapsulated bubbles, lifetime of hours is possible only at extremely low surface tension (<1mN/m) or at extreme oversaturation. PMID:19616160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yumei; Williams, Nolann G.; Tolic, Ana
The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn2+ to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures tomore » airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI), and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 hours post exposure we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn2+ and suggest distinct mechanisms at the ALI and in submersed cultures.« less
Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.
2008-01-01
Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.
Techniques for Teachers Section
ERIC Educational Resources Information Center
Tait, A., Ed.
1973-01-01
Includes a simple technique to demonstrate Millikan's oil drop experiment, an environmental studies experiment to measure dissolved oxygen in water samples, and a technique to demonstrate action-reaction. Science materials described are the Pol-A-Star Tomiscope, Nuffield chemistry film loops, air pucks and pH meters. (JR)
OXYGEN-18 STUDY OF SO2 OXIDATION IN RAINWATER BY PEROXIDES
A new analytical method was developed for the determination of oxygen isotope ratios in peroxides in rainwater. In the method, rainwater samples were quantitatively degassed of dissolved air by a combined treatment of evacuation, ultrasonic agitation, and helium sparging (VUS), f...
RoHo Dry Floatation system: an alternative means of pressure relief.
Williams, C
Pressure sores are believed to occur as a result of two pressures, external pressure leading to occlusion, and disruptive shearing forces causing endothelial damage to the micro circulation. One of the main principles, therefore, of pressure sore prevention is relief or reduction of pressure. Scandinavian Mobility produces a range of systems--therapeutic cushions, specialist cushions and products, and mattresses--that can reduce the pressure, reportedly achieving interface pressures of 21-28 mmHg. These systems have been shown to be cost-effective in the clinical setting and provide pressure relief in low-, medium- and high risk patients.
Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi
2015-03-15
A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metal-air cell with performance enhancing additive
Friesen, Cody A; Buttry, Daniel
2015-11-10
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
United States Air Force Summer Faculty Research Program, 1988. Program Technical Report. Volume 3
1988-12-01
equivalents of U- bromosuccinimide. Although this dibromide ns inert to conventional hydrolysis with concentrated sulfuric acid at 11O*C, conversion to...by first dissolving in hot (II0C) sulfuric acid then pouring into ice water. The resulting precipitate ws air dried then recrystallized once more from...Catalysis Dr. Richard Carlin in Lewis Acid Molten Salts 36 A MCSCF Study of the Rearrangement Dr. Michael McKee of Nitromethane to Methyl Nitrite 37
Apparatus and method for controlling autotroph cultivation
Fuxman, Adrian M; Tixier, Sebastien; Stewart, Gregory E; Haran, Frank M; Backstrom, Johan U; Gerbrandt, Kelsey
2013-07-02
A method includes receiving at least one measurement of a dissolved carbon dioxide concentration of a mixture of fluid containing an autotrophic organism. The method also includes determining an adjustment to one or more manipulated variables using the at least one measurement. The method further includes generating one or more signals to modify the one or more manipulated variables based on the determined adjustment. The one or more manipulated variables could include a carbon dioxide flow rate, an air flow rate, a water temperature, and an agitation level for the mixture. At least one model relates the dissolved carbon dioxide concentration to one or more manipulated variables, and the adjustment could be determined by using the at least one model to drive the dissolved carbon dioxide concentration to at least one target that optimize a goal function. The goal function could be to optimize biomass growth rate, nutrient removal and/or lipid production.
Corrosion behavior of heat-treated intermetallic titanium-nickel in hydrochloric acid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starosvetsky, D.; Khaselev, O.; Yahalom, J.
1998-07-01
Samples of 45% Ti-55% Ni alloy (Ti-Ni) were heat-treated in air at 450 C, and their anodic behavior in 0.3 M, 1 M, 2 M, and 4 M hydrochloric acid (HCl) solutions was studied. In 0.3 M HCl, heat-treated Ti-Ni was passive, and very low anodic currents were observed. In 1 M and 2 M HCl, heat-treated Ti-Ni was dissolved actively, while heat-treated and surface-ground Ti-Ni became passive. The effect was explained by selective oxidation of Ti-Ni and formation of a layered structure on its surface with discontinuous titanium oxide and a nickel-enriched zone underneath. The latter was dissolved inmore » the HCl solutions, thus accelerating failure of the Ti-Ni samples. In 4 M HCl, heat-treated and heat-treated/ground samples were dissolved readily.« less
Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer
2014-08-19
Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.
76 FR 37815 - Cooperative Agreement To Support Shellfish Safety Assistance Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
...; funding support to research the influence of water and air temperature, dissolved oxygen, and nutrients on... controls to reduce the risk of illness associated with molluscan shellfish consumption, including Vibrio... professionals concerning Vibrio illness and shellfish consumption; 9. Development and maintenance of a World...
Ion conducting polymers and polymer blends for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra
2017-08-29
Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seong-Wook; Tian, Chao; Martini, Rainer, E-mail: rmartini@stevens.edu
We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.
Yanagida, Hirotaka
2008-04-01
The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.
X-ray fluorescence measurements of dissolved gas and cavitation
Duke, Daniel J.; Kastengren, Alan L.; Swantek, Andrew B.; ...
2016-09-28
The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. In this paper, we present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source.more » We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10 -5, with an uncertainty of 8 %. Finally, these quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.« less
Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation
NASA Astrophysics Data System (ADS)
Jablonská, Jana; Mahdal, Miroslav; Kozubková, Milada
2017-12-01
The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.
NASA Astrophysics Data System (ADS)
Mandre, Shreyas; Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh
2016-11-01
A camphoric-acid boat (c-boat for short), a cylindrical gel tablet infused with camphoric acid, moves spontaneously when placed on an air-water interface. This system is a classic example of propulsion driven by Marangoni forces. Despite rich history on particles propelled by Marangoni forces, including contributions by figures such as Benjamin Franklin, Allesandro Volta, and Giovanni Venturi, the underlying fluid dynamics remains poorly understood. A key missing piece is the nature of the surfactant; in our case, the question is whether the camphoric acid is dissolved in the bulk or adsorbed on to the interface. We gain insight into this piece by holding the c-boat stationary and measuring the surrounding axisymmetric flow velocity to a precision needed to distinguish between the two possibilities. For soluble surfactants, it is known that the velocity field decays as r - 2 / 3, where r is the distance from the center of the c-boat. Whereas, for surfactant adsorbed on to the air-water interface, we derive that the surrounding velocity fields decays as r - 3 / 5. Based on our measurements we deduce that, even though soluble in water, the Marangoni flow results from a layer of camphoric acid adsorbed to the air-water interface.
NASA Astrophysics Data System (ADS)
Ryerson, T. B.; Aikin, K. C.; Angevine, W. M.; Atlas, E. L.; Blake, D. R.; Brock, C. A.; Fehsenfeld, F. C.; Gao, R.-S.; de Gouw, J. A.; Fahey, D. W.; Holloway, J. S.; Lack, D. A.; Lueb, R. A.; Meinardi, S.; Middlebrook, A. M.; Murphy, D. M.; Neuman, J. A.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Warneke, C.; Watts, L. A.
2011-04-01
The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (˜258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (˜33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (˜14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills.
Sutton, Patrick T; Ginn, Timothy R
2014-12-15
A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxygen requirement of separated hybrid catfish eggs
USDA-ARS?s Scientific Manuscript database
Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...
Collino, Federica; Pomatto, Margherita; Bruno, Stefania; Lindoso, Rafael Soares; Tapparo, Marta; Sicheng, Wen; Quesenberry, Peter; Camussi, Giovanni
2017-04-01
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.
Thermal effects of dorsal head immersion in cold water on nonshivering humans.
Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M
2005-11-01
Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P < 0.01). Heat loss from the dorsal head and upper chest was approximately proportional to the extra surface area that was immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.
Hingole, A C; Gudewar, J G; Pednekar, R P; Gatne, M L
2017-03-01
Faecal samples of cattle and buffaloes of Mumbai region collected between November 2012 to June 2013 were analysed by conventional and molecular tools to note the prevalence of cryptosporidiosis and species involved in the infection. Conventional analysis viz., direct faecal smear examination, faecal smear examination after normal saline sedimentation, Sheather's floatation and Sheather's floatation sedimentation smear methods demonstrated oocysts of Cryptosporidium in 141 (36.06 %) of 391 samples with higher occurrence in buffaloes (36.99 %) than cattle (34.48 %). Diarrhoeic loose faeces showed higher prevalence (42.07 %) than apparently normal faeces (31.72 %) irrespective of the host species. When data were arranged as per age groups viz., calves of 0-1 month, 1-2 months, 2-3 months and adults, the highest prevalence was noted in the youngest group (47.12 %) declining gradually with the advancing age with lowest (6.25 %) in adults indicating inverse correlation between prevalence rate and age of the host. These differences were statistically significant in case of buffaloes. Cryptosporidium andersoni was tentatively identified by morphometric analysis. By employing molecular tools like nested PCR, PCR-RFLP and sequence analysis of few samples showed good correlation in the identification of species of Cryptosporidium involved in the infection and demonstrated occurrence of C. parvum , C. ryanae and C. bovis. Thus all the four commonly occurring bovine species of Cryptosporidium were encountered in the study area which appears to be a first record reporting the occurrence of Cryptosporidium with species level identification in large ruminants from Western region of India. Additionally, the public health significance of C. parvum was also discussed in light of epidemiological factors pertaining to the region.
Making Mercury's Core with Light Elements
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent
2016-01-01
Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.
Singh, Bhupinder; Kaur, Anterpreet; Dhiman, Shashi; Garg, Babita; Khurana, Rajneet Kaur; Beg, Sarwar
2016-04-01
The current studies entail systematic quality by design (QbD)-based development of stimuli-responsive gastroretentive drug delivery systems (GRDDS) of acyclovir using polysaccharide blends for attaining controlled drug release profile and improved patient compliance. The patient-centric quality target product profile was defined and critical quality attributes (CQAs) earmarked. Risk assessment studies, carried out through Ishikawa fish bone diagram and failure mode, effect, and criticality analysis, helped in identifying the plausible risks or failure modes affecting the quality attributes of the drug product. A face-centered cubic design was employed for systematic development and optimization of the concentration of sodium alginate (X 1) and gellan (X 2) as the critical material attributes (CMAs) in the stimuli-responsive formulations, which were evaluated for CQAs viz. viscosity, gel strength, onset of floatation, and drug release characteristics. Mathematical modeling was carried out for generation of design space, and optimum formulation was embarked upon, exhibiting formulation characteristics marked by excellent floatation and bioadhesion characteristics along with promising drug release control up to 24 h. Drug-excipient compatibility studies through FTIR and DSC revealed absence of any interaction(s) among the formulation excipients. In vivo pharmacokinetic studies in Wistar rats corroborated extension in the drug absorption profile from the optimized stimuli-responsive GR formulations vis-à-vis the marketed suspension (ZOVIRAX®). Establishment of in vitro/in vivo correlation (IVIVC) revealed a high degree of correlation between the in vitro and in vivo data. In a nutshell, the present investigations report the successful development of stimuli-responsive GRDDS of acyclovir, which can be applicable as a platform approach for other drugs too.
John, Gernot T; Klimant, Ingo; Wittmann, Christoph; Heinzle, Elmar
2003-03-30
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 829-836, 2003.
Air--sea gaseous exchange of PCB at the Venice lagoon (Italy).
Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P
2007-10-01
Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open sea. The air-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous exchange. In this work the parallel collection of air, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in air varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the air-sea interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.
Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba
2018-03-01
In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Earth resources data acquisition sensor study
NASA Technical Reports Server (NTRS)
Grohse, E. W.
1975-01-01
The minimum data collection and data processing requirements are investigated for the development of water monitoring systems, which disregard redundant and irrelevant data and process only those data predictive of the onset of significant pollution events. Two approaches are immediately suggested: (1) adaptation of a presently available ambient air monitoring system developed by TVA, and (2) consideration of an air, water, and radiological monitoring system developed by the Georgia Tech Experiment Station. In order to apply monitoring systems, threshold values and maximum allowable rates of change of critical parameters such as dissolved oxygen and temperature are required.
Stepuro, I I; Adamchuk, R I; Stepuro, V I
2004-01-01
Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.
Carlson, Gary A.
1976-01-01
An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.
Method and apparatus for production of subsea hydrocarbon formations
Blandford, Joseph W.
1995-01-01
A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehder, J.B.
The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion ofmore » the potential applications of floating hydro power systems in small streams.« less
Brandt, E H
1989-01-20
Several physical effects allow free floatation of solid and even liquid matter. Materials may be levitated by a jet of gas, by intense sound waves, or by beams of laser light. In addition, conductors levitate in strong radio-frequency fields, charged particles in alternating electric fields, and magnets above superconductors or vice versa. Although levitation by means of ferromagnets is unstable, supper-conductors may be suspended both above and below a magnet as a result of flux pinning. Levitation is used for containerless processing and investigation of materials, for frictionless bearings and high-speed ground transportation, for spectroscopy of single atoms and microparticles, and for demonstrating superconductivity in the new oxide superconductors.
Snare-assisted anterograde balloon mitral and aortic valvotomy using Inoue balloon catheter.
Krishnan, Mangalath N; Syamkumar, M D; Sajeev, C G; Venugopal, K; Johnson, Francis; Vinaykumar, D; Velayudhan, C C; Jayakumar, T G
2007-01-02
We performed concurrent antegrade mitral and aortic valvotomy using Inoue dilatation catheter in 3 cases of combined rheumatic mitral and aortic stenosis. Following mitral valvotomy by standard procedure, aortic valve was crossed with the help of a floatation catheter. Stiff long length guide wire was fixed in descending aorta using a snare. Inoue catheter was threaded over the wire across the aortic valve and aortic valvotomy completed. Mitral valve area increased from mean 1 cm2 to 2 cm2; aortic gradient dropped from mean of 97 mm to 36 mm. Concurrent anterograde balloon mitral and aortic valvotomy may be effective and safe.
Floating drug delivery systems: a review.
Arora, Shweta; Ali, Javed; Ahuja, Alka; Khar, Roop K; Baboota, Sanjula
2005-10-19
The purpose of writing this review on floating drug delivery systems (FDDS) was to compile the recent literature with special focus on the principal mechanism of floatation to achieve gastric retention. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. This review also summarizes the in vitro techniques, in vivo studies to evaluate the performance and application of floating systems, and applications of these systems. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.
Sea Surface Scanner: An advanced catamaran to study the sea surface
NASA Astrophysics Data System (ADS)
Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.
2016-02-01
The Sea Surface Scanner is a remote-controlled catamaran with the capability to sample the sea-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the sea surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the sea surface microlayer. We discuss the variability of biochemical properties of the sea surface and its implication on air-sea interaction.
NASA Astrophysics Data System (ADS)
Hudson, E. D.; Ariya, P. A.
2005-12-01
The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.
Atoms and Molecules: Do They Have a Place in Primary Science?
ERIC Educational Resources Information Center
Lee, Kam-Wah Lucille; Tan, Swee-Ngin
2004-01-01
In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…
Measurements of salinity, temperature, phytoplankton biomass and speciation, dissolved nitrate, dimethylsulphide (DMS) in seawater and air, and dimethylsulphoniopropionate (DMSP), were made in the subantarctic zone of the Southern Ocean from 40|-54|S, and 140|-153|E during the So...
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 parts per million by volume methane or n-hexane. (e) Negative pressure procedures. To demonstrate negative pressure... between 6.95 and 7.05. (4) To prepare the 0.1 normality (N) sodium thiosulfate solution, dissolve 25 g of...
Aqueous vinylidene fluoride polymer coating composition
NASA Technical Reports Server (NTRS)
Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)
1978-01-01
A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.
NASA Astrophysics Data System (ADS)
Grefe, I.; Kaiser, J.
2014-06-01
Dissolved nitrous oxide (N2O) concentrations are usually determined by gas chromatography (GC). Here we present laboratory tests and initial field measurements using a novel setup comprising a commercially available laser-based analyser for N2O, carbon monoxide and water vapour coupled to a glass-bed equilibrator. This approach is less labour-intensive and provides higher temporal and spatial resolution than the conventional GC technique. The standard deviation of continuous equilibrator or atmospheric air measurements was 0.2 nmol mol-1 (averaged over 5 min). The short-term repeatability for reference gas measurements within 1 h of each other was 0.2 nmol mol-1 or better. Another indicator of the long-term stability of the analyser is the standard deviation of the calibrated N2O mole fraction in marine air, which was between 0.5 and 0.7 nmol mol-1. The equilibrator measurements were compared with purge-and-trap gas chromatography-mass spectrometry (GC-MS) analyses of N2O concentrations in discrete samples from the Southern Ocean and showed agreement to within the 2% measurement uncertainty of the GC-MS method. The equilibrator response time to concentration changes in water was from 142 to 203 s, depending on the headspace flow rate. The system was tested at sea during a north-to-south transect of the Atlantic Ocean. While the subtropical gyres were slightly undersaturated, the equatorial region was a source of nitrous oxide to the atmosphere, confirming previous findings (Forster et al., 2009). The ability to measure at high temporal and spatial resolution revealed submesoscale variability in dissolved N2O concentrations. Mean sea-to-air fluxes in the tropical and subtropical Atlantic ranged between -1.6 and 0.11 μmol m-2 d-1 and confirm that the subtropical Atlantic is not an important source region for N2O to the atmosphere, compared to global average fluxes of 0.6-2.4 μmol m-2 d-1. The system can be easily modified for autonomous operation on voluntary observing ships (VOS). Future work should include an interlaboratory comparison exercise with other methods of dissolved N2O analyses.
Amand, L; Carlsson, B
2013-01-01
Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.
Santos, Priscila Ribeiro Dos; Daniel, Luiz Antonio
2017-10-01
Controlling Giardia cysts in sewage is an essential barrier for public health protection, reducing possible routes of protozoa transmission. The aim of this study was to evaluate the capability of dissolved air flotation (DAF), on a bench scale, to remove Giardia cysts from anaerobic effluent. Moreover, removals of indicator microorganisms and physical variables were also investigated. Flocculation conditions were studied, associating different flocculation times with different mean velocity gradients. DAF treatment achieved mean log removals in the range of 2.52-2.62 for Giardia cysts, depending on the flocculation condition. No statistical differences were observed among the flocculation conditions in terms of cyst removal. Low levels of turbidity and apparent color obtained from the treated effluent may indicate good treatment conditions for the DAF process in cyst removal. Indicator microorganisms were not able to predict the parasitological quality of the wastewater treated by flotation in terms of cyst concentrations. The DAF process provided an effective barrier to control cysts from sewage, which is an important parasite source.
Trace metals in upland headwater lakes in Ireland.
Burton, Andrew; Aherne, Julian; Hassan, Nouri
2013-10-01
Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.
Ion release and cytotoxicity of stainless steel wires.
Oh, Keun-Taek; Kim, Kyoung-Nam
2005-12-01
Heat treatment is generally applied to orthodontic stainless steel (SS) wires to relieve the stresses that result from their manipulation by orthodontists. The quality and thickness of the oxide films formed on the surface of heat-treated wires can vary, and it is believed that these oxide films can influence the properties of heat-treated wires. The aim of this study was to investigate the influence of heat treatment and cooling methods on the amount of metal ions released and to examine the cytotoxicity of heat-treated wires. In this study, four types of SS wires (Remanium, Permachrome, Colboloy and Orthos) with a cross-sectional area of 0.41 x 0.56 mm were investigated. These wires were heat-treated in a vacuum, air, or argon environment, and were cooled in either a furnace or a water bath. Four control groups and 24 experimental groups were classified according to the type of wires, heat treatment conditions and cooling methods. In each group, the amount of nickel released as well as its cytotoxicity was investigated. The concentration of dissolved nickel ions in artificial saliva was measured for a period of up to 12 weeks. In all groups, the concentration of dissolved nickel ions in artificial saliva was lowest for the vacuum heat treatment-furnace cooling group and a significant difference was shown compared with the other experimental groups. The concentration of dissolved nickel ions in artificial saliva was highest in the groups heat-treated in air (P < 0.05), while the amount of nickel released was highest in the Remanium and Colboloy (P < 0.05). The cytotoxicity was mild in all the experimental groups but the response index of the air groups was slightly higher than in the other groups. According to these results, SS wires retain their high corrosion resistance and low ion release rate when heat-treated in a vacuum and cooled in a furnace.
Arai, Y.; Sparks, D.L.; Davis, J.A.
2004-01-01
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [PCO2 = 10 -3.5 atm and ???0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L -1, [As(V)]0 = 1.5 mM and / = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L-1, [As(V)] 0 = 0.5 mM and / = 0.01 M NaCl], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (PCO2 = 10-3.5 atm)than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear (???2.8 A??) and bidentate binuclear (???3.3 A??) bonding at pH 4.5-8 and loading levels of 0.46-3.10 ??M m-2. Using the results of the pseudoequilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the PCO2 = 10-3.5 atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).
Turko, Andy J; Cooper, Chris A; Wright, Patricia A
2012-11-15
The skin-breathing amphibious fish Kryptolebias marmoratus experiences rapid environmental changes when moving between water- and air-breathing, but remodelling of respiratory morphology is slower (~1 week). We tested the hypotheses that (1) there is a trade-off in respiratory function of gills displaying aquatic versus terrestrial morphologies and (2) rapidly increased gill ventilation is a mechanism to compensate for reduced aquatic respiratory function. Gill surface area, which varied inversely to the height of the interlamellar cell mass, was increased by acclimating fish for 1 week to air or low ion water, or decreased by acclimating fish for 1 week to hypoxia (~20% dissolved oxygen saturation). Fish were subsequently challenged with acute hypoxia, and gill ventilation or oxygen uptake was measured. Fish with reduced gill surface area increased ventilation at higher dissolved oxygen levels, showed an increased critical partial pressure of oxygen and suffered impaired recovery compared with brackish water control fish. These results indicate that hyperventilation, a rapid compensatory mechanism, was only able to maintain oxygen uptake during moderate hypoxia in fish that had remodelled their gills for land. Thus, fish moving between aquatic and terrestrial habitats may benefit from cutaneously breathing oxygen-rich air, but upon return to water must compensate for a less efficient branchial morphology (mild hypoxia) or suffer impaired respiratory function (severe hypoxia).
Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer
2015-12-01
Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.
Cloud deposition of PAHs at Mount Lushan in southern China.
Wang, Ruixia; Wang, Yan; Li, Hongli; Yang, Minmin; Sun, Lei; Wang, Tao; Wang, Wenxing
2015-09-01
Cloud water samples were collected from Mount Lushan, a high alpine area of southern China, and analyzed using GC-MS to investigate the concentration levels, seasonal variations, particle-dissolved phase partitioning, ecological risk of PAHs and its relationship to the atmosphere and rainwater. The average concentration of total (dissolved+particle) PAHs in cloud water was 819.90 ng/L, which ranged from 2.30 ng/L for DbA to 295.38 ng/L for PhA. PhA (33.11%) contributed the most individual PAHs, followed by Flu (28.24%). Distinct seasonal variations in the total PAHs measured in this research had a higher concentration during the spring and a lower concentration during the summer. When cloud events occurred, the concentration of the atmospheric PAHs of the two phases decreased. The contribution from the gaseous phase of total PAHs in the air to the dissolved phase in cloud water was up to 60.43%, but the particulate phase in the air only contributed 39.57% to the total scavenging. The contribution of total PAHs from the atmosphere to clouds is higher in the gaseous phase than in the particulate phase. A comparative study of the concentrations of cloud water and the closest rain water revealed that the PAH concentration in rainwater was 1.80 times less than that of cloud water and that the dominant individual compounds in cloud water and rainwater were PhA and Flu. A total of 81.27% of the PAHs in cloud samples and 72.21% of the PAHs in rain samples remained in the dissolved phase. Ecological risk assessment indicated that PAHs in cloud water in spring and summer caused a certain degree of ecosystem risk and the mean ecosystem risk in spring was higher than that in summer. Copyright © 2015 Elsevier B.V. All rights reserved.
Controls of Methane Dynamics and Emissions in an Arctic Warming Experiment
NASA Astrophysics Data System (ADS)
Nielsen, C. S.; Elberling, B.; Michelsen, A.; Strobel, B. W.; Wulff, K.; Banyasz, I.
