Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.
Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo
2017-04-27
In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.
2011-01-01
Background Succinic acid is a building-block chemical which could be used as the precursor of many industrial products. The dissolved CO2 concentration in the fermentation broth could strongly regulate the metabolic flux of carbon and the activity of phosphoenolpyruvate (PEP) carboxykinase, which are the important committed steps for the biosynthesis of succinic acid by Actinobacillus succinogenes. Previous reports showed that succinic acid production could be promoted by regulating the supply of CO2 donor in the fermentation broth. Therefore, the effects of dissolved CO2 concentration and MgCO3 on the fermentation process should be investigated. In this article, we studied the impacts of gaseous CO2 partial pressure, dissolved CO2 concentration, and the addition amount of MgCO3 on succinic acid production by Actinobacillus succinogenes ATCC 55618. We also demonstrated that gaseous CO2 could be removed when MgCO3 was fully supplied. Results An effective CO2 quantitative mathematical model was developed to calculate the dissolved CO2 concentration in the fermentation broth. The highest succinic acid production of 61.92 g/L was obtained at 159.22 mM dissolved CO2 concentration, which was supplied by 40 g/L MgCO3 at the CO2 partial pressure of 101.33 kPa. When MgCO3 was used as the only CO2 donor, a maximal succinic acid production of 56.1 g/L was obtained, which was just decreased by 7.03% compared with that obtained under the supply of gaseous CO2 and MgCO3. Conclusions Besides the high dissolved CO2 concentration, the excessive addition of MgCO3 was beneficial to promote the succinic acid synthesis. This was the first report investigating the replaceable of gaseous CO2 in the fermentation of succinic acid. The results obtained in this study may be useful for reducing the cost of succinic acid fermentation process. PMID:22040346
More on the losses of dissolved CO(2) during champagne serving: toward a multiparameter modeling.
Liger-Belair, Gérard; Parmentier, Maryline; Cilindre, Clara
2012-11-28
Pouring champagne into a glass is far from being inconsequential with regard to the dissolved CO(2) concentration found in champagne. Three distinct bottle types, namely, a magnum bottle, a standard bottle, and a half bottle, were examined with regard to their loss of dissolved CO(2) during the service of successively poured flutes. Whatever the bottle size, a decreasing trend is clearly observed with regard to the concentration of dissolved CO(2) found within a flute (from the first to the last one of a whole service). Moreover, when it comes to champagne serving, the bottle size definitely does matter. The higher the bottle volume, the better its buffering capacity with regard to dissolved CO(2) found within champagne during the pouring process. Actually, for a given flute number in a pouring data series, the concentration of dissolved CO(2) found within the flute was found to decrease as the bottle size decreases. The impact of champagne temperature (at 4, 12, and 20 °C) on the losses of dissolved CO(2) found in successively poured flutes for a given standard 75 cL bottle was also examined. Cold temperatures were found to limit the decreasing trend of dissolved CO(2) found within the successively poured flutes (from the first to the last one of a whole service). Our experimental results were discussed on the basis of a multiparameter model that accounts for the major physical parameters that influence the loss of dissolved CO(2) during the service of a whole bottle type.
Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream.
Garnett, Mark H; Dinsmore, Kerry J; Billett, Michael F
2012-06-15
Radiocarbon dating has the capacity to significantly improve our understanding of the aquatic carbon cycle. In this study we used a new passive sampler to measure the radiocarbon ((14)C) and stable carbon (δ(13)C) isotopic composition of dissolved CO(2) for the first time in a peatland stream throughout a complete year (May 2010-June 2011). The in-stream sampling system collected time-integrated samples of CO(2) continuously over approximately 1 month periods. The rate of CO(2) trapping was proportional to independently measured streamwater CO(2) concentrations, demonstrating that passive samplers can be used to estimate the time-averaged dissolved CO(2) concentration of streamwater. While there was little variation and no clear trend in δ(13)CO(2) values (suggesting a consistent CO(2) source), we found a clear temporal pattern in the (14)C concentration of dissolved CO(2). The (14)C age of CO(2) varied from 707±35 to 1210±39 years BP, with the youngest CO(2) in the autumn and oldest in spring/early summer. Mean stream discharge and (14)C content of dissolved CO(2) were positively correlated. We suggest that the observed pattern in the (14)C content of dissolved CO(2) reflects changes in its origin, with older carbon derived from deeper parts of the peat profile contributing proportionally more gaseous carbon during periods of low stream flow. Copyright © 2012 Elsevier B.V. All rights reserved.
On the losses of dissolved CO(2) during champagne serving.
Liger-Belair, Gérard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Hervé; Polidori, Guillaume
2010-08-11
Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).
Adams, K R; Niebuhr, S E; Dickson, J S
2015-12-01
The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Hayes, J. M.
1992-01-01
Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.
McDonald, Cory P.; Stets, Edward; Striegl, Robert G.; Butman, David
2013-01-01
Accurate quantification of CO2 flux across the air-water interface and identification of the mechanisms driving CO2 concentrations in lakes and reservoirs is critical to integrating aquatic systems into large-scale carbon budgets, and to predicting the response of these systems to changes in climate or terrestrial carbon cycling. Large-scale estimates of the role of lakes and reservoirs in the carbon cycle, however, typically must rely on aggregation of spatially and temporally inconsistent data from disparate sources. We performed a spatially comprehensive analysis of CO2 concentration and air-water fluxes in lakes and reservoirs of the contiguous United States using large, consistent data sets, and modeled the relative contribution of inorganic and organic carbon loading to vertical CO2 fluxes. Approximately 70% of lakes and reservoirs are supersaturated with respect to the atmosphere during the summer (June–September). Although there is considerable interregional and intraregional variability, lakes and reservoirs represent a net source of CO2 to the atmosphere of approximately 40 Gg C d–1 during the summer. While in-lake CO2 concentrations correlate with indicators of in-lake net ecosystem productivity, virtually no relationship exists between dissolved organic carbon and pCO2,aq. Modeling suggests that hydrologic dissolved inorganic carbon supports pCO2,aq in most supersaturated systems (to the extent that 12% of supersaturated systems simultaneously exhibit positive net ecosystem productivity), and also supports primary production in most CO2-undersaturated systems. Dissolved inorganic carbon loading appears to be an important determinant of CO2concentrations and fluxes across the air-water interface in the majority of lakes and reservoirs in the contiguous United States.
Kraemer, Jeremy T; Bagley, David M
2006-09-01
Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.
Determination of free CO2 in emergent groundwaters using a commercial beverage carbonation meter
NASA Astrophysics Data System (ADS)
Vesper, Dorothy J.; Edenborn, Harry M.
2012-05-01
SummaryDissolved CO2 in groundwater is frequently supersaturated relative to its equilibrium with atmospheric partial pressure and will degas when it is conveyed to the surface. Estimates of dissolved CO2 concentrations can vary widely between different hydrochemical facies because they have different sources of error (e.g., rapid degassing, low alkalinity, non-carbonate alkalinity). We sampled 60 natural spring and mine waters using a beverage industry carbonation meter, which measures dissolved CO2 based on temperature and pressure changes as the sample volume is expanded. Using a modified field protocol, the meter was found to be highly accurate in the range 0.2-35 mM CO2. The meter provided rapid, accurate and precise measurements of dissolved CO2 in natural waters for a range of hydrochemical facies. Dissolved CO2 concentrations measured in the field with the carbonation meter were similar to CO2 determined using the pH-alkalinity approach, but provided immediate results and avoided errors from alkalinity and pH determination. The portability and ease of use of the carbonation meter in the field made it well-suited to sampling in difficult terrain. The carbonation meter has proven useful in the study of aquatic systems where CO2 degassing drives geochemical changes that result in surficial mineral precipitation and deposition, such as tufa, travertine and mine drainage deposits.
Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha
2017-01-01
A pot experiment was conducted to study soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the rhizosphere and non-rhizosphere of Bothriochloa ischaemum in loess hilly-gully region under the different treatments of CO 2 concentrations (400 and 800 μmol·mol -1 ) and nitrogen addition (0, 2.5, 5.0 g N·m -2 ·a -1 ). The results showed that eleva-ted CO 2 treatments had no significant effect on the contents of DOC, dissolved total nitrogen (DTN), DON, dissolved ammonium nitrogen (NH 4 + -N) and dissolved nitrate nitrogen (NO 3 - -N) in the soil of rhizosphere and non-rhizosphere of B. ischaemum. The contents of DTN, DON, and NO 3 - -N in the rhizosphere soil were significantly increased with the nitrogen application and the similar results of DTN and NO 3 - -N also were observed in the non-rhizosphere of B. ischaemum. Nitrogen application significantly decreased DOC/DON in the rhizosphere of B. ischaemum. The contents of DTN, NO 3 - -N and DON in the soil of rhizosphere were significantly lower than that in the non-rhizosphere soil, and DOC/DON was significantly higher in the rhizosphere soil than that in the non-rhizosphere soil. It indicated that short-term elevated CO 2 concentration had no significant influence on the contents of soil dissolved organic carbon and nitrogen. Simulated nitrogen deposition, to some extent, increased the content of soil dissolved nitrogen, but it was still insufficient to meet the demand of dissolved nitrogen for plant growing.
A new device for continuous monitoring the CO2 dissolved in water
NASA Astrophysics Data System (ADS)
de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.
2009-04-01
The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.
UNDERSTANDING AND MANAGING RISKS POSED BY BRINES CONTAINING DISSOLVED CARBON DIOXIDE
Geologic disposal of supercritical carbon dioxide in saline aquifers and depleted oil and gas fields will cause large volumes of brine to become saturated with dissolved CO2 at concentrations of 50 g/l or more. As CO2 dissolves in brine, the brine de...
Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment
Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.
2011-01-01
Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Somlai, Celia; Natchimuthu, Sivakiruthika; Bastviken, David; Lorke, Andreas
2015-04-01
Quantifying the role of inland water systems in terms of carbon sinks and sources and their connection to the terrestrial ecosystems and landscapes is fundamental for improving the balance approach of regional and global carbon budgets. Recent research showed that freshwater bodies emit significant amounts of CO2 and CH4 into the atmosphere. The extent of the emissions from small streams and headwaters, however, remains uncertain due to a limited availability of data. Studies have shown that headwater systems receive most of the terrestrial organic carbon, have the highest dissolved CO2 concentration and the highest gas exchange velocities and cover the largest fractional surface area within fluvial networks. The gas exchange between inland waters and the atmosphere is controlled by two factors: the difference between the dissolved gas concentration and its atmospheric equilibrium concentration, and the gas exchange velocity. The direct measurement of the dissolved gas concentration of greenhouse gases can be measured straightforwardly, for example, by gas chromatography from headspace extraction of water sample. In contrast, direct measurement of gas exchange velocity is more complex and time consuming, as simultaneous measurements with a volatile and nonvolatile inert tracer gas are needed. Here we analyze measurements of gas exchange velocities, concentrations and fluxes of dissolved CO2 and CH4, as well as loads of total organic and inorganic carbon in 10 reaches in headwater streams in Southwest Sweden. We compare the gas exchange velocities measured directly through tracer injections with those estimated through various empirical approaches, which are based on modelled and measured current velocity, stream depth and slope. Furthermore, we estimate the resulting uncertainties of the flux estimates. We also present different time series of dissolved CO2, CH4 and O2 concentration, water temperature, barometric pressure, electro conductivity, and pH values measured during the period of tracer injection.
Biogeochemical Carbon Cycling in Ultrabasic Reducing Springs in Sonoma County, CA
NASA Astrophysics Data System (ADS)
Cotton, J. M.; Morrill, P.; Johnson, O.; Nealson, K. H.; Sherwood Lollar, B.; Eigenbrode, J.; Fogel, M.
2006-12-01
Dissolved gases in the ultrabasic spring waters from The Cedars in Sonoma County, CA were analyzed for concentrations and carbon and hydrogen isotopic ratios in order to determine the geobiological processes occurring in this extreme environment of unknown biological activity. The ultrabasic, highly reducing conditions unique to these springs result from local serpentinization. Gases bubbling from the springs are mainly composed of methane, hydrogen, and nitrogen. Serpentinization is a process characteristic of early Earth, Mars and Titan that is thought to produce abiogenic hydrocarbons as well as provide geochemical energy for chemolithotrophic life. Methane, CO2, hydrogen and nitrogen were detected in the aqueous phases. Earlier work indicated that the primary source of the methane in the free gases bubbling from the springs was associated with microbial fermentation a suspected source of the dissolved methane. Here we report, a negative, linear correlation between concentrations of CO2 and methane that is an indicator of microbial anaerobic methane oxidation taking place in the ultrabasic waters. Furthermore, as the concentrations of methane decrease, the concentration of CO2 increases and both reactant and product become 13C-enriched. These observations are consistent with microbial oxidation of methane, suggesting a biogeochemical carbon cycle exists in these springs. We hypothesize that one group of microbes is breaking down organic matter by a process of fermentation to produce methane and CO2. The CO2 dissolves in the basic springs, while most of the methane escapes solution. The residual dissolved methane undergoes a conversion to CO2 by anaerobic methane oxidation.
Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions
2010-09-30
For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale wasmore » determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.« less
Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA
Macpherson, G.L.; Roberts, J.A.; Blair, J.M.; Townsend, M.A.; Fowle, D.A.; Beisner, K.R.
2008-01-01
In a mid-continental North American grassland, solute concentrations in shallow, limestone-hosted groundwater and adjacent surface water cycle annually and have increased steadily over the 15-year study period, 1991-2005, inclusive. Modeled groundwater CO2, verified by measurements of recent samples, increased from 10-2.05 atm to 10-1.94 atm, about a 20% increase, from 1991 to 2005. The measured groundwater alkalinity and alkaline-earth element concentrations also increased over that time period. We propose that carbonate minerals dissolve in response to lowered pH that occurs during an annual carbonate-mineral saturation cycle. The cycle starts with low saturation during late summer and autumn when dissolved CO2 is high. As dissolved CO2 decreases in the spring and early summer, carbonates become oversaturated, but oversaturation does not exceed the threshold for precipitation. We propose that groundwater is a CO2 sink through weathering of limestone: soil-generated CO2 is transformed to alkalinity through dissolution of calcite or dolomite. The annual cycle and long-term increase in shallow groundwater CO2 is similar to, but greater than, atmospheric CO2. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Serchan, S. P.; Vidon, P.
2015-12-01
This study measured dissolved greenhouse gas (GHG) concentrations in interstitial water and stream across various "hotspots" in headwater catchments of Archer Creek watershed, New York, USA. Results indicated that stream water was hyper saturated with methane (CH4), and moderately saturated with carbon dioxide (CO2), and nitrous oxide (N2O). The values of dissolved CO2 (88.3 μmol/L), dissolved CH4 (1.2 μmol/L), and dissolved N2O (0.02 μmol/L) found in the stream were 5.8, 432, and 2.3 times in excess of atmospheric equilibrium, respectively. Results of dissolved GHG measured in interstitial water across various sites: riparian dry (RZ-Dry), riparian wet (RZ-Wet), riparian mucky (RZ-Mucky), pool with fine textured bed sediments (IS-fine-sedpool), pool with coarse textured bed sediments (IS-coarse-sed-pool), and riffles (Riffle) indicated high variations in the degree of saturation of all three GHG. RZ-Mucky, RZ-Wet, and IS-fine-sedpool sites were hotspots of CH4 and CO2 relative to other sites. RZ-Dry sites were hotspots of N2O. Multiple linear regression models indicated that dissolved oxygen (D.O.) and dissolved organic carbon (DOC) influenced dissolved CO2 and CH4 at most of the sites. Relationships between dissolved N2O and predictor variables were highly variable across all sites. Patterns of dissolved N2O in relatively oxic RZ-Dry sites (D.O. 5.3 mg/L) were positively correlated with nitrate (NO3) indicating nitrification as a dominant process in N2O production. In contrast, patterns of dissolved N2O were positively correlated with ammonium (NH4+) at RZ-Wet and RZ-Mucky sites where concentrations of D.O. were significantly lower compared to other sites.
Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis
Wang, W.-X.; Fisher, N.S.; Luoma, S.N.
1996-01-01
Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.
Sujith, K S; Ramachandran, C N
2016-02-07
The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.
2014-05-01
A novel high pressure column flow reactor (HPCFR) was used to investigate the evolution of fluid chemistry along a 2.3 meter flow path during 37-104 days of pure water- and CO2-charged water- (0.3 M CO2(aq)) basaltic glass interaction experiments at 22 and 50 ° C. The scale of the HPCFR, the ability to sample a reactive fluid at discrete spatial intervals under pressure and the possibility to measure the dissolved inorganic carbon and pH in situ all render the HPCFR unique in comparison with other reactors constructed for studies of CO2-charged water-rock interaction. During the pure water-basaltic glass interaction experiment, the pH of the injected water evolved rapidly from 6.7 to 9-9.5 and most of the dissolved iron was consumed by secondary mineral formation, similar to natural basaltic groundwater systems. In contrast to natural systems, however, the dissolved aluminium concentration remained relatively high along the entire flow path. The reactive fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility of metals increased significantly in the reactive fluid and the concentration of some metals, including Mn, Fe, Cr, Al, and As exceeded the WHO (World Health Organisation) allowable drinking water limits. Iron was mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Basaltic glass dissolution in the CO2-charged water did not overcome the pH buffer capacity of the fluid. The pH rose only from an initial pH of 3.4 to 4.5 along the first 18.5 cm of the column, then remained constant during the remaining 2.1 meters of the flow path. Increasing the temperature of the CO2-charged fluid from 22 to 50 ° C increased the relative amount of dissolved divalent iron along the flow path. After a significant initial increase along the first metre of the column, the dissolved aluminium concentration decreased consistent with its incorporation into secondary minerals. The dissolved chromium concentration evolution mimicked that of Al at 50 ° C, suggesting substitution of trivalent Cr for Al in secondary phases. According to PHREEQC calculations, the CO2-charged fluid was always undersaturated with respect to carbonate minerals within the column, but supersaturated with respect to clays and Fe hydroxides at 22 ° C and with respect to clays and Al hydroxides at 50 ° C. Substantial differences were found between modelled and measured dissolved element concentrations in the fluids during the experiments. These differences underscore the need to improve computational models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface.
NASA Astrophysics Data System (ADS)
Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.
2014-12-01
Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.
NASA Astrophysics Data System (ADS)
Pain, A.; Martin, J.; Martin, E. E.
2017-12-01
Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized. Variations control whether discharge is a source or sink of atmospheric CO2 or CH4, but gas concentrations could be further modified by instream reactions. Increased meltwater fluxes should enhance the importance of greenhouse gas fluxes from subglacial discharge, and heighten the need to constrain variability in subglacial carbon processing.
Release of Dissolved CO2 from Water in Laboratory Porous Media Following Rapid Depressurization
NASA Astrophysics Data System (ADS)
Crews, J. B.; Cooper, C. A.
2011-12-01
A bench-top laboratory study is undertaken to investigate the effects of seismic shocks on brine aquifers into which carbon dioxide has been injected for permanent storage. Long-term storage in deep saline aquifers has been proposed and studied as one of the most viable near-term options for sequestering fossil fuel-derived carbon dioxide from the atmosphere to curb anthropogenic climate change. Upon injection into the subsurface, it is expected that CO2, as either a gas or supercritical fluid, will mix convectively with the formation water. The possibility exists, however, that dissolved CO2 will come out of solution as a result of an earthquake. The effect is similar to that of slamming an unsealed container of carbonated beverage on a table; previously dissolved CO2 precipitates, forms bubbles, and rises due to buoyancy. In this study, we measure the change in gas-phase CO2 concentration as a function of the magnitude of the shock and the initial concentration of CO2. In addition, we investigate and seek to characterize the nucleation and transport of CO2 bubbles in a porous medium after a seismic shock. Experiments are conducted using a Hele-Shaw cell and a CCD camera to quantify the fraction of dissolved CO2 that comes out of solution as a result of a sharp mechanical impulse. The data are used to identify and constrain the conditions under which CO2 comes out of solution and, further, to understand the end-behavior of the precipitated gas-phase CO2 as it moves through or is immobilized in a porous medium.
The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt
NASA Technical Reports Server (NTRS)
Pawley, Alison R.; Holloway, John R.; Mcmillan, Paul F.
1992-01-01
The solubility of CO2-CO fluids in a midocean ridge basalt have been measured at 1200 C, 500-1500 bar, and oxygen fugacities between NNO and NNO-4. In agreement with results of previous studies, the results reported here imply that, at least at low pressures, CO2 dissolves in basaltic melt only in the form of carbonate groups. The dissolution reaction is heterogeneous, with CO2 molecules in the fluid reacting directly with reactive oxygens in the melt to produce CO3(2-). CO, on the other hand, is insoluble, dissolving neither as carbon, molecular CO, nor CO3(2-). It is shown that, for a given pressure and temperature, the concentration of dissolved carbon-bearing species in basaltic melt in equilibrium with a carbon-oxygen fluid is proportional to the mole fraction of CO2 in the fluid, which is a function of fO2. At low pressures CO2 solubility is a linear function of CO2 fugacity at constant temperatures.
Pfeiffer, T.J.; Summerfelt, S.T.; Watten, B.J.
2011-01-01
Many methods are available for the measurement of dissolved carbon dioxide in an aqueous environment. Standard titration is the typical field method for measuring dissolved CO2 in aquaculture systems. However, titrimetric determination of dissolved CO2 in marine water aquaculture systems is unsuitable because of the high dissolved solids, silicates, and other dissolved minerals that interfere with the determination. Other methods used to measure dissolved carbon dioxide in an aquaculture water included use of a wetted CO2 probe analyzer, standard nomographic methods, and calculation by direct measurements of the water's pH, temperature, and alkalinity. The determination of dissolved CO2 in saltwater based on partial pressure measurements and non-dispersive infra-red (NDIR) techniques with a CO2 gas analyzer are widely employed for oceanic surveys of surface ocean CO2 flux and are similar to the techniques employed with the head space unit (HSU) in this study. Dissolved carbon dioxide (DC) determination with the HSU using a infra-red gas analyzer (IRGA) was compared with titrimetric, nomographic, calculated, and probe measurements of CO2 in freshwater and in saltwater with a salinity ranging from 5.0 to 30 ppt, and a CO2 range from 8 to 50 mg/L. Differences in CO2 measurements between duplicate HSUs (0.1–0.2 mg/L) were not statistically significant different. The coefficient of variation for the HSU readings averaged 1.85% which was better than the CO2 probe (4.09%) and that for the titrimetric method (5.84%). In all low, medium and high salinity level trials HSU precision was good, averaging 3.39%. Differences existed between comparison testing of the CO2 probe and HSU measurements with the CO2 probe readings, on average, providing DC estimates that were higher than HSU estimates. Differences between HSU and titration based estimates of DC increased with salinity and reached a maximum at 32.2 ppt. These differences were statistically significant (P < 0.05) at all salinity levels greater than 0.3 ppt. Results indicated reliable replicated results from the head space unit with varying salinity and dissolved carbon dioxide concentrations.
Evaluation of calcium-bearing material for treatment of CO2 leakage-induced pollution
NASA Astrophysics Data System (ADS)
Park, J.; Park, M.; Jeong, H. Y.
2017-12-01
Several Ca2+-bearing materials were evaluated for their capability to treat CO2 leakage-induced pollution for the application of permeable reactive barriers (PRBs). In this regard, a series of batch experiments were carried out with Portland cement, quick lime (CaO), and gypsum (CaSO4). Each of these materials was added to 50 mL of CO2-saturated solutions ( 7.5-8.5 mM) in serum vials sealed with Teflon-coated grey butyl stopper. Subsequently, the resultant batches were agitated at room temperature for 24 h. At predetermined intervals, each vial was sacrificed to monitor changes in pH, EC, and dissolved CO2 concentration. Despite the pH-neutralizing capacity, 0.15 g of Portland cement did not lower any dissolved CO2. When amended with 0.05 g of Ca(OH)2 or Mg(OH)2, the cement at this loading could sequester dissolved CO2, with the former being more effective. Even without such amendments, the cement at or greater than 0.2 g was shown to completely sequester dissolved CO2. In case of quick lime, its loading as low as 0.05 g instantaneously removed all dissolved CO2, which was also noted for Portland cement at 0.5 g. For gypsum, its loading at 0.12 g was not effective for immobilizing dissolved CO2. By both X-ray diffraction (XRD) and thermogravimetry (TG) analyses, the CO2 sequestration by Ca2+-bearing materials was found to be mainly due to the formation of calcite (CaCO3). Funding source: The "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe
2009-03-11
Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.
NASA Astrophysics Data System (ADS)
Blanco, K.; Aponte, H.; Vera, E.
2017-12-01
For all Industrial sector is important to extend the useful life of the materials that they use in their process, the scales of CaCO3 are common in situation where fluids are handled with high concentration of ions and besides this temperatures and CO2 concentration dissolved, that scale generates large annual losses because there is a reduction in the process efficiency or corrosion damage under deposit, among other. In order to find new alternatives to this problem, the citric acid was evaluated as scale of calcium carbonate inhibition in critical condition of temperature and concentration of CO2 dissolved. Once the results are obtained it was carried out the statistical evaluation in order to generate an equation that allow to see that behaviour, giving as result, a good efficiency of inhibition to the conditions evaluated the scales of products obtained were characterized through scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.
2011-12-01
Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.
NASA Astrophysics Data System (ADS)
Sullivan, A. B.; Mulholland, P. J.; Jones, J. B.
2001-05-01
Headwater streams are almost always supersaturated with CO2 compared to concentrations expected in equilibrium with atmospheric CO2. Direct measurements of CO2 in two streams in eastern Tennessee with different bedrock lithologies (Walker Branch, Upper Gum Hollow Branch) over a year revealed levels of supersaturation of two to five times atmospheric CO2. Highest levels were generally found during the summer months. Springs discharging into the stream had dissolved CO2 concentration up to an order of magnitude higher than that in streamwater. These levels of supersaturation are a reflection of the high concentrations of CO2 in soil produced by root respiration and organic matter decomposition. The hydrologic connection between soil CO2 and streamwater CO2 forms the basis of our method to determine soil CO2 concentrations and efflux from the soil to the atmosphere. The method starts with streamwater measurements of CO2. Then corrections are made for evasion from the stream surface using injections of a conservative solute tracer and volatile gas, and for instream metabolism using a dissolved oxygen change technique. The approach then works backward along the hydrologic flowpath and evaluates the contribution of bedrock weathering, which consumes CO2, by examining the changes in major ion chemistry between precipitation and the stream. This produces estimates of CO2 concentration in soil water and soil atmosphere, which when coupled with soil porosity, allows estimation of CO2 efflux from soil. The hydrologic integration of CO2 signals from whole watersheds into streamwater allows calculation of soil CO2 efflux at large scales. These estimates are at scales larger than current chamber or tower methods, and can provide broad estimates of soil CO2 efflux with easily collected stream chemistry data.
Non-Boussinesq Dissolution-Driven Convection in Porous Media
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Soltanian, M. R.; Moortgat, J.
2017-12-01
Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.
Development of a prototype for dissolved CO2 rapid measurement and preliminary tests
NASA Astrophysics Data System (ADS)
Li, Meng; Guo, Jinjia; Zhang, Zhihao; Luo, Zhao; Qin, Chuan; Zheng, Ronger
2017-10-01
The measurements of dissolved CO2 in seawater is of great significance for the study of global carbon cycle. At present, the commercial sensors used for dissolved CO2 measurements are mostly equipped with permeable membranes for the purpose of gas-liquid separation, with the advantages of easy operation, low cost, etc.. However, most of these devices measure CO2 after reaching gas equilibrium, so it takes a few minutes to respond, which limited its applications in rapid measurements. In this paper, a set of prototype was developed for the rapid measurements of dissolved CO2. The system was built basing the direct absorption TDLAS. To detect the CO2 absorption line located at 4991.26 cm-1 , a fiber-coupled DFB laser operating at 2004 nm was selected as the light source. A Herriott type multi-pass cavity with an effective optical path length of 10 m and an inner volume of 90 mL was used for absorption measurements. A detection limit of 26 μatm can be obtained with this compact cavity. To realize the rapid measurements of dissolved CO2, a degasser with high degassing rate was necessary. A hollow fiber membrane with a large permeable area used in this paper can achieve degassing rate up to 2.88 kPa/min. Benefitted from the high degassing rate of the degasser and high sensitivity of the compact TDLAS system, a rapid measurement of dissolved CO2 in water can be achieved within 1s time, and the response time of the prototype when the dissolved CO2 concentration changed abruptly in actual measurement was 15 s. To evaluate the performance of the prototype, comparison measurements were carried out with a commercial mass spectrometer. The dissolved CO2 in both seawater and tap-water was measured, and the experimental results showed good consistent trends with R2 of 0.973 and 0.931. The experimental results proved the feasibility of dissolved CO2 rapid measurement. In the near future, more system evaluation experiments will be carried out and the system will be further optimized focusing on the underwater in-situ detection system.
Duarte, B.; Santos, D.; Silva, H.; Marques, J. C.; Caçador, I.; Sleimi, N.
2014-01-01
Waterlogging and submergence are the major constraints to which wetland plants are subjected, with inevitable impacts on their physiology and productivity. Global warming and climate change, as driving forces of sea level rise, tend to increase such submersion periods and also modify the carbonate chemistry of the water column due to the increased concentration of CO2 in the atmosphere. In the present work, the underwater O2 fluxes in the leaves of two abundant Mediterranean halophytes were evaluated at different levels of dissolved CO2. Photosynthetic enhancement due to increased dissolved CO2 was confirmed for both Halimione portulacoides and Spartina maritima, probably due to high tissue porosity, formation of leaf gas films and reduction of the oxygenase activity of Rubisco. Enhancement of the photosynthetic rates in H. portulacoides and S. maritima was concomitant with an increase in energy trapping and transfer, mostly due to enhancement of the carboxylation reaction of Rubisco, leading to a reduction of the energy costs for carbon fixation. Transposing these findings to the ecosystem, and assuming increased dissolved CO2 concentration scenarios, the halophyte community displays a new ecosystem function, increasing the water column oxygenation and thus reinforcing their role as principal primary producers of the estuarine system. PMID:25381259
Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L
2012-07-01
Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sourav; Chanda, Abhra; Das, Sourav; Akhand, Anirban; Pattanaik, Suchismita; Choudhury, S. B.; Dutta, Dibyendu; Hazra, Sugata
2018-04-01
The rate of nutrient removal and changes in pCO2 (water) were compared between a lentic aquaculture pond [East Kolkata Wetlands (EKW), India] and a lotic estuarine system [Diamond Harbor (DH) in Hugli Estuary, India] during the post-monsoon season (experiencing a similar tropical climate) by means of ex situ microcosm experiment. Though the DH waters were found to be substantial source of CO2 towards atmosphere and EKW waters to be sink for CO2 (according to the initial concentration of CO2), the eight consecutive days microcosm experiment revealed that the nutrient removal and pCO2 reduction efficiency were significantly higher in DH (ΔpCO2—90%) compared to EKW (ΔpCO2—78%). Among the five nutrients studied [dissolved nitrate-nitrogen (NO3-N), dissolved ammonium nitrogen (NH4-N), silicate, phosphate and iron], dissolved NO3-N followed by NH4-N was the most utilized in both EKW and DH. Except silicate, the other nutrients reduced to 78-91% in EKW and 84-99% in DH samples of their initial concentrations. Chlorophyll-a concentration steadily depleted in EKW ( 68-26 mg m-3) during the experiment indicating intense zooplankton grazing, whereas in DH it increased rapidly ( 3.4-23 mg m-3) with decreasing pCO2 (water). The present observations further indicated that regular flushing of EKW aquaculture ponds is required to avoid stagnation of water column which would enhance the zooplankton grazing and hamper the primary production of an otherwise sink of CO2. In DH, controlled freshwater discharge from Farakka and reduction of untreated organic waste might allow the existing phytoplankton community to enhance their photosynthetic activity.
Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang
2017-01-01
To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859
NASA Astrophysics Data System (ADS)
Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.
2015-12-01
CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Kurz, M. D.; Wanless, V. D.; Le Roux, V.; Klein, F.; Mittelstaedt, E. L.; Curtice, J.
2016-12-01
During a 1985 cruise, the Mid-Atlantic Ridge (MAR) near 14°N yielded an unusually vesicular mid-ocean ridge (MOR) basalt that popped upon recovery from the seafloor due to the release of trapped volatiles. This `popping rock' has been inferred to be representative of primitive, undegassed magmas from the upper mantle due to its high volatile concentrations. Thus, the sample has been used to constrain CO2 flux from the MOR system, upper mantle volatile concentrations, and magma degassing dynamics. However, the lack of geologic context for the original popping rock raises questions about whether it truly reflects the volatile content of its mantle source. Here, we present results from a 2016 cruise to the MAR aimed at characterizing the geologic context of popping rocks and understanding their origins. The newly recovered samples display differences in volatile concentrations and vesicularities between popping and non-popping rocks. These differences may be related to geologic setting and eruption dynamics with potential implications for mantle volatile concentrations. Volatile concentrations in the outer quenched margin of new samples were measured by ion microprobe to elucidate degassing systematics, brine/magma interactions, and popping rock formation. The large variability in dissolved H2O (0.05-0.77 wt%) can be attributed to spatially variable brine contamination. Dissolved CO2 concentrations (153-356 ppm) are likely controlled by initial volatile concentrations and variable degrees of degassing. The subset of popping samples display low dissolved CO2 concentrations (161-178 ppm) and moderate dissolved H2O concentrations (.44-.50 wt%) and are at equilibrium with their eruption depth based on solubility calculations. X-ray microtomography reveals vesicularity in newly collected popping rocks exceeding 19%, making these samples the most highly vesicular recovered from the MAR. The total gas contents in the basaltic glasses are inferred from dissolved volatile concentrations and vesicularity. These calculations are aided by analysis of gas contents in vesicles by confocal Raman spectroscopy and vacuum crushing experiments. The preliminary results and seafloor observations allow an evaluation of the origins of popping rocks and their implications for mantle volatile concentrations.
Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673
Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.
Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer
Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.
2000-01-01
Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO42- in the aerobic zone, and to the reduction of SO42- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55??10-4 to 48.6??10-4mmol l-1yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO42- (1.31??10-4 to 15??10-4mmol l-1yr-1). The overall increase in SO42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO42- loss through microbial reduction is exceeded by SO42- gain through diffusion from sediments and through the oxidation of FeS2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO42--rich zones have been depleted by microbial reduction and resulted in localized SO42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.
Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun
2016-04-01
Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gas buildup in Lake Nyos, Cameroon: The recharge process and its consequences
Evans, William C.; Kling, G.W.; Tuttle, M.L.; Tanyileke, G.; White, L.D.
1993-01-01
The gases dissolved in Lake Nyos, Cameroon, were quantified recently (December 1989 and September 1990) by two independent techniques: in-situ measurements using a newly designed probe and laboratory analyses of samples collected in pre-evacuated stainless steel cylinders. The highest concentrations of CO2 and CH4 were 0.30 mol/kg and 1.7 mmol/kg, respectively, measured in cylinders collected 1 m above lake bottom. Probe measurements of in-situ gas pressure at three different stations showed that horizontal variations in total dissolved gas were negligible. Total dissolved-gas pressure near the lake bottom is 1.06 MPa (10.5 atm), 50% as high as the hydrostatic pressure of 2.1 MPa (21 atm). Comparing the CO2 profile constructed from the 1990 data to one obtained in May 1987 shows that CO2 concentrations have increased at depths to below 150 m. Based on these profiles, the average rate of CO2 input to bottom waters was 2.6 ?? 108 mol/a. Increased deep-water temperatures require an average heat flow of 0.32 MW into the hypolimnion over the same time period. The transport rates of CO2, heat, and major ions into the hypolimnion suggest that a low-temperature reservoir of free CO2 exists a short distance below lake bottom and that convective cycling of lake water through the sediments is involved in transporting the CO2 into the lake from the underlying diatreme. Increased CH4 concentrations at all depths below the oxycline and a high 14C content (41% modern) in the CH4 4 m above lake bottom show that much of the CH4 is biologically produced within the lake. The CH4 production rate may vary with time, but if the CO2 recharge rate remains constant, CO2 saturation of the entire hypolimnion below 50 m depth would require ???140 a, given present-day concentrations. ?? 1993.
Revesz, Kinga; Coplen, Tyler B.; Baedecker, Mary J.; Glynn, Pierre D.
1995-01-01
Stable isotopic ratios of C and H in dissolved CH4 and C in dissolved inorganic C in the ground water of a crude-oil spill near Bemidji, Minnesota, support the concept of CH4production by acetate fermentation with a contemporaneous increase in HCO3−concentration. Methane concentrations in the saturated zone decrease from 20.6 mg L−1 to less than 0.001 mg L−1 along the investigated flow path. Dissolved N2 and Ar concentrations in the ground water below the oil plume are 25 times lower than background; this suggests that gas exsolution is removing dissolved CH4 (along with other dissolved gases) from the ground water. Oxidation of dissolved CH4 along the flow path seems to be minimal because no measurable change in isotopic composition of CH4 occurs with distance from the oil body. However, CH4 is partly oxidized to CO2 as it diffuses upward from the ground water through a 5- to 7-m thick unsaturated zone; theδ13C of the remaining CH4 increases, theδ13C of the CO2 decreases, and the partial pressure of CO2 increases.Calculations of C fluxes in the saturated and unsaturated zones originating from the degradation of the oil plume lead to a minimum estimated life expectancy of 110 years. This is a minimum estimate because the degradation of the oil body should slow down with time as its more volatile and reactive components are leached out and preferentially oxidized. The calculated life expectancy is an order of magnitude estimate because of the uncertainty in the average linear ground-water velocities and because of the factor of 2 uncertainty in the calculation of the effective CO2 diffusion coefficient.
Mitigating Local Causes of Ocean Acidification with Existing Laws
The oceans continue to absorb CO2 in step with the increasing atmospheric concentration of CO2. The dissolved CO2 reacts with seawater to form carbonic acid (H2CO3) and liberate hydrogen ions, causing the pH of the oceans to decrease. Ocean acidification is thus an inevitable a...
CO2 volume fluxes outgassing from champagne glasses: the impact of champagne ageing.
Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe
2010-02-15
It was demonstrated that CO(2) volume fluxes outgassing from a flute poured with a young champagne (elaborated in 2007) are much higher than those outgassing from the same flute poured with an older champagne (elaborated in the early 1990s). The difference in dissolved-CO(2) concentrations between the two types of champagne samples was found to be a crucial parameter responsible for differences in CO(2) volume fluxes outgassing from one champagne to another. Nevertheless, it was shown that, for a given identical dissolved-CO(2) concentration in both champagne types, the CO(2) volume flux outgassing from the flute poured with the old champagne is, in average, significantly lower than that outgassing from the flute poured with the young one. Therefore, CO(2) seems to "escape" more easily from the young champagne than from the older one. The diffusion coefficient of CO(2) in both champagne types was pointed as a key parameter to thoroughly determine in the future, in order to unravel our experimental observation. Copyright 2009 Elsevier B.V. All rights reserved.
Sonochemical reduction of carbon dioxide.
Harada, H
1998-06-01
Sonolysis of carbon dioxide dissolved in water was performed from a standpoint of reducing this material in atmosphere. During one hour of sonication, the amount of CO2 decreased to about half at 5 degrees C under CO2-Ar atmosphere. The decreasing rate for CO2 followed the order Ar > He > H2 > N2 and it was down with increasing temperature in the range of 5-45 degrees C. The most favorable concentration for reducing CO2 was 0.03 (mole fraction of CO2 in gas phase). This concentration in gas phase means an equal mixture of CO2 and Ar in water, because CO2 is more soluble than Ar. Since carbon dioxide dissolved in water would be partly ionized, the roles of ions on the sonolysis were also examined. Gaseous reaction products were CO, H2 and a small amount of O2. Carbon monoxide and hydrogen might be obtained from CO2 and H2O by sonolysis, respectively. Both gases are fuel and react each other to C1 compounds such as methanol, and so on. Therefore, irradiation of ultrasonic waves should be an important technique for reducing CO2.
Microanalysis of dissolved iron and phosphate in pore waters of hypersaline sediment
NASA Technical Reports Server (NTRS)
Haddad, R.; Shaw, T.
1985-01-01
Diurnal fluctuations of reduced iron concentrations, expected to occur in reduced sediments in the photic zone, were studied. Iron concentration was compared to O2-H2S, a microcanalysis of sulfate reduction was performed, as well as an examination of diurnal concentration of dissolved phosphate and changes in interstitial CO2. The iron profiles suggest a strong correlation between iron remobilization and processes occurring in the light. Phosphate profiles suggest the removal of phosphate is strongly correlated with precipitation of oxidized iron in the upper 2 mm to 5 mm of the sediments. Pore water CO2 concentrations and carbon isotope ratios are presented. These data are from the analyses of minisediment cores collected from the 42 per mil salt pond and incubated in the laboratory under light and dark conditions.
C-O volatiles in Apollo 15 and Apollo 17 picritic glasses
NASA Technical Reports Server (NTRS)
Rutherford, Malcolm J.; Fogel, Robert A.
1993-01-01
A15 and A17 primitive picritic glasses have been examined by FTIR for the presence of dissolved C-O species to determine the role of C-O gasses on driving lunar fire-fountains. A15 green and yellow glasses were extensively studied and found to be free of dissolved C species down to FTIR detection limits (10-100 ppm; species and sample specific). Preliminary data on A17 orange glasses are similarly devoid of FTIR detectable C-O species. Re-analyses of the C-O driving mechanism theory for mare volcanism demonstrates the need to determine the fO2 of the lunar interior; the factor that most critically determined the role of C gasses in the fire-fountaining events. Oxygen fugacities equivalent to IW-0.5 and above imply dissolved CO3(=) in the primitive glasses at levels above FTIR detection. The f02's below IW-0.5 imply concentrations of CO3(=) below FTIR detection. Recent data suggesting lunar mantle fO2's of IW-2 or less, strongly mitigate against finding FTIR measurable dissolved CO3(=) consistent with the findings of this study.
Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers.
Borges, Alberto V; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R; Deborde, Jonathan; Vidal, Luciana O; Lambert, Thibault; Bouillon, Steven
2015-10-23
Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.
NASA Astrophysics Data System (ADS)
Nuccio, P. M.; Paonita, A.
2000-12-01
A semi-theoretical model is proposed to predict partitioning of noble gases between any silicate liquid and a H 2O-CO 2 gas phase with noble gas as a minor component, in a large range of pressures (at least up to 300 MPa). The model is based on the relationship between the concentration of dissolved noble gas and ionic porosity of the melt, found by Carroll and Stolper [Geochim. Cosmochim. Acta 57 (1993) 5039-5051] for H 2O-CO 2 free melts. It evaluates the effect of dissolved H 2O and CO 2 on the melt ionic porosity and, consequently on Henry's constants of noble gases. The fugacities of the noble gases in the H 2O-CO 2-noble gas mixtures are also considered in our equilibrium calculations of dissolved gas by using a modified Redlich-Kwong equation of state for the H 2O-CO 2-noble gas system. The formulated model (referred to as the extended ionic porosity model) clearly predicts a positive dependence of noble gas solubility on dissolved H 2O in melt, which becomes negligible when water concentration is higher than 3 wt%. Oppositely, noble gas solubility decreases as a consequence of increasing CO 2 in both basaltic and rhyolitic melts. The increase of noble gas solubility as a consequence of H 2O addition to the melt grows exponentially with the increase of the noble gas atomic size. As a result, although xenon solubility is much lower than the helium solubility in anhydrous melts, they become almost comparable at several percent of dissolved H 2O in the melt. On this basis, an exponential augmentation of the number of large free spaces in silicate liquid can be inferred in relation to increasing dissolved H 2O. Comparison between our predicted values and available experimental data [A. Paonita et al., Earth Planet. Sci. Lett. 181 (2000) 595-604] shows good agreement. At present, the EIP model is the unique tool which predicts how the main volatiles in magmatic systems affect the noble gas solubility in silicate melts, therefore it should be taken into account for future studies of noble gas fractionation in degassing natural magmas.
Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method.
Truong, Tuyen; Palmer, Martin; Bansal, Nidhi; Bhandari, Bhesh
2017-12-15
This study aims to examine the solubility of CO 2 in anhydrous milk fat (AMF) as functions of partial pressure, temperature, chemical composition and physical state of AMF. AMF was fractionated at 21°C to obtain stearin and olein fractions. The CO 2 solubility was measured using a home-made experimental apparatus based on changes of CO 2 partial pressures. The apparatus was found to be reliable as the measured and theoretical values based on the ideal gas law were comparable. The dissolved CO 2 concentration in AMF increased with an increase in CO 2 partial pressure (0-101kPa). The apparent CO 2 solubility coefficients (molkg -1 Pa -1 ) in the AMF were 5.75±0.16×10 -7 , 3.9±0.19×10 -7 and 1.19±0.14×10 -7 at 35, 24 and 4°C, respectively. Higher liquid oil proportions resulted in higher CO 2 solubility in the AMF. There was insignificant difference in the dissolved CO 2 concentration among the AMF, stearin and olein fractions in their liquid state at 40°C. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burrows, Jill E.; Cravotta, Charles A.; Peters, Stephen C.
2017-01-01
Net-alkaline, anoxic coal-mine drainage containing ∼20 mg/L FeII and ∼0.05 mg/L Al and Zn was subjected to parallel batch experiments: control, aeration (Aer 1 12.6 mL/s; Aer 2 16.8 mL/s; Aer 3 25.0 mL/s), and hydrogen peroxide (H2O2) to test the hypothesis that aeration increases pH, FeII oxidation, hydrous FeIII oxide (HFO) formation, and trace-metal removal through adsorption and coprecipitation with HFO. During 5.5-hr field experiments, pH increased from 6.4 to 6.7, 7.1, 7.6, and 8.1 for the control, Aer 1, Aer 2, and Aer 3, respectively, but decreased to 6.3 for the H2O2 treatment. Aeration accelerated removal of dissolved CO2, Fe, Al, and Zn. In Aer 3, dissolved Al was completely removed within 1 h, but increased to ∼20% of the initial concentration after 2.5 h when pH exceeded 7.5. H2O2 promoted rapid removal of all dissolved Fe and Al, and 13% of dissolved Zn.Kinetic modeling with PHREEQC simulated effects of aeration on pH, CO2, Fe, Zn, and Al. Aeration enhanced Zn adsorption by increasing pH and HFO formation while decreasing aqueous CO2 available to form ZnCO30 and Zn(CO3)22− at high pH. Al concentrations were inconsistent with solubility control by Al minerals or Al-containing HFO, but could be simulated by adsorption on HFO at pH < 7.5 and desorption at higher pH where Al(OH)4− was predominant. Thus, aeration or chemical oxidation with pH adjustment to ∼7.5 could be effective for treating high-Fe and moderate-Zn concentrations, whereas chemical oxidation without pH adjustment may be effective for treating high-Fe and moderate-Al concentrations.
Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheming; Felmy, Andrew R.; Thompson, Christopher J.
2013-01-01
Near-infrared (NIR) spectroscopy was applied to investigate the dissolution and chemical interaction of water dissolved into supercritical carbon dioxide (scCO2) and the influence of CaCl2 in the co-existing aqueous phase at fo empe e : 40 50 75 nd 100 C at 90 atm. Consistent with the trend of the vapor pressure of water, the solubility of pure water in scCO2 inc e ed f om 40 °C (0.32 mole%) o 100 °C (1.61 mole%). The presence of CaCl2 negatively affects the solubility of water in scCO2: at a given temperature and pressure the solubility of water decreased as themore » concentration of CaCl2 in the aqueous phase increased, following the trend of the activity of water. A 40 °C, the water concentration in scCO2 in contact with saturated CaCl2 aqueous solution was only 0.16 mole%, a drop of more than 50% as compared to pure water while that a 100 °C was 1.12 mole%, a drop of over 30% as compared to pure water, under otherwise the same conditions. Analysis of the spectral profiles suggested that water dissolved into scCO2 exists in the monomeric form under the evaluated temperature and pressure conditions, for both neat water and CaCl2 solutions. However, its rotational degrees of freedom decrease at lower temperatures due to higher fluid densities, leading to formation of weak H2O:CO2 Lewis acid-base complexes. Similarly, the nearly invariant spectral profiles of dissolved water in the presence and absence of saturated CaCl2 under the same experimental conditions was taken as evidence that CaCl2 dissolution in scCO2 was limited as the dissolved Ca2+/CaCl2 would likely be highly hydrated and would alter the overall spectra of waters in the scCO2 phase.« less
Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2.