2015-12-01
Climatic changes have resulted in increasing air temperatures across the Arctic. This may increase anaerobic decomposition of soil organic matter to methane (CH4) in wetlands and increase plant growth and thereby production of substrate. Little is known about how seasonal variations in dissolved CH4 in soil water, substrate availability, and the effect of warming affect arctic wetland dynamics of CH4 production and emission. In 2013 we established two experiments in a fen at Disko Island, W Greenland; one with year round warming by open-top chambers and removal of shrubs, and one with removal of the aerenchymatous sedge Carex aquatilis ssp. stans. Throughout the growing season 2014 we measured how the treatments affected CH4 emissions, dissolved CH4 in the soil water, and substrate availability. Ecosystem CH4 emissions peaked at August 5th 2014 (7.5 μmol m-2 h-1) without coinciding with time of highest concentrations of dissolved CH4 or acetate indicating a decoupling between production and emission of CH4. The peak in dissolved CH4 concentration, at ten cm depth (1368 ppm, September 18th 2014), followed the peak in concentration of acetate in the same depth (0.30 ppm, August 30th 2014) highlighting the importance of this substance as a substrate for methanogenesis. C. aquatilis ssp. stans accounted for 60% and 77% of the ecosystem CH4 emissions in areas of the fen with water table above and below soil surface showing the importance of the presence of this species to serve as a pipe for CH4 emission which is bypassing the upper soil zone and potential methane oxidation. Throughout the season, warming increased the air temperature at soil surface by on average 0.89°C and occasionally warming and shrub removal increased soil temperature in 2 and 5 cm depth, but there was no effect of the treatments on the CH4 emissions indicating that this wetland is quite resilient towards future climate change.
Crustal tracers in the atmosphere and ocean: Relating their concentrations, fluxes, and ages
NASA Astrophysics Data System (ADS)
Han, Qin
Crustal tracers are important sources of key limiting nutrients (e.g., iron) in remote ocean regions where they have a large impact on global biogeochemical cycles. However, the atmospheric delivery of bio-available iron to oceans via mineral dust aerosol deposition is poorly constrained. This dissertation aims to improve understanding and model representation of oceanic dust deposition and to provide soluble iron flux maps by testing observations of crustal tracer concentrations and solubilities against predictions from two conceptual solubility models. First, we assemble a database of ocean surface dissolved Al and incorporate Al cycling into the global Biogeochemical Elemental Cycling (BEC) model. The observed Al concentrations show clear basin-scale differences that are useful for constraining dust deposition. The dynamic mixed layer depth and Al residence time in the BEC model significantly improve the simulated dissolved Al field. Some of the remaining model-data discrepancies appear related to the neglect of aerosol size, age, and air mass characteristics in estimating tracer solubility. Next, we develop the Mass-Age Tracking method (MAT) to efficiently and accurately estimate the mass-weighted age of tracers. We apply MAT to four sizes of desert dust aerosol and simulate, for the first time, global distributions of aerosol age in the atmosphere and at deposition. These dust size and age distributions at deposition, together with independent information on air mass acidity, allow us to test two simple yet plausible models for predicting the dissolution of mineral dust iron and aluminum during atmospheric transport. These models represent aerosol solubility as controlled (1) by a diffusive process leaching nutrients from the dust into equilibrium with the liquid water coating or (2) by a process that continually dissolves nutrients in proportion to the particle surface area. The surface-controlled model better captures the spatial pattern of observed solubility in the Atlantic. Neither model improves previous estimates of the solubility in the Pacific, nor do they significantly improve the global BEC simulation of dissolved iron or aluminum.
Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...
Automotive absorption air conditioner utilizing solar and motor waste heat
NASA Technical Reports Server (NTRS)
Popinski, Z. (Inventor)
1981-01-01
In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.
Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Hayes, J. M.
1992-01-01
Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Kastengren, Alan L.; Swantek, Andrew B.
The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. In this paper, we present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source.more » We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10 -5, with an uncertainty of 8 %. Finally, these quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.« less
Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA
Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.
2016-01-01
Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.
Diurnal pattern in nitrous oxide emissions from a sewage-enriched river.
Xia, Yongqiu; Li, Yuefei; Li, Xiaobo; Guo, Miao; She, Dongli; Yan, Xiaoyuan
2013-07-01
Estimates of N2O emission based on limit measurements could be highly inaccurate because of considerable diurnal variations in N2O flux due to rapid transformation of nutrients and diel change of dissolved oxygen (DO). In the present study, the N2O fluxes, dissolved N2O concentrations, and the controlling variables were measured hourly for 3d and night cycles at five sites on a typically sewage-enriched river in the Taihu region. There were no significant diurnal patterns in N2O emissions and dissolved N2O saturation, with respective mean value of 56.1μg N2O-Nm(-2)h(-1) (range=41.1μg N2O-Nm(-2)h(-1) to 87.7μg N2O-Nm(-2)h(-1)) and 813% (range=597-1372%), though distinct diurnal patterns were observed in DO concentration and river chemistry. However, the mean N2O emissions and the mean dissolved N2O saturation during the day (61.7μgNm(-2)h(-1) for N2O fluxes and 0.52μgNL(-1) for dissolved N2O saturation) were significantly higher than those during the night (50.1μgNm(-2)h(-1)for N2O fluxes and 0.44μgNL(-1) for dissolved N2O saturation). Factors controlling the N2O flux were pH, DO, NH4(+),SO4(2-), air temperature, and water temperature. Sampling at 19:00h could well represent the daily average N2O flux at the studied river. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan
2013-09-01
Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.
First Autonomous Recording of in situ Dissolved Oxygen from Free-ranging Fish
NASA Astrophysics Data System (ADS)
Coffey, D.; Holland, K.
2016-02-01
Biologging technology has enhanced our understanding of the ecology of marine animals and has been central to identifying how oceanographic conditions drive patterns in their distribution and behavior. Among these environmental influences, there is increasing recognition of the impact of dissolved oxygen on the distribution of marine animals. Understanding of the impact of oxygen on vertical and horizontal movements would be advanced by contemporaneous in situ measurements of dissolved oxygen from animal-borne sensors instead of relying on environmental data that may not have appropriate spatial or temporal resolution. Here we demonstrate the capabilities of dissolved oxygen pop-up satellite archival tags (DO-PATs) by presenting the results from calibration experiments and trial deployments of two prototype tags on bluntnose sixgill sharks (Hexanchus griseus). The DO-PATs provided fast, accurate, and stable measurements in calibration trials and demonstrated high correlation with vertical profiles obtained via traditional ship-borne oceanographic instruments. Deployments on bluntnose sixgill sharks recorded oxygen saturations as low as 9.4% and effectively captured the oceanography of the region when compared with World Ocean Atlas 2013 values. This is the first study to use an animal-borne device to autonomously measure and record in situ dissolved oxygen saturation from non-air-breathing marine animals. The DO-PATs maintained consistency over time and yielded measurements equivalent to industry standards for environmental sampling. Acquiring contemporaneous in situ measurements of dissolved oxygen saturation alongside temperature and depth data will greatly improve our ability to investigate the spatial ecology of marine animals and make informed predictions of the impacts of global climate change. The information returned from DO-PATs is relevant not only to the study of the ecology of marine animals but will also become a useful new tool for investigating the physical structure of the oceans.
Addition of ammonia and/or oxygen to an ionic liquid for delignification of miscanthus.
Rodríguez, Héctor; Padmanabhan, Sasisanker; Poon, Geoffrey; Prausnitz, John M
2011-09-01
Ammonia and/or oxygen were used to enhance the delignification of miscanthus dissolved in 1-ethyl-3-methylimidazolium acetate at 140°C. After dissolution of the gas at 9 bar, water was added as antisolvent to regenerate the dissolved biomass. In a next step, an acetone/water mixture was used to remove carbohydrate-free lignin from the regenerated biomass. The lignin content in the final product was around 10%, much lower than the ca. 23% lignin content of the raw dry miscanthus. This lignin reduction is achieved without diminution of cellulose or of total carbohydrates recovered, relative to the recovery achieved with the ionic liquid pretreatment in contact with air or nitrogen. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-12-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
Precipitation scavenging of polychlorinated biphenyl congeners in the great lakes region
NASA Astrophysics Data System (ADS)
Murray, Michael W.; Andren, Anders W.
Ten precipitation events were sampled in the fall of 1986 in Madison, WI and analyzed for individual congener and total polychlorinated biphenyl (PCB) levels in both the dissolved and particulate phases. Total PCB concentrations were generally at the lower end of ranges recently reported for precipitation. Operationally defined dissolved and particulate phase congener distribution patterns for the two events of highest concentration were qualitatively similar to gas-phase and particle-bound patterns for northern Wisconsin air samples. Higher than predicted dissolved-phase concentrations may indicate non-equilibrium processes during scavenging and/or sample processing, the presence of colloids and micro-particulates, and/or more efficient gas-phase transfer to hydrometeors with organic coatings. Observed organic carbon-normalized distribution coefficients increased slightly with increasing octanol-water partition coefficient, giving the relationship log Koc = 0.22 log Kow + 4.64. The data indicate that a third organic-rich colloidal phase could be influencing partitioning, and could explain the higher than expected apparent gas scavenging efficiency for PCBs from the atmosphere. Precipitation-weighted mean fluxes of PCBs in the dissolved and particulate phases were 1.2 and 1.4 μg m -2 year -1, respectively, indicating that precipitation remains a significant source of PCBs to the upper Great Lakes.
Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe
2004-05-11
In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.
Air sparging: Air-water mass transfer coefficients
NASA Astrophysics Data System (ADS)
Braida, Washington J.; Ong, Say Kee
1998-12-01
Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.
Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes
NASA Astrophysics Data System (ADS)
Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.
2014-12-01
Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (
Oppenländer, Thomas; Walddörfer, Carsten; Burgbacher, Jens; Kiermeier, Martin; Lachner, Klaus; Weinschrott, Helga
2005-07-01
Xenon excimer (Xe2*) lamps can be used for the oxidation and mineralization of organic compounds in aqueous solution. This vacuum-ultraviolet (VUV) photochemical method is mainly based on the photochemically initiated homolysis of water that produces hydrogen atoms and hydroxyl radicals. The efficiency of substrate oxidation and mineralization is limited markedly due to the high absorbance of water at the emission maximum of the Xe2* lamp (lambda(max)=172 nm). This photochemical condition generates an extreme heterogeneity between the irradiated volume V(irr) and the non-irradiated ("dark") bulk solution. During VUV-initiated photomineralization of organic substrates, the fast scavenging of hydrogen atoms and of carbon-centered radicals by dissolved molecular oxygen produces a permanent oxygen deficit within V(irr) and adjacent compartments. Hence, at a constant photon flux the concentration of dissolved molecular oxygen within the zones of photo and thermal radical reactions limits the rate of mineralization, i.e. the rate of TOC diminution. Thus, a simple and convenient technique is presented that overcomes this limitation by injection of molecular oxygen (or air) into the irradiated volume by use of a ceramic oxygenator (aerator). The tube oxygenator was centered axially within the xenon excimer flow-through lamp. Consequently, the oxygen or air bubbles enhanced the transfer of dissolved molecular oxygen into the VUV-irradiated volume leading to an increased rate of mineralization of organic model compounds, e.g. 1-heptanol, benzoic acid and potassium hydrogen phthalate.
Parasitic contamination of vegetables in Jos, Nigeria.
Damen, J G; Banwat, E B; Egah, D Z; Allanana, J A
2007-09-01
Intestinal parasites are very common in developing countries including Nigeria. There are diverse ways of their transmission; the study attempts to determine the level of intestinal parasitic contamination on vegetables sold in Jos. Sample of 200 each of Tomatoes (Lycopersium sativus), Letus (Loctus satival) Carrot (Davcus carota L) Cabbage (Brassica Denceal) and Green leafy vegetables were analyzed using standardized Centrifugal-floatation technique methods. Of the 1250 samples of vegetables examined, 450 (36.0%) were positive for intestinal parasites, cabbage recorded the highest prevalence of 64% while tomatoes had the least prevalence of 20%. Vegetables in Jos are heavily contaminated with intestinal parasites and there is need for public enlightenment campaign on the danger of consuming inadequately washed and prepared vegetables.
Evaluation of the effectiveness of two support surfaces following myocutaneous flap surgery.
Economides, N G; Skoutakis, V A; Carter, C A; Smith, V H
1995-01-01
Recurrence of pressure ulcers is a serious problem following myocutaneous flap surgery and can lead to prolonged and expensive hospitalization. One of the most important aspects of patient care after surgery is the monitoring of reduced pressure in the area of the flap. Usually reducing pressure requires an expensive high-tech support surface. The purpose of this study was to evaluate the effectiveness of a less expensive support surface. There were 12 patients involved in a clinical trial that lasted 14 days and compared the effectiveness of the ROHO dry-floatation mattress to that of the Clinitron bed. Findings indicated that post-operative patients were effectively treated on either support surface.
Percutaneous treatment of Lutembacher syndrome in a case with difficult mitral valve crossing.
Bhambhani, Anupam; Somanath, H S
2012-03-01
Most cases of combination congenital cardiac anomalies are treated with open-heart surgeries because the coexisting anomalies change the cardiac anatomy in an adverse way, making catheter manipulations complex. Lutembacher syndrome is a combination of acquired mitral stenosis and congenital ostium secundum atrial septal defect. The large defect in the septum makes an Inoue balloon catheter unstable, which provides excessive space for free floatation of the catheter, making its passage into the left ventricle difficult by Inoue technique. We present a case of elective definitive percutaneous treatment of Lutembacher syndrome, discussing the technical difficulties faced in mitral valve crossing and reviewing the possible strategies to improve chances of success.
Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity
NASA Astrophysics Data System (ADS)
Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu
2015-03-01
2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.
Reduce oil and grease content in wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, R.W.; Matelli, G.N.; Bradford, M.L.
Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipmentmore » washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.« less
A novel method to harvest Chlorella sp. by co-flocculation/air flotation.
Zhang, Haiyang; Lin, Zhe; Tan, Daoyong; Liu, Chunhua; Kuang, Yali; Li, Zhu
2017-01-01
To develop a more effective dissolved air flotation process for harvesting microalgae biomass, a co-flocculation/air flotation (CAF) system was developed that uses an ejector followed by a helix tube flocculation reactor (HTFR) as a co-flocculation device to harvest Chlorella sp. 64.01. The optimal size distribution of micro-bubbles and an air release efficiency of 96 % were obtained when the flow ratio of inlet fluid (raw water) to motive fluid (saturated water) of the ejector was 0.14. With a reaction time of 24 s in the HTFR, microalgae cells and micro-bubbles were well flocculated, and these aerated flocs caused a fast rising velocity (96 m/h) and high harvesting efficiency (94 %). In a CAF process, micro-bubbles can be encapsulated into microalgae flocs, which makes aerated flocs more stable. CAF is an effective approach to harvesting microalgae.
Novel Nanometric Superstructures for Radiation and Magnetic Sensing
2007-05-22
AAO Anodic aluminum oxide AFM Atomic force microscope AFRL Air...Ni nanowires in a 2 µm AAO film after aluminum oxide was partially dissolved; (c) part of the Bi nanowires in a 25 µm AAO template after aluminum ...conditions [R3]. In this process, after removing the thick aluminum oxide film obtained from the first long anodization , the aluminum surface
NASA Technical Reports Server (NTRS)
Vest, R. W.; Singaram, Saraswathi
1989-01-01
Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.
Agitation apparatus. [Patent application
Beets, A.L.; Lewis, B.E. Jr.
1982-03-12
Agitation apparatus includes a tank with a cylindrical upper portion, a frustoconical intermediate portion, and a cylindrical lower portion, a lift tube extending from the upper portion of the tank to a point near an end cap attached to the lower portion of the tank, the lift tube being concentric with the lower portion of the tank to provide a flow passage there between, and a plurality of air supply conduits extending along the lift tube and spaced apart around its perimeter, these air supply conduits terminating adjacent the lower end of the lift tube. Air discharged from the lower ends of the air supply conduits causes liquid in the tank to flow upwardly through the lift tube and out of apertures in the upper portion thereof. Due to the unique properties of nuclear fuel dissolver solutions and the constraint placed on the amount of air that can be injected therein by conventional apparatus, there has been a need for a more effective means for agitating liquid in nuclear fuel digester tanks.
Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2.
Górka, Maciej; Sauer, Peter E; Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion
2011-01-01
This paper describes results of chemical and isotopic analysis of inorganic carbon species in the atmosphere and precipitation for the calendar year 2008 in Wrocław (SW Poland). Atmospheric air samples (collected weekly) and rainwater samples (collected after rain episodes) were analysed for CO2 and dissolved inorganic carbon (DIC) concentrations and for δ13C composition. The values obtained varied in the ranges: atmospheric CO2: 337-448 ppm; δ13CCO2 from -14.4 to -8.4‰; DIC in precipitation: 0.6-5.5 mg dm(-3); δ13CDIC from -22.2 to +0.2‰. No statistical correlation was observed between the concentration and δ13C value of atmospheric CO2 and DIC in precipitation. These observations contradict the commonly held assumption that atmospheric CO2 controls the DIC in precipitation. We infer that DIC is generated in ambient air temperatures, but from other sources than the measured atmospheric CO2. The calculated isotopic composition of a hypothetical CO2 source for DIC forming ranges from -31.4 to -11.0‰, showing significant seasonal variations accordingly to changing anthropogenic impact and atmospheric mixing processes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yang, Show-Yi; Lin, Jia-Ming; Young, Li-Hao; Chang, Ching-Wen
2018-04-07
We investigate exposure to welding fume metals in pipeline construction, which are responsible for severe respiratory problems. We analyzed air samples obtained using size-fractioning cascade impactors that were attached to the welders performing shielded metal and gas tungsten arc welding outdoors. Iron, aluminum, zinc, chromium, manganese, copper, nickel, and lead concentrations in the water-soluble (WS) and water-insoluble (WI) portions were determined separately, using inductively coupled plasma mass spectrometry. The mass-size distribution of welding fume matches a log-normal distribution with two modes. The metal concentrations in the welding fume were ranked as follows: Fe > Al > Zn > Cr > Mn > Ni > Cu > Pb. In the WS portion, the capacities of metals dissolving in water are correlated with the metal species but particle sizes. Particularly, Zn, Mn, and Pb exhibit relatively higher capacities than Cu, Cr, Al, Fe, and Ni. Exposure of the gas-exchange region of the lungs to WS metals were in the range of 4.9% to 34.6% of the corresponding metals in air by considering the particle-size selection in lungs, metal composition by particle size, and the capacities of each metal dissolving in water.
Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi
2017-10-15
Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wehmeyer, Loren L.; Wagner, Chad R.
2011-01-01
The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.
Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling
2014-12-01
Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.
Giroux, Hélène J; Acteau, Geneviève; Sabik, Hassan; Britten, Michel
2008-07-23
The combined effect of dissolved gas composition and heat treatment on the oxidative degradation of a dairy beverage enriched with 2% linseed oil was studied. The dairy beverage was saturated with air, nitrogen, or a nitrogen/hydrogen mixture (4% hydrogen) before pasteurization or sterilization. Saturation with either nitrogen or a nitrogen/hydrogen mixture decreased the dissolved oxygen concentration in dairy beverages (Delta = 7.7 ppm), and the presence of hydrogen significantly reduced the redox potential (Delta = 287 mV). Heat treatments also reduced the oxygen content and redox potential, sterilization being more effective than pasteurization. Both pasteurization and sterilization induced the oxidative degradation of the beverages. On average, the propanal concentration increased by a factor of 2.3 after pasteurization and by a factor of 6.2 after sterilization. However, during storage, sterilized beverages resisted light-induced oxidation better than unheated or pasteurized beverages. Furthermore, saturation with nitrogen or a nitrogen/hydrogen mixture significantly reduced oxidative degradation and provided some protection against color changes during storage.
Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery.
Lanzarini-Lopes, Mariana; Delgado, Anca G; Guo, Yuanming; Dahlen, Paul; Westerhoff, Paul
2018-03-01
Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organic matter in central California radiation fogs.
Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L
2002-11-15
Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (<17 microm) were a factor of 3, on average, higher than TOC concentrations in larger drops. As much as half of the dissolved organic matter was determined to have a molecular weight higher than 500 Da. Deposition fluxes of organic matter in fog drops were high (0.5-4.3 microg of C m(-2) min(-1)), indicating the importance of fog processing as a vector for removal of organic matter from the atmosphere. Deposition velocities of organic matter, however, were usually found to be lower than deposition velocities for fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.
Ke, Hongwei; Chen, Mian; Liu, Mengyang; Chen, Meng; Duan, Mengshan; Huang, Peng; Hong, Jiajun; Lin, Yan; Cheng, Shayen; Wang, Xuran; Huang, Mengxue; Cai, Minggang
2017-10-01
Polycyclic aromatic hydrocarbons (PAHs) have accumulated ubiquitously inArctic environments, where re-volatilization of certain organic pollutants as a result of climate change has been observed. To investigate the fate of semivolatile organic compounds in the Arctic, dissolved PAHs in the surface seawaters from the temperate Pacific Ocean to the Arctic Ocean, as well as a water column in the Arctic Ocean, were collected during the 4th Chinese National Arctic Research Expedition in summer 2010. The total concentrations of seven dissolved PAHs in surface water ranged from 1.0 to 5.1 ng L -1 , decreasing with increasing latitude. The vertical profile of PAHs in the Arctic Ocean was generally characteristic of surface enrichment and depth depletion, which emphasized the role of vertical water stratification and particle settling processes. A level III fugacity model was developed in the Bering Sea under steady state assumption. Model results quantitatively simulated the transfer processes and fate of PAHs in the air and water compartments, and highlighted a summer air-to-sea flux of PAHs in the Bering Sea, which meant that the ocean served as a sink for PAHs, at least in summer. Acenaphthylene and acenaphthene reached equilibrium in air-water diffusive exchange, and any perturbation, such as a rise in temperature, might lead to disequilibrium and remobilize these compounds from their Arctic reservoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct observation of void evolution during cement hydration
Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed; ...
2017-09-28
This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less
Direct observation of void evolution during cement hydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed
This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less
Kwak, Dong-Heui; Kim, Mi-Sug
2015-01-01
The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-01-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
NASA Astrophysics Data System (ADS)
Khammeri, Yosra; Hamza, Ismail Sabeur; Zouari, Amel Bellaaj; Hamza, Asma; Sahli, Emna; Akrout, Fourat; Ben Kacem, Mohamed Yassine; Messaoudi, Sabri; Hassen, Malika Bel
2018-05-01
Monthly variability of atmospheric deposition of dissolved nitrogen, phosphorus and silicate was assessed during the year period from June 2014 to May 2015 in the Gulf of Gabès, situated near the most active source of dust. Nutrient concentrations, ultraphytoplankton <10 μm and heterotrophic prokaryotes abundances were simultaneously investigated in the surface coastal water near the sampling site. Results showed that most of the bulk nutrient deposition (more than 66%) occurred during wet season, from October to February, characterized by air masses originating from the Tunisian desert. Dissolved Inorganic Nitrogen (DIN) deposition was very low, whereas Dissolved Inorganic Phosphorus (DIP) bulk deposition was within the range of that observed in the Eastern Mediterranean. High organic nitrogen (30.47%) and phosphorus (83,5%) content contributed to the bulk nitrogen and phosphorus deposition respectively. Months marked by high deposition were accompanied by an increase of carbon biomass from picophytoplankton, Synecococcus and heterotrophic prokaryotes while nanophytoplankton biomass decreased from 62.38% to 43.39% towards the wet season. During the wet season, heterotrophic prokaryotes become the first contributors to the carbon biomass in the surface water. This suggests a possible contribution of bacteria to the organic nutrient pool driven by atmospheric deposition or/and a reinforcement of the heterotrophic character of the system due to the organic content mineralization processes.
Sipler, Rachel E; Kellogg, Colleen T E; Connelly, Tara L; Roberts, Quinn N; Yager, Patricia L; Bronk, Deborah A
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new 'normal' for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Roberts, Hannah M; Shiller, Alan M
2015-01-26
Methane (CH4) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument's pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method. Copyright © 2014 Elsevier B.V. All rights reserved.
Poulson, S.R.; Sullivan, A.B.