Górka, Maciej; Sauer, Peter E; Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion
2011-01-01
This paper describes results of chemical and isotopic analysis of inorganic carbon species in the atmosphere and precipitation for the calendar year 2008 in Wrocław (SW Poland). Atmospheric air samples (collected weekly) and rainwater samples (collected after rain episodes) were analysed for CO2 and dissolved inorganic carbon (DIC) concentrations and for δ13C composition. The values obtained varied in the ranges: atmospheric CO2: 337-448 ppm; δ13CCO2 from -14.4 to -8.4‰; DIC in precipitation: 0.6-5.5 mg dm(-3); δ13CDIC from -22.2 to +0.2‰. No statistical correlation was observed between the concentration and δ13C value of atmospheric CO2 and DIC in precipitation. These observations contradict the commonly held assumption that atmospheric CO2 controls the DIC in precipitation. We infer that DIC is generated in ambient air temperatures, but from other sources than the measured atmospheric CO2. The calculated isotopic composition of a hypothetical CO2 source for DIC forming ranges from -31.4 to -11.0‰, showing significant seasonal variations accordingly to changing anthropogenic impact and atmospheric mixing processes. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jasper, J. P.; Hayes, J. M.; Mix, A. C.; Prahl, F. G.
1994-01-01
Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C [is equivalent to epsilon(p)] in a central equatorial Pacific sediment core that spans the last approximately 255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic composition of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon(p), derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 [is equivalent to c(e)] based on a new, site-specific calibration of the relationship between epsilon(p) and c(e). The calibration was based on reassessment of existing epsilon(p) versus c(e) data, which support a physiologically based model in which epsilon(p) is inversely related to c(e). Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index U(K/37). Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon(p) and 1/c(e). These are discussed in detail and it is concluded that the observed record of epsilon(p) most probably reflects significant variations in delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from approximately 110 microatmospheres during glacial intervals (ocean > atmosphere) to approximately 60 microatmospheres during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p<0.01) inverse correlations of delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.
Liger-Belair, Gérard; Polidori, Guillaume; Zéninari, Virginie
2012-06-30
In champagne and sparkling wine tasting, the concentration of dissolved CO(2) is indeed an analytical parameter of high importance since it directly impacts the four following sensory properties: (i) the frequency of bubble formation in the glass, (ii) the growth rate of rising bubbles, (iii) the mouth feel, and (iv) the nose of champagne, i.e., its so-called bouquet. In this state-of-the-art review, the evolving nature of the dissolved and gaseous CO(2) found in champagne wines is evidenced, from the bottle to the glass, through various analytical techniques. Results obtained concerning various steps where the CO(2) molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO(2) impact champagne and sparkling wine science. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Akhbari, D.
2017-12-01
Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.
Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers
Borges, Alberto V.; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R.; Deborde, Jonathan; Vidal, Luciana O.; Lambert, Thibault; Bouillon, Steven
2015-01-01
Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. PMID:26494107
Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors.
Yuvraj; Padmanabhan, Padmini
2017-06-01
Microalgal cultures are usually sparged with CO 2 -enriched air to preclude CO 2 limitation during photoautotrophic growth. However, the CO 2 vol% specifically required at operating conditions to meet the carbon requirement of algal cells in photobioreactor is never determined and 1-10% v/v CO 2 -enriched air is arbitrarily used. A scheme is proposed and experimentally validated for Chlorella vulgaris that allows computing CO 2 -saturated growth feasible at given CO 2 vol% and volumetric O 2 mass-transfer coefficient (k L a) O . CO 2 sufficiency in an experiment can be theoretically established to adjust conditions for CO 2 -saturated growth. The methodology completely eliminates the requirement of CO 2 electrode for online estimation of dissolved CO 2 to determine critical CO 2 concentration (C crit ), specific CO 2 uptake rate (SCUR), and volumetric CO 2 mass-transfer coefficient (k L a) C required for the governing CO 2 mass-transfer equation. C crit was estimated from specific O 2 production rate (SOPR) measurements at different dissolved CO 2 concentrations. SCUR was calculated from SOPR and photosynthetic quotient (PQ) determined from the balanced stoichiometric equation of growth. Effect of light attenuation and nutrient depletion on biomass estimate is also discussed. Furthermore, a simple design of photosynthetic activity measurement system was used, which minimizes light attenuation by hanging a low depth (ca. 10 mm) culture over the light source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Mary Y.; Deng, Xuchu; Thanthiriwatte, K. Sahan
We report the development of an in situ high pressure NMR capability that permits natural abundance 17O and 25Mg NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO 2 fluid (scCO 2). The dissolution of Mg(OH) 2 (brucite) in a multiphase water/scCO 2 fluid at 90 atm pressure and 50 C was studied in situ, with relevance to geological carbon sequestration. 17O NMR spectra allowed identification and distinction of various fluid species including dissolved CO 2 in the H 2O-rich phase, scCO 2, aqueous H 2O, and HCO 3 -. The widely separated spectralmore » peaks for various species can all be observed both dynamically and quantitatively at concentrations of as low as 20 mM. Measurement of the concentrations of these individual species also allows an in situ estimate of the hydrogen ion concentration, or pCH + values, of the reacting solutions. The concentration of Mg 2+ can be observed by natural abundance 25Mg NMR at a concentration as low as 10 mM. Quantum chemistry calculations of the NMR chemical shifts on cluster models aided in the interpretation of the experimental results. Evidence for the formation of polymeric Mg 2+ clusters at high concentrations in the H 2O-rich phase, a possible critical step needed for magnesium carbonate formation, was found. The approach and findings enable insight into metal carbonation reactions associated with geological carbon sequestration that cannot be probed by ex situ methods.« less
Alshboul, Zeyad; Encinas-Fernández, Jorge; Hofmann, Hilmar; Lorke, Andreas
2016-06-07
Inland waters play an important role for regional and global scale carbon cycling and are significant sources of the atmospheric greenhouse gases methane (CH4) and carbon dioxide (CO2). Although most studies considered the input of terrestrially derived organic and inorganic carbon as the main sources for these emissions, anthropogenic sources have rarely been investigated. Municipal wastewater treatment plants (WWTPs) could be additional sources of carbon by discharging the treated wastewater into the surrounding aquatic ecosystems. Here we analyze seasonally resolved measurements of dissolved CH4 and CO2 concentrations in effluents and receiving streams at nine WWTPs in Germany. We found that effluent addition significantly altered the physicochemical properties of the streamwater. Downstream of the WWTPs, the concentrations of dissolved CH4 and CO2 were enhanced and the atmospheric fluxes of both gases increased by a factor of 1.2 and 8.6, respectively. The CH4 exported with discharged effluent, however, accounted for only a negligible fraction (0.02%) of the estimated total CH4 emissions during the treatment process. The CH4 concentration in the effluent water was linearly related to the organic load of the wastewater, which can provide an empirical basis for future attempts to add WWTPs inputs to regional-scale models for inland water-carbon fluxes.
Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes
Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef
2014-01-01
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters. PMID:25119996
Enhanced convective dissolution of CO2 in reactive systems
NASA Astrophysics Data System (ADS)
de Wit, Anne; Thomas, Carelle; Loodts, Vanessa; Knaepen, Bernard; Rongy, Laurence
2017-11-01
To decrease the atmospheric concentration of CO2, sequestration techniques whereby this greenhouse gas is injected in saline aquifers present in soils are considered. Upon contact with the aquifer, the CO2 can dissolve in it and subsequently be mineralized via reactions with minerals like carbonates for instance. We investigate both experimentally and theoretically the influence of such reactions on the convective dissolution of CO2. Experiments analyze convective patterns developing when gaseous CO2 is put in contact with aqueous solutions of reactants in a confined vertical Hele-Shaw geometry. We show that the reactions can enhance convection and modify the nonlinear dynamics of density fingering. Numerical simulations further show that reactions can increase the flux of dissolving CO2, inducing a more efficient sequestration. Emphasis will be put on the control of the convective pattern properties by varying the very nature of the chemicals. Implications on the choice of optimal sequestration sites will be discussed.
Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.
2015-01-01
Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.
Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G
2015-11-10
Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.
Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.
2015-01-01
Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243
Evolution of the chemistry of Fe bearing waters during CO2 degassing
Geroni, J.N.; Cravotta, C.A.; Sapsford, D.J.
2012-01-01
The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will
Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressuresmore » to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl- type brine with minor amounts of Mg2+, K+, Sr2+ and Br-).« less
Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake.
Fontes, Maria Luiza S; Tonetta, Denise; Dalpaz, Larissa; Antônio, Regina V; Petrucio, Maurício M
2013-01-01
To understand the dynamics of planktonic prokaryotes in a subtropical lake and its relationship with carbon, we conducted water sampling through four 48-h periods in Peri Lake for 1 year. Planktonic prokaryotes were characterized by the abundance and biomass of heterotrophic bacteria (HB) and of cyanobacteria (coccoid and filamentous cells). During all samplings, we measured wind speed, water temperature (WT), pH, dissolved oxygen (DO), precipitation, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and carbon dioxide (CO2). DOC was higher in the summer (average = 465 μM - WT = 27°C) and lower in the winter (average = 235 μM - WT = 17°C), with no significant variability throughout the daily cycles. CO2 concentrations presented a different pattern, with a minimum in the warm waters of the summer period (8.31 μM) and a maximum in the spring (37.13 μM). Daily trends were observed for pH, DO, WT, and CO2. At an annual scale, both biological and physical-chemical controls were important regulators of CO2. HB abundance and biomass were higher in the winter sampling (5.60 × 10(9) cells L(-1) and 20.83 μmol C L(-1)) and lower in the summer (1.87 × 10(9) cells L(-1) and 3.95 μmol C L(-1)). Filamentous cyanobacteria (0.23 × 10(8)-0.68 × 10(8) filaments L(-1)) produced up to 167.16 μmol C L(-1) as biomass (during the warmer period), whereas coccoid cyanobacteria contributed only 0.38 μmol C L(-1). Precipitation, temperature, and the biomass of HB were the main regulators of CO2 concentrations. Temperature had a negative effect on the concentration of CO2, which may be indirectly attributed to high heterotroph activity in the autumn and winter periods. DOC was positively correlated with the abundance of total cyanobacteria and negatively with HB. Thus, planktonic prokaryotes have played an important role in the dynamics of both dissolved inorganic and organic carbon in the lake.
Dynamics of Planktonic Prokaryotes and Dissolved Carbon in a Subtropical Coastal Lake
Fontes, Maria Luiza S.; Tonetta, Denise; Dalpaz, Larissa; Antônio, Regina V.; Petrucio, Maurício M.
2013-01-01
To understand the dynamics of planktonic prokaryotes in a subtropical lake and its relationship with carbon, we conducted water sampling through four 48-h periods in Peri Lake for 1 year. Planktonic prokaryotes were characterized by the abundance and biomass of heterotrophic bacteria (HB) and of cyanobacteria (coccoid and filamentous cells). During all samplings, we measured wind speed, water temperature (WT), pH, dissolved oxygen (DO), precipitation, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and carbon dioxide (CO2). DOC was higher in the summer (average = 465 μM – WT = 27°C) and lower in the winter (average = 235 μM – WT = 17°C), with no significant variability throughout the daily cycles. CO2 concentrations presented a different pattern, with a minimum in the warm waters of the summer period (8.31 μM) and a maximum in the spring (37.13 μM). Daily trends were observed for pH, DO, WT, and CO2. At an annual scale, both biological and physical-chemical controls were important regulators of CO2. HB abundance and biomass were higher in the winter sampling (5.60 × 109 cells L−1 and 20.83 μmol C L−1) and lower in the summer (1.87 × 109 cells L−1 and 3.95 μmol C L−1). Filamentous cyanobacteria (0.23 × 108–0.68 × 108 filaments L−1) produced up to 167.16 μmol C L−1 as biomass (during the warmer period), whereas coccoid cyanobacteria contributed only 0.38 μmol C L−1. Precipitation, temperature, and the biomass of HB were the main regulators of CO2 concentrations. Temperature had a negative effect on the concentration of CO2, which may be indirectly attributed to high heterotroph activity in the autumn and winter periods. DOC was positively correlated with the abundance of total cyanobacteria and negatively with HB. Thus, planktonic prokaryotes have played an important role in the dynamics of both dissolved inorganic and organic carbon in the lake. PMID:23579926
Potential cobalt limitation of vitamin B12 synthesis in the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Panzeca, C.; Beck, A. J.; Leblanc, K.; Taylor, G. T.; Hutchins, D. A.; SañUdo-Wilhelmy, S. A.
2008-06-01
While recent studies have confirmed the ecological importance of vitamin B12, it is unclear whether the production of this vitamin could be limited by dissolved Co, a trace metal required for B12 biosynthesis, but found at only subnanomolar concentrations in the open ocean. Herein, we demonstrate that the spatial distribution of dissolved B12 (range: 0.13-5 pmol L-1) in the North Atlantic Ocean follows the abundance of total dissolved Co (range: 15-81 pmol L-1). Similar patterns were observed for bacterial productivity (range: 20-103 pmol 3H leucine L-1 hr-1) and algal biomass (range: 0.4-3.9 μg L-1). In contrast, vitamin B1 concentrations (range: 0.7-30 pM) were decoupled from both Co and B12 concentrations. Cobalt amendment experiments carried out in low-dissolved Co waters (˜20 pmol L-1) enhanced B12 production two-fold over unamended controls. This study provides evidence that B12 synthesis could be limited by the availability of Co in some regions of the world ocean.
Methane and Carbon Dioxide Production Rates in Lake Sediments from Sub-Arctic Sweden
NASA Astrophysics Data System (ADS)
DeStasio, J.; Halloran, M.; Erickson, L. M.; Varner, R. K.; Johnson, J. E.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.
2013-12-01
Ecosystems at high latitudes are undergoing rapid change due to amplified arctic warming. Lakes in these regions are sources of both methane (CH4) and carbon dioxide (CO2) to the atmosphere and will likely be impacted by elevated temperatures. Because of the potential increase in the release of organic carbon due to thawing permafrost, it is believed that methanogenesis rates within neighboring fresh water sediments will display a positive feedback response, by increasing CH4 emission to the atmosphere. We studied CH4 production potential of sediments using cores from three lakes in the Stordalen Mire complex in sub-Arctic, Sweden: Inre Harrsjön, Mellan Harrsjön, and Villasjön. Sediment cores were incubated to determine CO2 and CH4 production rates and were analyzed for CH4 concentrations, dissolved inorganic carbon (DIC) concentrations, total organic carbon (TOC) concentrations, as well as carbon, nitrogen and sulfur content. Our results from the Villasjön cores indicate that CH4 production rates were highest at the same sediment depths as peak dissolved CH4 concentrations, with maximum values between depths of approximately 10cm and 30cm. Additionally, the highest observed CH4 production rates were in sediments from areas within Villasjön known to have the highest rates of CH4 ebullition. CO2 production rates were generally highest within surface sediments ranging from about 4cm to 11cm in depth, with production rates displaying a steady decrease below 11cm. Additionally, observed CO2 production rates correlated with total organic carbon (TOC) concentrations with respect to sediment depth, but displayed no relationship with dissolved inorganic carbon (DIC). Further analysis will be conducted to determine how CH4 and CO2 production characteristics vary between sediment core samples, as well as isotopic analysis of select samples taken from each lake.
Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater
NASA Astrophysics Data System (ADS)
Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.
2016-12-01
Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.
NASA Astrophysics Data System (ADS)
Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.
2017-12-01
Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.
Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer
NASA Astrophysics Data System (ADS)
Brown, C. J.; Schoonen, M. A. A.; Candela, J. L.
2000-11-01
Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O 2 and SO 42- in the aerobic zone, and to the reduction of SO 42- in the anaerobic zone; estimated rates of CO 2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO 2 production calculated from dissolved inorganic carbon mass transfer (2.55×10 -4 to 48.6×10 -4 mmol l -1 yr-1) generally were comparable to the calculated rates of CO 2 production by the combined reduction of O 2, Fe(III) and SO 42- (1.31×10 -4 to 15×10 -4 mmol l -1 yr-1). The overall increase in SO 42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in δ34S values along the flow path indicate that SO 42- loss through microbial reduction is exceeded by SO 42- gain through diffusion from sediments and through the oxidation of FeS 2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO 42--rich zones have been depleted by microbial reduction and resulted in localized SO 42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO 42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.
Chapelle, F.H.; McMahon, P.B.
1991-01-01
A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.
RAPID AND PRECISE METHOD FOR MEASURING STABLE CARBON ISOTOPE RATIOS OF DISSOLVED INORGANIC CARBON
We describe a method for rapid preparation, concentration and stable isotopic analysis of dissolved inorganic carbon (d13C-DIC). Liberation of CO2 was accomplished by placing 100 ?l phosphoric acid and 0.9 ml water in an evacuated 1.7-ml gas chromatography (GC) injection vial. Fo...
Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.
Brechbühl, Yves; Christl, Iso; Elzinga, Evert J; Kretzschmar, Ruben
2012-07-01
The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Zhenhao
2011-08-01
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.
Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.
2013-05-01
The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K < T < 271.15 K (-8 °C < t < -2 °C). Brines of low pCO2 (20 μatm) yielded a much slower (>1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under closed system conditions with respect to CO2 exchange. To facilitate ikaite precipitation, brine pCO2 reduction due to photosynthesis or CO2 degassing, or both, is necessary.
Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove
2009-12-01
The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.
Effect of H2 and redox condition on biotic and abiotic MTBE transformation
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2006-01-01
Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.
2017-12-01
The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.
NASA Astrophysics Data System (ADS)
Loodts, Vanessa; Rongy, Laurence; De Wit, Anne
2014-05-01
Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared to the non reactive one. On the basis of a reaction-diffusion-convection model, we classify the various possible cases and show that the difference between the solutal expansion coefficients of the reactant and of the product governs the type of density profile building up in the aqueous solution and thus the stability of the system. By contrast to non reactive density profiles, reactive density profiles can feature a minimum that induces a delay of the buoyancy-driven convection. This work identifies the parameters that could influence the dissolution-driven convection in the aquifers, and thus impact the safety of the sequestration. In other words, this theoretical study shows that it is crucial to analyse the composition and reactivity of potential storage sites to choose those that will be most efficient for long-term CO2 sequestration.
Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae.
Tamburic, Bojan; Evenhuis, Christian R; Suggett, David J; Larkum, Anthony W D; Raven, John A; Ralph, Peter J
2015-08-24
This study presents the first in-depth analysis of CO2 limitation on the biomass productivity of the biofuel candidate marine microalga Nannochloropsis oculata. Net photosynthesis decreased by 60% from 125 to 50 μmol O2 L(-1)h(-1) over a 12 h light cycle as a direct result of carbon limitation. Continuous dissolved O2 and pH measurements were used to develop a detailed diurnal mechanism for the interaction between photosynthesis, gas exchange and carbonate chemistry in the photo-bioreactor. Gas exchange determined the degree of carbon limitation experienced by the algae. Carbon limitation was confirmed by delivering more CO2 , which increased net photosynthesis back to its steady-state maximum. This study highlights the importance of maintaining replete carbon concentrations in photo-bioreactors and other culturing facilities, either by constant pH operation or preferably by designing a feedback loop based on the dissolved O2 concentration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Re-evaluating alkenone based CO2 estimates
NASA Astrophysics Data System (ADS)
Pagani, M.
2013-05-01
Multi-million year patterns of ocean temperatures and ice accumulation are relatively consistent with reconstructed CO2 records. Existing records allow for broad statements regarding climate sensitivity, but uncertainties in reconstructions can lead to considerable error. For example, alkenone-based CO2 reconstructions assume that diffusion of CO2aq is the dominant source of inorganic carbon for photosynthesis. However, the concentration of CO2aq is the lowest of all dissolved carbon species, constituting <1% of the total inorganic aqueous pool. This poses a problem for sustaining reasonable algal growth rates because the half saturation constant for the enzyme Rubisco, the primary carboxylase involved in algal photosythesis, is commonly higher than the average concentration of seawater CO2aq. That is, the concentration of CO2aq in the modern ocean is too low to maintain adequate reactions rates for Rubisco, and thus, algal growth. In order to maintain algal growth rates, most modern algae have strategies to increase intercellular CO2 concentrations. But, if such strategies were prevalent for alkenone-producing algae in the past, CO2 reconstructions could be compromised. This presentation will assess time periods when carbon-concentration strategies were potentially in play and consequences for existing CO2 records.
Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M
2014-05-01
The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.
2012-12-01
1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes Nyos and Monoun were measured in March 2012, and CO2 concentration was calculated using the results of laboratory experiment. The CO2 concentration profiles by Sound Velocity Method were compared to estimated profile of 2012 by chemical analysis with correction using results of Kusakabe et al., 2008. The CO2 concentration profile estimated by Sound Velocity Method looks overestimated. This may be the effect of bicarbonate salt little existed in laboratory experiment. The change of sound velocity was evaluated as a linear function of CO2 and bicarbonate ion concentration by multiple regression analysis. Coefficient for the change of sound velocity of CO2 concentration in Lake Nyos agrees with the laboratory experiment within the precision of 10%. On the other hand, in Lake Monoun, the difference of coefficient is larger than 50%. In Lake Monoun, CO2 concentration may be estimated incorrectly because CO2/bicarbonate ratio seems to have changed. From these results, we concluded that Sound Velocity Method is useful to measure CO2 concentration quantitatively as far as the CO2/bicarbonate ratio does not change. The method is also applicable as an early diagnosis when the CO2 profile changes by a sudden CO2 injection to the lakes.
Dissolved carbon dynamics in large boreal rivers from eastern Canada following their impoundment
NASA Astrophysics Data System (ADS)
Helie, J.; Rosa, E.; Lalonde, A.; Hillaire-Marcel, C.
2009-12-01
The carbon cycling in Canadian boreal environments is the focus of a growing number of investigations mainly because of the importance of hydropower and its potential in the area. Here, we document the behaviour of dissolved inorganic and organic carbon as well as particulate organic carbon (DIC-DOC-POC henceforth) in 5 impounded and 2 pristine river systems (respectively: La Grande 3400 m 3s-1, Eastmain 990 m3s-1, St. Lawrence 12 100 m3s-1, Ottawa 1950 m3s-1, Nelson 2370 m3s-1; Great Whales 680 m3s-1 and Koksoak 1895 m3s-1) river systems. These major rivers were sampled monthly at their outlet for one year except at the St. Lawrence River that has been sampled since June of 1997 on a bi-weekly basis. Complementary synoptic surveys were undertaken in August 2008 on the La Grande and Great Whales Rivers. When sampling, water temperature, pH, alkalinity and specific conductivity were measured. Samples were collected for the analysis of i) major ions concentrations; ii) δ13C and concentration of DIC, DOC and POC); iii) δ18O and δ2H of the water molecule; and iv) U series and Sr isotopes. In all the sampled river systems, POC concentrations were at least an order of magnitude smaller than the dissolved forms. Rivers draining carbonates bedrocks (St.Lawrence and Nelson Rivers) present higher concentrations and δ13C-DIC values linked to carbonate dissolution in soils. Conversely, rivers draining silicate-rich watersheds present lower δ13C- DIC values linked to the production of an isotopically light CO2 through oxidation of organic matter in soils and that of soil-derived DOC along river courses. However, isotopic composition of DIC in impounded rivers draining silicate catchments indicate significant CO2 degassing and some isotopic exchange with atmospheric CO2 in reservoirs. A relatively strong relationship is observed between pCO2 and δ13C-DIC across the studied river systems suggesting a continuum between the production of CO2 through DOM oxidation and CO2 degassing. A relationship is also observed between δ13C-DIC values and [DOC]/[DIC] suggesting here that the more DOC is available for degradation, the more it will be oxidized to dissolved CO2. A striking feature of boreal systems is the homogeneity of the isotopic composition of its DOC (-27.4±0.2‰ vs. V-PDB). Moreover, C/N ratios and 14C activities >100% (vs. "modern" carbon) of bulk dissolved organic matter (MOD) measured in the impounded La Grande River also lead to conclude that that this DOC, mostly fresh and young, has a low overall residence time in the catchment basin.