2009-01-01
The upper Klamath River experiences a cyanobacterial algal bloom and poor water quality during the summer. Diel chemical and isotopic techniques have been employed in order to investigate the rates of biogeochemical processes. Four diel measurements of field parameters (temperature, pH, dissolved oxygen concentrations, and alkalinity) and stable isotope compositions (dissolved oxygen-??18O and dissolved inorganic carbon-??13C) have been performed between June 2007 and August 2008. Significant diel variations of pH, dissolved oxygen (DO) concentration, and DO-??18O were observed, due to varying rates of primary productivity vs. respiration vs. gas exchange with air. Diel cycles are generally similar to those previously observed in river systems, although there are also differences compared to previous studies. In large part, these different diel signatures are the result of the low turbulence of the upper Klamath River. Observed changes in the diel signatures vs. sampling date reflect the evolution of the status of the algal bloom over the course of the summer. Results indicate the potential utility of applying diel chemical and stable isotope techniques to investigate the rates of biogeochemical cycles in slow-moving rivers, lakes, and reservoirs, but also illustrate the increased complexity of stable isotope dynamics in these low-turbulence systems compared to well-mixed aquatic systems. ?? 2009 Elsevier B.V.
PREPARATION OF ACTINIDE-ALUMINUM ALLOYS
Moore, R.H.
1962-09-01
BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)
2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...
2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO
2009-07-01
viii Unit Conversion Factors...sampler is also an economic alternative for sampling for inorganic analytes. ERDC/CRREL TR-09-12 xii Unit Conversion Factors Multiply By To Obtain...head- space and then covered with two layers of tightly fitting aluminum foil. To dissolve the analytes, the solutions were stirred for approximately
Cavitation Inception in Separated Flows.
1981-12-01
measured data. Keller (1972, 1973) determined the nuclei population by using a single particle light scattering device (the sample volume was... computations of the average pressure coefficient. The amount of air dissolved in the water varied from 10 to 11 ppm ( molar ) and was measured with a Van Slyke...fluctuating pressures were also measured. .-The conditions for cavitation inception and desinence were determined and several holograms were recorded
Photochemical influences on the air-water exchange of mercury
NASA Astrophysics Data System (ADS)
Vette, Alan Frederic
The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission fluxes of gaseous Hg were similar in Lake Michigan. In addition, deposition and emission fluxes of gaseous Hg were similar to Hg loadings by precipitation. The formation and emission of DGM from surface waters represents a significant contribution to the Hg cycle in aquatic ecosystems.
Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza
2017-03-08
In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2-70, 6-360, 7-725, 7-370, and 8-450 ng mL -1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Bubble performance of a novel dissolved air flotation(DAF) unit.
Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun
2004-01-01
ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.
Telling, Jon; Anesio, Alexandre M.; Tranter, Martyn; Fountain, Andrew G.; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B.; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L.
2014-01-01
The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones. PMID:25566210
Telling, Jon; Anesio, Alexandre M; Tranter, Martyn; Fountain, Andrew G; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L
2014-01-01
The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones.
Rankin, D.R.
2000-01-01
Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.
Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios
NASA Astrophysics Data System (ADS)
Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.
2013-12-01
Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other pollutants. Finally, the system was deployed shipboard, and field deployment data will also be presented.
Dissolved air flotation of polishing wastewater from semiconductor manufacturer.
Liu, J C; Lien, C Y
2006-01-01
The feasibility of the dissolved air flotation (DAF) process in treating chemical mechanical polishing (CMP) wastewater was evaluated in this study. Wastewater from a local semiconductor manufacturer was sampled and characterised. Nano-sized silica (77.6 nm) with turbidity of 130 +/- 3 NTU was found in the slightly alkaline wastewater with traces of other pollutants. Experimental results indicated removal efficiency of particles, measured as suspended particle or turbidity, increased with increasing concentration of cationic collector cetyltrimethyl ammonium bromide (CTAB). When CTAB concentration was 30 mg/L, pH of 6.5 +/- 0.1 and recycle ratio of 30%, very effective removal of particles (> 98%) was observed in saturation pressure range of 4 to 6 kg/cm2, and the reaction proceeded faster under higher pressure. Similarly, the reaction was faster under the higher recycle ratio, while final removal efficiency improved slightly as the recycle ratio increased from 20 to 40%. An insignificant effect of pH on treatment efficiency was found as pH varied from 4.5 to 8.5. The presence of activator, Al3+ and Fe3+, enhanced the system performance. It is proposed that CTAB adsorbs on silica particles in polishing wastewater through electrostatic interaction and makes particles more hydrophobic. The increase in hydrophobicity results in more effective bubble-particle collisions. In addition, flocculation of silica particles through bridging effect of collector was found; it is believed that flocculation of particles also contributed to flotation. Better attachment between gas bubble and solid, higher buoyancy and higher air to solid ratio all lead to effective flotation.
Vernal distribution and turnover of dimethylsulfide (DMS) in the surface water of the Yellow Sea
NASA Astrophysics Data System (ADS)
Li, Cheng-Xuan; Yang, Gui-Peng; Wang, Bao-Dong; Xu, Zong-Jun
2016-10-01
The spatial and interannual variations of dimethylsulfide (DMS) and its precursors, dissolved and particulate dimethylsulfoniopropionate (DMSP), were discussed on the basis of field observations in the surface waters of the Yellow Sea during spring 2007. Maxima of dimethylated sulfur compounds and low chlorophyll a concentrations were found in the central southern Yellow Sea, whereas low concentrations of DMS and DMSP were detected at the boundary between the northern and southern parts of the Yellow Sea. This frontal region is influenced by active water currents, air-sea interface exchanges, and biological turnover. The horizontal variations in DMS production and consumption rates showed a decreasing tendency from the coastal to offshore areas mainly due to the complicated biological features. DMS positively correlated with dissolved CH4 and CO2 but negatively correlated with nutrients (nitrite and phosphate). Particulate DMSP concentrations and DMS production rates positively correlated with dinoflagellate abundances but negatively correlated with diatom cell densities. DMS and DMSP concentrations, as well as DMS production and consumption rates, exhibited approximately 2.0-2.8 fold increases from 2005 to 2012. This finding was likely caused by shifts in the phytoplankton communities from diatoms to dinoflagellates and the increases in abundances of zooplankton and bacteria. Average sea-to-air DMS fluxes were estimated to be 8.12 ± 1.24 µmol·(m-2·d-1), and DMS microbial consumption was approximately 1.68 times faster than the DMS sea-air exchange. These findings imply that biological consumption, relative to ventilation, is a predominant mechanism in DMS removal from the surface water.
NASA Astrophysics Data System (ADS)
Eka Putri, Irana; Gita Redhyka, Grace
2017-07-01
Micro-air-bubble has a high potential contribution in waste water, farming, and fishery treatment. In this research, submicron scale of micro-air-bubble was observed to determine its stability in H2O solvent. By increasing its stability, it can be used for several applications, such as bio-preservative for medical and food transport. The micro-air-bubble was assumed in spherical shape that in incompressible gas boundary condition. So, the random motion of particle (Brownian motion) can be solved by using Stokes-Einstein approximation. But, Hadamard and Rybczynski equation is promoted to solve for larger bubble (micro scale). While, the effect of physical properties (e.g. diffusion coefficient, density, and flow rate) have taken important role in its characteristics in water. According to the theoretical investigation that have been done, decreasing of bubble velocity indicates that the bubble dissolves away or shrinking to the surface. To obtain longevity bubble in pure water medium, it is recomended to apply some surfactant molecules (e.g. NaCl) in micro-air-bubble medium.
Fogwater Chemistry and Air Quality in the Texas-Louisiana Gulf Coast Corridor
NASA Astrophysics Data System (ADS)
Kommalapati, R. R.; Raja, S.; Ravikrishna, R.; Murugesan, K.; Collett, J. L.; Valsaraj, K.
2007-05-01
The presence of fog water in polluted atmosphere can influence atmospheric chemistry and air quality. The study of interactions between fog water and atmospheric gases and aerosols are very important in understanding the atmospheric fate of the pollutants. In this Study several air samples and fogwater samples were collected in the heavily industrialized area of Gulf Coast corridor( Houston, TX and Baton Rouge, LA). A total of 32 fogwater samples were collected, comprising of nine fog events in Baton Rouge (Nov 2004 to Feb 2005) and two fog events in Houston (Feb, 2006), during the fog sampling campaigns. These samples were analyzed for pH, total and dissolved carbon, major inorganic ions, organic acids, and aromatics, aldehydes, VOCs, and linear alkanes organic compounds. Fogwater samples collected in Houston show clear influence of marine and anthropogenic environment, while Baton Rouge samples reveal a relatively less polluted environment. Also, a time series observation of air samples indicated that fog event at the monitoring site impacted the air concentrations of the pollutants. This is attributed to presence of surface active organic matter in fog water.
Huang, Yumei; Li, Jun; Xu, Yue; Xu, Weihai; Cheng, Zhineng; Liu, Junwen; Wang, Yan; Tian, Chongguo; Luo, Chunling; Zhang, Gan
2014-03-15
Nineteen pairs of air and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the Seas) and HCB were lower than previous data over the study area. Air samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and air mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to air during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chapter A6. Section 6.1. Temperature
Revised by Wilde, Franceska D.
2006-01-01
Accurate temperature measurements are required for accurate determinations of important environmental parameters such as pH, specific electrical conductance, and dissolved oxygen, and to the determination of chemical reaction rates and equilibria, biological activity, and physical fluid properties. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of temperature in air, ground water, and surface water and calibration of the equipment used.
1985-09-13
MAS Wins Contract to Service Air Force Planes (ANTARA NEWS BULLETIN, 3 Aug 85) Leaders Receive Messages of Thanks From MPR (KPL, 14 Aug 85...Dissolve Batasan ( BUSINESS DAY, 16 Aug 85) 31 Author on ’Quid-Pro-Quo’ in Sabah Claim (Nelly Sindayen; BULLETIN TODAY, 2 Jul 85) 32 Columnist...Exchange ( BUSINESS DAY, 16 Aug 85) 49 Batasan Speaker Yniguez ’Welcomed’ USSR Peace Efforts (Cross-reference) Bigornia Comments on USSR Aid to
2012-05-01
adverse health effects (HHS 2010). However, propylene glycol requires oxygen for breakdown, which can deplete surface waters of dissolved oxygen ...and the Human Effectiveness Directorate (RH), plus supporting functions. Facility 20840 contains a high-bay area that houses two C-130 training...aircrew training program that develops and maintains a high state of mission readiness for immediate and effective deployments across the range of
Wear Debris Analysis of Grease Lubricated Ball Bearings.
1982-04-12
Ferrography method was performed by the Naval Air Engineering Center (NAVAIRENGCEN), Lakehurst, New Jersey. A total of three sets of two 6309 deep-groove ball... Ferrography technique. The analysis of the grease-retained wear debris necessitated the development of a technique to reduce the grease samples to a...condition where they were compatible with the Ferrography technique. A major achievement was the successful application of dissolving the grease
2012-03-22
Approved: //signed// 14 Mar 2011 __________________________________ _________ Mark N. Goltz , Ph.D... Goltz for providing me the opportunity to work together on this research. The discussions, timely edits, and encouragement were greatly...Zone Initiative Final Report. Brooks AF Base: US Air Force, 2007. Aryal, D., M. Otera, A. Demond, M. Goltz , and J. Huang. Impact of Chlorinated
Springs, streams, and gas vent on and near Mount Adams volcano, Washington
Nathenson, Manuel; Mariner, Robert H.
2013-01-01
Springs and some streams on Mount Adams volcano have been sampled for chemistry and light stable isotopes of water. Spring temperatures are generally cooler than air temperatures from weather stations at the same elevation. Spring chemistry generally reflects weathering of volcanic rock from dissolved carbon dioxide. Water in some springs and streams has either dissolved hydrothermal minerals or has reacted with them to add sulfate to the water. Some samples appear to have obtained their sulfate from dissolution of gypsum while some probably involve reaction with sulfide minerals such as pyrite. Light stable isotope data for water from springs follow a local meteoric water line, and the variation of isotopes with elevation indicate that some springs have very local recharge and others have water from elevations a few hundred meters higher. No evidence was found for thermal or slightly thermal springs on Mount Adams. A sample from a seeping gas vent on Mount Adams was at ambient temperature, but the gas is similar to that found on other Cascade volcanoes. Helium isotopes are 4.4 times the value in air, indicating that there is a significant component of mantle helium. The lack of fumaroles on Mount Adams and the ambient temperature of the gas indicates that the gas is from a hydrothermal system that is no longer active.
A case study of dissolved air flotation for seasonal high turbidity water in Korea.
Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K
2004-01-01
A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme.
Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...
2014-07-14
In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less
Rayne, Sierra; Forest, Kaya
2014-09-19
The air-water partition coefficient (Kaw) of perfluoro-2-methyl-3-pentanone (PFMP) was estimated using the G4MP2/G4 levels of theory and the SMD solvation model. A suite of 31 fluorinated compounds was employed to calibrate the theoretical method. Excellent agreement between experimental and directly calculated Kaw values was obtained for the calibration compounds. The PCM solvation model was found to yield unsatisfactory Kaw estimates for fluorinated compounds at both levels of theory. The HENRYWIN Kaw estimation program also exhibited poor Kaw prediction performance on the training set. Based on the resulting regression equation for the calibration compounds, the G4MP2-SMD method constrained the estimated Kaw of PFMP to the range 5-8 × 10(-6) M atm(-1). The magnitude of this Kaw range indicates almost all PFMP released into the atmosphere or near the land-atmosphere interface will reside in the gas phase, with only minor quantities dissolved in the aqueous phase as the parent compound and/or its hydrate/hydrate conjugate base. Following discharge into aqueous systems not at equilibrium with the atmosphere, significant quantities of PFMP will be present as the dissolved parent compound and/or its hydrate/hydrate conjugate base.
Impact of artificial monolayer application on stored water quality at the air-water interface.
Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B
2015-01-01
Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered.
Andreoli, Fernando César; Sabogal-Paz, Lyda Patricia
2017-11-15
Removing protozoa from a water supply using coagulation, flocculation, dissolved air flotation (DAF) and filtration on a bench scale was evaluated. Calcium carbonate flocculation with and without immunomagnetic separation (IMS) was chosen to detect Giardia spp. cysts and Cryptosporidium spp. oocysts in the studied samples. The results indicated that DAF removed between 1.31 log and 1.79 log of cysts and between 1.08 log and 1.42 log of oocysts. The performance was lower in filtration, with the removal of 1.07 log-1.44 log for cysts and 0.82 log-0.98 log for oocysts. The coagulation, flocculation, DAF and filtration steps removed more than 2.2 log of cysts and oocysts from the water studied. However, protozoa were detected in the filtered water, even with turbidity values of 0.2 NTU. The recovery of the detection method met the international criteria and was higher when there was no IMS. Including the third acid dissociation in the IMS was critical to improve the performance of the protocol tested. However, there was an increase in the technical and analytical complexity and costs. It was also observed that the efficiency of the treatment was linked to the performance of the selected method of detecting protozoa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale
In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less
Zhang; Lindberg
2000-10-02
From 1996 to 1998 we determined dissolved gaseous mercury (DGM) in waters of the Everglades Nutrient Removal Project (ENR), a constructed wetlands. The concentrations of DGM measured in these waters (mean 7.3 +/- 9.5 pg l(-1)) are among the lowest reported in the literature, and suggest a system often near or slightly above equilibrium with Hg in ambient air. DGM exhibited both seasonal and diel trends, peaking at midday and during the summer. A simple box budget model of DGM in waters of the Everglades was developed using an interactive spreadsheet based on a mass balance among light-induced reduction of HgII (production of DGM), Hg0 oxidation (removal), and Hg0 evasion in a box (water column) consisting of a surface region with sunlight available and a lower dark region. The modeling results suggest high sensitivity of hourly DGM concentrations to DGM production rates and initial DGM levels. The sensitivity to Hg oxidation is lower than the sensitivity to DGM production. The model performance demonstrates successful simulations of a variety of DGM trends in the Everglades. In particular, it clearly demonstrates how it is possible to measure comparable rates of evasion over several Everglades sites with different DGM concentrations.
Experimental study and empirical prediction of fuel flow parameters under air evolution conditions
NASA Astrophysics Data System (ADS)
Kitanina, E. E.; Kitanin, E. L.; Bondarenko, D. A.; Kravtsov, P. A.; Peganova, M. M.; Stepanov, S. G.; Zherebzov, V. L.
2017-11-01
Air evolution in kerosene under the effect of gravity flow with various hydraulic resistances in the pipeline was studied experimentally. The study was conducted at pressure ranging from 0.2 to 1.0 bar and temperature varying between -20°C and +20°C. Through these experiments, the oversaturation limit beyond which dissolved air starts evolving intensively from the fuel was established and the correlations for the calculation of pressure losses and air evolution on local loss elements were obtained. A method of calculating two-phase flow behaviour in a titled pipeline segment with very low mass flow quality and fairly high volume flow quality was developed. The complete set of empirical correlations obtained by experimental analysis was implemented in the engineering code. The software simulation results were repeatedly verified against our experimental findings and Airbus test data to show that the two-phase flow simulation agrees quite well with the experimental results obtained in the complex branched pipelines.
Geology and ground water of the Luke area, Maricopa County, Arizona
Stulik, Ronald S.; Twenter, F.R.
1964-01-01
Luke Air Force Base, in the Salt River Valley in central Arizona. is within an intermontane basin--the Phoenix basin--in the Basin and Range lowlands province. The Luke area, the subject of this study, extends beyond the limits of the base. Ground-water resources of the Luke area were studied to determine the possibility of developing a water supply of optimum quantity and quality to supplement the base supply. Several wells drilled for this purpose, prior to the study, either produced an inadequate supply of water or produced ware-that had a high dissolved-solids content. The Phoenix basin is filled with unconsolidated to semiconsolidated Tertiary and Quaternary sedimentary rocks that are referred to as valley fill. Although its total thickness is unknown, 2,784 feet of valley fill--primarily consisting of clay, silt, sand, and gravel--has been penetrated. Percentage-distribution maps of fine-grained materials indicate a gross-facies pattern and a selective depositional area of the valley-fill materials. The maps also indicate that the areal distribution of fine-grained materials increases with depth. In general, the better producing wells, regardless of depth, are in areas where tee valley fill is composed of less than 60 percent fine-grained materials. The water table in the area is declining because large quantities of water are withdrawn and recharge is negligible. The decline near Luke Air Force Base during the period 1941-61 was about 150 feet. Ground water was moving generally southwest in the spring of 1961. Locally, changes in the direction of movement indicate diversion toward two major depressions. The dissolved-solids content of the ground water ranged from about 190 to 6,300 ppm. The highest concentration of dissolved solids is in water from the southern part of the area and seems to come from relatively shallow depths; wells in the northern part generally yield water of good quality. After a reconnaissance of the area, the U.S. Geological Survey located and supervised the drilling of two test wells--wells (B-2-1) 9bcb and (B-2-1) 5abc?on Luke Air Force Base. The quantity of water produced by the wells was adequate. The dissolved-solids content of water from the wells was low, and the overall quality of water from well (B-2-1) 5abc was good. When well (B-2-1) 9bcb was perforated between 907 and 977 feet, the water had a fluoride concentration of 4.4 ppm; however, the fluoride concentration decreased to 2.8 ppm when new perforations were cut at a shallower depth, and it was decided that dilution with other base water supplies probably would alleviate any possible fluoride problem.
Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic
Sipler, Rachel E.; Kellogg, Colleen T. E.; Connelly, Tara L.; Roberts, Quinn N.; Yager, Patricia L.; Bronk, Deborah A.
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated. PMID:28649233
Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.
Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João
2017-12-15
Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A
2015-01-06
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.
Development and performance evaluation of air fine bubbles on water quality of thai catfish rearing
NASA Astrophysics Data System (ADS)
Subhan, Ujang; Muthukannan, Vanitha; Azhary, Sundoro Yoga; Mulhadi, Muhammad Fakhri; Rochima, Emma; Panatarani, Camellia; Joni, I. Made
2018-02-01
The efficiency and productivity of aquaculture strongly depends on the development of advanced technology for water quality management system. The most important factor for the success of intensive aquaculture system is controlling the water quality of fish rearing media. This paper reports the design of fine bubbles (FBs) generator and performance evaluation of the system to improve water quality in thai catfish media (10 g/ind) with density (16.66 ind./L). The FBs generator was designed to control the size distribution of bubble by controlling its air flow rate entry to the mixing chamber of the generator. The performance of the system was evaluated based on the produced debit, dissolved oxygen rate and ammonia content in the catfish medium. The size distribution was observed by using a high speed camera image followed by processing using ImageJ. freeware application. The results show that air flow rate 0.05 L/min and 0.1 L/min received average bubble size of 29 µm and 31 µm respectively. The generator produced bubbles with capacity of 6 L/min and dissolved oxygen rate 0.2 ppm/min/L. The obtained DO growth was 0.455 ppm/second/L while the average decay rate was 0.20 ppm/second/L. (0.011/0.005 fold). In contrast, the recieved DO growth rate is faster compared to the DO consumption rate of the Thai catfish. This results indicated that the potential application of FBs enhanced the density of thai catfish seed rearing. In addition, ammonia can be reduced at 0.0358 ppm/hour/L and it is also observed that the inhibition of bacterial growth of air FBs is postive to Aeromonas hydrophila bacteria compared to the negative control. It is concluded that as-developed FBs system can be potentially applied for intensive thai catfish culture and expected to improve the feeding efficiency rate.
1995-06-01
ground water temperature readings. Temperature affects the types and growth rates of bacteria that can be supported in the ground water environment...vaies for hydrogeologic conditions similar to those found at the site. The results of this study suggest that dissolved-phase BTEX contamination...OC information to help substantiate the overall site conditions . Please 0 address. Response: Sample depth designations have been clarified in Table
Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow
Martha H. Conklin; Richard A. Sommerfeld; S. Kay Laird; John E. Villinski
1993-01-01
Controlled exposure of ice to a reactive gas, SO2, demonstrated the importance of the chemical composition of the ice surface on the accumulation of acidity in snow. In a series of bench-scale continuous-flow column experiments run at four temperatures (-1, -8, -30 and -60°C), SO2 was shown to dissolve and to react with other species in the ice-air interfacial region...
Techniques for Reaeration of Hydropower Releases.
1983-02-01
peak production from air induction through the baffle ring. The other aeration technique at Norris required modifications to the vacuum-breaker system...of Gas Tracers for Reaeration," Jour. Environ. Div., Proc. Amer. Soc. Civil Engr., 104, 215, April. Rathbun, R. E., 1979, "Estimating the Gas and Dye ...or dissolved in the water, and--last but not least--by the decomposition of bottom mud and by oxidation of the decomposition products stirred up out
Swain, Kalpana; Pattnaik, Satyanarayan; Mallick, Subrata; Chowdary, Korla Appana
2009-01-01
In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h. Theophylline release from the polymeric matrix system followed non-Fickian anomalous transport. Multiple regression analysis revealed that both viscosity and content of HPMC had statistically significant influence on all dependent variables but the effect of these variables found to be nonlinear above certain threshold values.
Selected papers in the hydrologic sciences 1984; July 1984
Meyer, Eric L.
1984-01-01
The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.
Burnout of the organic vehicle in an electrically conductive thick-film paste
NASA Astrophysics Data System (ADS)
Liu, Zongrong; Chung, D. D. L.
2004-11-01
The burnout of the organic vehicle in a silver-particle, glass-free, electrically conductive, thick-film paste during firing in air was studied. For a vehicle consisting of ethyl cellulose dissolved in ether, burnout primarily involves the thermal decomposition of ethyl cellulose. The presence of ether with dissolved ethyl cellulose facilitates the burnout of ethyl cellulose. Excessive ethyl cellulose hinders the burnout. A high heating rate results in more residue after burnout. By interrupting the heating at 160°C for 15 min, the residue after subsequent burnout is diminished probably because of reduced temporal overlap of the processes of organic burnout and silver particle necking. By interrupting the heating at either 300°C or 385°C for 30 min, the temperature required for complete burnout is reduced. The addition of silver particles facilitates drying at room temperature and burnout upon heating.
Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho
2013-01-01
Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.
Scavenging dissolved oxygen via acoustic droplet vaporization.
Radhakrishnan, Kirthi; Holland, Christy K; Haworth, Kevin J
2016-07-01
Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5-6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen
2017-12-01
Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.
Scavenging dissolved oxygen via acoustic droplet vaporization
Radhakrishnan, Kirthi; Holland, Christy K.; Haworth, Kevin J.
2016-01-01
Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5 to 6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20 s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. PMID:26964964
Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen
2017-05-01
In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q' air ) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.
History of development of polycrystalline optical spinel in the U.S.