NASA Astrophysics Data System (ADS)
Duncan, M. S.; Dasgupta, R.
2011-12-01
Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents between 1.5 and 2.5 wt%. Compared to previous work on CO2 solubility in complex rhyolitic melts at lower pressures [3-5], there is a general trend of increasing CO2 solubility with pressure. Dissolved CO2 is present both as molecular CO2 and as CO32-, consistent with previous, simple system studies at high pressures [e.g. 2, 6]. The CO2mol/CO2Tot values are within the range of previous high pressure studies [e.g. 7] and range from 0.35 to 0.55. Experiments at variable P, T, and melt water content are underway. [1] Fine and Stolper (1985), CMP, 91, 105-121; [2] Stolper et al. (1987), AM, 72, 1071-1085; [3] Blank et al. (1993), EPSL, 119, 27-36; [4] Fogel and Rutherford (1990), AM, 75, 1331-1326; [5] Tamic et al. (2001), CG, 174, 333-347; [6] Mysen and Virgo (1980), AM, 65, 855-899; [7] Mysen (1976), AJS, 276, 969-996.
A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide
Lowenstern, J. B.
2000-01-01
Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts. (C) 2000 Elsevier Science B.V. All rights reserved.Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.
[Difference of Karst Carbon Sink Under Different Land Use and Land Cover Areas in Dry Season].
Zhao, Rui-yi; Liang, Zuo-bing; Wang, Zun-bo; Yu, Zheng-liang; Jiang, Ze-li
2015-05-01
In order to identify the distinction of soil CO2 consumed by carbonate rock dissolution, Baishuwan spring, Lanhuagou spring and Hougou spring were selected as objects to monitor the hydrochemistry from November 2013 to May 2014. The results showed that the highest HCO3- concentration was observed in Baishuwan spring which is covered by pine forest, while the lowest HCO3- concentration was observed in Hougou spring which is mainly covered by cultivated land. In Baishuwan spring, HCO3- was mainly derived from carbonic acid dissolving carbonate rock and the molar ratio between Ca(2+) + Mg2+ and HCO3- was close to 0. 5; while the molar ratio between Ca(2+) + Mg2+ and HCO3- exceeded 0.5 because the carbonate rock in Lanhuagou spring and Hougou spring was mainly dissolved by nitric acid and sulfuric acid. Because of the input of litter and the fact that gas-permeability of soil was limited in Baishuwan spring catchment, most of soil CO2 was dissolved in infiltrated water and reacted with bedrock. However, in Lanhuagou spring catchment and Hougou spring catchment, porous soil made soil CO2 easier to return to the atmosphere in the form of soil respiration. Therefore, in order to accurately estimate karst carbon sink, it was required to clarify the distinction of CO2 consumption by carbonate rock dissolution under different land use and land cover areas.
Physical and chemical properties of San Francisco Bay, California, 1980
Ota, Allan Y.; Schemel, L.E.; Hager, S.W.
1989-01-01
The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)
Occurrence of greenhouse gases in the aquifers of the Walloon Region (Belgium).
Jurado, Anna; Borges, Alberto V; Pujades, Estanislao; Hakoun, Vivien; Otten, Joël; Knöller, Kay; Brouyère, Serge
2018-04-01
This work aims to (1) identify the most conductive conditions for the generation of greenhouses gases (GHGs) in groundwater (e.g., hydrogeological contexts and geochemical processes) and (2) evaluate the indirect emissions of GHGs from groundwater at a regional scale in Wallonia (Belgium). To this end, nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations and the stable isotopes of nitrate (NO 3 - ) and sulphate were monitored in 12 aquifers of the Walloon Region (Belgium). The concentrations of GHGs range from 0.05μg/L to 1631.2μg/L for N 2 O, 0μg/L to 17.1μg/L for CH 4 , and 1769 to 100,514ppm for the partial pressure of CO 2 (pCO 2 ). The highest average concentrations of N 2 O and pCO 2 are found in a chalky aquifer. The coupled use of statistical techniques and stable isotopes is a useful approach to identify the geochemical conditions that control the occurrence of GHGs in the aquifers of the Walloon Region. The accumulation of N 2 O is most likely due to nitrification (high concentrations of dissolved oxygen and NO 3 - and null concentrations of ammonium) and, to a lesser extent, initial denitrification in a few sampling locations (medium concentrations of dissolved oxygen and NO 3 - ). The oxic character found in groundwater is not prone to the accumulation of CH 4 in Walloon aquifers. Nevertheless, groundwater is oversaturated with GHGs with respect to atmospheric equilibrium (especially for N 2 O and pCO 2 ); the fluxes of N 2 O (0.32kgN 2 O-NHa -1 y -1 ) and CO 2 (27kgCO 2 Ha -1 y -1 ) from groundwater are much lower than the direct emissions of N 2 O from agricultural soils and fossil-fuel-related CO 2 emissions. Thus, indirect GHG emissions from the aquifers of the Walloon Region are likely to be a minor contributor to atmospheric GHG emissions, but their quantification would help to better constrain the nitrogen and carbon budgets. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael
2017-04-01
To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.
NASA Astrophysics Data System (ADS)
Clargo, Nicola; Salt, Lesley; Thomas, Helmuth; de Baar, Hein
2015-04-01
Since the industrial revolution, atmospheric concentrations of carbon dioxide (CO2) have risen dramatically, largely due to the combustion of fossil fuels, changes in land-use patterns and the production of cement. The oceans have absorbed a large amount of this CO2, with resulting impacts on ocean chemistry. Coastal seas play a significant role in the mitigation of anthropogenic atmospheric CO2 as they contribute approximately 10-30% of global primary productivity despite accounting for only 7% of the surface area. The North Sea is a perfect natural laboratory in which to study the CO2 system as it consists of two biogeochemically distinct regions displaying both oceanic and relatively coastal behaviour. It has also been identified as a continental shelf pump with respect to CO2, transporting it to the deeper waters of the North Atlantic. Large scale forcing has been shown to have a significant impact on the CO2 system over varying time scales, often masking the effects of anthropogenic influence. Here, we present data from the North Sea spanning the 2001-2011 decade. In order to investigate the dynamics of the dissolved CO2 system in this region in the face of climate change, four basin-wide cruises were conducted during the summers of 2001, 2005, 2008 and 2011. The acquired Dissolved Inorganic Carbon (DIC) and alkalinity data were then used to fully resolve the carbon system in order to assess trends over the 2001-2011 decade. We find significant interannual variability, but with a consistent, notable trend in decreasing pH. We found that surface alkalinity remained relatively constant over the decade, whereas DIC increased, indicating that the pH decline is DIC-driven. We also found that the partial pressure of CO2 (pCO2) increased faster than concurrent atmospheric CO2 concentrations, and that the CO2 buffering capacity of the North Sea decreased over the decade, with implications for future CO2 uptake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, C.F.; Nitsche, H.; Silber, H.B.
1996-12-31
The solubility of Np(V) and Np(VI) has been measured in three synthetic Na-K-Mg-Cl brines in the presence of CO{sub 2}(g). Experiments were prepared from oversaturation by adding an excess of NpO{sub 2}{sup +} or NpO{sub 2}{sup 2+} to the brines and allowing the neptunium solids to precipitate. Vessels were maintained in contact with fixed CO{sub 2}(g) partial pressures at constant pH and 24 {+-} 1 C. Dissolved Np(V) concentrations decreased several orders of magnitude within the first 100 days of the experiment, while dissolved Np(VI) concentrations decreased initially but then remained relatively constant for more than 400 days. The solidmore » phases formed in all experiments were identified by X-ray powder diffraction as KNpO{sub 2}CO{sub 3}{center_dot}xH{sub 2}O(s). Steady state concentrations for Np(V) are similar to those observed for Pu(V) in the same brines under the same conditions, where Pu occurs predominantly as Pu(V). Similarly, steady state concentrations for Np(VI), which was not reduced over a two year period, compare well with measured Pu(VI) concentrations in the same brines before the Pu(VI) was reduced to Pu(V).« less
Effect of Urbanization on River CO2 Emissons
NASA Astrophysics Data System (ADS)
Zeng, F.; Masiello, C. A.
2007-12-01
CO2 supersaturation in rivers has been reported for a number of different systems: tropical (e.g. Amazon1), subtropical (e.g. Xijiang River in China2) and temperate (e.g. Hudson3), indicating rivers' role as a source of atmospheric CO2 in regional net carbon budgets. In situ respiration of organic carbon is responsible for the high CO2 concentrations in rivers1. Because this organic carbon primarily originates on land1, land use practices may alter sources and character of this organic carbon significantly, potentially impacting river CO2 emissions. Urbanization is an important, expanding global land use. We are researching the effect of urbanization on river CO2 emissions. In this study, partial pressure of dissolved CO2 (pCO2) and radiocarbon (14C) contents of riverine dissolved inorganic carbon (DIC) are directly measured in time series in Buffalo Bayou and Brays Bayou, two of the main rivers draining Houston, Texas, a developed humid subtropical city. The watersheds of both bayous are entirely unbanized. We will report seasonal trends of pCO2 and 14C of riverine DIC to estimate sources and turnover times of dissolved CO2. For comparison, we are also measuring pCO2 and DIC 14C in Spring Creek, Texas, a nearby river which has a mixed forest/agriculture watershed, as a non-urbanized counterpart to Buffalo and Brays Bayous. References: 1. E. Mayorga et al., Nature 436, 538 (2005). 2. G. Yao et al., Sci. Tot. Environ. 376, 255 (2007). 3. P.A. Raymond, N.F. Caraco, and J.J. Cole, Estuaries 20, 381 (1997).
Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan
NASA Astrophysics Data System (ADS)
Yun, S. H.; Lee, S.; Chang, C.
2017-12-01
This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Myrttinen, Anssi; Becker, Veith; Barth, Johannes A. C.
2010-05-01
The isotopic composition (δ13C) of dissolved inorganic carbon (DIC), in combination with DIC concentration measurements, can be used to quantify geochemical trapping of CO2 in water. This is of great importance in monitoring the fate of CO2 in the subsurface in CO2 injection projects. When CO2 mixes with water, a shift in the δ13C values, as well as an increase in DIC concentrations is observed in the CO2-H2O system. However, when using standard on-site titration methods, it is often challenging to determining accurate in-situ DIC concentrations. This may be due to CO2 degassing and CO2-exchange between the sample and the atmosphere during titration, causing a change in the pH value or due to other unfavourable conditions such as turbid water samples or limited availability of fluid samples. A way to resolve this problem is by simultaneously determining the DIC concentration and carbon isotopic composition using a standard continuous flow Isotope Ratio Mass Spectrometry (CF-IRMS) setup with a Gasbench II coupled to Delta plusXP mass spectrometer. During sampling, in order to avoid atmospheric contact, water samples taken from the borehole-fluid-sampler should be directly transferred into a suitable container, such as a gasbag. Also, to avoid isotope fractionation due to biological activity in the sample, it is recommended to stabilize the gasbags prior to sampling with HgCl2 for the subsequent stable isotope analysis. The DIC concentration of the samples can be determined from the area of the sample peaks in a chromatogram from a CF-IRMS analysis, since it is directly proportional to the CO2 generated by the reaction of the water with H3PO4. A set of standards with known DIC concentrations should be prepared by mixing NaHCO3 with DIC free water. Since the DIC concentrations of samples taken from CO2 injection sites are expected to be exceptionally high due to the additional high amounts of added CO2, the DIC concentration range of the standards should be set high enough to cover the sample concentrations. In order to assure methodological reproducibility, this 'calibration set' should be included in every sequence analysed with the Gasbench CF-IRMS system. The standards, therefore, should also be treated in the same way as the samples. For accurate determination, it is essential to know the exact amount of water in the vial and the density of the sample. This requires weighing of each vial before and after injection of the water sample. For stable isotope analysis, the required signal height can be adjusted by the sample amount. Therefore this method is suitable for analysing samples with highly differing DIC concentrations. Reproducibility and accuracy of the quantitative analysis of the dissolved inorganic carbon need to be verified by independent control standards, treated as samples. This study was conducted as a part of the R&D programme CLEAN, which is funded by the German Federal Ministry of Education in the framework of the programme GEOTECHNOLOGIEN. We would like to thank GDF SUEZ for permitting us to conduct sampling campaigns at their site.
Cravotta, Charles A.
2015-01-01
Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).
Couvert, Olivier; Guégan, Stéphanie; Hézard, Bernard; Huchet, Véronique; Lintz, Adrienne; Thuault, Dominique; Stahl, Valérie
2017-12-01
The effect of carbon dioxide, temperature, and pH on growth of Listeria monocytogenes and Pseudomonas fluorescens was studied, following a protocol to monitor microbial growth under a constant gas composition. In this way, the CO 2 dissolution didn't modify the partial pressures in the gas phase. Growth curves were acquired at different temperatures (8, 12, 22 and 37 °C), pH (5.5 and 7) and CO 2 concentration in the gas phase (0, 20, 40, 60, 80, 100% of the atmospheric pressure, and over 1 bar). These three factors greatly influenced the growth rate of L. monocytogenes and P. fluorescens, and significant interactions have been observed between the carbon dioxide and the temperature effects. Results showed no significant effect of the CO 2 concentration at 37 °C, which may be attributed to low CO2 solubility at high temperature. An inhibitory effect of CO 2 appeared at lower temperatures (8 and 12 °C). Regardless of the temperature, the gaseous CO 2 is sparingly soluble at acid pH. However, the CO 2 inhibition was not significantly different between pH 5.5 and pH 7. Considering the pKa of the carbonic acid, these results showed the dissolved carbon under HCO 3 - form didn't affect the bacterial inhibition. Finally, a global model was proposed to estimate the growth rate vs. CO 2 concentration in the aqueous phase. This dissolved concentration is calculated according to the physical equations related to the CO 2 equilibriums, involving temperature and pH interactions. This developed model is a new tool available to manage the food safety of MAP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wood, Warren W.; Petraitis, Michael J.
1984-01-01
Partial pressures of CO2, O2, N2, and Ar were monitored at two locations in the Ogallala aquifer system on the Southern High Plains of Texas. Samples were collected monthly during parts of 1980–1981 from nine depths ranging from 0.6 to 36 meters below land surface. PCO2 was observed to be greater at depth than in the active soil zone and thus appears to contradict the normal process in which CO2 is generated in the soil zone and diffuses upward to the atmosphere and downward to the water table. The δ13C of the CO2 gas was quite uniform and averaged −17.9 per mil. PO2 declined with depth, suggesting in situ generation of CO2 by the oxidation of carbon. Several hypotheses were considered to explain the origin of the CO2 at depth. It was concluded that the most probable hypothesis was that dissolved and particulate organic carbon introduced by recharging water was oxidized to CO2 by the aerobic microbial community that utilized oxygen diffusing in from the atmosphere. This hypothesis is consistent with the CO2 concentration profile, calculated production profile of CO2, δ13C values of CO2 gas, caliche, soil humic acid fraction, and dissolved carbonate in groundwater. The abundance of CO2, its concentration profile, and its probable origin provide information for evaluating the observed complex sequence of caliche dissolution and precipitation known to occur in the aquifer.
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
ABIOTIC O{sub 2} LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman, C. E.; Kasting, J. F.; Schwieterman, E. W.
2015-10-20
In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet's atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth's atmosphere is O{sub 2} (and its photochemical byproduct, O{sub 3}). However, O{sub 2} can also be produced abiotically by photolysis of CO{sub 2}, followed by recombination of O atoms with each other. CO is produced in stoichiometric proportions. Whethermore » O{sub 2} and CO can accumulate to appreciable concentrations depends on the ratio of far-ultraviolet (FUV) to near-ultraviolet (NUV) radiation coming from the planet's parent star and on what happens to these gases when they dissolve in a planet's oceans. Using a one-dimensional photochemical model, we demonstrate that O{sub 2} derived from CO{sub 2} photolysis should not accumulate to measurable concentrations on planets around F- and G-type stars. K-star, and especially M-star planets, however, may build up O{sub 2} because of the low NUV flux from their parent stars, in agreement with some previous studies. On such planets, a “false positive” for life is possible if recombination of dissolved CO and O{sub 2} in the oceans is slow and if other O{sub 2} sinks (e.g., reduced volcanic gases or dissolved ferrous iron) are small. O{sub 3}, on the other hand, could be detectable at UV wavelengths (λ < 300 nm) for a much broader range of boundary conditions and stellar types.« less
Greenhouse gases dissolved in soil solution - often ignored, but important?
NASA Astrophysics Data System (ADS)
Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry
2014-05-01
Flux measurements of climate-relevant trace gases from soils are frequently undertaken in contemporary ecosystem studies and substantially contribute to our understanding of greenhouse gas balances of the biosphere. While the great majority of such investigations builds on closed chamber and eddy covariance measurements, where upward gas fluxes to the atmosphere are measured, fewest concurrently consider greenhouse gas dissolution in the seepage and leaching of dissolved gases via the vadose zone to the groundwater. Here we present annual leaching losses of dissolved N2O and CO2 from arable, grassland, and forest lysimeter soils from three sites differing in altitude and climate. We aim to assess their importance in comparison to direct N2O emission, soil respiration, and further leaching parameters of the C- and N cycle. The lysimeters are part of the Germany-wide lysimeter network initiative TERENO-SoilCan, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Soil water samples were collected weekly from different depths of the profiles by means of suction cups. A laboratory pre-experiment proved that no degassing occurred under those sampling conditions. We applied the headspace equilibration technique to determine dissolved gas concentrations by gas chromatography. The seepage water of all lysimeters was consistently supersaturated with N2O and CO2 compared to water equilibrated ambient air. In terms of N2O, leaching losses increased in the ascending order forest, grassland, and arable soils, respectively. In case of the latter soils, we observed a strong variability of N2O, with dissolved concentrations up to 23 μg N L-1. However, since seepage discharge of the arable lysimeters was comparatively small and mostly limited to the hydrological winter season, leached N2O appeared to be less important than direct N2O emissions. In terms of dissolved CO2,our measurements revealed considerable leaching losses from the mountainous forest and grassland soils, based on concentrations up to 24 mg C L-1 and high seepage discharge. Such losses turned out to be similarly important like soil respiration, particularly during winter when temperature-dependent soil respiration declined. In conclusion, the results of the first year of our measurements provide evidence that dissolved greenhouse gases should be considered in studies which aim to assess full greenhouse gas balances, particularly in ecosystems where hydrological conditions favour microbial activity and high leaching losses.
NASA Astrophysics Data System (ADS)
Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus
2015-04-01
We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.
Maher, Eman Magdy; Ali, Ahmed Mahmoud Abdelhaleem; Salem, Heba Farouk; Abdelrahman, Ahmed Abdelbary
2016-10-01
Improvement of water solubility, dissolution rate, oral bioavailability, and reduction of first pass metabolism of OL (OL), were the aims of this research. Co-amorphization of OL carboxylic acid dispersions at various molar ratios was carried out using rapid solvent evaporation. Characterization of the dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Dispersions with highest equilibrium solubility were formulated as fast dissolving oral films. Modeling and optimization of film formation were undertaken using artificial neural networks (ANNs). The results indicated co-amorphization of OL-ascorbic acid through H-bonding. The co-amorphous dispersions at 1:2 molar ratio showed more than 600-fold increase in solubility of OL. The model optimized fast dissolving film prepared from the dispersion was physically and chemically stable, demonstrated short disintegration time (8.5 s), fast dissolution (97% in 10 min) and optimum tensile strength (4.9 N/cm 2 ). The results of in vivo data indicated high bioavailability (144 ng h/mL) and maximum plasma concentration (14.2 ng/mL) compared with the marketed references. Therefore, the optimized co-amorphous OL-ascorbic acid fast dissolving film could be a valuable solution for enhancing the physicochemical and pharmacokinetic properties of OL.
Melting mountains of Appalachia: exceptionally high weathering rates in mined watersheds
NASA Astrophysics Data System (ADS)
Ross, M. R.; Nippgen, F.; Hassett, B.; McGlynn, B. L.; Bernhardt, E. S.
2016-12-01
Mountaintop mining operations excavate ridges as deep as 200 m and bury adjacent valleys and streams beneath fractured bedrock and coal residues. Post-mining, landscapes have lower slopes, greatly increased water storage potential, and an abundance of acid-generating pyrite, which is intentionally mixed with neutralizing calcareous bedrock. Together these design features of mountaintop mined lands create ideal conditions for long water residence times and rapid weathering rates, leading to widely documented and substantial increases in streamwater ion concentrations. To date, these concentration changes have not been linked to rates of watershed scale element flux. In a paired catchment study, we documented a 4,000% increase in the export of total dissolved solids from a mined watershed, and estimate that pyrite and carbonate weathering in reclaimed mines can export 9,000 kg ha-1 y-1 of dissolved rock to receiving streams. Such high rates of element flux after a disturbance are not only much higher than other watershed disturbances, but are among the highest rates of weathering ever reported globally. Sulfuric acid weathering of carbonate rock drives these patterns of chemical erosion. This strong acid weathering changes Appalachian geology from a slight net geologic CO2 sink-sequestering 800-1,500 kg CO2 km-2 yr-1 through carbonic acid weathering of carbonates-to a substantial net geologic source of CO2, releasing 170,000 kg CO2 km-2 yr-1. Over the more than 4,000 km2 area of Central Appalachia that has undergone mountaintop mining, this rapid weathering represents 4 million tons of dissolved rock being delivered to the streams of West Virginia, potentially releasing 680,000 tons of CO2 in the process.
Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA
Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.
2016-01-01
Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, D.R.
1996-12-31
The dissolved CO{sub 2}, H{sub 2}S, and H{sub 2} gases in Mahanagdong aquifer fluids are controlled by specific gas-mineral equilibria. At temperature range of 250 to 310 {degrees}C, CO{sub 2} is buffered by clinozoisite + K-feldspar + calcite + muscovite (illite) + quartz mineral assemblage. For H{sub 2}S and H{sub 2} dissolved gases, they are more likely buffered by pyrrhotite + pyrite + magnetite mineral assemblage at similar temperature range. Calibration of five Mahanagdong (MG) gas geothermometers is presented, three of which used CO{sub 2}, H{sub 2}S, and H{sub 2} concentration in steam. The remaining two use CO{sub 2}/H{sub 2}more » and H{sub 2}S/H{sub 2} ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were computed in steam after adiabatic boiling to atmospheric condition (100 {degrees}C), to obtain gas geothermometry functions. These functions could also be used in evaluating fraction of steam condensation and temperature of phase separation. A demonstration given the Mahanagdong fumarole data, indicates that there is generally a fair relation between computed temperatures using Mahanagdong gas geothermometers and the actual field trend`s temperatures.« less
Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans
NASA Astrophysics Data System (ADS)
Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong
2018-05-01
The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.
Sensitivity of ocean acidification and oxygen to the uncertainty in climate change
NASA Astrophysics Data System (ADS)
Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han
2014-05-01
Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.
Pressure, O2, and CO2, in aquatic Closed Ecological Systems
NASA Astrophysics Data System (ADS)
Taub, Frieda B.; McLaskey, Anna K.