NASA Astrophysics Data System (ADS)
Harris, Daniel C.
2005-05-01
Optical quality polycrystalline spinel (MgAl2O4) has been sought as a visible- and infrared-transmitting material since the 1960s because of its potential for transparent armor and durable sensor windows. Its physical properties were known from synthetic crystals available since ~1950 from Linde Air Products. In the late 1960s, methods to process powder into transparent, polycrystalline spinel were investigated at North Carolina State University, General Electric Co., AVCO, and Westinghouse, mainly with Government support. The leading figure in the development of polycrystalline spinel was Don Roy, who began work on spinel at Coors Ceramics around 1970, initially for transparent armor. In the late 1970s, both Coors Ceramics and Raytheon Research Division were funded to make spinel for the infrared dome of the Advanced Short-Range Air-to-Air Missile, an application that disappeared by 1980. In the late 1980s, there was another burst of activity when spinel was a candidate for the Stinger Missile. By 1990, Raytheon had dropped spinel and the material was spun off by Coors Ceramics to Alpha Optical Systems, whose technical effort was led by Don Roy. With low commercial sales potential for spinel, Alpha was dissolved in 1993. RCS Technologies took over a Government contract seeking 200-mm spinel domes for the Harrier aircraft, but this effort ended in 1996 and RCS was dissolved. In 1998, the Army enlisted TA&T to make spinel for transparent armor. Other potential applications appeared and TA&T received numerous Government development contracts. Demand for the still-unavailable spinel drew Surmet to begin development in 2002. In early 2005, spinel is under active development at TA&T and Surmet.
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1982-05-01
The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.
Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium.
Zatka, V J
1985-06-01
The determination of various chromium species in welding fume normally involves digestion in a hot alkaline solution. This work confirms that Cr(III) can be oxidized to Cr(VI) during this digestion. However, only dissolved forms of Cr(III), such as the hydroxochromate(III) ion, [Cr(OH)4], are susceptible to oxidation under these conditions. The air oxidation of Cr(III) can be prevented by hydrolytic destabilization of the hydroxochromate(III) complex by the presence of magnesium hydroxide precipitate. The procedure has been used successfully in the determination of insoluble chromium(VI) in welding fumes. Excellent reproducibility is documented for soluble and insoluble chromium(VI) fractions in the analysis of a bulk sample of welding fume.
NASA Astrophysics Data System (ADS)
Miao, Wangen; Luo, Xuzhong; Liang, Yingqiu
2003-03-01
Monolayer behavior of a nucleolipid amphiphile, 7-(2-octadecyloxycarbonylethyl)guanine (ODCG), on aqueous cytidine solution was investigated by means of surface-molecular area ( π- A) isotherms. It indicates that molecular recognition by hydrogen bonding is present between ODCG monolayer and the cytidine in subphase. The Fourier transform infrared (FTIR) transmission spectroscopic result indicates that the cytidine molecules in the subphase can be transferred onto solid substrates by Langmuir-Blodgett (LB) technique as a result of the formation of Watson-Crick base-pairing at the air/water interface. Investigation by rotating polarized FTIR transmission also suggests that the headgroup recognition of this amphiphile to the dissolved cytidine influence the orientation of the tailchains.
Busenberg, Eurybiades; Plummer, Niel
2014-01-01
A 17-year record (1995–2012) of a suite of environmental tracer concentrations in discharge from 34 springs located along the crest of the Blue Ridge Mountains in Shenandoah National Park (SNP), Virginia, USA, reveals patterns and trends that can be related to climatic and environmental conditions. These data include a 12-year time series of monthly sampling at five springs, with measurements of temperature, specific conductance, pH, and discharge recorded at 30-min intervals. The monthly measurements include age tracers (CFC-11, CFC-12, CFC-113, CFC-13, SF6, and SF5CF3), dissolved gases (N2, O2, Ar, CO2, and CH4), stable isotopes of water, and major and trace inorganic constituents. The chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) concentrations (in pptv) in spring discharge closely follow the concurrent monthly measurements of their atmospheric mixing ratios measured at the Air Monitoring Station at Big Meadows, SNP, indicating waters 0–3 years in age. A 2-year (2001–2003) record of unsaturated zone air displayed seasonal deviations from North American Air of ±10 % for CFC-11 and CFC-113, with excess CFC-11 and CFC-113 in peak summer and depletion in peak winter. The pattern in unsaturated zone soil CFCs is a function of gas solubility in soil water and seasonal unsaturated zone temperatures. Using the increase in the SF6 atmospheric mixing ratio, the apparent (piston flow) SF6 age of the water varied seasonally between about 0 (modern) in January and up to 3 years in July–August. The SF6 concentration and concentrations of dissolved solutes (SiO2, Ca2+, Mg2+, Na+, Cl−, and HCO3−) in spring discharge demonstrate a fraction of recent recharge following large precipitation events. The output of solutes in the discharge of springs minus the input from atmospheric deposition per hectare of watershed area (mol ha−1 a−1) were approximately twofold greater in watersheds draining the regolith of Catoctin metabasalts than that of granitic gneisses and granitoid crystalline rocks. The stable isotopic composition of water in spring discharge broadly correlates with the Oceanic Niño Index. Below normal precipitation and enriched stable isotopic composition were observed during El Niño years.
Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel
2017-10-20
The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling method without the need to determine the initial gas phase TCE concentration. The simplified field deployment approach of the solvent-based dissolution method combined with the conventional analytical procedure used for groundwater samples substantially facilitates the application of CSIA to gas phase studies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ingrosso, Gianmarco; Giani, Michele; Cibic, Tamara; Karuza, Ana; Kralj, Martina; Del Negro, Paola
2016-03-01
In this paper we investigated, for two years and with a bi-monthly frequency, how physical, chemical, and biological processes affect the marine carbonate system in a coastal area characterized by high alkalinity riverine discharge (Gulf of Trieste, northern Adriatic Sea, Mediterranean Sea). By combining synoptic measurements of the carbonate system with in situ determinations of the primary production (14C incorporation technique) and secondary prokaryotic carbon production (3H-leucine incorporation) along a river-sea gradient, we showed that the conservative mixing between river endmember and off-shore waters was the main driver of the dissolved inorganic carbon (DIC) distribution and seasonal variation. However, during spring and summer seasons also the influence of biological uptake and release of DIC was significant. In the surface water of June 2012, the spreading and persistence of nutrient-rich freshwater stimulated the primary production (3.21 μg C L- 1 h- 1) and net biological DIC decrease (- 100 μmol kg- 1), reducing the dissolved CO2 concentration and increasing the pHT. Below the pycnocline of August 2012, instead, an elevated bacterial carbon production rate (0.92 μg C L- 1 h- 1) was related with net DIC increase (92 μmol kg- 1), low dissolved oxygen concentration, and strong pHT reduction, suggesting the predominance of bacterial heterotrophic respiration over primary production. The flux of carbon dioxide estimated at the air-sea interface exerted a low influence on the seasonal variation of the carbonate system. A complex temporal and spatial dynamic of the air-sea CO2 exchange was also detected, due to the combined effects of seawater temperature, river discharge, and water circulation. On annual scale the system was a sink of atmospheric CO2. However, in summer and during elevated riverine discharges, the area close to the river's mouth acted as a source of carbon dioxide. Also the wind speed was crucial in controlling the air-sea CO2 exchange, with strong Bora events (a typical ENE wind of the Gulf of Trieste) that drastically increased the absorption (- 32.2 mmol m- 2 day- 1) or the release (5.34 mmol m- 2 day- 1) of carbon dioxide.
Qin, Ning; He, Wei; Kong, Xiang-Zhen; Liu, Wen-Xiu; He, Qi-Shuang; Yang, Bin; Ouyang, Hui-Ling; Wang, Qing-Mei; Xu, Fu-Liu
2013-11-01
The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in dissolved phase from Lake Chaohu were measured by (GC-MS). The composition and seasonal variation were investigated. The diffusive air-water exchange flux was estimated by a two-film model, and the uncertainty in the flux calculations and the sensitivity of the parameters were evaluated. The following results were obtained: (1) the average residual levels of all PAHs (PAH16) in the atmosphere from Lake Chaohu were 60.85±46.17 ng m(-3) in the gaseous phase and 14.32±23.82 ng m(-3) in the particulate phase. The dissolved PAH16 level was 173.46±132.89 ng L(-1). (2) The seasonal variation of average PAH16 contents ranged from 43.09±33.20 ng m(-3) (summer) to 137.47±41.69 ng m(-3) (winter) in gaseous phase, from 6.62±2.72 ng m(-3) (summer) to 56.13±22.99 ng m(-3) (winter) in particulate phase, and 142.68±74.68 ng L(-1) (winter) to 360.00±176.60 ng L(-1) (summer) in water samples. Obvious seasonal trends of PAH16 concentrations were found in the atmosphere and water. The values of PAH16 for both the atmosphere and the water were significantly correlated with temperature. (3) The monthly diffusive air-water exchange flux of total PAH16 ranged from -1.77×10(4) ng m(-2) d(-1) to 1.11×10(5) ng m(-2) d(-1), with an average value of 3.45×10(4) ng m(-2) d(-1). (4) The results of a Monte Carlo simulation showed that the monthly average PAH fluxes ranged from -3.4×10(3) ng m(-2) d(-1) to 1.6×10(4) ng m(-2) d(-1) throughout the year, and the uncertainties for individual PAHs were compared. (5) According to the sensitivity analysis, the concentrations of dissolved and gaseous phase PAHs were the two most important factors affecting the results of the flux calculations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phytoremediation of trichloroethene (TCE) using cottonwood trees
Jones, S.A.; Lee, R.W.; Kuniansky, E.L.; Leeson, Andrea; Alleman, Bruce C.
1999-01-01
Phytoremediation uses the natural ability of plants to degrade contaminants in ground water. A field demonstration designed to remediate aerobic shallow ground water that contains trichloroethene began in April 1996 with the planting of cottonwood trees over an approximately 0.2-hectare area at the Naval Air Station, Fort Worth, Tx. Ground water was sampled in July 1997, November 1997, February 1998, and June 1998. Analyses from samples indicate that tree roots have the potential to create anaerobic conditions in the ground water that will facilitate degradation of trichloroethene by microbially mediated reductive dichlorination. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about-20 years old) 60 meters southwest of the cottonwood plantings. Reduction of dissolved oxygen is the primary microbially mediated reaction occurring in the ground water beneath the planted trees, whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dichlorination either is not occurring or is not a primary process away from the mature tree. On the basis of isotopic analyses of carbon-13 at locations away from the mature tree, trichloroethene concentration is controlled by volatilization.Phytoremediation uses the natural ability of plants to degrade contaminants in ground water. A field demonstration designed to remediate aerobic shallow ground water that contains trichloroethene began in April 1996 with the planting of cottonwood trees over an approximately 0.2-hectare area at the Naval Air Station, Fort Worth, Tx. Ground water was sampled in July 1997, November 1997, February 1998, and June 1998. Analyses from samples indicate that tree roots have the potential to create anaerobic conditions in the ground water that will facilitate degradation of trichloroethene by microbially mediated reductive dichlorination. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about-20 years old) 60 meters southwest of the cottonwood plantings. Reduction of dissolved oxygen is the primary microbially mediated reaction occurring in the ground water beneath the planted trees, whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dichlorination either is not occurring or is not a primary process away from the mature tree. On the basis of isotopic analyses of carbon-13 at locations away from the mature tree, trichloroethene concentration is controlled by volatilization.
Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T
2004-01-01
Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
PERFORMANCE EVALUATION OF AN AIR COUPLED PHASED ARRAY RADAR FOR NEAR FIELD DETECTION OF STEEL
2015-04-24
sulfur dioxide reacts with the hydrated cement, the surface of the concrete starts to dissolve because it does not diffuse into concrete as quickly...Carbon dioxide begins to diffuse into the concrete and reacts with the hydrated cement to produce calcium carbonate. The presence of sulfur ...its design life. The health and state of the concrete roadways and bridge decks that commuters rely on a daily basis can be efficiently examined and
The Effect of Dissolved Air on the Cooling Performance of a Partially Confined FC-72 Spray
2008-07-01
95 iv LIST OF FIGURES Figure 1: Heat transfer coefficients: various processes and coolants ( Mudawar , 2001) .....1 Figure 2...various processes and coolants ( Mudawar , 2001). 2 In two-phase cooling a phase change of liquid to vapor, or boiling, occurs. The boiling...possible in flow boiling is also affected by the velocity of the flow and the amount of subcooling of the fluid ( Mudawar and Maddox, 1989). One highly
1987-07-01
degradation of organic contaminants. In situ treatment affects contaminants sorbed to soil as well as dissolved in groundwater. It is potentially ...indigenous soil micro - organisms to multiply and degrade the waste material. Exxon’s Baytown refinery has been disposing of oily wastes by land farming...Group (ERG). Chemical analyses performed on soil samples included priority pollutant volatile and metal compounds, total hydrocarbons (alkanes), oil and
Laser Induced Polymerization Reactions in Solid Propellant Binders.
1982-06-18
were -then evacuated in a glass vacuum desiccatbr to remove dissolved air and then opened to the atmosphere. Some samples were run under a nitrogen or...diacetate solution was prepared using acetonitrile as solvent. Molar absorbtivities at 266 and 355 nm for l,l’-ferrocenedicarboxylic acid were obtained with...increasing order of the electron withdrawing ability of the groups attached to the ferrocene ring. The order is as shown. r l,l’-Ferrocenedicarboxylic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genereux, David; Osburn, Christopher; Oberbauer, Steven
This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving dischargemore » of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.« less
Dissolved air flotation and me.
Edzwald, James K
2010-04-01
This paper is mainly a critical review of the literature and an assessment of what we know about dissolved air flotation (DAF). A few remarks are made at the outset about the author's personal journey in DAF research, his start and its progression. DAF has been used for several decades in drinking water treatment as an alternative clarification method to sedimentation. DAF is particularly effective in treating reservoir water supplies; those supplies containing algae, natural color or natural organic matter; and those with low mineral turbidity. It is more efficient than sedimentation in removing turbidity and particles for these type supplies. Furthermore, it is more efficient in removing Giardia cysts and Cryptosporidium oocysts. In the last 20 years, fundamental models were developed that provide a basis for understanding the process, optimizing it, and integrating it into water treatment plants. The theories were tested through laboratory and pilot-plant studies. Consequently, there have been trends in which DAF pretreatment has been optimized resulting in better coagulation and a decrease in the size of flocculation tanks. In addition, the hydraulic loading rates have increased reducing the size of DAF processes. While DAF has been used mainly in conventional type water plants, there is now interest in the technology as a pretreatment step in ultrafiltration membrane plants and in desalination reverse osmosis plants. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Heilweil, Victor M.; Marston, Thomas
2013-01-01
Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles initially entrapped in the aquifer matrix. Theoretical gas dissolution rates, coupled with field evidence of a decline iin total dissolved-gas pressure and dissolved oxygen from nearby monitoring wells, support the timing of this gas dissipation.
Production of recombinant protein by a novel oxygen-induced system in Escherichia coli.
Baez, Antonino; Majdalani, Nadim; Shiloach, Joseph
2014-04-07
The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.
Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.
2016-02-01
The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.
Effect of adsorbent addition on floc formation and clarification.
Younker, Jessica M; Walsh, Margaret E
2016-07-01
Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.
Ortega-Calvo, José-Julio; Gschwend, Philip M
2010-07-01
Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.
One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois
Robertson, Dale M.
2000-01-01
As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.
NASA Astrophysics Data System (ADS)
Kaiser, K.; Benner, R.; Amon, R. M. W.
2017-01-01
Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 yr-1. Calculations showed ˜50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.
NASA Astrophysics Data System (ADS)
Kaiser, Karl; Amon, Rainer; Benner, Ronald
2017-04-01
Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 per year. Calculations showed about 50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on the Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.
Kato, Takehito; Oinuma, Chihiro; Otsuka, Munechika; Hagiwara, Naoki
2017-01-10
The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.
Chain photoreduction of CCl3F in TiO2 suspensions: enhancement induced by O2.
Winkelmann, Kurt; Calhoun, Robert L; Mills, German
2006-12-28
Trichlorofluoromethane (CFC 11) was photoreduced in aqueous suspensions of TiO2 particles containing HCO2- ions and air. Dissolved O2 inhibited the reaction during an induction period that preceded the rapid formation of chloride ions. Reaction rates were higher in systems containing O2 as compared to analogous reactions that occurred in anaerobic suspensions. High photonic efficiencies of Cl- formation (> or =15) were achieved using suspensions with pH > or = 5. As was the case for studies with air-free suspensions, reactions are best described using a photoinitiated chain mechanism that produced CHCl2F and Cl- during the propagation steps. The enhanced yields obtained in the presence of air are attributed to the removal by O2 of electrons trapped in the oxide, which are converted first into H2O2 and then into reducing radicals that participate in the chain process. Enhanced yields of Freon photoreduction were also observed during illumination of air-free suspensions containing hydrogen peroxide, which were interpreted using a similar mechanism.
Lomond, Jasmine S; Tong, Anthony Z
2011-01-01
Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.
Size effects in MgO cube dissolution.
Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver
2015-03-10
Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.
Autonomous water sampling for long-term monitoring of trace metals in remote environments.
Kim, Hyojin; Bishop, James K B; Wood, Todd J; Fung, Inez Y
2012-10-16
A remotely controlled autonomous method for long-term high-frequency sampling of environmental waters in remote locations is described. The method which preserves sample integrity of dissolved trace metals and major ions for month-long periods employs a gravitational filtration system (GFS) that separates dissolved and particulate phases as samples are collected. The key elements of GFS are (1) a modified "air-outlet" filter holder to maximize filtration rate and thus minimize filtration artifacts; and (2) the direct delivery of filtrate to dedicated bottle sets for specific analytes. Depth and screen filter types were evaluated with depth filters showing best performance. GFS performance is validated using ground, stream, and estuary waters. Over 30 days of storage, samples with GFS treatment had average recoveries of 95 ± 19% and 105 ± 7% of Fe and Mn, respectively; without GFS treatment, average recoveries were only 16% and 18%. Dissolved major cations K, Mg, and Na were stable independent of collection methodology, whereas Ca in some groundwater samples decreased up to 42% without GFS due to CaCO(3) precipitation. In-field performance of GFS equipped autosamplers is demonstrated using ground and streamwater samples collected at the Angelo Coast Range Reserve, California from October 3 to November 4 2011.
Triple oxygen isotope composition of photosynthetic oxygen
NASA Astrophysics Data System (ADS)
van der Meer, Anne; Kaiser, Jan
2013-04-01
The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.
NASA Astrophysics Data System (ADS)
McDermott, Frank; Phillips, Dominika
2017-04-01
The conventional view that hydrological inputs (e.g. drip-water degassing) comprise the dominant source of cave air CO2 has been challenged by recent studies that emphasise the importance of direct advection of gaseous CO2from above and beneath cave voids (e.g. 'soil air' and 'ground air'). A better understanding of CO2 gas budgets in caves is important, not only for the correct interpretation of δ13C values and 14C activity data in speleothems, but also for an understanding of the wider role of karst in the global carbon cycle as a source or sink of atmospheric CO2. This study presents new results from a combined air-temperature and CO2 monitoring programme at a small multi-chamber cave in SE Ireland (Ballynamintra cave, Co. Waterford), building on an earlier study at this cave (Baldini et al., 2006). Episodic, low-amplitude but temporally coherent diurnal-scale cave air temperature fluctuations detected almost simultaneously by a series of temperature loggers within the cave were used to detect air mass advection. The sequence and pattern of temperature fluctuations at different locations within the cave enabled the identification of discrete air-inflow and air-outflow events. These diurnal-scale events occur episodically throughout the year in the winter/ spring and summer/autumn temperature ventilation regimes of the cave. Importantly, changes in cave air pCO2 values recorded by an infra-red logger located in the inner chamber a few metres from the back of the cave occur contemporaneously with the air-mass displacement events, and are consistent with direct advection of CO2-rich soil air via fractures in the subjacent cave roof and walls. In the winter regime, episodic diurnal-scale air outflow events draw CO2-rich air over the logger, resulting in short-lived pulses of air, typically containing c. 0.7% CO2 (by volume), several times the ambient cave air CO2 values at this site. Similar events occur during the summer/autumn thermal regime, but these reach higher CO2values (1-1.2%), similar to those measured previously in the overlying soil. Overall, the data confirm an important role for soil and/or ground air sources at this cave and indicate that the episodic CO2 inputs are not controlled by drip-water inputs,. Some recent studies have additionally argued that advected 'ground-air' is not only an important constituent of cave air, but also an important source of carbon in speleothems. This claim is critically evaluated here using 14C activity measurements from actively growing zero-age soda-straw stalactites from the small inner chamber of the cave where the CO2 monitoring was carried out. Surprisingly, soda-straws collected from within a few metres of each other in this inner chamber exhibit quite different 14C activities (93-101 pMC), and are not identical as might be expected if complete carbon isotope exchange had occurred between the dissolved inorganic carbon and the cave atmosphere. The reasons for this will be discussed, drawing on the results of published kinetic models for degassing and isotope exchange. Overall, it is concluded that while the CO2 budget of the air in Ballynamintra cave is dominated by directly advected soil air, water transported dissolved inorganic carbon (DIC) likely remains an important carbon source for its speleothems. Baldini, J.U.L., Baldini, L.M., McDermott, F. and Clipson, N. (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: evidence from Ballynamintra Cave, Ireland. Journal of Cave and Karst Studies, 68, 4-11.
NASA Astrophysics Data System (ADS)
Eissa, N. A.; Sheta, N. H.; Ahmed, M. A.
1992-04-01
Coal has been recently discovered in Maghara mine at Northern Sinai, Egypt. Coal samples have been collected from different depths and were measured by XRD, XRF, and MS, in order to characterize this type of coal. It has been found that the iron bearing minerals are mainly pyrite and different sulphates depending on the depth of the sample. The second part contains the application of desulphurization techniques to Egyptian coal which are: floatation (one step and two steps) chemical [(HCl+HNO3), and Fe2(SO4)3] and bacterial methods (Chromatium and Chlorobium species). The efficiency of each technique was calculated. A comparative discussion is given of each desulphurization method, from which the bacterial method has proved to be the most efficient one.
Beware Swan-Ganz complications. Perioperative management.
Asteri, T; Tsagaropoulou, I; Vasiliadis, K; Fessatidis, I; Papavasi-Liou, E; Spyrou, P
2002-08-01
Since the introduction of the pulmonary artery catheter (PAC) in 1970 by Swan et al., various complications are recognized with the insertion and the use of Swan-Ganz catheter. We present two different cases with rare but life threatening complications which had been successfully managed. The first case is a carotid cannulation with an 8.5 Fr introducer sheath, in an attempt to insert a pulmonary catheter via the right internal jugular vein. Two weeks later, the patient was re-admitted to the hospital and when an arteriovenous fistulae (carotid artery-internal jugular vein) was diagnosed, he was treated surgically. The second case presents the rupture of the right atrium in the conjunction with the superior vena cava. This serious cardiac complication was developed during the floatation of the PAC and the lesion was repaired while the mitral valve replacement was in progress.
Sampling Odor Substances by Mist-Cyclone System
NASA Astrophysics Data System (ADS)
Matsubara, Osamu; Jiang, Zhiheng; Toyama, Shigeki
2009-05-01
Many techniques have been developed to measure odor substances. However most of those methods are based on using aquatic solutions(1),(2). Many odor substances specifically at low density situation, are difficult to dissolve into water. To absorb odor substances and obtain highest concentration solutions are key problems for olfactory systems. By blowing odor substances contained air mixture through mist of water and then separating the liquid from two-phases fluid with a cyclone unit a high concentration solution was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Frank S.
1982-05-01
The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles floatmore » to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1982-05-01
The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float tomore » the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.« less
Nanobubbles: a new paradigm for air-seeding in xylem.
Schenk, H Jochen; Steppe, Kathy; Jansen, Steven
2015-04-01
Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krasnovsky, A. A.; Rоumbal, Ya. V.; Strizhakov, A. A.
2008-06-01
The oxygenation rates of the 1O2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated H2O-sodium dodecyl sulfate dispersions, ethanol, methanol and benzene upon direct excitation of dissolved oxygen by infrared (1269 ± 1 nm) laser radiation. In aqueous dispersions, variation of the detergent concentration from 0.1 to 1 M resulted in the 2.5-time increase of the photooxygenation rate. The absorbance and molar absorption coefficients of oxygen were estimated in all tested systems, water and the micellar phase of detergent dispersions and compared with the rate constants of 1O2 radiative deactivation obtained from the measurement of the quantum yields of photosensitized 1O2 phosphorescence.