2013-03-01
Pressure increased during net photosynthetic O2 production in the light and decreased during respiratory O2 uptake during the dark in aquatic Closed Ecological Systems (CESs) with small head gas volumes. Because most CO2 will be in the liquid phase as bicarbonate and carbonate anions, and CO2 is more soluble than O2, volumes of gaseous CO2 and gaseous O2 will not change in a compensatory manner, leading to the development of pressure. Pressure increases were greatest with nutrient rich medium with NaHCO3 as the carbon source. With more dilute media, pressure was greatest with NaHCO3, and less with cellulose or no-added carbon. Without adequate turbulence, pressure measurements lagged dissolved O2 concentrations by several hours and dark respiration would have been especially underestimated in our systems (250-1000 ml). With adequate turbulence (rotary shaker), pressure measurements and dissolved O2 concentrations generally agreed during lights on/off cycles, but O2 measurements provided more detail. At 20 °C, 29.9 times as much O2 will distribute into the gas phase as in the liquid, per unit volume, as a result of the limited solubility of O2 in water and according to Henry's Law. Thus even a small head gas volume can contain more O2 than a larger volume of water. When both dissolved and gaseous O2 and CO2 are summed, the changes in Total O2 and CO2 are in relatively close agreement when NaHCO3 is the carbon source. These findings disprove an assumption made in some of Taub's earlier research that aquatic CESs would remain at approximately atmospheric pressure because approximately equal molar quantities of O2 and CO2 would exchange during photosynthesis and respiration; this assumption neglected the distribution of O2 between water and gas phases. High pressures can occur when NaHCO3 is the carbon source in nutrient rich media and if head-gas volumes are small relative to the liquid volume; e.g., one "worse case" condition developed 800 mm Hg above atmospheric pressure and broke the glass container. Plastic screw cap closures are likely to leak at high pressures and should not be assumed to seal unless tested at appropriate pressures. Pressure can be reduced by having larger head-gas volumes and using less concentrated nutrient solutions. It is important that pressure changes be considered for both safety and closure, and if total O2 is used as the measure of net photosynthesis and respiration, the O2 in the gas phase must be added to the dissolved O2.
Tracing oxidative weathering from the Andes to the lowland Amazon Basin using dissoved rhenium
NASA Astrophysics Data System (ADS)
Dellinger, M.; Hilton, R. G.; West, A. J.; Torres, M.; Burton, K. W.; Clark, K. E.; Baronas, J. J.
2016-12-01
Over long timescales (>105 yrs), the abundance of carbon dioxide (CO2) in the atmosphere is determined by the balance of the major carbon sources and sinks. Among the major carbon sources, the oxidation of organic carbon contained within sedimentary rocks ("petrogenic" carbon, or OCpetro) is thought to result in CO2 emission of similar magnitude to that released by volcanism. Rhenium (Re) has been proposed as a proxy for tracing OCpetro oxidation. Here we investigate the source, behavior and flux of dissolved and particulate rhenium (Re) in the Madre de Dios watershed (a major Andean tributary of the Amazon River) and the lowlands, aiming to characterize the behavior of Re in river water and quantify the flux of CO2 released by OCpetro oxidation. Measured Re concentrations in Andean rivers range from 0.07 to 1.55 ppt. In the Andes, Re concentration do not change significantly with water discharge, whereas in the lowlands, Re concentration decrease at high water discharge. Mass balance calculation show that more than 70% of the dissolved Re is sourced from the oxidation of OCpetro the Andes-floodplain system. We calculate dissolved Re flux over a hydrological year to estimate the rates of oxidative weathering, and the associated CO2 release from OCpetro. Rates are high in the Andean headwaters, consistent with estimates from other mountain rivers with similar rates of physical erosion. We find evidence that a significant amount of additional oxidation (Re flux) happens during floodplain transport. These results have important implications for improving our understanding of the source and processes controlling Re in rivers, and allowing us to quantify long-term OCpetro cycling in large river basins.
Szymczycha, Beata; Kroeger, Kevin D.; Pempkowiak, Janusz
2016-01-01
Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1–2.8 nmol L− 1), Co (8.70–8.76 nmol L− 1), Cr (18.1–18.5 nmol L− 1), Mn (2.4–2.8 μmol L− 1), Pb (1.2–1.5 nmol L− 1), Zn (33.1–34.0 nmol L− 1). Concentrations of Cu (0.5–0.8 nmol L− 1) and Ni (4.9–5.8 nmol L− 1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.
NASA Astrophysics Data System (ADS)
Butman, D. E.; Holtgrieve, G. W.
2017-12-01
Recent modelling studies in large catchments have estimated that in excess of 74% of the dissolved carbon dioxide found in first and second order streams originate from allochthonous sources. Stable isotopes of carbon-13 in carbon dioxide have been used to identify ground water seeps in stream systems, where decreases in δ13CO2 occur along gaining stream reaches, suggesting that carbon dioxide in ground water is more depleted than what is found in surface water due to fractionation of CO2 during emissions across the air water interface. Although isotopes represent a chemical tracer in stream systems for potential groundwater contribution, the temporal resolution of discrete samples make partitioning allochthonous versus autochthonous sources of CO2 difficult on hydrologically relevant time scales. Here we show results of field deployments of high frequent dissolved CO2, O2, PAR, Temperature and pH from the Thornton Creek Watershed, the largest urban watershed in Seattle, WA. We present an exploration into using high resolution time series of dissolved oxygen and carbon dioxide in a dual gas approach to separate the contribution of in stream respiration from external sources. We extend upon previous efforts to model stream metabolism across diel cycles by incorporating simultaneous direct measurements of dissolved oxygen, PCO2, and pH within an inverse modeling framework and Bayesian parameter estimation. With an initial assumption of a stoichiometric ratio of 1:1 for O2 and CO2 for autochthonous driven metabolism, we investigate positive or negative departures from this ratio as an indicator of external CO2 to the stream (terrestrial or atmospheric) and factors contributing to this flux.
Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.
Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun
2014-12-02
This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.
Bicarbonate uptake by Southern Ocean phytoplankton
NASA Astrophysics Data System (ADS)
Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.
2004-06-01
Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the anthropogenic rise in CO2. We conclude that biological productivity in this region of the world's ocean is unlikely to be directly regulated by natural or anthropogenic variations in atmospheric CO2 concentrations because of the presence of a constitutive CCM.
Swezey, Daniel S; Bean, Jessica R; Ninokawa, Aaron T; Hill, Tessa M; Gaylord, Brian; Sanford, Eric
2017-04-26
Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata ) under factorial combinations of dissolved carbon dioxide (CO 2 ), temperature and food concentrations. High CO 2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO 2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. © 2017 The Author(s).
Bean, Jessica R.; Ninokawa, Aaron T.; Hill, Tessa M.; Gaylord, Brian; Sanford, Eric
2017-01-01
Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2. For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. PMID:28424343
Madsen, T. V.; Breinholt, M.
1995-01-01
Callitriche cophocarpa Sendtner is a heterophyllous amphibious macrophyte that produces apical rosettes of floating leaves. The importance of air contact for inorganic carbon and N uptake and for growth was investigated. Plants were grown with the floating rosette in contact with air of various humidities (10, 50, and >90% relative humidity) and with the submerged parts in N-free water at 350 [mu]M free CO2 and the roots in sediment with low or high NH3-N content. Humidity greatly affected the transpiration rate, whereas growth rate and N content were unaffected and were comparable to values measured for fully submerged shoots. Air contact had, however, a significant impact on growth when the free CO2 concentration in the water was low. Thus, the growth rate of shoots with air contact was about 3 times faster than the rate of fully submerged shoots when grown at air-equilibrium concentration of dissolved free CO2 in the water (16 [mu]M). This difference decreased with increased dissolved free CO2 concentration in the water, and the two shoot types grew at the same rate when the submerged shoots received >350 [mu]M free CO2. The quantitative importance of the floating rosette for total carbon uptake declined also with decreased ratio of floating rosette to total shoot weight. It is concluded that floating rosettes can enhance the inorganic carbon uptake of Callitriche. In contrast, air contact is of minor importance for nutrient transport. PMID:12228350
Greenhouse gases emissions in rivers of the Tibetan Plateau.
Qu, Bin; Aho, Kelly Sue; Li, Chaoliu; Kang, Shichang; Sillanpää, Mika; Yan, Fangping; Raymond, Peter A
2017-11-29
Greenhouse gases (GHGs) emissions from streams are important to regional biogeochemical budgets. This study is one of the first to incorporate stream GHGs (CO 2 , CH 4 and N 2 O) concentrations and emissions in rivers of the Tibetan Plateau. With one-time sampling from 32 sites in rivers of the plateau, we found that most of the rivers were supersaturated with CO 2 , CH 4 and N 2 O during the study period. Medians of partial pressures of CO 2 (pCO 2 ), pCH 4 and pN 2 O were presented 864 μatm, 6.3 μatm, and 0.25 μatm respectively. Based on a scaling model of the flux of gas, the calculated fluxes of CO 2 , CH 4 and N 2 O (3,452 mg-C m 2 d -1 , 26.7 mg-C m 2 d -1 and 0.18 mg-N m 2 d -1 , respectively) in rivers of the Tibetan Plateau were found comparable with most other rivers in the world; and it was revealed that the evasion rates of CO 2 and CH 4 in tributaries of the rivers of the plateau were higher than those in the mainstream despite its high altitude. Furthermore, concentrations of GHGs in the studied rivers were related to dissolved carbon and nitrogen, indicating that riverine dissolved components could be used to scale GHGs envision in rivers of the Tibetan Plateau.
Dissolution Behaviour of Hazardous Materials from Steel Slag with Wet Grinding Method
NASA Astrophysics Data System (ADS)
Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji
2016-06-01
Steel slag is a by-product from steel industry and it contains variety of hazardous materials. In this study, the dissolution behaviour and removal potential of hazardous materials from steel slag with the wet grinding method was investigated. The slag was wet ground in the CO2 atmosphere and the slurry produced was filtered using centrifugal separator to separate the liquid and solid sediments. Then, the concentrations of dissolved metal elements in the liquid sediment were analyzed by ICP-MS. The changes of pH during the grinding were also investigated. It was found that the pHs were decreased immediately after the CO2 gas introduced into the vessel. The pHs were ranging from 6.8 to 7.6 at the end of grinding. The dissolved concentration of Zn and Cr were ranging from 5~45 [mg/dm3] and 0.2~2.5 [mg/dm3] respectively. The ratios of Zn removal for stainless steel oxidizing and reducing slag were very high, but those from normal steel oxidizing and reducing slag were very low. It is assumed that the Zn dissolved as ZnOH+ from Zn(OH)2 that formed due to the reaction between ZnO and water. Dissolution of Cr also occurred but in very low quantity compared to the dissolution of Zn. The dissolution of Cr occurred due to the grinding process and small amount of Cr(OH)3 was formed during the grinding. This small formation of Cr(OH)3 resulted to the low dissolved concentration of Cr in the form of Cr(OH)2+. According to the XRD analysis, the Cr mostly existed in the slags as Cr(IIl) in the form of MgCr2O4 and FeCr2O4.
Long Time Evolution of Sequestered CO2 in Porous Media
NASA Astrophysics Data System (ADS)
Cohen, Y.; Rothman, D.
2013-12-01
CO2 sequestration is important for mitigating climate change and reducing atmospheric CO2 concentration. However, a complete physical picture able to predict both the pattern formation and the structure developing within the porous medium is lacking. We propose a theoretical model that couples transport, reaction, and the intricate geometry of the rock, in order to study the long time evolution of carbon in the brine-rock environment. As CO2 is injected into a brine-rock environment, it becomes initially trapped, and isolated bubbles are formed. Within the high CO2 phase, minerals dissolve and migrate from high concentration to low concentration regions, along with other carbonate species. The change in the concentrations at the interface moves the system out of equilibrium, drives up the saturation level, and leads to mineral precipitation. We argue that mineral precipitation in a small boundary layer may lead to lower diffusivity, slower kinetics, and eventually to a mechanical trapping of the CO2 bubbles. We investigate the reactive transport model and study the conditions that cause the mechanical separation of these two reactive fluids in porous media.
Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, J.E.; Stolper, E.M.; Clague, D.A.
1991-05-01
Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas alongmore » the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).« less
Carbon Fluxes in Dissolved and Gaseous Forms for a Restored Peatland in British Columbia, Canada
NASA Astrophysics Data System (ADS)
D'Acunha, B.; Johnson, M. S.; Lee, S. C.; Christen, A.
2016-12-01
Peatlands are wetlands where gross primary production exceeds organic matter decomposition causing an accumulation of partially decomposed matter, also called peat. These ecosystems can accumulate more carbon than tropical rainforests. However, dissolved and gaseous fluxes of carbon (as dissolved organic carbon (DOC), CO2 and methane (CH4)) must also be considered to determine if these ecosystems are net sinks or sources of greenhouse gases (GHGs) to the atmosphere, which depends in part on the environmental conditions and the state of the ecosystem. We conducted research in Burns Bog, Delta, BC, Canada, a raised domed peat bog located in the Fraser River Delta and one of the largest raised peat bogs on the west coast of the Americas, but which has been heavily impacted by a range of human activities. Currently, ecological restoration efforts are underway by a large-scale ditch blocking program, with the aim to re-establish a high water table. This is approached in partnership with research on the ecosystem services that the bog provides, including its role in a regional GHG inventory. Here we present data on ecosystem-scale fluxes of CO2 and CH4 determined by eddy covariance (EC) on a floating tower platform, and complementary data on (i) evasion fluxes of CO2, CH4 and nitrous oxide (N2O) from the water surface to the atmosphere, and (ii) the flux and composition of dissolved organic carbon in water draining Burns Bog. Concentrations of dissolved CO2, CH4 and N2O were determined by headspace equilibration, and evasion rates from the water surface were quantified and are used to estimate the role of the hydrosphere in the ecosystem-scale measurements. Water samples collected from five saturated areas in the flux tower footprint were analyzed for DOC concentrations and composition. Results indicated that, even though the whole system is a net C sink, the water surface behaved as a source of CO2 and CH4, and a sink for N2O throughout the study period. Drainage waters were high in DOC (> 30 mg L-1). DOC export was found to offset about 20% of the apparent net C uptake determined by EC, indicating that the EC system overestimates carbon accumulation by not accounting for DOC drainage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Vrajesh; Maillot, Fabien; Wang, Zheming
Uranyl phosphate solids are often found with uranium ores, and their low solubility makes them promising target phases for in situ remediation of uranium-contaminated subsurface environments. The products and solubility of uranium(VI) precipitated with phosphate can be affected by the pH, dissolved inorganic carbon (DIC) concentration, and co-solute composition (e.g. Na+/Ca2+) of the groundwater. Batch experiments were performed to study the effect of these parameters on the products and extent of uranium precipitation induced by phosphate addition. In the absence of co-solute cations, chernikovite [H3O(UO2)(PO4)•3H2O] precipitated despite uranyl orthophosphate [(UO2)3(PO4)2•4H2O] being thermodynamically more favorable under certain conditions. As determined usingmore » X-ray diffraction, electron microscopy, and laser induced fluorescence spectroscopy, the presence of Na+ or Ca2+ as a co-solute led to the precipitation of sodium autunite ([Na2(UO2)2(PO4)2] and autunite [Ca(UO2)2(PO4)2]), which are structurally similar to chernikovite. In the presence of sodium, the dissolved U(VI) concentrations were generally in agreement with equilibrium predictions of sodium autunite solubility. However, in the calcium-containing systems, the observed concentrations were below the predicted solubility of autunite, suggesting the possibility of uranium adsorption to or incorporation in a calcium phosphate precipitate in addition to the precipitation of autunite.« less
NASA Astrophysics Data System (ADS)
Dafflon, B.; Wu, Y.; Hubbard, S. S.; Birkholzer, J. T.; Daley, T. M.; Pugh, J. D.; Peterson, J.; Trautz, R. C.
2011-12-01
A risk factor of CO2 storage in deep geological formations includes its potential to leak into shallow formations and impact groundwater geochemistry and quality. In particular, CO2 decreases groundwater pH, which can potentially mobilize naturally occurring trace metals and ions commonly absorbed to or contained in sediments. Here, geophysical studies (primarily complex electrical method) are being carried out at both laboratory and field scales to evaluate the sensitivity of geophysical methods for monitoring dissolved CO2 distribution and geochemical transformations that may impact water quality. Our research is performed in association with a field test that is exploring the effects of dissolved CO2 intrusion on groundwater geochemistry. Laboratory experiments using site sediments (silica sand and some fraction of clay minerals) and groundwater were initially conducted under field relevant CO2 partial pressures (pCO2). A significant pH drop was observed with inline sensors with concurrent changes in fluid conductivity caused by CO2 dissolution. Electrical resistivity and electrical phase responses correlated well with the CO2 dissolution process at various pCO2. Specifically, resistivity decreased initially at low pCO2 condition resulting from CO2 dissolution followed by a slight rebound because of the transition of bicarbonate into non-dissociated carbonic acid at lower pH slightly reducing the total concentration of dissociated species. Continuous electrical phase decreases were also observed, which are interpreted to be driven by the decrease of surface charge density (due to the decrease of pH, which approaches the PZC of the sediments). In general, laboratory experiments revealed the sensitivity of electrical signals to CO2 intrusion into groundwater formations and can be used to guide field data interpretation. Cross well complex electrical data are currently being collected periodically throughout a field experiment involving the controlled release of dissolved CO2 into groundwater. The objective of the geophysical cross well monitoring effort is to evaluate the sensitivity of complex electrical methods to dissolved CO2 at the field scale. Here, we report on the ability to translate laboratory-based petrophysical information from lab to field scales, and on the potential of field complex electrical methods for remotely monitoring CO2-induced geochemical transformations.
NASA Astrophysics Data System (ADS)
Versteeg, R.; Leger, E.; Dafflon, B.
2016-12-01
Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments are in agreement with field results, and (d) we can numerically simulate the main characteristics of CO2 leakage and associated electrical geophysical signatures.
Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
Sujith, K S; Ramachandran, C N
2017-01-12
Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH 3 OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH 4 molecules, CH 3 OH molecules assist bubble formation by stabilizing CH 4 bubble nuclei formed in the solution. The CH 3 OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH 4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH 4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH 4 and the Laplace pressure within the bubble. The effect of CO 2 on the formation of nanobubble in the CH 4 -CO 2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO 2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO 2 in the early nucleation of bubble is explained based on the interaction between the bubble and the dissolved CO 2 molecules.
Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations
NASA Astrophysics Data System (ADS)
Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.
2012-12-01
Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast reaction of the injected CO2 with the ambient reservoir fluid and rocks. Mixing and in situ CO2-water-rock reactions are detected by changes in the different tracer ratios. The feasibility of 14C as a reactive tracer for geologic CO2 storage also depends on the analytical technique used to measure 14C activities. Currently, 14C is analyzed using Accelerator Mass Spectrometery (AMS), which is expensive and requires centralized facilities. To enable real time online monitoring and verification, we are developing an alternative detection method for radiocarbon. The IntraCavity OptoGalvanic Spectroscopy (ICOGS) system is using a CO2 laser to detect carbon isotope ratios at environmental levels. Results from our prototype of this bench-top technology demonstrate that an ICOGS system can be used in a continuous mode with analysis times of the order of minutes, and can deliver data of similar quality as AMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.
2013-06-30
Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less
Evaluation of headspace equilibration methods for quantifying greenhouse gases in groundwater.
Jahangir, M M R; Johnston, P; Khalil, M I; Grant, J; Somers, C; Richards, K G
2012-11-30
The objective of the study was to evaluate the different headspace equilibration methods for the quantification of dissolved greenhouse gases in groundwater. Groundwater samples were collected from wells with contrasting hydrogeochemical properties and degassed using the headspace equilibration method. One hundred samples from each well were randomly selected, treatments were applied and headspace gases analysed by gas chromatography. Headspace equilibration treatments varied helium (He):water ratio, shaking time and standing time. Mean groundwater N(2)O, CO(2) and CH(4) concentrations were 0.024 mg N L(-1), 13.71 mg C L(-1) and 1.63 μg C L(-1), respectively. All treatments were found to significantly influence dissolved gas concentrations. Considerable differences in the optimal He:water ratio and standing time were observed between the three gases. For N(2)O, CO(2) and CH(4) the optimum operating points for He:water ratio was 4.4:1, 3:1 and 3.4:1; shaking time was 13, 12 and 13 min; and standing time was 63, 17 and 108 min, respectively. The headspace equilibration method needs to be harmonised to ensure comparability between studies. The experiment reveals that He:water ratio 3:1 and shaking time 13 min give better estimation of dissolved gases than any lower or higher ratios and shaking times. The standing time 63, 17 and 108 min should be applied for N(2)O, CO(2) and CH(4), respectively. Copyright © 2012. Published by Elsevier Ltd.
Deep soil carbon stock in Chinese Loess Plateau and its turnover
NASA Astrophysics Data System (ADS)
Song, C.; Han, G.; Yingchun, S.; Liu, C. Q.
2017-12-01
The loess plateau in northwestern China has been regarded as a huge carbon stock in China. However, so far, the mechanisms of carbon cycle in deep loess is still not well known. Hence, we established a field experiment site of carbon cycle in deep loess at Qiushe village, Lingtai county, Gansu province, and observed: (1) the hydro-chemical composition, DIC (Dissolved Inorganic Carbon), DOC (Dissolved Organic Carbon), and POC (Particulate Organic Carbon) in spring water discharging from loess section in Qiushe village, Lingtai county, Gansu province of Northwestern China; and (2) soil CO2 concentration and its lateral fluxes in loess section. The results showed that: (i) The DIC and DOC concentration in groundwater of loess area is 5.25 5.45mmol/L, and 0.59 0.62 mg/L, respectively, while POC concentration is high due to the mixture of loess particle matter. According to the ion balance of carbonate weathering reaction, the 2.82 mmol CO2 can be absorbed by carbonate weathering when 1 L rainfall can infiltrate into the loess until below the zero flux plane. (2) CO2 concentration in loess is higher than in atmosphere and reaches the maximum of 4180 μmol·mol-1 in S14, different loess/paleosol fails to display an instinct trend. The δ13C value of CO2 ranged from -21.31 ‰ to -15.37 ‰, and had a positive relationship with 1/[CO2] (r = 0.74), suggesting that CO2 in loess is not only relative to decomposed organic carbon by microbe, and also to the balance system among CaCO3-H2O-CO2 in the interface between saturated and unsaturated zone. The comparison between the lateral flux of CO2 in loess profile and the vertical CO2 flux in ground surface reveal that ignoring the lateral flux of CO2 may lead to a severe underestimation of soil carbon emission in mountainous area. So the geomorphological surficial area should be used instead of acreage in relative models to avoid the underestimation during estimating the soil carbon emission. (3) At the annual scale, the carbon stock in deep loess is an active stock, exchanging carbon with atmospheric stock through two ways at least: (1) the rainfall - infiltration - discharge process; (2) the lateral flux of gases (mainly CO2, and methane in some areas).
Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters
Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.
2016-01-01
To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.
Meghrous, Jamal; Khramtsov, Nikolai; Buckland, Barry C; Cox, Manon M J; Palomares, Laura A; Srivastava, Indresh K
2015-11-01
Dissolved carbon dioxide (dCO2 ) accumulation during cell culture has been recognized as an important parameter that needs to be controlled for successful scale-up of animal cell culture because above a certain concentration there are adverse effects on cell growth performance and protein production. We investigated the effect of accumulation of dCO2 in bioreactor cultures of expresSF+(®) insect cells infected with recombinant baculoviruses expressing recombinant influenza virus hemagglutinins (rHA). Different strategies for bioreactor cultures were used to obtain various ranges of concentrations of dCO2 (<50, 50-100, 100-200, and >200 mmHg) and to determine their effects on recombinant protein production and cell metabolic activity. We show that the accumulation of dCO2 at levels > 100 mmHg resulted in reduced metabolic activity, slowed cell growth, prolonged culture viability after infection, and decreased infection kinetics. The reduced rHA yields were not caused by the decrease in the extracellular pH that resulted from dCO2 accumulation, but were most likely due to the effect of dCO2 accumulation in cells. The results obtained here at the 2 L scale have been used for the design of large-scale processes to manufacture the rHA based recombinant vaccine Flublok™ at the 2500 L scale Biotechnol. Bioeng. 2015;112: 2267-2275. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Experimental evidence for carbonate precipitation and CO 2 degassing during sea ice formation
NASA Astrophysics Data System (ADS)
Papadimitriou, S.; Kennedy, H.; Kattner, G.; Dieckmann, G. S.; Thomas, D. N.
2004-04-01
Chemical and stable carbon isotopic modifications during the freezing of artificial seawater were measured in four 4 m 3 tank incubations. Three of the four incubations were inoculated with a nonaxenic Antarctic diatom culture. The 18 days of freezing resulted in 25 to 27 cm thick ice sheets overlying the residual seawater. The ice phase was characterized by a decrease in temperature from -1.9 to -2.2°C in the under-ice seawater down to -6.7°C in the upper 4 cm of the ice sheet, with a concurrent increase in the salinity of the under-ice seawater and brine inclusions of the ice sheet as a result of physical concentration of major dissolved salts by expulsion from the solid ice matrix. Measurements of pH, total dissolved inorganic carbon (C T) and its stable isotopic composition (δ 13C T) all exhibited changes, which suggest minimal effect by biological activity during the experiment. A systematic drop in pH and salinity-normalized C T by up to 0.37 pH SWS units and 376 μmol C kg -1 respectively at the lowest temperature and highest salinity part of the ice sheet were coupled with an equally systematic 13C enrichment of the C T. Calculations based on the direct pH and C T measurements indicated a steady increase in the in situ concentration of dissolved carbon dioxide (CO 2(aq)) with time and increasing salinity within the ice sheet, partly due to changes in the dissociation constants of carbonic acid in the low temperature-high salinity range within sea ice. The combined effects of temperature and salinity on the solubility of CO 2 over the range of conditions encountered during this study was a slight net decrease in the equilibrium CO 2(aq) concentration as a result of the salting-out overriding the increase in solubility with decreasing temperature. Hence, the increase in the in situ CO 2(aq) concentration lead to saturation or supersaturation of the brine inclusions in the ice sheet with respect to atmospheric pCO 2 (≈3.5 × 10 -4 atm). When all physico-chemical processes are considered, we expect CO 2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.
Li, Tong; Piltz, Bastian; Podola, Björn; Dron, Anthony; de Beer, Dirk; Melkonian, Michael
2016-05-01
In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. © 2015 Wiley Periodicals, Inc.
Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.
2013-01-01
We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814
Boatman, Tobias G; Oxborough, Kevin; Gledhill, Martha; Lawson, Tracy; Geider, Richard J
2018-01-01
We have assessed how varying CO 2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m -2 s -1 ) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rP m ). Under iron-limiting concentrations, high-light increased growth rates and rP m ; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO 2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rP m and lowered the iron half saturation constants for growth (K m ). We attribute these CO 2 responses to the operation of the CCM and the ATP spent/saved for CO 2 uptake and transport at low and high CO 2 , respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO 2 , light intensity and iron-limitation. These results are important given predictions of increased dissolved CO 2 and water column stratification (i.e., higher light exposures) over the coming decades.
Greenhouse gas emissions are enhanced by wastewater discharge into New York City coastal estuaries
NASA Astrophysics Data System (ADS)
Brigham, B. A.; O'Mullan, G. D.; Bird, J. A.
2016-12-01
The Hudson River Estuary (HRE) receives significant inputs of untreated wastewater from sewer overflow from New York City (NYC) and other urban areas. These inputs deliver large, concentrated pulses of carbon (C) and nitrogen (N) into the estuary primarily during storm events. We hypothesized that sewage inputs would increase carbon dioxide (CO2) and methane (CH4) efflux from the HRE via two mechanism: (1) direct input of these gases into estuarine surface waters from NYC's wastewater treatment system; and (2) indirect in-situ microbial production in response to the C and N additions. To test these hypotheses, CO2, CH4, dissolved organic C and inorganic N concentrations were measured in both sewage outflow and in estuarine waters. Efflux of CO2 and CH4 were also quantified from sediment cores sampled from Flushing Bay (FB), which is in close proximity to sewage delivery outlets. Wastewater discharge was found to be both a direct input in wastewater and an indirect source of CO2 and CH4 via microbial respiration. Effluent concentrations of CH4 (125 ppm), CO2 (2200 ρCO2), dissolved organic C, ammonium, and nitrate surface water concentrations, were a minimum of 3 times greater than in estuarine surface water adjacent to the sewage delivery area and up to 20 times greater than concentrations found in regional HRE surface waters. Incubation experiments with FB sediment demonstrated that acetate additions stimulated CO2 efflux by + 1.25 and CH4 efflux by +10 times, compared with unamended controls. The magnitude of CH4 produced was +40 times greater than from sediments incubated from a non-sewage affected area with similar salinity levels. However, total C mineralization (6 µg C day-1 g-1 of dry soil) was a small portion of the C amendment indicating negligible priming. These data warrant study on larger regional scales to assess the broader climate impact likely driven by CH4 efflux that results from discharge of untreated wastewater into urban estuaries.
NASA Astrophysics Data System (ADS)
Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.
2015-12-01
The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table. Seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may also be controlled by other oxidative pathways in which oxygen plays an indirect role.
Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions
NASA Astrophysics Data System (ADS)
Borchard, C.; Engel, A.
2012-01-01
Emiliania huxleyi (strain B 92/11) was exposed to different growth, CO2 and temperature conditions in phosphorous controlled chemostats, to investigate effects on organic carbon exudation, and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and for extracellular release (ER) were performed. Chemical analysis included amount and composition of high molecular weight dissolved combined carbohydrates (>1 kDa, HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 μatm pCO2 at 14 °C, and additionally 900 μatm pCO2 at 18 °C simulating a greenhouse ocean scenario. A reduction in growth rate from μ =0.3 d-1 to μ =0.1 d-1 induced the most profound effect on the performance of E. huxleyi, relative to the effect of elevated CO2 and temperature. At μ =0.3 d-1, PP was significantly higher at elevated CO2 and temperature. DO14C production correlated to PO14C production in all cultures, resulting in similar percentages of extracellular release (DO14C/PP × 100; PER) of averaged 3.74 ± 0.94%. At μ =0.1 d-1, PO14C decreased significantly, while exudation of DO14C increased, thus leading to a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at μ =0.1 d-1 at greenhouse conditions. Concentrations of HMW-dCCHO and pCCHO were generally higher at μ =0.1 d-1 compared to μ =0.3 d-1. At μ =0.3 d-1, pCCHO concentration increased significantly along with elevated CO2 and temperature. Despite of high PER, the percentage of HMW-dCCHO was smallest at greenhouse conditions. However, highest TEP-formation was observed under greenhouse conditions, together with a pronounced increase in pCCHO concentration, suggesting a stronger partitioning of PP from DOC to POC by coagulation of exudates. Our results imply that greenhouse condition will enhance exudation processes in E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.
Zadaka, Dikla; Nir, Shlomo; Radian, Adi; Mishael, Yael G
2009-02-01
Atrazine removal from water by two polycations pre-adsorbed on montmorillonite was studied. Batch experiments demonstrated that the most suitable composite poly (4-vinylpyridine-co-styrene)-montmorillonite (PVP-co-S90%-mont.) removed 90-99% of atrazine (0.5-28 ppm) within 20-40 min at 0.367% w/w. Calculations employing Langmuir's equation could simulate and predict the kinetics and final extents of atrazine adsorption. Column filter experiments (columns 20x1.6 cm) which included 2g of the PVP-co-S90%-mont. composite mixed with excess sand removed 93-96% of atrazine (800 ppb) for the first 800 pore volumes, whereas the same amount of granular activated carbon (GAC) removed 83-75%. In the presence of dissolved organic matter (DOM; 3.7 ppm) the efficiency of the GAC filter to remove atrazine decreased significantly (68-52% removal), whereas the corresponding efficiency of the PVP-co-S90%-mont. filter was only slightly influenced by DOM. At lower atrazine concentration (7 ppb) the PVP-co-S90%-mont. filter reduced even after 3000 pore volumes the emerging atrazine concentration below 3 ppb (USEPA standard). In the case of the GAC filter the emerging atrazine concentration was between 2.4 and 5.3 microg/L even for the first 100 pore volumes. Thus, the PVP-co-S90%-mont. composite is a new efficient material for the removal of atrazine from water.
Use of avoidance response by rainbow trout to carbon dioxide for fish self-transfer between tanks
Clingerman, J.; Bebak, J.; Mazik, P.M.; Summerfelt, S.T.
2007-01-01
Convenient, economical, and reduced labor fish harvest and transfer systems are required to realize operating cost savings that can be achieved with the use of much larger and deeper circular culture tanks. To achieve these goals, we developed a new technology for transferring fish based on their avoidance behavior to elevated concentrations of dissolved carbon dioxide (CO2). We observed this behavioral response during controlled, replicated experiments that showed dissolved CO2 concentrations of 60-120 mg/L induced rainbow trout (Oncorhynchus mykiss) to swim out of their 11 m3 "growout" tank, through a transfer pipe carrying a flow with ???23 mg/L dissolved CO2, into a second 11 m3 "harvest" tank. The research was conducted using separate groups of rainbow trout held at commercially relevant densities (40-60 kg/m3). The average weight of fish ranged from 0.15 to 1.3 kg during the various trials. In all trials that used a constant flow of low CO2 water (???23 mg/L) entering the growout tank from the harvest tank, approximately 80-90% of the fish swam from the growout tank, through the transfer pipe, and into the harvest tank after the CO2 concentration in the growout tank had exceeded 60 mg/L. The fish that remained in the growout tank stayed within the area of relatively low CO2 water at the entrance of the transfer pipe. However, the rate of fish transfer from the growout tank to the harvest tank was more than doubled when the diameter of the transfer pipe was increased from 203 to 406 mm. To consistently achieve fish transfer efficiencies of 99%, water flow rate through the fish transfer pipe had to be reduced to 10-20% of the original flow just before the conclusion of each trial. Reducing the flow of relatively low CO2 water near the end of each fish transfer event, restricted the zone of relatively low CO2 water about the entrance of the fish transfer pipe, and provided the stimulus for all but a few remaining fish to swim out of the growout tank. Results indicate that the CO2 avoidance technique can provide a convenient, efficient, more economical, and reduced labor approach for fish transfer, especially in applications using large and well mixed circular culture tanks. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peñas-López, Pablo; van Elburg, Benjamin; Parrales, Miguel A.; Rodríguez-Rodríguez, Javier
2017-06-01
The dissolution of a gas bubble in a confined geometry is a problem of interest in technological applications such as microfluidics or carbon sequestration, as well as in many natural flows of interest in geophysics. While the dissolution of spherical or sessile bubbles has received considerable attention in the literature, the case of a two-dimensional bubble in a Hele-Shaw cell, which constitutes perhaps the simplest possible confined configuration, has been comparatively less studied. Here, we use planar laser-induced fluorescence to experimentally investigate the diffusion-driven transport of dissolved CO2 that propagates from a cylindrical mm-sized bubble in air-saturated water confined in a horizontal Hele-Shaw cell. We observe that the radial trajectory of an isoconcentration front, rf(t ) , evolves in time as approximately rf-R0∝√{t } , where R0 denotes the initial bubble radius. We then characterize the unsteady CO2 concentration field via two simple analytical models, which are then validated against a numerical simulation. The first model treats the bubble as an instantaneous line source of CO2, whereas the second assumes a constant interfacial concentration. Finally, we provide an analogous Epstein-Plesset equation with the intent of predicting the dissolution rate of a cylindrical bubble.
Wingenter, Oliver W; Haase, Karl B; Strutton, Peter; Friederich, Gernot; Meinardi, Simone; Blake, Donald R; Rowland, F Sherwood
2004-06-08
Oceanic iron (Fe) fertilization experiments have advanced the understanding of how Fe regulates biological productivity and air-sea carbon dioxide (CO(2)) exchange. However, little is known about the production and consumption of halocarbons and other gases as a result of Fe addition. Besides metabolizing inorganic carbon, marine microorganisms produce and consume many other trace gases. Several of these gases, which individually impact global climate, stratospheric ozone concentration, or local photochemistry, have not been previously quantified during an Fe-enrichment experiment. We describe results for selected dissolved trace gases including methane (CH(4)), isoprene (C(5)H(8)), methyl bromide (CH(3)Br), dimethyl sulfide, and oxygen (O(2)), which increased subsequent to Fe fertilization, and the associated decreases in concentrations of carbon monoxide (CO), methyl iodide (CH(3)I), and CO(2) observed during the Southern Ocean Iron Enrichment Experiments.
2017-01-01
The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs. PMID:29257874
Factors Influencing Greenhouse Gas Emissions from Three Gorges Reservoir of China
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, X.; Wu, B.; Zeng, Y.
2013-05-01
Three gorges reservoir (TGR) of China located in a subtropical climate region. It has attracted tremendous attentions on greenhouse gas (GHG) emissions from TGR, including carbon dioxide (CO2), methane (CH4) and nitrous Oxide (N2O). Results on monthly fluxes and their spatial and seasonal variations have been determined by a static chamber method and have published elsewhere recently. Here we made further discussions on the factors influencing GHG emissions from TGR. We conclude that the hydrodynamic situation was the key parameter controlling the fluxes. TGR was a typical valley-type reservoir and with a complex terrain in the surrounding catchment, where almost 94% of the region was occupied by mountainous, this situation made the reservoir had sufficient allochthonous organic carbon input origin from eroded soil. But no significant relationship between organic carbon (both dissolved and particulate form) and GHG fluxes, we thought that TGR was not a carbon-limited reservoir on the GHG issue. In the mainstream of the reservoir, dissolved CO2 and CH4 were supersaturation in the water, the relative high flow together with the narrow-deep channel result in great disturbance, which would promote more dissolved gas escape into the atmosphere. This could also approved by the differences in CO2 and CH4 fluxes in different reach from up to downstream of the reservoir. In the reservoir tail water, the mainstream remained the high flow rate, both CO2 and CH4 fluxes is relative high, while downwards, the fluxes were gradually dropped, as after the impoundment of the reservoir, flow rate have greatly decreased. Another evidence was the relative higher CO2 and CH4 fluxes in the rainy season. As the rainy season approaches, TGR would empty the storage to prepare for retention and mitigation. The interplay between water inflows and outflows produced marked variations in the water residence times. During the rainy season times, this could be as short as 6 days with higher water flow rate which would also cause higher disturbance, while for other periods of a year, the reservoir would act more like a lake and residence times could exceed 30 days. Meanwhile the manipulate of the reservoir made the water column not only well mixed top to bottom for most of the year, but also the complete water column has high dissolved oxygen concentrations (> 6 mg/L). Only in April and May is there substantial temperature stratification in mainstream and tributaries. The high dissolved oxygen concentrations even in the deepest parts of the TGR storage minimize the scope for sediment anoxia and less GHG was produced, especially for CH4. In the tributaries, the totally different hydrodynamic situation made these regions a different GHG emission dynamics. After the impoundment, water velocity had greatly decreased, these regions showed more Limnology characteristics compared to the mainstream. This made the tributaries prone to algal blooms which would great affect the surface GHG fluxes, especially for CO2, which would consume the dissolved CO2 in water and cause the intake of atmospheric CO2.
Sensitivity of Ocean Chemistry and Oxygen Change to the Uncertainty in Climate Change
NASA Astrophysics Data System (ADS)
Cao, L.; Wang, S.; Zheng, M.; Zhang, H.
2014-12-01
With increasing atmospheric CO2 and climate change, global ocean is undergoing substantial physical and biogeochemical changes. In particular, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would affect the projection of ocean oxygen and carbonate chemistry. To examine the effect of climate change on ocean oxygen and carbonate chemistry, we used an Earth system model of intermediate complexity to perform simulations that are driven by atmospheric CO2 concentration pathway of RCP 8.5 with climate sensitivity varying from 0.0°C to 4.5 °C. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. Our simulations show that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude, to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Hester, Keith C.; Ussler, William; Walz, Peter M.; Peltzer, Edward T.; Brewer, Peter G.
2011-04-01
Ocean sediment dissolved CH4 concentrations are of interest for possible climate-driven venting from sea floor hydrate decomposition, for supporting the large-scale microbial anaerobic oxidation of CH4 that holds the oceanic CH4 budget in balance, and for environmental issues of the oil and gas industry. Analyses of CH4 from recovered cores near vent locations typically show a maximum of ˜1 mM, close to the 1 atmosphere equilibrium value. We show from novel in situ measurement with a Raman-based probe that geochemically coherent profiles of dissolved CH4 occur rising to 30 mM (pCH4 = 3 MPa) or an excess pressure ˜3× greater than CO2 in a bottle of champagne. Normalization of the CH4 Raman ν1 peak to the ubiquitous water ν2 bending peak provides a fundamental internal calibration. Very large losses of CH4 and fractions of other gases (CO2, H2S) must typically occur from recovered cores at gas rich sites. The new data are consistent with observations of microbial biomass and observed CH4 oxidation rates at hydrate rich sites and support estimates of a greatly expanded near surface oceanic pore water CH4 reservoir.
Vitamin B12 Production by Marine Bacteria in Organic Substrate Limited, Slow Growth Conditions
NASA Astrophysics Data System (ADS)
Villegas-Mendoza, J.; Cajal-Medrano, R.; Maske, H.
2016-02-01
The conditions and processes governing the B12 vitamin dissemination through planktonic organisms are little understood. It is generally assumed that bacteria produce B12 vitamin and the whole auxotrophic plankton community consumes it. We used natural marine bacteria communities and marine bacteria Dinoroseobacter shibae cultures, growing in substrate-limited continuous cultures at low specific growth rates [0.1 to 1 d-1] to measure intracellular and dissolved B12 production, bacterial and viral abundance, particulate organic carbon, and nitrogen, bacterial production, oxygen consumption, carbon dioxide production, ETS activity, and taxonomic composition. We find dissolved B12 vitamin at concentrations between 0 to 1.4 pM with no relation to growth or respiration rates. The intracellular B12 vitamin normalized to cell volume ranged between 1x10-2 to 4.6x10-2 pmol μm3 showing a significant relationship with growth rate [y=0.02(m)1.07; r2=0.78; p≤0.05; y=intracellular B12 production, pmol μm3 day-1; m=specific growth rate, day-1], and respiration rates [y=2.4ln(x)-2.66; r2=0.87; p≤0.05; x=CO2 production, μM day-1]. The vitamin B12 producing bacteria D. shibae, showed a dissolved B12 concentration between 0 and 1.8 pM, whereas intracellular B12 normalized to cell volume varied between 1.1x10-2 to 1.8x10-2 pmol μm-3, responding significantly to growth rate [y=0.01(m)0.56; r2=0.85; p≤0.05], and to respiration rates [y=3.01ln(x)-7.56, r2=0.97, p≤0.05; x=CO2 production, μM day-1]. The lack of correlation of dissolved B12 vitamin with the metabolic activity suggests that the dissolved B12 concentration depends on the interactions among vitamin B12 producers and consumers while the bacterial metabolism is regulating the intracellular production of B12 vitamin.
Dissolved gases in the DOSECC Cajon Pass well: first year results
Evans, William C.; White, L.D.; Kharaka, Y.K.
1988-01-01
Fluid sampled from granitic rock near the 2 km depth in the DOSECC Cajon Pass well contained He, H2, CH4, C2H6, and C2 H4 in concentrations much greater than in air-saturated water. Measured pCO2 values were very low, about 10-5 atm., and the carbon isotopes (??13C = -18.9 per mil) point to an organic source such as plant root respiration for the dissolved carbonate species. No evidence of mantle volatiles was found despite proximity of the well to the San Andreas fault. -from Authors
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Agartan Karacaer, E.; Vargas-Johnson, J.; Cihan, A.; Birkholzer, J. T.
2017-12-01
It is expected that heterogeneity of the deep geologic formation to play a key role in both trapping of supercritical CO2 and its mixing in the formation brine. In previously reported research by the authors, a set of laboratory experiments and field-scale simulations were used to show that convective mixing and diffusion controlled trapping are two important mechanisms that contribute to the dissolution trapping in multilayered systems with homogeneous low-permeability zones such as shale. However, these low-permeability layers (e.g. shale) are not always homogeneous due to their composition and texture variations in addition to the presence of faults, fractures and fissures. In this study, we investigated the potential outcomes of heterogeneity present within these semi-confining low-permeability layers in regards to mixing and storage of dissolved CO2. An intermediate-scale laboratory experiment was designed to investigate the contribution of convective mixing, diffusion controlled trapping and back diffusion to long-term storage of dissolved CO2 in multilayered formations with heterogeneous low-permeability layers. The experiment was performed using a surrogate fluid combination to represent dissolved CO2 and brine under ambient pressure and temperature conditions. After verifying the numerical model with the experimental results, different distributions of the same low-permeability materials having similar volume ratios with the experimentally studied scenario were tested numerically. The experiment and modeling results showed that connectivity of higher permeability material within the semi-confining low-permeability layers contributes to mixing through brine leakage between upper and lower aquifers, storage through diffusion, and in the long term, back diffusion of stored mass due to reversed concentration gradient.
McMahon, Peter B.; Chapelle, Francis H.
1991-01-01
Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported by measured high concentrations of DIC in confining beds (2.6–2.7 mM). Results from this study show that geochemical models of confined aquifer systems must incorporate the effects of adjacent confining beds to reproduce observed groundwater chemistry accurately.
McMahon, Peter B.; Chapelle, Francis H.
1991-01-01
Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported by measured high concentrations of DIC in confining beds (2.6–2.7 mM). Results from this study show that geochemical models of confined aquifer systems must incorporate the effects of adjacent confining beds to reproduce observed groundwater chemistry accurately.
Stable carbon isotopes of HCO3- in oil-field waters-implications for the origin of CO2
Carothers, W.W.; Kharaka, Y.K.
1980-01-01
The ??13C values of dissolved HCO3- in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The ??13C values of total HCO3- indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin. The range of ??13C values for the HCO3- of these waters is -20-28 per mil relative to PDB. This wide range of ??13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high ??13C values of HCO3- in the shallow production zones where the subsurface temperatures are less than 80??C. The extremely low ??13C values (< -10 per mil) are obtained in waters where concentrations of SO42- are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42- + CH3COO- ??? 2HCO3- + HS-). The high ??13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO- + H2O ai HCO3- + CH4). Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80??C. The ??13C values of HCO3- for waters from zones with temperatures greater than 100??C result from isotopic equilibration between CO2 and CH4. At these high temperatures, ??13C values of HCO3- decrease with increasing temperatures and decreasing concentrations of these acid anions. ?? 1980.
NASA Astrophysics Data System (ADS)
Deirmendjian, Loris; Abril, Gwenaël
2018-03-01
Streams and rivers emit significant amounts of CO2 and constitute a preferential pathway of carbon transport from terrestrial ecosystems to the atmosphere. However, the estimation of CO2 degassing based on the water-air CO2 gradient, gas transfer velocity and stream surface area is subject to large uncertainties. Furthermore, the stable isotope signature of dissolved inorganic carbon (δ13C-DIC) in streams is strongly impacted by gas exchange, which makes it a useful tracer of CO2 degassing under specific conditions. For this study, we characterized the annual transfers of dissolved inorganic carbon (DIC) along the groundwater-stream-river continuum based on DIC concentrations, stable isotope composition and measurements of stream discharges. We selected a homogeneous, forested and sandy lowland watershed as a study site, where the hydrology occurs almost exclusively through drainage of shallow groundwater (no surface runoff). We observed the first general spatial pattern of decreases in pCO2 and DIC and an increase in δ13C-DIC from groundwater to stream orders 1 and 2, which was due to the experimentally verified faster degassing of groundwater 12C-DIC compared to 13C-DIC. This downstream enrichment in 13C-DIC could be modelled by simply considering the isotopic equilibration of groundwater-derived DIC with the atmosphere during CO2 degassing. A second spatial pattern occurred between stream orders 2 and 4, consisting of an increase in the proportion of carbonate alkalinity to the DIC accompanied by the enrichment of 13C in the stream DIC, which was due to the occurrence of carbonate rock weathering downstream. We could separate the contribution of these two processes (gas exchange and carbonate weathering) in the stable isotope budget of the river network. Thereafter, we built a hydrological mass balance based on drainages and the relative contribution of groundwater in streams of increasing order. After combining with the dissolved CO2 concentrations, we quantified CO2 degassing for each stream order for the whole watershed. Approximately 75% of the total CO2 degassing from the watershed occurred in first- and second-order streams. Furthermore, from stream order 2-4, our CO2 degassing fluxes compared well with those based on stream hydraulic geometry, water pCO2, gas transfer velocity, and stream surface area. In first-order streams, however, our approach showed CO2 fluxes that were twice as large, suggesting that a fraction of degassing occurred as hotspots in the vicinity of groundwater resurgence and was missed by conventional stream sampling.
The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice
NASA Astrophysics Data System (ADS)
Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.
2016-02-01
Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible that the higher pCO2 in Arctic sea ice brines compared with those from the Antarctic sea ice were due to an elevated bacterial respiration, sustained by higher riverine DOC loads. These conclusions should hold for locations and time frames when bacterial activity is relatively dominant compared to algal activity, considering our experimental conditions.