NASA Astrophysics Data System (ADS)
Krasnovsky, A. A., Jr.; Roumbal, Ya. V.; Ivanov, A. V.; Ambartzumian, R. V.
2006-10-01
The rates of oxygenation of the 1O 2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated organic solvents and heterogeneous D 2O-sodium dodecyl sulfate dispersions upon infrared (1267 ± 4 nm) laser irradiation. The absorbance and molar absorption coefficients of oxygen corresponding to this wavelength were estimated from the observed oxygenation rates. The data suggest that 1O 2 was formed due to direct oxygen excitation without appreciable involvement of vibrationally excited solvent molecules. The minor 'pseudophase' of detergent micelles was shown to strongly enhance overall 1O 2 production in D 2O-detergent dispersions.
Miao, Wangen; Luo, Xuzhong; Liang, Yingqiu
2003-03-15
Monolayer behavior of a nucleolipid amphiphile, 7-(2-octadecyloxycarbonylethyl)guanine (ODCG), on aqueous cytidine solution was investigated by means of surface-molecular area (pi-A) isotherms. It indicates that molecular recognition by hydrogen bonding is present between ODCG monolayer and the cytidine in subphase. The Fourier transform infrared (FTIR) transmission spectroscopic result indicates that the cytidine molecules in the subphase can be transferred onto solid substrates by Langmuir-Blodgett (LB) technique as a result of the formation of Watson-Crick base-pairing at the air/water interface. Investigation by rotating polarized FTIR transmission also suggests that the headgroup recognition of this amphiphile to the dissolved cytidine influence the orientation of the tailchains. Copyright 2002 Elsevier Science B.V.
Compositions of surface layers formed on amalgams in air, water, and saline.
Hanawa, T; Gnade, B E; Ferracane, J L; Okabe, T; Watari, F
1993-12-01
The surface layers formed on both a zinc-free and a zinc-containing dental amalgam after polishing and aging in air, water, or saline, were characterized using x-ray photoelectron spectroscopy (XPS) to determine the compositions of the surface layers which might govern the release of mercury from amalgam. The XPS data revealed that the formation of the surface layer on the zinc-containing amalgam was affected by the environment in which the amalgam was polished and aged, whereas that on the zinc-free amalgam was not affected. In addition, among the elements contained in amalgam, zinc was the most reactive with the environment, and was preferentially dissolved from amalgam into water or saline. Mercury atoms existed in the metallic state in the surface layer.
[Air pollution due to the burning of thermoplastics II (author's transl)].
van Grimbergen, M; Reybrouck, G; van de Voorde, H
1975-03-01
Following on from the first publication, (12) concerning the burning of plastics, another 13 chemical pure polymers were burnt in an electric oven to determine the level of solid and gaseous air pollution caused by their stackgases. All 13 polymers are highly combustible but require different burning temperatures (300-900 degrees C) in order to be burnt completely (i.e. without ashrest). With the exception of PMMA and PTFE, all plastics leave a very heavy tar- and soot deposit after burning. At the other end of the scale, burning at low temperature (300 degrees C) gives rise to high concentrations of alipathic aldehyds. The pH of the exhaust-gases, dissolved in water, is neutral to strong acid (PTFE), and will cause a severe corrosion. The nitrogen-containing polymers pollute by forming cyanides, nitrogenoxides and ammonia. PTFE gives off high concentrations of fluorid into the air. PMMA decomposes in its monomer methylmethacrylate and forms large amounts of aliphatic aldehyds. ABS and SBR cause a styrene pollution.
Atmospheric deposition of methanol over the Atlantic Ocean.
Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher
2013-12-10
In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.
Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli
Lee, Changha; Kim, Jee Yeon; Lee, Won Il; Nelson, Kara L.; Yoon, Jeyong; Sedlak, David L.
2008-01-01
Zero-valent iron nanoparticles (nano-Fe0) in aqueous solution rapidly inactivated Escherichia coli (E. coli). A strong bactericidal effect of nano-Fe0 was found under deaerated conditions, with a linear correlation between log inactivation and nano-Fe0 dose (0.82 log inactivation / mg/L nano-Fe0 · hr). The inactivation of E. coli under air saturation required much higher nano-Fe0 doses due to the corrosion and surface oxidation of nano-Fe0 by dissolved oxygen. Significant physical disruption of the cell membranes was observed in E. coli exposed to nano-Fe0, which may have caused the inactivation, or enhanced the biocidal effects of dissolved iron. The reaction of Fe(II) with intracellular oxygen or hydrogen peroxide also may have induced oxidative stress by producing reactive oxygen species. The bactericidal effect of nano-Fe0 was a unique property of nano-Fe0, which was not observed in other types of iron-based compounds. PMID:18678028
Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems
Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem
2017-02-09
One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less
NASA Astrophysics Data System (ADS)
Maday, Marie-Françoise
2000-12-01
The low cycle fatigue (LCF) behaviour of F82H modified steel with three different degrees of hardness produced by specific thermal treatments has been investigated at 240°C under load control, in oxygen-free lithiated solutions containing either no or 2 ppm dissolved hydrogen. In all cases, it was found that the aqueous environments reduced the fatigue life of the material and promoted fracture modes different from those observed in air tests; the fracture modes comprised intergranular and transgranular quasi-cleavage separations as well as microvoid coalescence, which depended on material conditions and water chemistry. All these features were ascribed to a hydrogen-assisted-cracking (HAC) phenomenon, as the basic mechanism for controlling the fatigue behaviour of various F82H heats in lithiated solutions. The observed differences in HAC paths are discussed from the standpoint of material microstructural and substructural parameters.
Liger-Belair, Gérard; Voisin, Cédric; Jeandet, Philippe
2005-08-04
In this paper, the kinetics of CO(2) bubble nucleation from tiny gas pockets trapped inside cellulose fibers immersed in a glass of champagne were investigated, in situ, from high-speed video recordings. Taking into account the diffusion of CO(2)-dissolved molecules from the liquid bulk to the gas pocket, a model was derived which enabled us to connect the kinetics of bubble nucleation with both fiber and liquid parameters. Convection was found to play a major role in this process. The boundary layer around the gas pocket where a gradient of CO(2)-dissolved molecules exists was also indirectly approached and found to be in the order of 10-20 mum. Because most of the particles adsorbed on the wall of a container or vessel free from any particular treatment are also believed to be cellulose fibers coming from the surrounding air, the results of this paper could be indeed extended to the more general field of nonclassical heterogeneous bubble nucleation from supersaturated liquids.
NASA Astrophysics Data System (ADS)
Dobson, R.; Schroth, M. H.; Zeyer, J.
2006-12-01
Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel are among the most common soil and groundwater contaminants. Dissolution and subsequent advective transport of LNAPL components can negatively impact downgradient water supplies, while biodegradation is commonly thought to be an important sink for this class of contaminants. Water-table fluctuations, either naturally occurring or intentionally induced, may affect LNAPL component transport and biodegradation in aquifers. We present a laboratory investigation of the effect of water-table fluctuations on the dissolution and biodegradation of a multi-component LNAPL in a pair of similar model aquifers, one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of LNAPL contamination and an increase in the volume of water passing through the contaminated zone. Effluent concentrations of dissolved LNAPL components were higher and those of dissolved nitrate were lower in the aquifer model where a fluctuation had been induced. Thus, water table fluctuation led to enhanced LNAPL dissolution as well as enhanced biodegradation activity. The increase in biodegradation observed after fluctuation was of lesser magnitude than the increase in LNAPL dissolution, such that water-table fluctuations might be expected to result in increased exposure of downgradient receptors to dissolved LNAPL components. Conversely, the potential for free-phase LNAPL migration was reduced following a water-table fluctuation, as LNAPL entrapment by the rising water table reduced the amount of free phase LNAPL. Lateral migration of LNAPL following emplacement was observed in the model aquifer where no fluctuation occurred, but not in the model aquifer where a water-table fluctuation was induced.
NASA Astrophysics Data System (ADS)
Butman, D. E.; Holtgrieve, G. W.
2017-12-01
Recent modelling studies in large catchments have estimated that in excess of 74% of the dissolved carbon dioxide found in first and second order streams originate from allochthonous sources. Stable isotopes of carbon-13 in carbon dioxide have been used to identify ground water seeps in stream systems, where decreases in δ13CO2 occur along gaining stream reaches, suggesting that carbon dioxide in ground water is more depleted than what is found in surface water due to fractionation of CO2 during emissions across the air water interface. Although isotopes represent a chemical tracer in stream systems for potential groundwater contribution, the temporal resolution of discrete samples make partitioning allochthonous versus autochthonous sources of CO2 difficult on hydrologically relevant time scales. Here we show results of field deployments of high frequent dissolved CO2, O2, PAR, Temperature and pH from the Thornton Creek Watershed, the largest urban watershed in Seattle, WA. We present an exploration into using high resolution time series of dissolved oxygen and carbon dioxide in a dual gas approach to separate the contribution of in stream respiration from external sources. We extend upon previous efforts to model stream metabolism across diel cycles by incorporating simultaneous direct measurements of dissolved oxygen, PCO2, and pH within an inverse modeling framework and Bayesian parameter estimation. With an initial assumption of a stoichiometric ratio of 1:1 for O2 and CO2 for autochthonous driven metabolism, we investigate positive or negative departures from this ratio as an indicator of external CO2 to the stream (terrestrial or atmospheric) and factors contributing to this flux.
Mineralisation assays of some organic resources of aquatic systems.
Bitar, A L; Bianchini, Júnior I
2002-11-01
Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.
NASA Astrophysics Data System (ADS)
Meskhidze, N.; Chameides, W. L.; Chen, G.
2002-12-01
Atmospheric transport is the only known means to deliver dissolved iron from the continents to remote oceanic areas. Dissolved iron is one of the necessary nutrients for photosynthesis of microscopic, single-celled marine organisms (phytoplankton) that grow abundantly in oceans around the world. Alteration of dissolved iron fluxes may substantially affect ocean ecosystem productivity and even exert a global-scale influence on climate by affecting the rate at which atmospheric CO2 is fixed by oceanic biota. On continents, iron mainly exists in forms of highly insoluble minerals (iron-oxides and iron-aluminosilicates) and the processes that can solubilize iron in mineral aerosols during their long-range transport remain poorly understood. In this work we attempt to elucidate the key processes that control the solubilization of iron in mineral aerosols using a simple Lagrangian box model to simulate the transport and chemical alteration of iron-containing mineral aerosols as they are transported from the east coast of China to the remote western North Pacific Ocean. Model parameters and initial conditions are set using a combination of soil and aerosol data from the Gobi Desert, as well as from measurements made during specific PEM-West B flights that encountered dust storm plumes over the Pacific Ocean that had originated in China. Our preliminary results indicate that the amount of acidic pollutants in the air along the dust transport pathways can have a significant effect on the amount of iron that is solubilized in advecting mineral aerosols. This suggests that there may be a link between the flux of the dissolved iron to the remote North Pacific Ocean and the rate at which pollutants such as sulfur dioxide, nitrogen oxides, and ammonia are emitted in East Asia.
Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer
Lee, R.W.; Bennett, P.C.
1998-01-01
Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.
Bose, Ranendra K.
2002-06-04
Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.
PAH and OPAH Flux during the Deepwater Horizon Incident
Tidwell, Lane G.; Allan, Sarah E.; O'Connell, Steven G.; Hobbie, Kevin A.; Smith, Brian W.; Anderson, Kim A.
2016-01-01
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and diffusive flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 6.6 and 210 ng/m3 and 0.02 and 34 ng/m3 respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs was shown to be at least partially influenced by the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi at nominal rates of 56,000 and 42,000 ng/m2/day in the summer. Naphthalene was the PAH with the highest observed volatilization rate of 52,000 ng/m2/day in June 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology. PMID:27391856
Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf
2016-02-01
A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.
Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G
2015-05-15
With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.
Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang
2007-08-15
Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.
Oxygen uptake and vertical transport during deep convection events
NASA Astrophysics Data System (ADS)
Sun, D.; Ito, T.; Bracco, A.
2016-02-01
Dissolved oxygen (O2) is essential for the chemistry and living organisms of the oceans. O2 is consumed in the interior ocean due to the respiration of organic matter, and must be replenished by physical ventilation with the O2-rich surface waters. The O2 supply to the deep waters happens only through the subduction and deep convection during cold seasons at high latitude oceans. The Labrador Sea is one of the few regions where deep ventilation occurs. According to observational and modeling studies, the intensity, duration and timing of deep convection events have varied significantly on the interannual and decadal timescales. In this study we develop a theoretical framework to understand the air-sea transfer of O2 during open-ocean deep convection events. The theory is tested against a suite of numerical integrations using MITgcm in non-hydrostatic configuration including the parameterization of diffusive and bubble mediated gas transfer. Forced with realistic air-sea buoyancy fluxes, the model can reproduce the evolution of temperature, salinity and dissolved O2 observed by ARGO floats in the Labrador Sea. Idealized sensitivity experiments are performed changing the intensity and duration of the buoyancy forcing as well as the wind speed for the gas exchange parameterizations. The downward transport of O2 results from the combination of vertical homogenization of existing O2 and the uptake from the air-sea flux. The intensity of the buoyancy forcing controls the vertical extent of convective mixing which brings O2 to the deep ocean. Integrated O2 uptake increases with the duration of convection even when the total buoyancy loss is held constant. The air-sea fluxes are highly sensitive to the wind speed especially for the bubble injection flux, which is a major addition to the diffusive flux under strong winds. However, the bubble injection flux can be partially compensated by the diffusive outgassing in response to the elevated saturation state. Under strong buoyancy forcing, this compensation is suppressed by the entrainment of relatively O2-poor deep waters. These results imply and allow to quantify the direct link between variability of deep convection and the supply of O2 in the North Atlantic.
NASA Astrophysics Data System (ADS)
Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei
2016-04-01
Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and fluid chemistry for groundwater and surface water. The higher hydrogen and oxygen isotopic ratios for surface water from downstream are most probably caused by evaporation. Low radon-222 concentrations of some groundwater from downstream may represent sources from different aquifers. Therefore, we conclude that surface water from downstream are recharged directly from its watershed, but groundwater are influenced by the local geological environment. Keywords: groundwater, dissolved gas, noble gas, radon in water, 3He/4He
Greenhouse gases dissolved in soil solution - often ignored, but important?
NASA Astrophysics Data System (ADS)
Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry
2014-05-01
Flux measurements of climate-relevant trace gases from soils are frequently undertaken in contemporary ecosystem studies and substantially contribute to our understanding of greenhouse gas balances of the biosphere. While the great majority of such investigations builds on closed chamber and eddy covariance measurements, where upward gas fluxes to the atmosphere are measured, fewest concurrently consider greenhouse gas dissolution in the seepage and leaching of dissolved gases via the vadose zone to the groundwater. Here we present annual leaching losses of dissolved N2O and CO2 from arable, grassland, and forest lysimeter soils from three sites differing in altitude and climate. We aim to assess their importance in comparison to direct N2O emission, soil respiration, and further leaching parameters of the C- and N cycle. The lysimeters are part of the Germany-wide lysimeter network initiative TERENO-SoilCan, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Soil water samples were collected weekly from different depths of the profiles by means of suction cups. A laboratory pre-experiment proved that no degassing occurred under those sampling conditions. We applied the headspace equilibration technique to determine dissolved gas concentrations by gas chromatography. The seepage water of all lysimeters was consistently supersaturated with N2O and CO2 compared to water equilibrated ambient air. In terms of N2O, leaching losses increased in the ascending order forest, grassland, and arable soils, respectively. In case of the latter soils, we observed a strong variability of N2O, with dissolved concentrations up to 23 μg N L-1. However, since seepage discharge of the arable lysimeters was comparatively small and mostly limited to the hydrological winter season, leached N2O appeared to be less important than direct N2O emissions. In terms of dissolved CO2,our measurements revealed considerable leaching losses from the mountainous forest and grassland soils, based on concentrations up to 24 mg C L-1 and high seepage discharge. Such losses turned out to be similarly important like soil respiration, particularly during winter when temperature-dependent soil respiration declined. In conclusion, the results of the first year of our measurements provide evidence that dissolved greenhouse gases should be considered in studies which aim to assess full greenhouse gas balances, particularly in ecosystems where hydrological conditions favour microbial activity and high leaching losses.
Yamasaki, Ryota; Takatsuji, Yoshiyuki; Asakawa, Hitoshi; Fukuma, Takeshi; Haruyama, Tetsuya
2016-01-26
The Trichoderma reesei hydrophobin, HFBI, is a unique structural protein. This protein forms membranes by self-organization at air/water or water/solid interfaces. When HFBI forms a membrane at an air/water interface, the top of the water droplet is flattened. The mechanism underlying this phenomenon has not been explored. In this study, this unique phenomenon has been investigated. Self-organized HFBI membranes form a hexagonal structured membrane on the surface of water droplets; the structure was confirmed by atomic force microscopy (AFM) measurement. Assembled hexagons can form a planar sheet or a tube. Self-organized HFBI membranes on water droplets form a sheet with an array of hexagonal structures or a honeycomb structure. This membrane, with its arrayed hexagonal structures, has very high buckling strength. We hypothesized that the high buckling strength is the reason that water droplets containing HFBI form flattened domes. To test this hypothesis, the strength of the self-organized HFBI membranes was analyzed using AFM. The buckling strength of HFBI membranes was measured to be 66.9 mN/m. In contrast, the surface tension of water droplets containing dissolved HFBI is 42 mN/m. Thus, the buckling strength of a self-organized HFBI membrane is higher than the surface tension of water containing dissolved HFBI. This mechanistic study clarifies why the water droplets formed by self-organized HFBI membranes have a flattened top.
Creamer, K S; Chen, Y; Williams, C M; Cheng, J J
2010-05-01
Environmentally sound treatment of by-products in a value-adding process is an ongoing challenge in animal agriculture. The sludge produced as a result of the dissolved air flotation (DAF) wastewater treatment process in swine processing facilities is one such low-value residue. The objective of this study was to determine the fundamental performance parameters for thermophilic anaerobic digestion of DAF sludge. Testing in a semi-continuous stirred tank reactor and in batch reactors was conducted to determine the kinetics of degradation and biogas yield. Stable operation could not be achieved using pure DAF sludge as a substrate, possibly due to inhibition by long-chain fatty acids or to nutrient deficiencies. However, in a 1:1 ratio (w/w, dry basis) with swine manure, operation was both stable and productive. In the semi-continuous stirred reactor at 54.5 degrees Celsius, a hydraulic residence time of 10 days, and an organic loading rate of 4.68 gVS/day/L, the methane production rate was 2.19 L/L/day and the specific methane production rate was 0.47 L/gVS (fed). Maximum specific methanogenic activity (SMA) in batch testing was 0.15 mmoles CH(4) h(-1) gVS(-1) at a substrate concentration of 6.9 gVS L(-1). Higher substrate concentrations cause an initial lag in methane production, possibly due to long-chain fatty acid or nitrogen inhibition. Copyright 2009 Elsevier Ltd. All rights reserved.
Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors.
Yuvraj; Padmanabhan, Padmini
2017-06-01
Microalgal cultures are usually sparged with CO 2 -enriched air to preclude CO 2 limitation during photoautotrophic growth. However, the CO 2 vol% specifically required at operating conditions to meet the carbon requirement of algal cells in photobioreactor is never determined and 1-10% v/v CO 2 -enriched air is arbitrarily used. A scheme is proposed and experimentally validated for Chlorella vulgaris that allows computing CO 2 -saturated growth feasible at given CO 2 vol% and volumetric O 2 mass-transfer coefficient (k L a) O . CO 2 sufficiency in an experiment can be theoretically established to adjust conditions for CO 2 -saturated growth. The methodology completely eliminates the requirement of CO 2 electrode for online estimation of dissolved CO 2 to determine critical CO 2 concentration (C crit ), specific CO 2 uptake rate (SCUR), and volumetric CO 2 mass-transfer coefficient (k L a) C required for the governing CO 2 mass-transfer equation. C crit was estimated from specific O 2 production rate (SOPR) measurements at different dissolved CO 2 concentrations. SCUR was calculated from SOPR and photosynthetic quotient (PQ) determined from the balanced stoichiometric equation of growth. Effect of light attenuation and nutrient depletion on biomass estimate is also discussed. Furthermore, a simple design of photosynthetic activity measurement system was used, which minimizes light attenuation by hanging a low depth (ca. 10 mm) culture over the light source.
NASA Astrophysics Data System (ADS)
Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.
2008-12-01
The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.
NASA Astrophysics Data System (ADS)
Müller, R. A.; Kothawala, D. N.; Podgrajsek, E.; Sahlée, E.; Koehler, B.; Tranvik, L. J.; Weyhenmeyer, G. A.
2014-10-01
The short-term (hourly and daily) variation in chromophoric dissolved organic matter (CDOM) in lakes is largely unknown. We assessed the spectral characteristics of light absorption by CDOM in a eutrophic, humic shallow mixed lake of temperate Sweden at a high-frequency (30 min) interval and during a full growing season (May to October). Physical time series, such as solar radiation, temperature, wind, and partial pressures of carbon dioxide in water and air, were measured synchronously. We identified a strong radiation-induced summer CDOM loss (25 to 50%) that developed over 4 months, which was accompanied by strong changes in CDOM absorption spectral shape. The magnitude of the CDOM loss exceeded subhourly to daily variability by an order of magnitude. Applying Fourier analysis, we demonstrate that variation in CDOM remained largely unaffected by rapid shifts in weather, and no apparent response to in-lake dissolved organic carbon production was found. In autumn, CDOM occasionally showed variation at hourly to daily time scales, reaching a maximum daily coefficient of variation of 15%. We suggest that lake-internal effects on CDOM are quenched in humic lake waters by dominating effects associated with imported CDOM and solar exposure. Since humic lake waters belong to one of the most abundant lake types on Earth, our results have important implications for the understanding of global CDOM cycling.
A simple headspace equilibration method for measuring dissolved methane
Magen, C; Lapham, L.L.; Pohlman, John W.; Marshall, Kristin N.; Bosman, S.; Casso, Michael; Chanton, J.P.
2014-01-01
Dissolved methane concentrations in the ocean are close to equilibrium with the atmosphere. Because methane is only sparingly soluble in seawater, measuring it without contamination is challenging for samples collected and processed in the presence of air. Several methods for analyzing dissolved methane are described in the literature, yet none has conducted a thorough assessment of the method yield, contamination issues during collection, transport and storage, and the effect of temperature changes and preservative. Previous extraction methods transfer methane from water to gas by either a "sparge and trap" or a "headspace equilibration" technique. The gas is then analyzed for methane by gas chromatography. Here, we revisit the headspace equilibration technique and describe a simple, inexpensive, and reliable method to measure methane in fresh and seawater, regardless of concentration. Within the range of concentrations typically found in surface seawaters (2-1000 nmol L-1), the yield of the method nears 100% of what is expected from solubility calculation following the addition of known amount of methane. In addition to being sensitive (detection limit of 0.1 ppmv, or 0.74 nmol L-1), this method requires less than 10 min per sample, and does not use highly toxic chemicals. It can be conducted with minimum materials and does not require the use of a gas chromatograph at the collection site. It can therefore be used in various remote working environments and conditions.
Senn, David; Downing-Kunz, Maureen; Novick, Emily
2016-01-01
Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic
Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water
He, Feng; Zhao, Weirong; Liang, Liyuan; ...
2014-11-11
Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, CO 3 2-, NO 3 -] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h -1) in the presence of bothmore » HCO 3 2- and NO 3 -, whereas HCO 3 2-, NO 3 -, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h -1). Using scavengers and enhancers for singlet oxygen ( 1O 2) and hydroxyl (HO ∙ ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO 3 ∙-) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO 3 ∙- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.« less
NASA Astrophysics Data System (ADS)
Khobragade, Nilay N.; Bansod, Ankur V.; Patil, Awanikumar P.
2018-04-01
A study was undertaken in several selected mixed nitric acid/chloride ({{{{NO}}}3}-/{{{Cl}}}- ratio) electrolytes with the nitric acid concentration of 0.1 N and chloride concentration of 0, 10, 100, 1000 and 10 000 ppm. Electrochemical tests like potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis (M-S) were carried out when the electrolytes were in deaerated condition and were in open to air (OTA) condition, and the effect of dissolved oxygen was evaluated on the corrosion behavior of 304 SS. It was found that at a critical {{{{NO}}}3}-/{{{Cl}}}- ratio, a passive state is attained at the earliest in OTA condition. Also, the passive film resistance showed higher values in OTA condition than in deaerated condition exhibiting the effect of dissolved oxygen. The results of EIS results confirmed the results obtained by potentiodynamic polarization wherein the low passive current densities were obtained in OTA condition. Mott-Schottky analysis revealed the lowest defect densities in 100 ppm Cl‑ solution in OTA condition and in 10 ppm Cl‑ solution in deaerated condition indicating less defective films formed in these solutions. XPS analysis showed that the film was bilayer in nature in confirmation with M-S analysis. The results were discussed with point defect model (PDM) and by competitive surface adsorption.
Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Larson, Toti; Mickler, Patrick; Darvari, Roxana
2016-11-01
This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84 Kr and 132 Xe. Dissolved methane concentrations are positively correlated with crustal 4 He, 21 Ne, and 40 Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases ( 20 Ne, 36 Ar, 84 Kr, 132 Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84 Kr/ 36 Ar and 132 Xe/ 36 Ar fractionation levels along with 4 He/ 20 Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.
Value-added products from chicken feather fiber and protein
NASA Astrophysics Data System (ADS)
Fan, Xiuling
Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between air permeability and either pressure drop or filtration efficiency. From these kinds of nonwovens, it is realized that feather fibers' fineness and the tree/fan-like structure of the feather does not offer a high level of performance advantages over conventional fibers. The use of feather fiber in air filtration applications must rely primarily on a favorable cost and weight differential in favor of the feather fiber. Only after chicken feather keratin was reduced, could it dissolve well in ionic liquid. 100% chicken feather keratin did not produce high tenacity fibers. Reduced chicken feather keratin and cellulose produced blend fibers with mechanical properties close to silk, cotton, and polyester fibers. Chemically reforming crosslinks might improve mechanical properties and the stability of the fibers to water and make them suitable for most fibrous applications. From this, it can be proposed that using chicken feathers for fiber production may be a good way to add value to chicken feather "waste".
Adsorption of air pollutants on the grain surface of Japanese cedar pollen
NASA Astrophysics Data System (ADS)
Okuyama, Yuji; Matsumoto, Kiyoshi; Okochi, Hiroshi; Igawa, Manabu
The contaminants adsorbed on the surface of pollen may affect the development of hay fever, because the patients of the fever are larger in areas with much air pollution than in nonpolluted areas and the fine particles and gases are susceptible to deposit on the nasal cavities and eyes by their transfer on the pollen. Since Japanese cedar pollinosis is the most common hay fever in Japan, we analyzed the air pollutants adsorbed on the surface of dispersed Japanese cedar pollen in the urban and mountainous districts. Fine anthropogenic particles were significantly adsorbed and many elements were concentrated on the surface of the pollen in the urban site of Yokohama, while they were not concentrated on the surface of the pollen collected at a mountainous site. The acid gases are also adsorbed and acidify the surface, and their amounts increase with their concentrations in the ambient air. The high adsorption of nitric acid on the pollen determined by an exposure experiment of nitric acid gas suggests that nitric acid is dissolved in the inner part of the pollen. The adsorption amounts of the gases on the pollen were especially greater than those on other natural particles, humic acid and yellow sand.
Experimental study of transient paths to the extinction in sonoluminescence.
Urteaga, Raúl; Dellavale, Damián; Puente, Gabriela F; Bonetto, Fabián J
2008-09-01
An experimental study of the extinction threshold of single bubble sonoluminescence in an air-water system is presented. Different runs from 5% to 100% of air concentrations were performed at room pressure and temperature. The intensity of sonoluminescence (SL) and time of collapse (t(c)) with respect to the driving were measured while the acoustic pressure was linearly increased from the onset of SL until the bubble extinction. The experimental data were compared with theoretical predictions for shape and position instability thresholds. It was found that the extinction of the bubble is determined by different mechanisms depending on the air concentration. For concentrations greater than approximately 30%-40% with respect to the saturation, the parametric instability limits the maximum value of R(0) that can be reached. On the other hand, for lower concentrations, the extinction appears as a limitation in the time of collapse. Two different mechanisms emerge in this range, i.e., the Bjerknes force and the Rayleigh-Taylor instability. The bubble acoustic emission produces backreaction on the bubble itself. This effect occurs in both mechanisms and is essential for the correct prediction of the extinction threshold in the case of low air dissolved concentration.
NASA Astrophysics Data System (ADS)
Rodríguez, F.; Hernández, P. A.; Padrón, E.; Pérez, N. M.; Sumino, H.; Melián, G. V.; Padilla, G. D.; Barrancos, J.; Dionis, S.; Nolasco, D.; Calvo, D.; Hernández, I.; Peraza, M. D.
2012-04-01
El Hierro Island is the south westernmost and the youngest island of the Canary archipelago (<1.2 My). Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 on October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of 12 October a large light-green coloured area was observed in the sea to the south of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical program on August 2011 in order to evaluate the temporal evolution of dissolved gases on four different observation points (vertical and horizontal wells) of El Hierro. Three wells are located on the north of the island (where the seismic activity occurred at the beginning of the volcano-seismic unrest) and one horizontal well (gallery) in the south. At each observation point the concentration of dissolved helium, CO2, N2, O2 and Ar and the isotopic composition of He, C-CO2 and Ar have been measured three times per week. Significant increases on the dissolved gases content, mainly on CO2 and He/CO2 ratio, have been measured at all the observation points prior to the increasing of released seismic energy. Isotopic composition of dissolved helium, measured as 3He/4He ratio, showed an significant increase (from 1-3 RA up to 7.2 RA, being RA the isotopic 3He/4He ratio on air) at all the observation points 20 days before the occurrence of the submarine eruption and these relatively high 3He/4He values have been maintained along the volcanic unrest period. The isotopic composition of CO2 has showed also significant changes in relation to the release of seismic energy. The results observed on this dissolved gases study have been tremendously beneficial on the volcanic surveillance tools to study and forecast the evolution of the seismic-volcanic crisis.
Protein composition of oil bodies from mature Brassica napus seeds.
Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie
2009-06-01
Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.
NASA Technical Reports Server (NTRS)
Williams, R. J.
1986-01-01
The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.
2018-05-01
Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.
Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system.
Yu, Liang; Zhao, Quanbao; Ma, Jingwei; Frear, Craig; Chen, Shulin
2012-11-01
This study established a comprehensive model to configure a new two-stage high solid anaerobic digester (HSAD) system designed for highly degradable organic fraction of municipal solid wastes (OFMSW). The HSAD reactor as the first stage was naturally separated into two zones due to biogas floatation and low specific gravity of solid waste. The solid waste was retained in the upper zone while only the liquid leachate resided in the lower zone of the HSAD reactor. Continuous stirred-tank reactor (CSTR) and advective-diffusive reactor (ADR) models were constructed in series to describe the whole system. Anaerobic digestion model No. 1 (ADM1) was used as reaction kinetics and incorporated into each reactor module. Compared with the experimental data, the simulation results indicated that the model was able to well predict the pH, volatile fatty acid (VFA) and biogas production. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Lewis, M. L.
1982-01-01
Static zone electrophoresis is an electrokinetic method of separating macromolecules and small particles. However, its application for the isolation of biological cells and concentrated protein solutions is limited by sedimentation and convection. Microgravity eliminates or reduces sedimentation, floatation, and density-driven convection arising from either Joule heating or concentration differences. The advantages of such an environment were first demonstrated in space during the Apollo 14 and 16 missions. In 1975 the Electrophoresis Technology Experiment (MA-011) was conducted during the Apollo-Soyuz Test Project flight. In 1979 a project was initiated to repeat the separations of human kidney cells. One of the major objectives of the Electrophoresis Equipment Verification Tests (EEVT) on STS-3 was to repeat and thereby validate the first successful electrophoretic separation of human kidney cells. Attention is given to the EEVT apparatus, the preflight electrophoresis, and inflight operational results.
Excavating and loading equipment for peat mining
NASA Astrophysics Data System (ADS)
Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.
2017-10-01
Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.
[Peculiarities of treatment policy for lower-limb phlebothromboses].
Kletskin, A É; Kudykin, M N; Mukhin, A S; Durandin, P Iu
2014-01-01
Quality of treatment for acute venous thrombosis is determined by adequacy of conservative treatment and optimization of the operative procedure. We analysed the outcomes of management of 1,768 patients presenting with various forms of lower-limb phlebothrombosis. Deep veins were affected in 1,158 (65.5%) cases. Of these, thrombosis of crural veins was revealed in 672 (58%) patients, iliofemoral phlebothrombosis in 486 (42%) subjects. A total of 47 (9.7%) patients were operated on for iliofemoral thrombosis with floating thrombus confirmed by ultrasonic angioscanning. Criteria for floatation were determined. A total of 610 (43.5%) patients were diagnosed as having ascending subcutaneous thrombophlebitis of the femur. Of these, a total of 592 (97%) patients were operated on within 1-48 hours following admission. We propose a methodology of comprehensive conservative treatment with the use of Antistax in a double dose and alternating pneumocompression with elevated pressure in the cuffs.
A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.
Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong
2017-01-24
Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.
A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes
Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong
2017-01-01
Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359
Uranium Isotope Fractionation during Oxidation of Dissolved U(iv) and Synthetic Solid UO2
NASA Astrophysics Data System (ADS)
Wang, X.; Johnson, T. M.; Lundstrom, C. C.
2013-12-01
U isotopes (238U/235U) show promise as a tool for environmental monitoring of U contamination as well as a proxy for paleo-redox conditions. However, the isotopic fractionation mechanisms of U are still poorly understood. In groundwater systems, U(VI), a mobile contaminant, can be reduced to immobile U(IV) and thus remediated. Previous work shows that 238U/235U of the remaining U(VI) changes with the extent of reduction. Therefore, U(VI) isotope composition in groundwater can potentially be used to detect and perhaps quantify the extent of reduction. However, knowing if isotopic fractionation occurs during U(IV) oxidation is equally important. First, the reduced U(IV) (either solid or as dissolved organic complexes) potentially can be reoxidized to U(VI). If isotope fractionation occurs during oxidation, it would complicate the use of U isotope composition as a monitoring technique. Further, in natural weathering processes, U(IV) minerals are oxidized to form dissolved U(VI), which is carried to rivers and eventually to the ocean and deposited in marine sediments. The weathering cycle is thus sensitive to redox conditions, meaning the sedimentary U isotope record may serve as a paleoredox indicator, provided U isotope fractionation during oxidation and reduction are well known. We conducted experiments oxidizing 2 different U(IV) species by O2 and measuring isotopic fractionation factors. In one experiment, dissolved U(IV) in 0.1 N HCl (pH 1) was oxidized by entrained air. As oxidation proceeds at pH 1, the remaining dissolved U(IV) becomes progressively enriched in 238U in a linear trend, while the product U(VI) paralleled, but was offset to 1.0‰ lighter in 238U/235U. This linear progression of both remaining reactant and product suggests equilibrium fractionation during oxidation of dissolved U(IV) by O2. A second experiment oxidized synthetic, solid UO2 (in 20 mM NaHCO3, pH 7) with entrained air. The oxidative fractionation is very weak in this case with product U(VI) ~0.1‰ heavier than the remaining UO2. We attribute the lack of strong fractionation during oxidation of solid UO2 to a 'rind effect', where the surface layer must be completely oxidized before the next layer is exposed to oxidant. Hence, nearly complete, congruent conversion of each layer of U(IV) to U(VI) results in minimal isotope fractionation. A small amount of transient fractionation probably occurs initially, but this is quickly negated as the surface becomes isotopically fractionated. Interestingly, our measured ~0.1‰ U isotope fractionation during oxidation of solid U(IV) agrees with the natural observation that 238U/235U ratios in river water (mainly U(VI)) are ~0.1‰ greater than those in fresh continental rocks (primarily U(IV) minerals). Application of these results to natural settings should be done with caution, however. Oxidation of natural uraninite in continental rocks is a much slower process. If the U(VI) product and the U(IV) reactant remain in contact for long periods of time (e.g., months), they may evolve toward isotopic equilibrium. Measurements of 238U/235U in various natural weathering environments should be undertaken to examine this idea.
Connections between physical, optical and biogeochemical processes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Xiu, Peng; Chai, Fei
2014-03-01
A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗<-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of ammonia is obtained by, UB=UB∗, bacteria uptake of DOM, FB=U+UB, bacteria respiration, SB=RBFB{r_b}/{1-r_b}, remineralization by bacteria, EB=-UB. CDOM photolysis (Bissett et al., 1999a): UVLDOC=a(410)×RtUVLDOC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, UVSDOC=a(410)×RtUVSDOC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, UVLDIC=a(410)×RtUVLDIC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, UVSDIC=a(410)×RtUVSDIC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, a(410)=acdoc∗×CLDOC, a(410)=acdoc∗×CSDOC, Kd(300)=[a(410)+a(410)]×exp[0.0145×(410-300)]+0.154. The dissolution rate for biogenic silica (Jiang et al., 2003): D=(0.19T/25+0.01)×exp(0.069(T-25)). The air-sea flux of CO2 is calculated using the transfer velocity-wind speed relationships from Wanninkhof (1992): air-sea CO flux=0.31U2(660S{()sea-()air}, where U is the wind speed at sea surface and Sc is the Schmidt number for CO2 that can be calculated as: Sc=2073.1-125.62T+3.6276T2-0.043219T3, S is the solubility of CO2 and (pCO2)air is the partial pressure of CO2 in the air. In the model, we set a spatially uniform distribution of (pCO2)air observed at the Mauna Loa Observatory (Keeling et al., 1976).Dissolved oxygen (DO) is modeled using constant oxygen-to-nitrate and oxygen-to-ammonium ratios. At the surface, air-sea exchange of O2 is calculated as: O flux=0.31U2(660(DOsat-DO), where DOsat is the saturation concentration of DO calculated from temperature and salinity. So2 is the Schmidt number for O2 that can be calculated as follows: So2=1638.0-81.83T+1.483T2-0.008004T3.
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
Hydrothermal synthesis of bismuth germanium oxide
Boyle, Timothy J.
2016-12-13
A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.
Outdoor Weathering and Dissolution of TNT and Tritonal
2009-01-01
ranged from 0.361 to 1.975 g and the Tritonal chunks ran- ged from 2.162 to 5.320 g. Each funnel was attached to a 1-L glass bottle with a #4 rubber ... stopper fitted with two holes, one hole for the funnel stem and the other for a bent copper tube that allows air exchange. The bottles fit snuggly into...dissolved mass averaged about one-third of the total TNT mass loss. This result was surprising because we have had excel- lent HE mass- closure during
De Munck, Jan; Ermis, R Banu; Koshiro, Kenichi; Inoue, Satoshi; Ikeda, Takatsumi; Sano, Hidehiko; Van Landuyt, Kirsten L; Van Meerbeek, Bart
2007-01-01
Phase-separation within HEMA-free all-in-one dental adhesives may result in the entrapment of droplets within the adhesive resin. Strongly air-blowing prior to polymerization, can remove most of these droplets. The objective of this study was to evaluate the effect these droplets may have on the resistance of the adhesive-tooth interface to NaOCl degradation. The micro-tensile bond strength (microTBS) to enamel and dentin was determined when a HEMA-free all-in-one adhesive was applied either following a mild or strong air-blowing technique. The bonds were also exposed to an aqueous sodium hypochlorite (NaOCl) solution for 1h, following a recently introduced methodology to mimic in vivo bond degradation. This study revealed that strong air-blowing of the adhesive only resulted in a significantly higher micro-tensile bond strength (microTBS) to dentin, but not to enamel. Likewise, NaOCl only reduced the microTBS to dentin for both the mild and strong air-blowing technique, but again not the microTBS to enamel. Failure analysis by SEM clearly revealed that strong air-blowing is less effective in droplet removal when the adhesive was applied in small and narrow class-I cavities, as compared to when it was applied to flat surfaces. NaOCl did preferentially dissolve the hybrid layer at dentin, and more for the mild than for the strong air-blowing technique. A strong air-blowing procedure resulted in a more NaOCl-resistant hybrid layer, so that it can be concluded that a HEMA-free one-step adhesive definitely benefits from a strong air-blowing technique.
Saarinen, Mark A; Murhammer, David W
2003-01-05
The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells. Copyright 2002 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, ZhiPing, E-mail: liulqs@163.com; Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020; Wu, WenHui
Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by themore » combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.« less
Measuring Ancient Air Pressure Using Fossilized Cyanobacteria
NASA Astrophysics Data System (ADS)
Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.
2016-12-01
The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels." Nature Geoscience 9 (2016): 448-451.
NASA Astrophysics Data System (ADS)
Woelfle-Erskine, C. A.; Larsen, L.; Gomez-Velez, J. D.
2016-12-01
Intermittent streams provide important habitat for aquatic species, including endangered salmonid fishes, but during prolonged dry periods may become depleted in dissolved oxygen (DO). The rate of depletion and the consequent length of time a pool remains habitable depend on DO and carbon concentrations in groundwater and hyporheic flow, and within-pool metabolic rates. We performed repeat surveys, habitat characterization, and ecohydrologic sampling on two intermittent tributaries of Salmon Creek (Sonoma Co., CA) to elucidate controls on salmonid over-summer survival at the pool scale. Pools exhibited heterogeneity within and across stream reaches in salmonid recruitment and survival during the summer dry period. In classification tree analysis, high conductivity (>310 mS/cm) and low DO (<2 ppm) were negatively associated with salmonid survival, with high pool conductivity resulting from either groundwater inflow or evapo-concentration. To distinguish between surface, hyporheic, and groundwater contributions, we measured dissolved organic carbon (DOC) concentration and fluorescence excitation-emission matrices (EEMs), radon (222Rn), and stable isotopes (18O and D) in pools, hyporheic flow, and wells and springs in local aquifers. Radon concentrations in pools ranged from 1.5-2.3 Bq/l, 3-4 orders of magnitude higher than expected for water in equilibrium with air, suggesting substantial groundwater inflow. We developed a five-component PARAFAC model from the EEMs and used with the isotope data to perform an end-member mixing analysis to track water sources and flowpaths. These analyses suggested high separability among groundwaters from aquifers separated by faults and between groundwater and surface water, with groundwater of different age and flowpath length discharging to different pools. Pools with shallow groundwater or hyporheic flow sustained DO concentrations above the threshold for salmonid survival, with shallow groundwater unexpectedly acting as a source of DO to the stream. These inflows were further essential for inhibiting stagnation and promoting reaeration across the air-water interface. These results suggest that conservation measures to promote aquifer recharge and sustain summer baseflow may be essential for maintaining salmonid populations during drought.
NASA Astrophysics Data System (ADS)
D'Anna, Barbara; Sellegri, Karine; Charrière, Bruno; Sempéré, Richard; Mas, Sébastien; Marchand, Nicolas; George, Christian; Même, Aurèlie; R'mili, Badr; Delmont, Anne; Schwier, Allison; Rose, Clémence; Colomb, Aurèlie; Pey, Jorge; Langley Dewitt, Helen
2014-05-01
The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary Sea Salt Aerosol formed at the sea surface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. The sea-air transfer of particles and gases was investigated in relation to water chemical composition and biological activity during a mesocosm experiment within the SAM project (Sources of marine Aerosol in the Mediterranean) at the Oceanographic and Marine Station STARESO in Western Corsica (May 2013). Three 2 m mesocosms were filled with screened (<1000 µm) 2260 L of subsurface (1 m) seawater and covered with a transparent Teflon film dome to minimize atmospheric contamination. The mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16). The evolution of the three systems was followed for 20 days. The set of sensors in each mesocosm was allowed to monitor, at high frequency (every 10 min), the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosm seawaters were daily sampled for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses. Both dissolved and gaseous VOCs were also analyzed. In addition, few liters of seawater from each mesocosm were daily and immediately collected and transferred to a bubble-bursting apparatus to simulate nascent sea spray aerosol. On-line chemical analysis of the sub-micrometer fraction was performed by a TOF-AMS (Aerodyne). Off-line analysis included TEM-EDX for morphology and size distribution studies and a hybrid quadrupole-orbitrap mass spectrometer (Thermo Fischer) for molecular identification of the organic fraction.
Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?
NASA Technical Reports Server (NTRS)
Gregg, Watson
2012-01-01
Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink rather than the source indicated by the free-run model and data estimates.
Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2013-06-01
A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.
Wheeldon, D R; Potter, C D; Oduro, A; Wallwork, J; Large, S R
1995-01-01
Donor management remains one of the most neglected areas of transplantation. A comprehensive donor management regimen has been developed. The results of the application of this strategy form the basis of this report. Full hemodynamic data were collected from 150 multiorgan donors between October 1990 and August 1993. The data were collected at the time of donor team arrival, after insertion of a pulmonary artery floatation catheter and immediately before cardiac excision. Fifty-two donors (35%) fell well outside our minimum acceptance criteria on arrival. Twenty-one of fifty-two had a mean arterial pressure less than 55 mm Hg (mean 47 mm Hg) despite inotropic support in most cases; 10 of 52 had a central venous pressure greater than 15 mm Hg (mean 18.0 mm Hg); 2 of 52 had a high inotrope requirement greater than 20 micrograms/kg/min (mean 25 micrograms/kg/min). After the insertion of a pulmonary artery floatation catheter, an additional 13 of 52 donors were found to have a pulmonary capillary wedge pressure greater than 15 mm Hg (mean 19.8 mm Hg), and the final 6 of 52 had a low left ventricular stroke work index, less than 15 gm (mean 12.8 gm). After optimal management, including hormone replacement 44 of 52 donors yielded transplantable organs (29 hearts, 15 heart and lung blocks). Thirty-seven of forty-four patients (84%) were alive and well from 13 to 48 months after transplantation. There were five early deaths (11%) caused by infection (heart), adult respiratory distress syndrome (heart), arrhythmia (heart), cerebrovascular event (heart and lung), and infection (heart, lung, and liver). Two late deaths (5%) occurred as a result of tamponade (3 months, heart) and infection (14 months, heart and lung). Eight of fifty-two organs were still unsuitable for transplantation after optimum management during the splanchnic dissection as a result of inotrope dependency (n = 4), left ventricular hypertrophy (n = 2), and coronary artery disease (n = 2). The data indicate that, of the organs which initially fall outside our transplant acceptance criteria, 92% are capable of functional resuscitation. Conversely, superficial assessment may not show compromised function. Optimizing cardiovascular performance also has important implications for the viability of all transplantable organs. This aggressive approach to donor management has resulted in the transplantation of 44 donor hearts that may otherwise have been turned down or inappropriately managed.
Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping
2015-10-30
In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.
Monitoring and assessment of water quality of Tasik Cempaka, Bangi
NASA Astrophysics Data System (ADS)
Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif
2014-09-01
A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.
Intensification of oily waste waters purification by means of liquid atomization
NASA Astrophysics Data System (ADS)
Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.
2017-10-01
In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.
Arieli, Ran
2015-01-15
All air breathing vertebrates are endowed with pulmonary surfactants, surface-active lipoprotein complexes formed by type II alveolar cells. Surfactants are deposited in clearly defined areas on the luminal aspect of blood vessels, producing hydrophobic spots. Gas nanobubbles measuring 5-100nm form spontaneously on the smooth hydrophobic spot from dissolved gas. Bubbles nucleate and grow at these spots after decompression from high pressure. Proteins with hydrophobic regions circulating in the blood will adhere to the gas phase-plasma interface. Deformation of their secondary and tertiary configuration will present them as foreign molecules or autoantigens. Components of the intact protein which are also present in a deformed protein may be recognized as foreign too. This process is proposed as the trigger for autoimmune diseases. The presence of autoimmune disease in air breathing vertebrates, increased autoimmunity and the elevated risk of decompression sickness with age, as well as variable sensitivity to both diseases, can be matched with the appearance of surfactant spots. Eliminating these spots may provide protection against both diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Changes in the chemistry of small Irish lakes.
Burton, Andrew W; Aherne, Julian
2012-03-01
A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO(4) (2-)) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO(4) (2-), non-marine SO(4) (2-), and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.
Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Olsson, Gustaf
2017-10-01
The present study explores the interlinkages among the operational variables of a University of Cape Town (UCT) Integrated Fixed Film Activated Sludge (IFAS) membrane bioreactor (MBR) pilot plant. Specifically, dedicated experimental tests were carried out with the final aim to find-out a constitutive relationship among operational costs (OCs), effluent quality index (EQI), effluent fines (EF). Greenhouse gas (GHG) emissions were also included in the study. Results showed that the EQI increases at low flow rate likely due to the dissolved oxygen (DO) limitation in the biological processes. Direct GHGs increase with the increasing of the air flow due to the anoxic N 2 O contribution. Irreversible membrane fouling reduce from 98% to 85% at the air flow rate of 0.57m 3 h -1 and 2.56m 3 h -1 , respectively. However, the increase of the air flow rate leads to the increase of the N 2 O-N flux emitted from the MBR (from 40% to 80%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K
2014-09-15
Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Choi, Miyoung; Choi, Dong Whan; Lee, Jung Yeol; Kim, Young Suk; Kim, Bun Su; Lee, Byoung Ho
2012-01-01
Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)-MBR (membrane bioreactor)-ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove COD(cr) (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH₄(+) 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF-MBR system were very high, e.g. COD(cr) 95.88%, BOD₅ 99.66%, COD(mn) (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH₄-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50-99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF-MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.
Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air
NASA Technical Reports Server (NTRS)
Patel, Vrajen; Monje, Oscar
2013-01-01
Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.
Hassan, Afifa Afifi
1982-01-01
The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)
Hydrocarbonates in atmospheric precipitation of Moscow: Monitoring data and analysis
NASA Astrophysics Data System (ADS)
Eremina, I. D.; Aloyan, A. E.; Arutyunyan, V. O.; Larin, I. K.; Chubarova, N. E.; Yermakov, A. N.
2017-05-01
Based on atmospheric precipitation monitoring data for Moscow, we have revealed a number of episodes when the content of hydrocarbonates repeatedly surpasses the equilibrium level. These facts are associated with the complex structure of precipitation, which is caused by differences in the chemical composition of condensation nuclei. As a result, the underlying surface involves two groups of drops with acidities of different nature. The acidity of the first ("metal") group is determined by the carbonate equilibrium with atmospheric CO2 and dissolved carbonates of alkaline and alkaline earth metals. The acidity of the second ("ammonium") group is characterized by the balance between ammonia absorbed from the air and atmospheric acids. Because of this, the precipitation acidity measured during the monitoring is regulated not only in the air but also in the condensate collector. The mixing of the metal and ammonium groups of precipitation is accompanied by only a partial conversion of hydrocarbonates into dissolved CO2. Its termination is hindered when CO2 actually ceases to enter the atmosphere due to mass-exchange deceleration. As a result, the content of hydrocarbonates in the collector exceeds the equilibrium level. Some estimates indicate that the acidity of the ammonia component of precipitation can be much higher than the acidity according to monitoring data. This should be taken into account in estimating the health and environmental impacts. The true level of acid rain hazard can be estimated only by measuring the acidity of individual drops, whereas the results obtained with modern tools of monitoring can underestimate this hazard.
NASA Astrophysics Data System (ADS)
Matrai, P.
2016-02-01
Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).
Du, Yingxun; Chen, Hui; Zhang, Yuanyuan; Chang, Yuguang
2014-03-01
In this study, the degradation of gallic acid (GA), a model compound for dissolved organic matter (DOM) in controlled UV/N2, UV/air, UV/Fe(3+)/N2, and UV/Fe(3+)/air systems was investigated to elucidate the contribution of direct photolysis and reactive oxygen species (ROS) oxidation to GA degradation at various pH values. In general, the order of the degradation rate of GA in these four systems was as follows: UV/Fe(3+)/air>UV/air>UV/Fe(3+)/N2≈UV/N2. In the UV/N2 system, GA underwent slow direct photolysis, the rate of which decreased with decreasing pH. In the UV/Fe(3+)/air system, the most rapid GA degradation was achieved at pH 5. ROS are mainly derived from two sources. The first source is attributed to the role of DO and the other is attributed to the interaction of Fe(3+) and DO. The contribution of ROS to GA oxidation is much greater (>71%) than that of direct photolysis (<29%) at each pH value and is most obvious at pH 5. H2O2 formation was detected during GA degradation in the UV/air and UV/Fe(3+)/air systems. Using ROS scavengers, it was found that oxidation by OH was the main mechanism of GA degradation in the UV/Fe(3+)/air system. Based on the experimental results, a mechanism for GA degradation and ROS formation involving the effect of pH was proposed. This study furthers our understanding of changes in DOM degradation mechanisms due to global acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.
2009-12-01
The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.
Air quality measurements-From rubber bands to tapping the rainbow.
Hidy, George M; Mueller, Peter K; Altshuler, Samuel L; Chow, Judith C; Watson, John G
2017-06-01
It is axiomatic that good measurements are integral to good public policy for environmental protection. The generalized term for "measurements" includes sampling and quantitation, data integrity, documentation, network design, sponsorship, operations, archiving, and accessing for applications. Each of these components has evolved and advanced over the last 200 years as knowledge of atmospheric chemistry and physics has matured. Air quality was first detected by what people could see and smell in contaminated air. Gaseous pollutants were found to react with certain materials or chemicals, changing the color of dissolved reagents such that their light absorption at selected wavelengths could be related to both the pollutant chemistry and its concentration. Airborne particles have challenged the development of a variety of sensory devices and laboratory assays for characterization of their enormous range of physical and chemical properties. Advanced electronics made possible the sampling, concentration, and detection of gases and particles, both in situ and in laboratory analysis of collected samples. Accurate and precise measurements by these methods have made possible advanced air quality management practices that led to decreasing concentrations over time. New technologies are leading to smaller and cheaper measurement systems that can further expand and enhance current air pollution monitoring networks. Ambient air quality measurement systems have a large influence on air quality management by determining compliance, tracking trends, elucidating pollutant transport and transformation, and relating concentrations to adverse effects. These systems consist of more than just instrumentation, and involve extensive support efforts for siting, maintenance, calibration, auditing, data validation, data management and access, and data interpretation. These requirements have largely been attained for criteria pollutants regulated by National Ambient Air Quality Standards, but they are rarely attained for nonroutine measurements and research studies.
[Theoretical analysis of recompression-based therapies of decompression illness].
Nikolaev, V P; Sokolov, G M; Komarevtsev, V N
2011-01-01
Theoretical analysis is concerned with the benefits of oxygen, air and nitrogen-helium-oxygen recompression schedules used to treat decompression illness in divers. Mathematical modeling of tissue bubbles dynamics during diving shows that one-hour oxygen recompression to 200 kPa does not diminish essentially the size of bubble enclosed in a layer that reduces tenfold the intensity of gas diffusion from bubbles. However, these bubbles dissolve fully in all the body tissues equally after 2-hr. air compression to 800 kPa and ensuing 2-d decompression by the Russian navy tables, and 1.5-hr. N-He-O2 compression to this pressure followed by 5-day decompression. The overriding advantage of the gas mixture recompression is that it obviates the narcotic action of nitrogen at the peak of chamber pressure and does not create dangerous tissue supersaturation and conditions for emergence of large bubbles at the end of decompression.
Nakazawa, Akira; Tang, Ning; Inoue, Yoshinori; Kamichatani, Waka; Katoh, Toshifumi; Saito, Mitsuru; Obara, Kenji; Toriba, Akira; Hayakawa, Kazuichi
2017-01-01
Diallylamine-maleic acid copolymer (DAM)-nonwoven fabric (DAM-f), a fibrous adsorbent, contains DAM with zwitter-ionic functional groups and forms a hydration layer on the surface. The aim of this report was to evaluate the adsorption selectivity of DAM-f to semi-volatile organic acid (C1-C5). In the aqueous phase, formic acid dissolved in the hydration layer bound to the imino group of DAM-f due to anion exchange interaction. In the gas phase, the adsorption amounts of organic acids increased with the exposure time. Moreover, the adsorption rate constants correlated with the air/water partition coefficients (log K aw ) for formic acid, propionic acid, butyric acid, valeric acid and isovaleric acid, except for acetic acid. These results indicate that DAM-f is highly selective to hydrophilic compounds which easily move from the air to the hydration layer of DAM-f.
NASA Astrophysics Data System (ADS)
SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.
2016-07-01
The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Wu, Qilu; Peng, Huijie; Zhao, Yong
2016-12-01
A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.
An update on coating/manufacturing techniques of microneedles.
Tarbox, Tamara N; Watts, Alan B; Cui, Zhengrong; Williams, Robert O
2017-12-29
Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.
Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong
2016-12-01
A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.
A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation
Lan, Rong; Tao, Shanwen
2016-01-01
In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588
A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.
Lan, Rong; Tao, Shanwen
2016-08-01
In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency.
NASA Astrophysics Data System (ADS)
Shibata, T.; Nishiyama, H.
2014-03-01
Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.
Oulehle, Filip; Hruska, Jakub
2009-12-01
The concentration of chemical oxygen demand (COD), a common proxy for dissolved organic matter (DOM), was measured at seven drinking-water reservoirs and four streams between 1969 and 2006. Nine of them showed significant DOM increases (median COD change +0.08 mg L(-1) yr(-1)). Several potential drivers of these trends were considered, including air temperature, rainfall, land-use and water sulfate concentration. Temperature and precipitation influenced inter-annual variations, but not long-term trends. The long-term DOM increase was significantly associated with declines of acidic deposition, especially sulfur deposition. Surface water sulfate concentrations decreased from a median of 62 mg L(-1)-27 mg L(-1) since 1980. The magnitude of DOM increase was positively correlated with average DOM concentration (R(2) = 0.79, p < 0.001). Simultaneously, DOM concentration was positively correlated with the proportion of Histosols within the catchments (R(2) = 0.79, p < 0.001). A focus on the direct removal of DOM by water treatment procedures rather than catchment remediation is needed.
Development of formulation device for periodontal disease.
Sato, Yasuhiko; Oba, Takuma; Watanabe, Norio; Danjo, Kazumi
2012-01-01
In addition to providing standard surgical treatment that removes the plaque and infected tissues, medications that can regenerate periodontal tissue are also required in the treatment of periodontal disease. As a form of regenerative medication, various growth factors are expected to be used while treating periodontal disease. A protein-like growth factor is often developed as a lyophilized product with dissolution liquid, considering its instability in the solution state. We have clarified that the formulation for periodontal disease needs to be viscous. When the lyophilized product was dissolved using a sticky solution, various problems were encountered, difficulty in dissolving and air bubbles, for example, and some efforts were needed to prepare the formulation. In this research, to identify the problem of preparing a viscous formulation, a lyophilized product (placebo) and sticky liquid were prepared by using vial and ampoule as the conventional containers. Based on these problems, a prototype administration device was developed, and its functionality was confirmed. As a result, it was suggested that the device with a useful mixing system that could shorten the preparation time was developed.
Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher
2016-04-28
This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
Interaction between phases in the liquid–gas system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. S., E-mail: bmsmirnov@gmail.com; Smirnov, B. M.
This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association duemore » to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.« less
Salivary contamination during bonding procedures with a one-bottle adhesive system.
Fritz, U B; Finger, W J; Stean, H
1998-09-01
The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.
Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia
NASA Astrophysics Data System (ADS)
Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.
2015-12-01
Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.
2015-01-01
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water–air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m3 and 0.3 and 27 ng/m3, respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air–water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10 000 ng/m2/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m2/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air–water chemical flux determinations with passive sampling technology. PMID:25412353
Nanoparticle flotation collectors: mechanisms behind a new technology.
Yang, Songtao; Pelton, Robert; Raegen, Adam; Montgomery, Miles; Dalnoki-Veress, Kari
2011-09-06
This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling. © 2011 American Chemical Society
Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel
NASA Astrophysics Data System (ADS)
Ramasagara Nagarajan, Varun
Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the austempering temperature decreases the resistance to hydrogen embrittlement. An interesting phenomenon was also observed in annealed specimen charged with hydrogen for 250 h which had an unusually high fatigue threshold (DeltaKth).
The sensitivity of tropospheric chemistry to cloud interactions
NASA Technical Reports Server (NTRS)
Jonson, Jan E.; Isaksen, Ivar S. A.
1994-01-01
Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of the troposphere are discussed. In particular, tests are performed to determine the sensitivity of cloud frequencies and cloud types.
Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J
2005-10-01
We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The model obtains from first principles the result that in sonoluminescence the bubble is practically 100% argon for air dissolved in water. Therefore, the dissociation reactions in air bubbles must be taken into account for quantitative computations of maximum temperatures. The agreement found between the numerical and experimental data is very good in the whole parameter space explored. We do not fit any parameter in the model. We believe that we capture all the relevant physics with the model.
NASA Astrophysics Data System (ADS)
Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira
2010-05-01
The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa, Japan.
Ono, Jun; Takahashi, Daisuke; Guo, Xinyu; Takahashi, Shin; Takeoka, Hidetaka
2012-10-01
A three-dimensional/high-resolution transport model for persistent organic pollutants (POPs) has been developed for the East China Sea (ECS). The POPs model has four compartments (gaseous, dissolved, phytoplankton-bound, and detritus-bound phases) and includes processes for diffusive air-water exchange, phytoplankton uptake/depuration to POPs, decomposition of dissolved phase, vertical sinking of phytoplankton, detritus production by phytoplankton mortality, and vertical sinking and decomposition of detritus. The POPs model is coupled with an ocean circulation model that can reproduce the seasonal variation in physical variables to represent the advection and diffusion of POPs. We applied the POPs model to the polychlorinated biphenyl congener 153 (PCB 153) from the atmosphere and examined the behavior of PCB 153 in the ocean. The model showed a remarkable seasonal variability of PCB 153. Concentrations in the dissolved and particulate phases are high in winter (January-March) and low in summer (July-September). In coastal regions, where chlorophyll a concentration is high, horizontal and vertical distributions in the dissolved and particulate PCB 153 concentrations are strongly affected by phytoplankton uptake. The sensitivity experiments on the dynamics of PCB 153 suggested that a change of Henry's law constant associated with water temperature is the major factor controlling the seasonal variability of PCB 153. The model-based yearly mass balance of PCB 153 in the ECS indicated that most of the atmospheric input (35.5 kg year(-1)) is removed by the horizontal advection outside the ECS (19.0 kg year(-1)) and accumulates to the sea bottom by vertical sinking (15.7 kg year(-1)). For comparison with PCB 153, we also conducted simulations for PCB 52, 101, and 180. The seasonal variations are similar to that of PCB 153. The mass balance of PCB 52 that has short half-life time and less hydrophobic property shows the different results compared with PCB 101, 153, and 180. Copyright © 2012 Elsevier Ltd. All rights reserved.
Element budgets in an Arctic mesocosm CO2 perturbation study
NASA Astrophysics Data System (ADS)
Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Siljakova, A.; Riebesell, U.
2012-08-01
Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation) all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and enhanced cycling of dissolved organics was pushing the system towards a retention type food chain with overall negative effects on export potential.
Strong, B; Murray-Smith, R
1974-12-01
A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.
The myth of the boiling point.
Chang, Hasok
2008-01-01
Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.
Deciphering the science behind electrocoagulation to remove suspended clay particles from water.
Holt, P K; Barton, G W; Mitchell, C A
2004-01-01
Electrocoagulation removes pollutant material from water by a combination of coagulant delivered from a sacrificial aluminium anode and hydrogen bubbles evolved at an inert cathode. Rates of clay particle flotation and settling were experimentally determined in a 7 L batch reactor over a range of currents (0.25-2.0 A) and pollutant loadings (0.1-1.7 g/L). Sedimentation and flotation are the dominant removal mechanism at low and high currents, respectively. This shift in separation mode can be explained by analysing the reactor in terms of a published dissolved air flotation model.
Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.
Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C
2015-05-15
Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Apell, Jennifer N; Gschwend, Philip M
2017-08-01
Waterbodies polluted with polychlorinated biphenyls (PCBs) may cause the air in the surrounding area to become PCB-contaminated. Conversely, when a waterbody is located in or near an urban area, the deposition of atmospheric PCBs may act as a low-level, ongoing source of PCB contamination to that water. Distinguishing these situations is necessary to be protective of human populations and to guide efforts seeking to cleanup such aquatic ecosystems. To assess the situation at the Lower Duwamish Waterway (LDW) Superfund site, low-density polyethylene passive samplers were deployed in the summer of 2015 to quantify freely dissolved water and gaseous air concentrations of PCBs thereby enabling estimates of the direction and magnitude of air-water exchange of PCB congeners. For the sum of the 27 PCB congeners, average concentrations were 220 pg/m 3 (95% C.I.: 80-610) in the air and 320 pg/L (95% C.I.: 110-960) in the water. The sum of air-water exchange fluxes of these PCB congeners was estimated to be 68 ng/m 2 /day (95% C.I.: 30-148) into the lower atmosphere, contrasting with the reported wet and dry depositional flux of only 5.5 ng/m 2 /day (95% C.I.: 1-38) from the air into the water. Therefore, the atmosphere was ultimately a sink of PCBs from the LDW Superfund site, at least under 2015 summertime conditions. However, we conclude that air-water exchange of PCBs is likely only a minor sink of PCBs from the LDW and only a minor source of contamination to the region's local atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao
2012-01-15
Sea urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of sea urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or air at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or air packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or air packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for sea urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or air packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.
O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom
2012-03-01
Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.
Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas
NASA Astrophysics Data System (ADS)
Park, June-Soo; Wade, Terry L.; Sweet, Stephen
Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB ( tPCB) concentrations in air ranged from 0.21 to 4.78 ng m -3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l -1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4'-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m -2 yr -1) was significantly higher than that of pesticides by a factor of 5-10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m -2 yr -1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.
[Naringin reduced polymethylmethacrylate-induced osteolysis in the mouse air sacs model].
Li, Nian-Hu; Xu, Zhan-wang
2015-04-01
To evaluate the influence of naringin on PMMA-induced osteoclastic bone resorption using the mouse air sacs model. Total 48 female Balb/c mices with the age of 8 to 10 weeks were chosen in the study. Air were injected into the back in 32 mices and formed the air sacs, 6 d later, the skulls (originated from other 16 mices) were implanted to the air sacs. Thirty-two animals were divided into naringin treatment group (with 2 concentrations of 150 mg/kg and 30 mg/ kg) , DMSO group and PBS blank group, 8 animals in each group. Polymethylmethacrylate (PMMA) particles were injected into the air sacs in naringin treatment groups and DMSO group so as to irritate inflammatory reaction. Naringin with 2 concentrations of 150 mg/kg and 30 mg/kg were dissolved in DMSO of 0.2 ml, and were injected into air sacs, respectively. In PBS black group, no stimulation with PMMA particles, only injected PBS, and in DMSO group, injected DMSO without naringin. Tartrate resistant acid phosphatase (TRAP), Ca2+ release, modified Masson stain and histological analysis were performed on the 7th day after stimulation. Compared with DMSO group, naringin treatment group's cellular infiltration decreased (P < 0.01); concentration of 150 mg/kg was better than that of concentrations of 30 mg/kg (8.90 ± 1.75 vs 15.23 ± 1.86). Naringin can decrease calcium release in the lavage of the air sacs bone resorption model, especially obvious in naringin with concentration of 150 mg/kg. Naringin can ameliorate the inflammatory reaction and the subsequent bone resorption (including bone collagen loss, TRAP positive cells amount and so on) in air sacs with bone implant and PMMA particles. Naringin with concentration of 150 mg/kg appeared to be an optimal dosage to deliver the therapeutic effects. Naringin inhibits PMMA-induced osteoclastogenesis and ameliorates the PMMA-associated inflammatory reaction and the subsequent bone resorption.
Microplastic concentrations in beach sediments along the German Baltic coast.
Stolte, Andrea; Forster, Stefan; Gerdts, Gunnar; Schubert, Hendrik
2015-10-15
The contamination with microplastic particles and fibres was evaluated on beaches along the German Baltic coast. Sediments were sampled near the Warnow and Oder/Peene estuaries, on Rügen island and along the Rostock coast to derive possible entry pathways. Seasonal variations were monitored along the Rostock coast from March to July 2014. After density separation in saline solution, floating particles were found to be dominated by sand grains. Water surface tension is shown to be sufficient to explain floatation of grains with sizes less than 1.5mm. Selecting intensely coloured particles and fibres, we find lower limits of the microplastic concentrations of 0-7 particles/kg and 2-11 fibres/kg dry sediment. The largest microplastic contaminations are measured at the Peene outlet into the Baltic Sea and in the North Sea Jade Bay. City discharges, industrial production sites, fishing activity and tourism are the most likely sources for the highest microplastic concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, S.
2014-12-01
Levels of microplastics (MPs) in China are completely unknown. Here suspended MPs were characterized quantitatively and qualitatively for the Yangtze Estuary and East China Sea. MPs were extracted via a floatation method. MPs were then counted and categorized according to shape and size under a dissecting microscope. The MP densities were 4137.3±2461.5 and 0.167±0.138 n/m3 in the estuarine and the sea waters, respectively. Plastic abundances varied strongly in the estuary. Higher density in the C transect corroborated that rivers were the important sources of MP to the marine environment. MPs (0.5-5mm) constituted more than 90% of total plastics. Plastic particles (> 5 mm) were observed with a maximum size of 12.46 mm. The most frequent plastics were fibres, followed by granules and films. Plastic spherules occurred sparsely. Transparent and coloured plastics comprised the majority of the particle colours. This study provides clues in understanding MPs fate and potential source.
Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.
Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E
2014-09-12
Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf. Copyright © 2014, American Association for the Advancement of Science.
Deployment, release and recovery of ocean riser pipes
Person, Abraham; Wetmore, Sherman B.; McNary, James F.
1980-11-18
An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.
Nikolaidis, Christos; Orfanidis, Moysis; Hauri, Dimitri; Mylonas, Stratos; Constantinidis, Theodore
2013-12-01
The 'Agios Philippos' lead-zinc mine in the Kirki region (NE Greece) is now closed, but its legacy of heavy metal contamination remains at the site. At present, management of the contaminated land is of major concern. The area is in a reclamation process and requires immediate remediation action, whereas human risks need to be carefully evaluated. In order to assess these risks, samples from around the mine were collected and analyzed and a scenario involving the oral, dermal, and inhaled doses of arsenic and heavy metals was formulated. A Monte Carlo approach was undertaken, in order to model the average daily dose and quantify the corresponding hazard index and cancer risk. A toxicological risk was associated with samples collected in the vicinity of the mine (floatation, mine tailings) and a pronounced carcinogenic risk for arsenic was evident at the broader occupational/environmental setting. These findings urge for immediate rehabilitation actions that will mitigate population exposures and promote long-term environmental safety in the area.
Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development
Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; ...
2014-11-04
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocitymore » were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.« less
Plastic debris and microplastics along the beaches of the Strait of Hormuz, Persian Gulf.
Naji, Abolfazl; Esmaili, Zinat; Khan, Farhan R
2017-01-30
Currently little is known about the prevalence of plastics and microplastics (MPs) in the Persian Gulf. Five sampling stations were selected along the Strait of Hormuz (Iran) that exhibited different levels of industrialization and urbanization, and included a marine protected area. Debris was observed and sediments were collected for MPs extraction via fluidization/floatation methodology. The order of MP abundance (par/kg) generally reflected the level of anthropogenic activity: Bostanu (1258±291)>Gorsozan (122±23)>Khor-e-Yekshabeh (26±6)>Suru (14±4)>Khor-e-Azini (2±1). Across all sites fibers dominated (83%, 11% film, 6% fragments). FT-IR analysis showed polyethylene (PE), nylon, and PET (polyethylene terephthalate) were the commonly recovered polymers. Likely sources include beach debris, discarded fishing gear, and urban and industrial outflows that contain fibers from clothes. This study provides a 'snapshot' of MP pollution and longitudinal studies are required to fully understand plastic contamination in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.
A simple method to obtain low density marrow cells for human marrow transplantation.
de Witte, T; Plas, A; Vet, J; Koekman, E; Preyers, F; Wessels, J
1987-01-01
Removal of more than 99% of the erythrocytes and 74% of the nucleated cells from marrow grafts was achieved by density floatation separation in Percoll gradients with a density of 1.070 g/ml in eight 250-ml tubes, containing up to 3 X 10(9) nucleated cells per gradient. More than 90% of the myeloid and erythroid progenitor cells were recovered in the low density fraction. It appeared mandatory to use a centrifuge with the possibility of a gradual acceleration and deceleration. Twenty-five patients received a marrow graft from a histocompatible sibling after additional lymphocyte depletion by counterflow centrifugation, and 5 patients with T lymphoblastic malignancies received an autograft after in vitro purging with immunotoxins. All evaluable patients engrafted within normal limits, except 1 patient with an autoimmune pancytopenia who responded to steroids and 1 patient with a CMV infection. Four patients died too early for complete evaluation. The described separation method is easy, cheap and requires only 2 h for the complete processing of a marrow graft.