Kong, Yanli; Kang, Jing; Shen, Jimin; Chen, Zhonglin; Fan, Leitao
2017-01-01
The influence of humic acid (HA) on the removal of arsenic by FeCl 3 was systematically studied in this paper. Jar tests were performed to investigate the influence on arsenic during FeCl 3 coagulation of the pH adjusting method, the initial As/Fe ratio, the equilibrium As concentration, and co-occurring anions and cations. Compared with results in HA-free systems, the removal trends of arsenic in HA solutions were quite different. It was found that As(V) removal was higher at low equilibrium concentration, yet the opposite was true for As(III) removal. The presence of HA influenced the effective number of active sites for arsenic removal by FeCl 3 flocculation. In addition, in the presence of HA, the impacts of co-existing solutions on arsenic removal were also different from that of an HA-free system. This study examined the influence of co-occurring anions, such as phosphate, sulfate, and silicate on arsenic removal, depending on their ability to compete for sorption sites and to hinder or facilitate the aggregation of ferric hydroxide flocs. The presence of Ca 2+ or Cd 2+ significantly increased arsenic removal at higher pH. Low concentrations of dissolved HA and high concentrations of colloid affected the adsorption of arsenic onto iron oxide. The influence of HA on the adsorption of arsenic onto iron oxide primarily depended on the relative content of the dissolved and mineral combination states of HA and the interface combination forms.
McGee, K.A.; Gerlach, T.M.
1998-01-01
Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.
Dissolved gas concentrations of the geothermal fluids in Taiwan
NASA Astrophysics Data System (ADS)
Chen, Ai-Ti; Yang, Tsanyao Frank
2010-05-01
Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.
Dissolved strontium and calcium levels in the tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Steiner, Zvi; Sarkar, Amit; Turchyn, Alexandra
2017-04-01
Measurements of seawater alkalinity and dissolved calcium concentrations along oceanic transects are often used to calculate calcium carbonate precipitation and dissolution rates. Given that the distribution coefficient of strontium in CaCO3 varies greatly between different groups of organisms, adding precise measurements of dissolved strontium concentrations provides opportunities to also track relative contributions of these different groups to the regional CaCO3 cycle. However, there are several obstacles to this approach. These obstacles include unresolved systematic discrepancies between seawater calcium and alkalinity data, very large analytical noise around the calcium concentration measurements and the unconstrained role of acantharia (radiolarian precipitating SrSO4 skeletons) in the marine strontium cycle. During the first cruise of the second International Indian Ocean Expedition (IIOE-2) water samples were collected along 67°E from 9°N to 5°S to explore the dissolution rate of calcium carbonate in the water. The dissolution rate can be calculated by combining measurements of water column potential alkalinity with calcium and strontium concentrations measured by ICP-OES and calcium concentration measurements using isotope dilution thermal ionization mass spectrometry (ID-TIMS). CaCO3 mineral saturation state calculated using pH and total alkalinity suggests that along 67°E, the aragonite saturation horizon lays at depth of 500 m on both sides of the equator. Across the cruise transect, dissolved strontium concentrations increase by 2-3% along the thermocline suggesting rapid recycling of strontium rich phases. This is particularly evident just below the thermocline at 8-9°N and below 1000 m water depth, south of the equator. The deep, southern enrichment in strontium does not involve a change in the Sr/Ca ratio, suggesting that this strontium enrichment is related to CaCO3 dissolution. In contrast, in the intermediate waters of the northern part of the section Sr/Ca ratios increase significantly. This finding is opposite to expectations based on plankton net tows collected during the cruise, where we found high abundance of acantharia in the southern parts of the section, while the preferential enrichment in strontium is in the northern part of the section. When potential alkalinity is calculated by correcting the normalized total alkalinity for the effects of nutrient accumulation below the thermocline, we observe that the increase in alkalinity begins at 100 m, well above the aragonite saturation horizon. The total change in dissolved calcium concentrations between 0 and 2000 m is similar to the total change in potential alkalinity yet their profiles do not overlap; calcium concentrations increase faster than total alkalinity between 100-1000 m and the gap is closed between 1000-1500 m. This suggests an additional, unaccounted process that is likely occurring in the Red Sea and Persian Gulf, the intermediate water sources of this region.
Hoch, A.R.; Reddy, M.M.; Drever, J.I.
1996-01-01
Dissolution experiments using augite (Mg0.87Ca0.85Fe0.19Na0.09Al0.03Si2O6) and diopside (Mg0.91Ca0.93Fe0.07Na0.03Al0.03Si2O6) were conducted in flow-through reactors (5-ml/h flow rate). A pH of 5.8 was maintained by bubbling pure CO2 through a solution of 0.01 M KHCO3 at 25°C. Two experiments were run for each pyroxene type. In one experiment dissolved O2 concentration in reactors was 0.6 (±0.1) ppm and in the second dissolved O2 was 1.5 (±0.1) ppm. After 60 days, augite dissolution rates (based on Si release) were approximately three times greater in the 1.5 ppm. dissolved O2 experiments than in the sealed experiments. In contrast, diopside dissolution rates were independent of dissolved O2 concentrations. Preliminary results from the augite experiments suggest that dissolution rate is directly related to oxidation of iron. This effect was not observed in experiments performed on iron-poor diopside. Additionally, dissolution rates of diopside were much slower than those of augite, again suggesting a relationship between Fe content, Fe oxidation and dissolution rates.
Using CDOM optical properties for estimating DOC concentrations and pCO 2 in the Lower Amazon River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Aline de Matos; Kampel, Milton; Vantrepotte, Vincent
Colored dissolved organic matter (CDOM) is largely responsible for the optical properties of freshwaters and coastal areas and can be used as a proxy to assess the non-optical carbon content as the dissolved organic carbon (DOC) and the partial pressure of carbon dioxide (pCO 2). Nevertheless, riverine studies that explores the former relationship are more challenging due to the spectral mixture caused by the high content of inorganic materials in the suspended sediment. Here we evaluate the spatial-temporal variability of CDOM, DOC and pCO 2, as well as the potential of CDOM absorption coefficient (aCDOM(412)) for estimating DOC concentration andmore » pCO 2 along the lower Amazon River. Our results revealed differences in the dissolved organic matter (DOM) quality between clear water (CW) tributaries and the Amazon River mainstem. A linear relationship between DOC and CDOM was observed when tributaries and mainstem are evaluated separately (Amazon waters: N=42, R2=0.74; CW: N= 13, R2 = 0.57). However, this linear relationship was not observed during periods of higher rainfall and river discharge, requiring a model specific to these time periods to be developed (N = 25, R2 = 0.58). A strong linear positive relation was found between aCDOM(412) and pCO 2( N=69, R2=0.65) along the lower river. pCO 2 was less affected by the optical difference between tributaries and mainstem water or by the presence of higher hygrometric conditions when compared to CDOM to DOC relationships. Including the river water temperature in the model improves our ability to estimate pCO 2 (N=69; R2 = 0.80). Our results also illustrate the complexity of DOM temporal dynamics in the lower Amazon River where the occurrence of extreme high and low discharge due to factors such as El Niño, can significantly alter the expected seasonal oscillation, as was the case during this study period. The ability to remotely assess both DOC and pCO 2 from CDOM optical properties highlight the importance of using remote sensing data for monitoring carbon dynamics in large running water systems worldwide.« less
Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.
2014-01-01
To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.
Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1992-01-01
A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.
Trace element distributions in the water column near the Deepwater Horizon well blowout.
Joung, DongJoo; Shiller, Alan M
2013-03-05
To understand the impact of the Deepwater Horizon well blowout on dissolved trace element concentrations, samples were collected from areas around the oil rig explosion site during four cruises in early and late May 2010, October 2010, and October 2011. In surface waters, Ba, Fe, Cu, Ni, Mn, and Co were relatively well correlated with salinity during all cruises, suggesting mixing with river water was the main influence on metal distributions in these waters. However, in deep oil/gas plumes (1000-1400 m depth), modestly elevated concentrations of Co and Ba were observed in late May, compared with postblowout conditions. Analysis of the oil itself along with leaching experiments confirm the oil as the source of the Co, whereas increased Ba was likely due to drilling mud used in the top kill attempt. Deep plume dissolved Mn largely reflected natural benthic input, though some samples showed slight elevation probably associated with the top kill. Dissolved Fe concentrations were low and also appeared largely topographically controlled and reflective of benthic input. Estimates suggest that microbial Fe demand may have affected the Fe distribution but probably not to the extent of Fe becoming a growth-limiting factor. Experiments showed that the dispersant can have some limited impact on dissolved-particulate metal partitioning.
Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.
2007-01-01
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza
2017-04-01
Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.
Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar
2016-01-01
Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer.
Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar
2016-01-01
Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer. PMID:28002477
NASA Astrophysics Data System (ADS)
Rodríguez, F.; Hernández, P. A.; Padrón, E.; Pérez, N. M.; Sumino, H.; Melián, G. V.; Padilla, G. D.; Barrancos, J.; Dionis, S.; Nolasco, D.; Calvo, D.; Hernández, I.; Peraza, M. D.
2012-04-01
El Hierro Island is the south westernmost and the youngest island of the Canary archipelago (<1.2 My). Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 on October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of 12 October a large light-green coloured area was observed in the sea to the south of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical program on August 2011 in order to evaluate the temporal evolution of dissolved gases on four different observation points (vertical and horizontal wells) of El Hierro. Three wells are located on the north of the island (where the seismic activity occurred at the beginning of the volcano-seismic unrest) and one horizontal well (gallery) in the south. At each observation point the concentration of dissolved helium, CO2, N2, O2 and Ar and the isotopic composition of He, C-CO2 and Ar have been measured three times per week. Significant increases on the dissolved gases content, mainly on CO2 and He/CO2 ratio, have been measured at all the observation points prior to the increasing of released seismic energy. Isotopic composition of dissolved helium, measured as 3He/4He ratio, showed an significant increase (from 1-3 RA up to 7.2 RA, being RA the isotopic 3He/4He ratio on air) at all the observation points 20 days before the occurrence of the submarine eruption and these relatively high 3He/4He values have been maintained along the volcanic unrest period. The isotopic composition of CO2 has showed also significant changes in relation to the release of seismic energy. The results observed on this dissolved gases study have been tremendously beneficial on the volcanic surveillance tools to study and forecast the evolution of the seismic-volcanic crisis.
Doctor, D.H.; Kendall, C.; Sebestyen, S.D.; Shanley, J.B.; Ohte, N.; Boyer, E.W.
2008-01-01
The stable isotopic composition of dissolved inorganic carbon (??13C-DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed ?? 13C-DIC increased between 3-5??? from the stream source to the outlet weir approximately 0??5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in ??13C-DIC of 2.4 ?? 0??1??? per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased ?? 13C-DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream ??13C-DIC values, points of localized groundwater seepage into the stream were identified by decreases in ??13C-DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, ??13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright ?? 2007 John Wiley & Sons, Ltd.
Dinsmore, K J; Billett, M F; Dyson, K E
2013-07-01
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5-year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2 , CH4 and N2 O. We show that short-term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in-stream temperature-dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m(-2) yr(-1) ), followed by CO2 evasion (10.0 g C m(-2) yr(-1) ). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere-atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change. © 2013 Blackwell Publishing Ltd.
Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.
2016-12-01
Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.
Air-sea CO2 flux pattern along the southern Bay of Bengal waters
NASA Astrophysics Data System (ADS)
Shanthi, R.; Poornima, D.; Naveen, M.; Thangaradjou, T.; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.
2016-12-01
Physico-chemical observations made from January 2013 to March 2015 in coastal waters of the southwest Bay of Bengal show pronounced seasonal variation in physico-chemical parameters including total alkalinity (TA: 1927.390-4088.642 μmol kg-1), chlorophyll (0.13-19.41 μg l-1) and also calculated dissolved inorganic carbon (DIC: 1574.219-3790.954 μmol kg-1), partial pressure of carbon dioxide (pCO2: 155.520-1488.607 μatm) and air-sea CO2 flux (FCO2: -4.808 to 11.255 mmol Cm-2 d-1). Most of the physical parameters are at their maximum during summer due to the increased solar radiation at cloud free conditions, less or no riverine inputs, and lack of vertical mixing of water column which leads to the lowest nutrients concentration, dissolved oxygen (DO), biological production, pCO2 and negative flux of CO2 to the atmosphere. Chlorophyll and DO concentrations enhanced due to increased nutrients during premonsoon and monsoon season due to the vertical mixing of water column driven by the strong winds and external inputs at respective seasons. The constant positive loading of nutrients, TA, DIC, chlorophyll, pCO2 and FCO2 against atmospheric temperature (AT), lux, sea surface temperature (SST), pH and salinity observed in principal component analysis (PCA) suggested that physical and biological parameters play vital role in the seasonal distribution of pCO2 along the southwest Bay of Bengal. The annual variability of CO2 flux clearly depicted that the southwest Bay of Bengal switch from sink (2013) to source status in the recent years (2014 and 2015) and it act as significant source of CO2 to the atmosphere with a mean flux of 0.204 ± 1.449 mmol Cm-2 d-1.
Holck, Askild L; Pettersen, Marit K; Moen, Marie H; Sørheim, Oddvin
2014-07-01
Modified atmosphere packaging containing CO2 is widely used for extending the shelf life of chicken meat. Active packaging by adding CO2 emitter sachets to packages of meat is an alternative to traditional modified atmosphere packaging. The purpose of the study was to investigate the shelf life of chicken filets under different CO2 concentrations at 4°C storage. The inhibition of microbial growth was proportional to the CO2 concentration. Storage in 100% CO2 both with and without a CO2 emitter sachet gave a microbiological shelf-life extension of 7 days compared with 60% CO2. Carnobacterium divergens, Carnobacterium sp., and Lactococcus sp. were the dominating species at the end of the storage period. During storage in pure CO2, the carbon dioxide dissolved in the meat and caused the collapse of the packages. The resulting squeeze of the meat lead to a severe increase in drip loss. The drip loss was reduced profoundly by using the CO2 emitting sachet in the packages. The addition of CO2 emitters can easily be implemented at industrial packaging lines without reduction in production efficiency.
NASA Astrophysics Data System (ADS)
Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.
2009-12-01
Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO concentration were observed. Apparently different vertical distributions between H2 and CO concentration were revealed at all the observed stations. At a station where N-nutrient was depleted through surface mixed layer, H2 was supersaturated at the surface while CO concentration was constant through the depths. In contrast, at another station where some amount of terrestrial humic matter was introduced into the surface, H2 concentration was constantly undersaturated through the depth while vertical distribution of CO concentration showed the highest at the surface and exponentially decreased to deep. These facts suggest that H2 production involved with nitrogen fixation played an important role for H2 behavior in ocean water while photochemical H2 production would be a minor process. In addition to the surface, H2 supersaturation accoumpanied with little CO concentration rise were observed at depths just below the mixed layer in pycnocline with Chlorophyll maximum.
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, Kevin G.
2018-05-01
The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.
Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.
Wong, Douglas; Vasanthan, Thava; Ozimek, Lech
2013-12-15
This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Huaxin; Jiao, Ruyuan; Wang, Fang; Zhang, Lu; Yan, Weijin
2016-12-01
Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO 2 using high-performance size-exclusion chromatography (HPSEC) with UV 254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO 2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO 2 . The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO 2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, <1 kDa); low MW (LMW, 1-2.5 kDa); intermediate MW (IMW, 2.5-3.5 kDa); high MW (HMW, 3.5-6 kDa); and super-high MW (SMW, > 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMW p ) was particularly high in wetlands. We found that pCO 2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMW p . These data improve our understanding of the MW of bioavailable DOC and its conversion to CO 2 . The present results demonstrate that both the content and characteristics of DOC significantly affect pCO 2 . pCO 2 and DOC must be studied further to help understanding the role of the wetland on the regional CO 2 budget. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Mujahid, A.; Bange, H. W.; Notholt, J.
2016-02-01
Southeast Asian rivers convey large amounts of organic carbon, but little is known about the fate of this terrestrial material in estuaries. Although Southeast Asia is, by area, considered a hotspot of estuarine carbon dioxide (CO2) emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, as well as CO2 partial pressures and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by carbon-rich peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. Carbon-to-nitrogen ratios suggest that dissolved organic matter (DOM) is largely of terrestrial origin. We found evidence that a large fraction of this carbon is respired. The median pCO2 in the estuaries ranged between 640 and 5065 µatm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-268 mol m-2 yr-1, which is high compared to other studies from tropical and subtropical sites. Estimates derived from a merely wind-driven turbulent diffusivity model were considerably lower, indicating that these models might be inappropriate in estuaries, where tidal currents and river discharge make an important contribution to the turbulence driving water-air gas exchange. Although an observed diurnal variability of CO concentrations suggested that CO was photochemically produced, the overall concentrations and fluxes were relatively moderate (0.4-1.3 nmol L-1 and 0.7-1.8 mmol m-2 yr-1) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth and thereby inhibiting CO photoproduction. We concluded that estuaries in this region function as an efficient filter for terrestrial organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas rivers deliver 0.3 ± 0.2 Tg C yr-1 to the South China Sea as organic carbon and their mid-estuaries release approximately 0.4 ± 0.2 Tg C yr-1 into the atmosphere as CO2.
One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.
NASA Astrophysics Data System (ADS)
Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Avino, Rosario; Monopoli, Carmine; Inguaggiato, Salvatore; Frondini, Francesco
2010-05-01
The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L'Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the gases emitted by natural manifestations located in the northern Apennines which are fed by deep pressurized reservoirs. Furthermore a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers occurred respect to the July 1997 samples. This increase, followed by a gentle decline of the anomaly, can be compatible with the occurrence of an episode of deep CO2 degassing concurrently with the earthquakes. The origin of this regional variation is under investigation and, at the present moment, an unambiguous interpretation of the data is not possible because the lack of a systematic monitoring of the springs before the seismic events and because eventual seasonal effects on observed variation in CO2 flux are still under investigation.
Al-Nehlawi, A; Saldo, J; Vega, L F; Guri, S
2013-05-01
The effects of an aerobic modified atmosphere packaging (MAP) (70% CO2, 15% O2 and 15% N2) with and without a CO2 3-h soluble gas stabilization (SGS) pre-treatment of chicken drumsticks were determined for various package and product quality characteristics. The CO2 dissolved into drumsticks was determined. The equilibrium between CO2 dissolved in drumsticks and CO2 in head space was reached within 48h after packaging, showing highest values of CO2 in SGS pre-treated samples. This greater availability of CO2 resulted in lower counts of TAB and Pseudomonas in SGS than in MAP drumsticks. Package collapse was significantly reduced in SGS samples. The average of CO2 dissolved in the MAP treatment was 567mg CO2kg(-1) of chicken and, 361mg CO2kg(-1) of chicken during the MAP treatment, in SGS pre-treated samples. This difference could be the quantity of CO2 dissolved during SGS pre-treatment. These results highlight the advantages of using SGS versus traditional MAP for chicken products preservation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reactivity of dissolved- vs. supercritical-CO2 phase toward muscovite basal surfaces
NASA Astrophysics Data System (ADS)
Wan, J.; Tokunaga, T. K.; Kim, Y.; Wang, S.; Altoe, M. V. P.; Ashby, P. D.; DePaolo, D.
2015-12-01
The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.
Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study
NASA Astrophysics Data System (ADS)
Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong
2018-05-01
This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.
Geochemical variations during the 2012 Emilia seismic sequence
NASA Astrophysics Data System (ADS)
Sciarra, Alessandra; Cantucci, Barbara; Galli, Gianfranco; Cinti, Daniele; Pizzino, Luca
2015-04-01
Several geochemical surveys (soil gas and shallow water) were performed in the Modena province (Massa Finalese, Finale Emilia, Medolla and S. Felice sul Panaro), during 2006-2014 period. In May-June 2012, a seismic sequence (main shocks of ML 5.9 and 5.8) was occurred closely to the investigated area. In this area 300 CO2 and CH4 fluxes measurements, 150 soil gas concentrations (He, H2, CO2, CH4 and C2H6), 30 shallow waters and their isotopic analyses (δ13C- CH4, δD- CH4 and δ13C- CO2) were performed in April-May 2006, October and December 2008, repeated in May and September 2012, June 2013 and July 2014 afterwards the 2012 Emilia seismic sequences. Chemical composition of soil gas are dominated by CH4 in the southern part by CO2 in the northern part. Very anomalous fluxes and concentrations are recorded in spot areas; elsewhere CO2 and CH4 values are very low, within the typical range of vegetative and of organic exhalation of the cultivated soil. After the seismic sequence the CH4 and CO2 fluxes are increased of one order of magnitude in the spotty areas, whereas in the surrounding area the values are within the background. On the contrary, CH4 concentration decrease (40%v/v in the 2012 surveys) and CO2 concentration increase until to 12.7%v/v (2013 survey). Isotopic gas analysis were carried out only on samples with anomalous values. Pre-seismic data hint a thermogenic origin of CH4 probably linked to leakage from a deep source in the Medolla area. Conversely, 2012/2013 isotopic data indicate a typical biogenic origin (i.e. microbial hydrocarbon production) of the CH4, as recognized elsewhere in the Po Plain and surroundings. The δ13C-CO2 value suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived) probably related to anaerobic oxidation of heavy hydrocarbons. Water samples, collected from domestic, industrial and hydrocarbons exploration wells, allowed us to recognize different families of waters. Waters are meteoric in origin and, apart one sample, are not thermally anomalous. Stable isotopes of H and O point out the absence of mixing with connate waters, prolonged interaction with the host-rock at high temperature and/or heavy gas-water exchange at depth. Isotopic carbon composition emphasizes its organic (i.e. shallow) origin; only "La Canonica" site, the deepest well sampled in this study, shows a probable deep(er) provenance of dissolved carbon. Waters trend away from the atmospheric end-member composition, dissolving CO2 or CH4 depending on their redox state. Dissolved radon activity is very low, likely due to the particular hydrogeological setting of the study area (i.e. the presence of waters with long residence times in the considered aquifers). Obtained results highlight a different behavior before and after the seismic events, proved also by the different carbon isotopic signature of CH4. These variations could be produced by increasing of bacterial (e.g. peat strata) and methanogenic fermentation processes in the first meters of the soil.
NASA Astrophysics Data System (ADS)
Pain, A.; Young, C. R.; Martin, J. B.
2016-12-01
The land-sea interface is a hotspot for organic carbon (OC) remineralization reactions, which generate greenhouse gases (CO2 and CH4). Intense processing of terrestrial organic carbon occurs in surface estuaries, and the extent of reactions depends in part on OC reactivity. Subterranean estuaries (STEs) are ubiquitous along coastlines but understudied relative to surface estuaries. However, they could possess many of the same characteristics that lead to intense OC processing in surface estuaries and perhaps be even more important to C cycling considering their small water-sediment ratios. We assess OC processing in three seepage faces discharging to Indian River Lagoon, FL (Eau Gallie North, EGN; Riverwalk Park, RWP; and Banana River Lagoon, BRL), by measuring the quantity and quality of dissolved OC along with concentrations and δ13C signatures of dissolved CO2 and CH4. OC quality is assessed with fluorescence and PARAFAC modeling to depict changes in the abundance of reactive OC. CH4 concentrations vary by orders of magnitude between seepage faces, with the highest concentrations of 100 µM at RWP. RWP is more reducing than EGN and BRL and also contains the highest abundance of labile protein-like organic matter, which may fuel more extensive OC remineralization reactions. Residuals of salinity-based concentration and isotopic mixing models between lagoon surface water and inland groundwater indicate changes in concentration and isotopic compositions of CO2 and CH4 in the STE is due to reactions rather than mixing. At EGN and BRL, CO2 and CH4 are produced at a molar ratio of CO2:CH4 = 4 and 1.5, respectively, suggesting predominant methanogenesis via acetate fermentation, which produces CO2:CH4 ratios of 1. At RWP, CO2 is consumed as CH4 is produced at a molar ratio of -0.8, near the expected change in CO2:CH4 of -1 for methanogenesis via CO2 reduction. RWP δ13C-CH4 signatures are more depleted (-81‰) than EGN and BRL (-55‰), further supporting different methanogenesis pathways at the sites. OC quality may therefore not only regulate the extent of methanogenesis but also methanogenesis pathways in STEs. Why the sites differ in OC reactivity is unknown, but fluxes of greenhouse gases from STEs appear to depend on variations in OC reactivity in Indian River Lagoon seepage faces and perhaps other STEs globally.