A perspective on underwater photosynthesis in submerged terrestrial wetland plants
Colmer, Timothy D.; Winkel, Anders; Pedersen, Ole
2011-01-01
Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO2 acquisition. Scope Floodwaters are variable in dissolved O2, CO2, light and temperature, and these parameters influence underwater PN and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO2 uptake and thus aid PN under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO2 at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces PN. Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO2 entry. Conclusions Submergence inhibits PN by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater PN is enhanced. Underwater PN provides sugars and O2 to submerged plants. Floodwaters often contain dissolved CO2 above levels in equilibrium with air, enabling at least some PN by terrestrial species when submerged, although rates remain well below those in air. PMID:22476500
Occurrence and Turnover of Biogenic Sulfur in the Bering Sea During Summer
NASA Astrophysics Data System (ADS)
Li, Cheng-Xuan; Wang, Bao-Dong; Yang, Gui-Peng; Wang, Zi-Cheng; Chen, Jian-Fang; Lyu, Yang
2017-11-01
The horizontal/geographical variations in dissolved dimethylsulfide (DMS), its precursor dimethylsulfoniopropionate (DMSPd and DMSPp), and chlorophyll a (Chl a), as well as the oceanographic parameters influencing the concentrations of dimethylated sulfur compounds, were investigated in the Bering Sea from July to August 2012. Similar to Chl a, the surface DMS and DMSPp levels, as well as DMS(P) production and consumption rates, exhibited a declining gradient from the central basin to the continental shelf, with high-value areas appearing in the central basin, the slope regions, and Anadyr Strait but a low-value area occurring on the outer-middle continental shelf. Considerably high values of DMS and DMSP were measured in the saline Bering Sea Basin Deep Water (>2,000 m) located at the southwest of the Bering Basin because of the release of resuspension in 2,000 m depth and the DMSP production from endogenous benthic bacteria and cyanobacteria population. Chl a was positively correlated with DMSPp and DMS in the surface waters and the upper water of the basin, whereas significant negative correlations were found between DMS and nutrients (dissolved inorganic nitrogen [DIN], phosphorus, and silicate) in the inner shelf of the Bering Sea. DMS microbial consumption was approximately 6.26 times faster than the DMS sea-air exchange, demonstrating that the major loss of DMS in the surface water occurred through biological consumption relative to evasion into the atmosphere. Average sea-to-air DMS fluxes were estimated to be 4.66 μmol/(m2·d), and consequently oceanic biogenic DMS emission had a dominant contribution to the sulfur budget over the observational area.
Park, Jin Yong; Song, Seunghwa
2017-07-07
For advanced water treatment, effects of pH and pure polypropylene (PP) beads packing concentration on membrane fouling and treatment efficiency were observed in a hybrid process of alumina ceramic microfiltration (MF; pore size 0.1 μm) and pure PP beads. Instead of natural organic matters and fine inorganic particles in natural water source, a quantity of humic acid (HA) and kaolin was dissolved in distilled water. The synthetic feed flowed inside the MF membrane, and the permeated water contacted the PP beads fluidized in the gap of the membrane and the acryl module case with outside UV irradiation. Periodic air back-flushing was performed to control membrane fouling during 10 s per 10 min. The membrane fouling resistance (R f ) was the maximum at 30 g/L of PP bead concentration. Finally, the maximum total permeated volume (V T ) was acquired at 5 g/L of PP beads, because flux maintained higher all through the operation. The treatment efficiency of turbidity was almost constant, independent of PP bead concentration; however, that of dissolved organic materials (DOM) showed the maximal at 50 g/L of PP beads. The R f increased as increasing feed pH from 5 to 9; however, the maximum V T was acquired at pH 6. It means that the membrane fouling could be inhibited at low acid condition. The treatment efficiency of turbidity increased a little, and that of DOM increased from 73.6 to 75.7% as increasing pH from 5 to 9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chopra, O. K.; Soppet, W. K.
2010-02-16
Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier testsmore » with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.« less
Jokela, Petri; Lepistö, Raghida
2014-01-01
Nutrient emissions from fish farming can be reduced by a bag pen, i.e., a floating circular basin which serves simultaneously both as a fish cultivation tank and a swirl separation tank. Solid matter (excreta and uneaten feed) is collected at the bottom of the bag pen and pumped as an underflow to a dissolved air flotation (DAF) unit for nutrient removal. DAF equipped with lamella elements was studied in real conditions. Altogether 3000 rainbow trout females (2.0 kg each) were cultivated. Solid-water mixture was pumped from the bottom of the bag pen to an equalizing basin using a sequence of 2-min pumping followed by a 4-min pause. In some tests the influent was pumped directly and continuously from the bag pen to DAF. The influent quality changed substantially: average suspended solids (SS) and phosphorus (P) concentrations were 290 mg l⁻¹ ± 110 mg l⁻¹ and 3.2 mg l⁻¹ ± 1.2 mg l⁻¹, respectively. When the influent was fresh and P strongly associated with SS, DAF without precipitation chemicals produced up to 86% SS and 83% P removals. The influence of chemical doses was studied using 6.4-29.2 mg Fe l⁻¹ with hydraulic loadings (HLs) of 11.0-11.7 m h⁻¹. SS and P removal did not change substantially and the effluent concentration levelled at 30 mg SS l⁻¹ and 0.20-0.30 mg P l⁻¹, respectively. The lamella DAF, coupled with ferric precipitation, produced up to 90% P and 80% nitrogen reductions. HLs, excluding recycle water flow and lamella projection, up to 21 m h⁻¹ could be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, M J; Moran, J E
2009-10-02
We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storagemore » times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.« less
NASA Astrophysics Data System (ADS)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.
2017-12-01
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.
Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process.
Han, Mooyoung; Kim, Tschung-il; Kim, Jinho
2007-01-01
Dissolved air flotation (DAF) is a method for removing particles from water using micro bubbles instead of settlement. The process has proved to be successful and, since the 1960s, accepted as an alternative to the conventional sedimentation process for water and wastewater treatment. However, limited research into the process, especially the fundamental characteristics of bubbles and particles, has been carried out. The single collector collision model is not capable of determining the effects of particular characteristics, such as the size and surface charge of bubbles and particles. Han has published a set of modeling results after calculating the collision efficiency between bubbles and particles by trajectory analysis. His major conclusion was that collision efficiency is maximum when the bubbles and particles are nearly the same size but have opposite charge. However, experimental verification of this conclusion has not been carried out yet. This paper describes a new method for measuring the size of particles and bubbles developed using computational image analysis. DAF efficiency is influenced by the effect of the recycle ratio on various average floc sizes. The larger the recycle ratio, the higher the DAF efficiency at the same pressure and particle size. The treatment efficiency is also affected by the saturation pressure, because the bubble size and bubble volume concentration are controlled by the pressure. The highest efficiency is obtained when the floc size is larger than the bubble size. These results, namely that the highest collision efficiency occurs when the particles and bubbles are about the same size, are more in accordance with the trajectory model than with the white water collector model, which implies that the larger the particles, the higher is the collision efficiency.
Assessing net community production in a glaciated Alaskan fjord
NASA Astrophysics Data System (ADS)
Reisdorph, S. C.; Mathis, J. T.
2015-09-01
The impact of deglaciation in Glacier Bay has been observed to seasonally influence the biogeochemistry of this marine system. The influence from surrounding glaciers, particularly tidewater glaciers, has the potential to affect the efficiency and structure of the marine food web within Glacier Bay. To assess the magnitude and the spatial and temporal variability in net community production in a glaciated fjord, we measured dissolved inorganic carbon, inorganic macronutrients, dissolved oxygen, and particulate organic carbon between July 2011 and July 2012 in Glacier Bay, Alaska. High net community production rates were observed across the bay (~ 54 to ~ 81 mmol C m-2 d-1) between the summer and fall of 2011. However, between the fall and winter, as well as between the winter and spring of 2012, air-sea fluxes of carbon dioxide and organic matter respiration made net community production rates negative across most of the bay as inorganic carbon and macronutrient concentrations returned to pre-bloom levels. The highest organic carbon production occurred within the west arm between the summer and fall of 2011 with ~ 4.5 × 105 kg C d-1. Bay-wide, there was carbon production of ~ 9.2 × 105 g C d-1 between the summer and fall. Respiration and air-sea gas exchange were the dominant drivers of carbon chemistry between the fall and winter of 2012. The substantial spatial and temporal variability in our net community production estimates may reflect glacial influences within the bay, as meltwater is depleted in macronutrients relative to marine waters entering from the Gulf of Alaska in the middle and lower parts of the bay. Further glacial retreat will likely lead to additional modifications in the carbon biogeochemistry of Glacier Bay, with unknown consequences for the local marine food web, which includes many species of marine mammals.
Geochemical Characteristics of Aquifer system in Taichung Area, Central Taiwan
NASA Astrophysics Data System (ADS)
Tsai, Jui-Fen; Chen, Cheng-Hong; Liu, Tsung-Kwei
2016-04-01
For understanding the relationship between water bodies and host rocks and getting more information for groundwater in Taichung area, Central Taiwan, we systematically analyzed the stable isotopes (hydrogen and oxygen), helium isotopes and radon concentrations of dissolved gases from 54 groundwater, 39 river and 4 rain samples collected from Taichung Basin in wet and dry seasons of the year 2015. In the δ18O vs. δD plot, all samples present a linear trend similar to local meteoric water, indicating a meteoric origin. However, river samples are relative lighter than rain samples, it appears that the rivers are mainly recharged from precipitation of high-elevation areas with a lighter isotopic composition. Because the seasonal isotopic variation of river samples is significant, we calculated relative contribution of precipitation by seasons using the mass balance equation. Results show that the precipitation in the rainy season is the major source of groundwater. The helium isotopic ratio in dissolved gases of most groundwater samples are close to 1 RA (RA = 3He/4He ratio of air), except the sample from Wu-Feng well that exhibits 0.3 RA. This sample also has an older C-14 age (˜27000 yrs.) than others (<200 yrs.), implying that the dissolved helium is likely affected by radiogenic 4He of surrounding rocks. The average concentration of radon for groundwater in the northern section of Taichung Basin is 20.3 Bq/L, which is higher than that of the southern section (14.5 Bq/L). Variations of radon concentrations in the two sections may be related to the different drainage systems (Paleo-Dajia River vs. Wu River), in which sediments from Paleo-Dajia River may contain higher uranium concentrations. On the other hand, water in rivers usually contains undetectable radon (<0.37 Bq/L) because it rapidly escapes to the atmosphere. However, river samples from the central part of basin have radon concentrations ranging between 1 and 3 Bq/L, reflecting that the sampling sites are in the vicinity of points of groundwater inflow. This study illustrates the utility of hydrogen and oxygen isotopes to trace the groundwater source and determine the seasonal contribution ratios of precipitation to groundwater recharge, and demonstrates the advantage of using dissolved gas to investigate the groundwater-host rocks interaction. Key words: Central Taiwan, groundwater, dissolved gas, helium isotope, hydrogen and oxygen isotopes, water radon
Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.
Chen, Ku-Fan; Kao, Chih-Ming; Chen, Chiu-Wen; Surampalli, Rao Y; Lee, Mu-Sheng
2010-01-01
In the first phase of this study, the effectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area).
NASA Astrophysics Data System (ADS)
Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming
2016-02-01
Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.
Puls, Robert W.; Eychaner, James H.; Powell, Robert M.
1996-01-01
Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen, and filter pore diameter. During well purging and sample collection, suspended particle size and number as well as dissolved oxygen, temperature, specific conductance, pH, and redox potential were monitored. Laboratory analyses of both unfiltered samples and the filtrates were performed by inductively coupled argon plasma, atomic absorption with graphite furnace, and ion chromatography. Scanning electron microscopy with Energy Dispersive X-ray was also used for analysis of filter particulates. Suspended particle counts consistently required approximately twice as long as the other field-monitored indicators to stabilize. High-flow-rate pumps entrained normally nonmobile particles. Difference in elemental concentrations using different filter-pore sizes were generally not large with only two wells having differences greater than 10 percent in most wells. Similar differences (>10%) were observed for some wells when samples were collected under nitrogen rather than in air. Fe2+/Fe3+ ratios for air-collected samples were smaller than for samples collected under a nitrogen atmosphere, reflecting sampling-induced oxidation.
NASA Astrophysics Data System (ADS)
D'anna, B.; Sellegri, K.; Charriere, B.; Sempere, R.; Mas, S.; George, C.; Meme, A.; R'Mili, B.; Schwier, A. N.; Rose, C.
2013-12-01
The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminated the contribution of Primary Sea Salt Aerosol (SSA) formed at the sea-air interface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. A mesocosms experiment was performed in May 2013 at the Oceanographic and Marine Station STARESO in Western Corsica. Three mesocosms were simultaneously filled with pooled and screened (<1000 μm) subsurface (1 m) seawater from the Bay. Each mesocosm had a maximum water column depth of 2 m and contained 2260 L of Bay water and covered with transparent (teflon film) dome to prevent atmospheric contamination. The three mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatements: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ration (N:P = 16). The evolution of the three systems was followed for 20 days. A set of sensors in each mesocosm were established at 0.5 m and allowed to monitor at high frequency (every 2 min): water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical (dissolved oxygen, colored dissolved organic matter, nitrates, phosphates, silicates, transparent polyssacharides, dicarboxylic acids and related polar compounds) and biological (chlorophyll a, virus, phytoplankton and zooplankton concentration) analyses. Finally, few liters of sea-water from each mesocosms were sampled daily and immediately transferred to a bubble-bursting apparatus to simulate SSA. Size distribution and particle number were followed by SMPS and APS in the range of 10nm to 10μm. The hygroscopic properties were investigated by a CCN device. On-line chemical analysis of the sub-micrometer fraction was performed by a c-TOF-AMS. Off-line analysis of the SSA generated included TEM-EDX , LC-MS and IC, Thermo-optical analysis of EC-OC. The objective of the present study is to investigate the influence of water chemical and biological composition and biological activity on physical and chemical properties of the primary generated aerosol.
Muresan, B; Cossa, D; Richard, S; Burban, B
2007-10-15
The distribution and speciation of mercury (Hg) in air, rain, and surface waters from the artificial tropical lake of Petit-Saut in French Guiana were investigated during the 2003/04 period. In the air, total gaseous mercury (TGM) at the dam station averaged 12+/-2 pmol m(-3) of which >98% was gaseous elemental mercury (GEM). GEM distribution depicted a day-night cycling with high concentrations (up to 15 pmol m(-3)) at dawn and low concentrations (down to 5 pmol m(-3)) at nightfall. Reactive gaseous mercury (RGM) represented <1% of the GEM with a mean concentration of 4+/-3 fmol m(-3). Diel RGM variations were negatively related to GEM. In the rain, the sum of all Hg species in the unfiltered (HgT(UNF)) averaged 16+/-12 pmol L(-1). Temporal distribution of HgT(UNF) exhibited a pattern of high concentrations during the late dry seasons (up to 57.5 pmol L(-1)) and low concentrations (down to 2.7 pmol L(-1)) in the course of the wet seasons. Unfiltered reactive (HgR(UNF)), dissolved gaseous (DGM) and monomethyl (MMHg(UNF)) Hg constituted 20, 5 and 5% of HgT(UNF), respectively. All measured Hg species were positively related and displayed negative relationships with the pH of the rain. In the reservoir surface waters, dissolved total mercury (HgT(D)) averaged 3.4+/-1.2 pmol L(-1) of which 10% consisted of DGM. DGM showed a trend of high concentrations during the dry seasons (480+/-270 fmol L(-1)) and lower (230+/-130 fmol L(-1)) in the course of the wet seasons. Diel variations included diurnal photo-induced DGM production (of about 60 fmol L(-1) h(-1)) coupled to minute to hour oxidation/reduction cycles (of >100 fmol L(-1) amplitude). Finally, calculated atmospheric Hg inputs to the Petit-Saut reservoir represented 14 mol yr(-1) whereas DGM evasion reached 23 mol yr(-1). Apportionment among forms of Hg deposition indicated that up to 75% of the total Hg invasive flux follows the rainfall pathway.
Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater
NASA Astrophysics Data System (ADS)
Xie, Z.; Koch, B. P.; Möller, A.; Sturm, R.; Ebinghaus, R.
2011-09-01
Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH) in the lower atmosphere ranged from 12 to 37 pg m-3 (mean: 27 ± 11 pg m-3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg m-3 (mean: 2.8 ± 1.1 pg m-3) in the Southern Hemisphere (SH), respectively. Water concentrations were: α-HCH 0.33-47 pg l-1, γ-HCH 0.02-33 pg l-1 and β-HCH 0.11-9.5 pg l-1. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3800 pg m-2 day-1) and γ-HCH (mean: 2000 pg m-2 day-1), whereas β-HCH varied between equilibrium (volatilization: <0-12 pg m-2 day-1) and net deposition (range: 6-690 pg m-2 day-1). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.
A passive integrative sampler for mercury vapor in air and neutral mercury species in water
Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.
2000-01-01
A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress.
NASA Astrophysics Data System (ADS)
Bianco, A.; Chaumerliac, N.; Vaitilingom, M.; Deguillaume, L.; Bridoux, M. C.
2017-12-01
The chemical composition of organic matter in cloud water is highly complex. The organic species result from their dissolution from the gas phase or from the soluble fraction of the particle phase. They are also produced by aqueous phase reactivity. Several low molecular weight organic species have been quantified such as aldehydes and carboxylic acids. Recently, amino acids were also detected in cloud water and their presence is related to the presence of microorganisms. Compounds presenting similarities with high molecular weight organic substances or HULIS found in aerosols were also observed in clouds. Overall, these studies mainly focused on individual compounds or functional groups rather than the complex mixture at the molecular level. This study presents a non-targeted approach to characterize the organic matter in clouds. Samples were collected at the puy de Dôme Mountain (France). Two cloud water samples (June & July 2016) were analyzed using high resolution mass spectrometry (ESI-FT-ICR-MS 9.4T). A reversed solid phase extraction (SPE) procedure was performed to concentrate dissolved organic matter components. Composer (v.1.5.3) software was used to filter the mass spectral data, recalibrate externally the dataset and calculate all possible formulas for detected anions. The first cloud sample (June) resulted from air mass coming from the North (North Sea) while the second one (July) resulted from air mass coming from the West (Atlantic Ocean). Thus, both cloud events derived from marine air masses but were characterized by different hydrogen peroxide concentration and dissolved organic carbon content and were sampled at different periods during the day. Elemental compositions of 6487 and 3284 unique molecular species were identified in each sample. Nitrogen-containing compounds (CHNO compounds), sulfur-containing compounds (CHOS & CHNOS compounds) and other oxygen-containing compounds (CHO compounds) with molecular weights up to 800 Da were detected. The main class is CHNO (53% for both samples) while sulfur-containing compounds represent for the two samples respectively 21 & 14% of the total assigned molecular formulas. CHO compounds molecular formulas are respectively 25 & 32%. Among the two samples, only 2490 molecular formulas were found common to the two samples.
Guo, Shi-Hong; Liu, Zhen-Ling; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; He, Bao-Yan; Xu, Zhi-Min; Ye, Jin-Shao; Zeng, Eddy Y
2016-08-01
Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P < 0.05), with removal rates ranging from 10% to 51%. The amounts of the exchangeable, carbonate, reducible, and oxidizable fractions also significantly decreased (P < 0.05). Moreover, prolonged seawater inundation enhanced the release of heavy metals. Measurement of diffusive gradients in thin films indicated that seawater inundation significantly increased the re-mobility of heavy metals. During seawater inundation, iron oxide reduction induced the release of heavy metals in the reducible fraction. Decomposition of organic matter, and complexation with dissolved organic carbon decreased the amount of heavy metals in the oxidizable fraction. Furthermore, complexation of chloride ions and competition of cations during seawater inundation and/or leaching decreased the levels of heavy metals in the exchangeable fraction. By contrast, air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Osmium isotope and highly siderophile element systematics of the lunar crust
NASA Astrophysics Data System (ADS)
Day, James M. D.; Walker, Richard J.; James, Odette B.; Puchtel, Igor S.
2010-01-01
Coupled 187Os/ 188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g - 1 Os, 1.5 ± 0.6 pg g - 1 Ir, 6.8 ± 2.7 pg g - 1 Ru, 16 ± 15 pg g - 1 Pt, 33 ± 30 pg g - 1 Pd and 0.29 ± 0.10 pg g - 1 Re (˜ 0.00002 × CI) and Re/Os ratios that were modestly elevated ( 187Re/ 188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (˜ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios ( D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.
Osmium isotope and highly siderophile element systematics of the lunar crust
Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.
2010-01-01
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion. ?? 2009 Elsevier B.V. All rights reserved.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
NASA Astrophysics Data System (ADS)
Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.
2014-10-01
Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.
Clow, David W.; Rhoades, Charles; Briggs, Jenny S.; Caldwell, Megan K.; Lewis, William M.
2011-01-01
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO3-">NO3- or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO3-">NO3- and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.
NASA Astrophysics Data System (ADS)
Yan, Ge; Kim, Guebuem
2012-11-01
Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.
Kwak, D H; Yoo, S J; Lee, E J; Lee, J W
2010-01-01
Most of the water treatment plants applying the DAF process are faced with off-flavors control problems. For simultaneous control of particles of impurities and dissolved organics that cause pungent taste and odor in water, an effective method would be the simple application of powdered activated carbon (PAC) in the DAF process. A series of experiments were carried out to explore the feasibility for simultaneous removal of kaolin particles and organic compounds that produce off-flavors (2-MIB and geosmin). In addition, the flotation efficiency of kaolin and PAC particles adsorbing organics in the DAF process was evaluated by employing the population balance theory. The removal efficiency of 2-MIB and geosmin under the treatment condition with kaolin particles for simultaneous treatment was lower than that of the individual treatment. The decrease in the removal efficiency was probably caused by 2-MIB and geosmin remaining in the PAC particle in the treated water of DAF after bubble flotation. Simulation results obtained by the population balance model indicate, that the initial collision-attachment efficiency of PAC particles was lower than that of kaolin particles.
Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface
2016-01-01
In this study, we evaluated photosensitized chemistry at the air–sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1–10 mg L–1) as a proxy for dissolved organic matter, and nonanoic acid (0.1–10 mM), a fatty acid proxy which formed an organic film at the air–water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm–3, illustrating the production of unsaturated compounds by chemical reactions at the air–water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air–sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860
Climate-change-driven deterioration of water quality in a mineralized watershed.
Todd, Andrew S; Manning, Andrew H; Verplanck, Philip L; Crouch, Caitlin; McKnight, Diane M; Dunham, Ryan
2012-09-04
A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 μg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.
Climate-change-driven deterioration of water quality in a mineralized watershed
Todd, Andrew; Manning, Andrew H.; Verplanck, Philip L.; Crouch, Caitlin; McKnight, Diane M.; Dunham, Ryan
2012-01-01
A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100–400% (400–2000 μg/L) during low-flow months, when metal concentrations are highest. SO4 and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2–1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.
NASA Astrophysics Data System (ADS)
Lee, K.; Ko, Y. H.
2016-12-01
In the ocean without the measurable levels of nitrate, new production, i.e. the amount of carbon transported from the sunlit upper water to deep water, was estimated by summing the seasonal reduction in the total dissolved inorganic carbon (NCT = CT x 35/S) concentration in the surface mixed layer. Total reduction in the mixed layer NCT inventory in each 4o latitude by 5o longitude was calculated using an annual cycle of NCT, which was deduced from global monthly records of partial pressure of CO2 (based on more than 6.5 million data) and total alkalinity fields using thermodynamic models. The estimation of total NCT reduction for each pixel was then corrected for small changes caused by atmospheric nitrogen deposition and net air-sea CO2 exchange. This novel method yields 0.8 ± 0.3 petagrams of global new production per year (Pg C yr, Pg = 1015 grams), which is likely to be mediated exclusively by dinitrogen (N2) fixing microorganisms. These organisms utilize the inexhaustible pool of dissolved N2 and thereby circumvent nitrate limitation, particularly in the oligotrophic tropical and subtropical ocean.