NASA Astrophysics Data System (ADS)
Jones, M. R.; Soule, S. A.; Gonnermann, H. M.; Le Roux, V.; Clague, D. A.
2018-07-01
Quantitative metrics for eruption rates at mid-ocean ridges (MORs) would improve our understanding of the structure and formation of the uppermost oceanic crust and would provide a means to link volcanic processes with the conditions of the underlying magmatic system. However, these metrics remain elusive because no MOR eruptions have been directly observed. The possibility of disequilibrium degassing in mid-ocean ridge basalts (MORB), due to high eruptive depressurization rates, makes the analysis of volatile concentrations in MORB glass a promising method for evaluating eruption rates. In this study, we estimate magma ascent and lava flow emplacement rates during the 2011 eruption of Axial Seamount based on numerical modeling of diffusion-controlled bubble growth and new measurements of dissolved volatiles, vesicularity, and vesicle size distributions in erupted basalts. This dataset provides a unique view of the variability in magma ascent (∼0.02-1.2 m/s) and lava flow rates (∼0.1-0.7 m/s) during a submarine MOR eruption based on 50 samples collected from a >10 km long fissure system and three individual lava flow lobes. Samples from the 2011 eruption display an unprecedented range in dissolved CO2 concentrations, nearly spanning the full range observed on the global MOR system. The variable vesicularity and dissolved CO2 concentrations in these samples can be explained by differences in the extent of degassing, dictated by flow lengths and velocities during both vertical ascent and horizontal flow along the seafloor. Our results document, for the first time, the variability in magma ascent rates during a submarine eruption (∼0.02-1.2 m/s), which spans the global range previously proposed based on CO2 degassing. The slowest ascent rates are associated with hummocky flows while faster ascent rates produce channelized sheet flows. This study corroborates degassing-based models for eruption rates using comparisons with independent methods and documents the relationship between eruption dynamics, magma ascent rates, and the morphology of eruptive products. Globally, this approach allows interrogation of the processes that govern mid-ocean ridge eruptions and influence the formation of the oceanic crust.
NASA Astrophysics Data System (ADS)
Goulsbra, Claire; Evans, Martin; Allott, Tim; Evans, Chris; Flint, Rebecca; Mcmorron, Katherine
2014-05-01
In eroding peatland systems POC is the dominant component of the fluvial carbon flux, with POC flux to up to circa 80 g C m-2 yr-1. The fate of this POC has remained uncertain, however, and at present many carbon models exclude POC flux from estimations of atmospherically active carbon budgets. Recent work on headwater systems with high POC concentrations has demonstrated that POC:DOC ratios decrease rapidly downstream, hypothesised to be due the physical and microbial breakdown of POC in the fluvial system and transformation of soil carbon to dissolved and gaseous phases. To assess this hypothesis, laboratory investigations of the potential for transformation of POC to dissolved and gaseous forms were undertaken. POC derived from an exposed gully face was mixed with stream waters collected from Upper North Grain, an eroded peatland catchment in the South Pennines, UK, to simulate typical storm flow suspended sediment concentrations. The solutions were agitated using a magnetic stirring system for one week and subsamples of the solution were extracted at intervals of 0.5, 1, 1.5, 2, 3, 4, 5 and 6 hours, and 1, 2, 3, 4, and 7 days. Samples were analysed for POC and DOC concentration using a Shimadzu total carbon analyser and absorbance was measured spectrophotometrically at 254, 400 465 and 665 nm wavelengths as a proxy for DOC quality. In a parallel experiment CO2 emissions to the mixing flask were measured using an infra-red gas analyser (IRGA). To isolate the role of microbial versus physical breakdown, both experiments were replicated with POM and streamwater which had been sterilised by gamma irradiation. The experiments were further repeated to assess the impact of variations in pH and the initial DOC concentration of the stream water on rates of POC conversion to on DOC and CO2. The results of these experiments will be presented here. Initial results show that peat-derived POC was found to be reactive in streamwater, leading to a rapid in DOC within 24 hours of the start of mixing experiments, thought to occur via physicochemical processes. Mixing of POC with streamwater also led to rapid CO2 emissions, possibly via a DOC intermediary, and overall CO2 production exceeded that of DOC. These results strongly indicate that POC is actively converted to other carbon forms in high-POC waters over the timescale of water residence in typical UK river systems, and that a high proportion of this carbon is emitted to the atmosphere as CO2.
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.
2008-01-01
Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
NASA Technical Reports Server (NTRS)
Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.
1986-01-01
Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.
Loring, John S; Thompson, Christopher J; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T; Rosso, Kevin M
2012-05-17
In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.
The effect of membrane filtration on dissolved trace element concentrations
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.
The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin
NASA Astrophysics Data System (ADS)
Mann, P. J.; Spencer, R. G. M.; Dinga, B. J.; Poulsen, J. R.; Hernes, P. J.; Fiske, G.; Salter, M. E.; Wang, Z. A.; Hoering, K. A.; Six, J.; Holmes, R. M.
2014-04-01
Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598-15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.
Functional Traits for Carbon Access in Macrophytes
Pfister, Catherine A.; Wootton, J. Timothy
2016-01-01
Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells. Because species with these carbon concentrating mechanisms (CCMs) are non-randomly distributed in ecosystems, we ask whether there is a phylogenetic pattern to the distribution of CCMs among algal species. To determine macrophyte traits that influence carbon uptake, we assessed 40 common macrophyte species from the rocky intertidal community of the Northeast Pacific Ocean to a) query whether macrophytes have a CCM and b) determine the evolutionary history of CCMs, using ancestral state reconstructions and stochastic character mapping based on previously published data. Thirty-two species not only depleted CO2, but also concentrated and depleted HCO3-, indicative of a CCM. While analysis of CCMs as a continuous trait in 30 families within Phylum Rhodophyta showed a significant phylogenetic signal under a Brownian motion model, analysis of CCMs as a discrete trait (presence or absence) indicated that red algal families are more divergent than expected in their CCM presence or absence; CCMs are a labile trait within the Rhodophyta. In contrast, CCMs were present in each of 18 Ochrophyta families surveyed, indicating that CCMs are highly conserved in the brown algae. The trait of CCM presence or absence was largely conserved within Families. Fifteen of 23 species tested also changed the seawater buffering capacity, or Total Alkalinity (TA), shifting DIC composition towards increasing concentrations of HCO3- and CO2 for photosynthesis. Manipulating the external TA of the local environment may influence carbon availability in boundary layers and areas of low water mixing, offering an additional mechanism to increase CO2 availability. PMID:27415005
Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85
Waddell, K.M.; Seiler, R.L.; Solomon, D.K.
1986-01-01
During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from the tailings was 330 mg/L, and beneath and downgradient from the tailings the concentrations were 864 and 1,240 mg/L. The minimum volume of contaminated water in the confined aquifer was estimated to be about 12,000 acre-ft. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten
2013-04-01
Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among samples did not affect the precision of the analysis of natural abundance and labeled samples. Natural DOM, derived from different soils and assessed at various concentrations, was measured with similar good analytical performance, and also tested for the effect of freezing and re-dissolving. We found good performance of TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance, handling, rapid sample preparation (no pretreatment) This preliminary assessment highlights wide-ranging opportunities for further research on concentrations and isotopic signatures by TOC-IRMS to elucidate the role of dissolved carbon in terrestrial and aquatic systems.
Madeddu, Silvia; Priestnall, Michael; Godoy, Erik; Kumar, R Vasant; Raymahasay, Sugat; Evans, Michael; Wang, Ruofan; Manenye, Seabelo; Kinoshita, Hajime
2015-01-01
The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2.
Simulating the Fate and Transport of an Acid Mine Drainage Release Using the WASP model
NASA Astrophysics Data System (ADS)
Knightes, C. D.; Kate, S.; Avant, B. K.; Cyterski, M.; Washington, J.; Prieto, L.
2016-12-01
On August 5, 2015, approximately 3 million gallons of acid mine drainage were released from the Gold King Mine into Cement Creek in the San Juan River watershed (CO, NM, UT). The release further mobilized additional metals, which resulted in a large mass of solids and dissolved metals entering Cement Creek. These metals were released into the Animas River. As the release acidity was neutralized, the metals precipitated and formed the visually noticeable "yellow boy," which flowed down the San Juan River. We applied the Water Quality Analysis Simulation Program (WASP) using empirically based parameterization to simulate and describe the movement of the plume and total and dissolved concentrations of all metals, including Arsenic, Copper, Lead, and Zinc. We estimated that the plume took between approximately 1 to 3 days to pass any given location. The peak concentration of the plume took about 2 hours to reach Silverton, CO (16 rkm), 1.5 days to reach Durango, CO (94 rkm), 2.9 days to reach Farmington, NM, (190 rkm) and 5.8 days to reach Mexican Hat, UT (422 km). Total metal concentration decreased rapidly going downstream, dropping 80% upon entering the Animas at Silverton, CO, and 99.5% entering the San Juan at Farmington. Metal concentrations decreased by dilution, settling, and dispersion. Modeling suggests that deposition occurred primarily in the upper Animas River near Silverton and near Durango, which was supported with empirical evidence. This work demonstrates the utility of a combined empirical and mechanistic modeling analysis. We additionally investigate long-term residual effects and potential exposure concentrations during storm and snowmelt high flow periods after the visible plume had traversed the system.
NASA Astrophysics Data System (ADS)
Agartan, Elif; Trevisan, Luca; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin; Illangasekare, Tissa H.
2015-03-01
Dissolution trapping is one of the primary mechanisms that enhance the storage security of supercritical carbon dioxide (scCO2) in saline geologic formations. When scCO2 dissolves in formation brine produces an aqueous solution that is denser than formation brine, which leads to convective mixing driven by gravitational instabilities. Convective mixing can enhance the dissolution of CO2 and thus it can contribute to stable trapping of dissolved CO2. However, in the presence of geologic heterogeneities, diffusive mixing may also contribute to dissolution trapping. The effects of heterogeneity on mixing and its contribution to stable trapping are not well understood. The goal of this experimental study is to investigate the effects of geologic heterogeneity on mixing and stable trapping of dissolved CO2. Homogeneous and heterogeneous media experiments were conducted in a two-dimensional test tank with various packing configurations using surrogates for scCO2 (water) and brine (propylene glycol) under ambient pressure and temperature conditions. The results show that the density-driven flow in heterogeneous formations may not always cause significant convective mixing especially in layered systems containing low-permeability zones. In homogeneous formations, density-driven fingering enhances both storage in the deeper parts of the formation and contact between the host rock and dissolved CO2 for the potential mineralization. On the other hand, for layered systems, dissolved CO2 becomes immobilized in low-permeability zones with low-diffusion rates, which reduces the risk of leakage through any fault or fracture. Both cases contribute to the permanence of the dissolved plume in the formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangiapia, Mary; Brown, Terry-René W.; Chaput, Dale
Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO 2+ HCO 3 -+ CO 3 2-) with CO 2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotrophThiomicrospira crunogenahas a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes ofT. crunogenacultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, weremore » at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded byTcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853 -encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among theBacteriaandArchaea. In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotrophT. crunogenawere identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla inBacteriaand also in one phylum ofArchaea, theEuryarchaeota. Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genusThiomicrospira.« less
Mangiapia, Mary; Brown, Terry-René W.; Chaput, Dale; ...
2017-01-23
Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO 2+ HCO 3 -+ CO 3 2-) with CO 2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotrophThiomicrospira crunogenahas a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes ofT. crunogenacultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, weremore » at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded byTcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853 -encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among theBacteriaandArchaea. In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotrophT. crunogenawere identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla inBacteriaand also in one phylum ofArchaea, theEuryarchaeota. Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genusThiomicrospira.« less
NASA Astrophysics Data System (ADS)
Horan, K.; Hilton, R. G.; Dellinger, M.; Galy, V.; Gaillardet, J.; Tipper, E.; Selby, D. S.; Ottley, C. J.; Burton, K. W.
2016-12-01
Erosion and weathering transfer carbon between the atmosphere and lithospheric storage, thereby operating to modify Earth's long-term climate. Over millions of years, atmospheric carbon dioxide (CO2) is sequestered during the weathering of silicate minerals by carbonic acid, coupled to carbonate formation, and following the erosion of biospheric organic carbon and its burial in sediments. However, erosion and weathering also act together to release CO2 from the lithosphere. Erosion enhances the rate of oxidative weathering of organic carbon in rocks (petrogenic OC, OCpetro), which is a major CO2 source over geological time. In addition, oxidation of sulfide minerals can produce sulfuric acid that weathers carbonate minerals and results in transient CO2 release. Although these sources and sinks of CO2 are well recognised, limited case studies exist where they have been measured alongside each other. Here we calculate the geological carbon budget during weathering and erosion in the Mackenzie River Basin, Canada. The silicate weathering rate, carbonate weathering rate by sulfuric acid and the sedimentary burial of biospheric organic carbon have been constrained by prior work. Closing the long-term CO2 budget therefore requires us to quantify the OCpetro oxidation rate. To do this, we use dissolved rhenium (Re) concentrations as a proxy for OCpetro weathering using samples collected from 2009 to 2013. We normalise dissolved river Re concentrations to the rock Re concentration ([Re]diss/[Re]rock) to assess the variability in oxidative weathering efficiency. We find [Re]diss/[Re]rock ratios are 2-4 times lower than those calculated for rapidly eroding mountain catchments (e.g. Taiwan), which is consistent with a lower physical erosion rate in the Mackenzie Basin. By making assumptions about the concurrent mobility of Re and CO2 during OCpetro weathering we quantify the OCpetro weathering rate and constrain the associated CO2 flux to be 0.3 tC km-2 yr-1. The transient CO2 release by sulfuric acid driven carbonate weathering is 0.8 tC km-2 yr-1. Therefore, these two CO2 sources counter CO2 drawdown by silicate weathering (0.4 tC km-2 yr-1). Nevertheless, OCpetro oxidation does not negate the large CO2 sink driven by biospheric organic carbon erosion (2 tC km-2 yr-1), so the Mackenzie Basin is presently a CO2 sink.
Porowska, Dorota
2015-05-01
Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ(13)CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ(13)CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4-54% of the DIC pool is derived from organic matter degradation and 96-46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20-53% of the DIC is derived from organic matter degradation of natural origin and 80-47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO2, and thus CO2 escaped directly into the vadose zone. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weber, Immo; Mallick, Bert; Schild, Matthias; Kareth, Sabine; Puchta, Ralph; van Eldik, Rudi
2014-09-15
Alumina deposition on platinum grading electrodes in high voltage direct current (HVDC) transmission modules is an unsolved problem that has been around for more than three decades. This is due to the unavoidable corrosion of aluminum heat sinks that causes severe damage to electrical power plants and losses in the range of a million Euro range per day in power outage. Simple experiments in a representative HV test setup showed that aluminates at concentrations even below 10(-8) mol L(-1) can deposit on anodes through neutralization by protons produced in de-ionized water (κ≤0.15 μS cm(-1)) at 20-35 kV (8 mA) per electrode. In this otherwise electrolyte-poor aqueous environment, the depositions are formed three orders of magnitude below the critical precipitation concentration at pH 7! In the presence of an inert electrolyte such as TMAT (tetramethylammonium-p-toluenesulfonate), at a concentration level just above that of the total dissolved aluminum, no deposition was observed. Deposition can be also prevented by doping with CO2 gas at a concentration level that is magnitudes lower than that of the dissolved aluminum. From an overview of aqueous aluminum chemistry, the mystery of the alumina deposition process and its inhibition by CO2 is experimentally resolved and fully explained by field accumulation and repulsion models in synergism with acid-base equilibria. The extraordinary size of the alumina depositions is accounted for in terms of proton tunneling through "hydrated" alumina, which is supported by quantum chemical calculations. As a consequence, pulse-purging with pure CO2 gas is presented as a technical solution to prevent the deposition of alumina. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xie, Huixiang; Zafiriou, Oliver C; Cai, Wei-Jun; Zepp, Richard G; Wang, Yongchen
2004-08-01
Photodecarboxylation (often stoichiometrically expressed as RCOOH + (1/2)O2 --> ROH + CO2) has long been postulated to be principally responsible for generating CO2 from photooxidation of dissolved organic matter (DOM). In this study, the quantitative relationships were investigated among O2 consumption, CO2 production, and variation of carboxyl content resulting from photooxidation of DOM in natural water samples obtained from the freshwater reaches of the Satilla River and Altamaha River in the southeastern United States. In terms of loss of dissolved organic carbon (DOC), loss of optical absorbance, and production of CO2, the rate of photooxidation of DOM was increased in the presence of Fe redox chemistry and with increasing O2 content. The ratio of photochemical O2 consumption to CO2 photoproduction ranged from approximately 0.8 to 2.5, depending on the O2 content, the extent of involvement of Fe, and probably the initial oxidation state of DOM as well. The absolute concentration of carboxyl groups ([-COOH]) on DOM only slightly decreased or increased over the course of irradiation, possibly depending on the stages of photooxidation, while the DOC-normalized carboxyl content substantially increased in the presence of Fe redox chemistry and sufficient O2. Both the initial [-COOH] and the apparent loss of this quantity over the course of irradiation was too small to account for the much larger production of CO2, suggesting that carboxyl groups were photochemically regenerated or that the major production pathway for CO2 did not involve photodecarboxylation. The results from this study can be chemically rationalized by a reaction scheme of (a) photodecarboxylation/ regeneration of carboxyl: CxHyOz(COOH)m + aO2 + (metals, hv) --> bCO2 + cH2O2 + Cx-bHy'Oz'(COOH)m-b(COOH)b or of (b) nondecarboxylation photooxidation: CxHyOz(COOH)m + aO2 + (metals, hv) --> bCO2 + cH2O2 + Cx-bHy'Oz'(COOH)m.
NASA Astrophysics Data System (ADS)
Armstrong, L. S.; Hirschmann, M. M.
2013-12-01
Magmatic C-O-H volatiles influence the evolution of planetary atmospheres and, when precipitated and stored in solidified mantles, the dynamical evolution of planetary interiors. In the case of the Earth, the fO2 of the mantle near the end of core formation should have been ~IW-2, and subsequently increased to present-day values [1]. In experiments with fO2 ≤ IW, a variety of reduced volatile species have been found dissolved in magmas, including H2, CH4, CO, Fe(CO)5 and possibly Fe(CO)62+. However, there remains significant disagreement regarding the identity and concentrations of these volatiles in natural magmas, as well as their dependencies on intensive variables (T, P, fO2, fCO, fH2)[2-6]. Previous experiments document the importance of CO-related species [2,6], but were conducted over a limited range of fCO and had potentially interfering effects from poorly controlled variations in H2O. We aim to experimentally determine the solubility of C-O-H volatiles in basaltic magmas under reduced, C-saturated conditions while minimizing water content. The relationship between volatile speciation, fO2, and fCO at 1.2 GPa and 1400°C are constrained, laying the groundwork for a more extensive study at a range of conditions relevant to the interiors of the terrestrial planets and the moon. Both MORB and a martian basalt were studied, contained in Pt-C capsules with Fe × Pt × Si metal added to generate reducing conditions and to monitor fO2. A nominal amount of H2O is unavoidable in experimental charges, but was minimized by drying capsules prior to welding. Phase compositions were determined by electron microprobe and volatile concentrations were measured by FTIR spectroscopy. In preliminary experiments with fO2 of IW-0.70 to +1.75 (corresponding to log fCO of 3.3-4.5), H2O and CO2 concentrations as determined by FTIR are 113-13283 and 12-721 ppm, respectively. Most experiments also display a small FTIR peak at 2205 cm-1, whereas the most reduced experiments lack this peak but have peaks at 3370 and/or 1615 cm-1. The 2205 cm-1 peak was previously observed in similar experiments [6], and attributed to a C=O bond, possibly in the Fe-carbonyl Fe(CO)62+ [7]. The normalized intensity of the 2205 cm-1 peak is zero at IW -0.70 and increases with greater fO2 and fCO. This suggests that over a small fO2 and fCO range with the CCO buffer as an upper limit, CO-bearing species account for a portion of the dissolved C in reduced, graphite-saturated magmas. These volatiles could play an important role in martian magmatism, in the early Earth's mantle post-core formation, and in more oxidized regions of the lunar mantle. However, the fO2 during terrestrial core formation would have been too low for CO2 or the CO-bearing species to dissolve in a magma ocean. Ongoing work will extend the study to more reducing conditions and determine total C and H2O concentrations by SIMS. References: [1] Frost et al. (2008) Phil. Trans. R. Soc. A 366, 4315-4337. [2] Wetzel D. et al. (2013) PNAS, doi:10.1073/pnas.1219266110. [3] Dasgupta et al. (2013) GCA 102, 191-212. [4] Hirschmann et al. (2012) EPSL 345, 38-48. [5] Ardia et al. (2013) GCA 114, 52-71. [6] Stanley et al. (in review), GCA. [7] Bley et al. (1997) Inorg. Chem. 36, 158-160.
Using dissolved carbon dioxide to alter the behavior of invasive round goby
Cupp, Aaron R.; Tix, John; Smerud, Justin R.; Erickson, Richard A.; Fredricks, Kim; Amberg, Jon J.; Suski, Cory D.; Wakeman, Robert
2017-01-01
Fisheries managers need effective methods to limit the spread of invasive round goby Neogobius melanostomus in North America. Elevating carbon dioxide (CO2) in water at pinch points of rivers (e.g., inside locks) is one approach showing potential to deter the passage of invasive fishes, such as bigheaded carps Hypophthalmichthys spp., but the effectiveness of this method to alter round goby behavior has not been determined. The goal for this study was to determine CO2 concentrations that alter round goby behavior across a range of water temperatures. Free-swimming avoidance (voluntary response) and loss of equilibrium (involuntary response) were quantified by exposing round goby to increasing CO2 concentrations at 5, 15, and 25 °C using a shuttle box choice arena and static tank. Water chemistry was measured concurrent with behavioral endpoints and showed that round goby avoided a threshold of 99–169 mg/L CO2(79,000–178,000 µatm) and lost equilibrium at 197–280 mg/L CO2 (163,000–303,000 µatm). Approximately 50% lower CO2 concentrations were found to modify behavior at 5 °C relative to 25 °C, suggesting greater effectiveness at lower water temperatures. We conclude that CO2 modified round goby behavior and concentrations determined in this study are intended to guide field testing of CO2 as an invasive fish deterrent.
Are the Laurentian Great Lakes a CO2 Source or Sink?
NASA Astrophysics Data System (ADS)
Fernandez, J.; Townsend-Small, A.
2016-12-01
As concentrations of CO2 increase in our atmosphere, large bodies of water are prone to an accompanying increase in CO2. Accruing CO2 sinking into the Great Lakes can create more acidic waters, which is detrimental to the healthy growth of organisms producing calcium carbonate skeletons - a phenomenon that has been confirmed in modern oceans. Recent estimates suggests that Lake Huron, Lake Michigan, and Lake Superior are sources of atmospheric CO2, while Lake Erie and Lake Ontario are CO2 sinks, although this is based largely on water volume and little research has been done to validate these predictions. Water samples were collected aboard the University National Oceanographic Laboratory System RV Blue Heron and the Canadian Coast Guard RV Limnos from Lake Superior, Lake Michigan, and Lake Erie during the summer of 2016. Alkalinity and pCO2 were analyzed in lab to further calculate dissolved concentrations and fluxes of CO2, providing more information to resolve whether the Great Lakes are a CO2 source or sink. Additional work involves sampling all five of the Great lakes throughout the year to determine any seasonal trends in CO2. 13C-DIC will also be measured in order to differentiate methane oxidation and respiration to the CO2 pool.
Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk
2010-01-01
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Geochemical variation of groundwater in the Abruzzi region: earthquakes related signals?
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Caliro, S.; Frondini, F.; Avino, R.; Minopoli, C.; Morgantini, N.
2009-12-01
The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures affect the Tyrrhenian side of the Italian peninsula. The northern degassing structure (TRDS, Tuscan Roman degassing structure) includes Tuscany, Latium and part of Umbria regions (~30000 km2) and releases > 6.1 Mt/y of deeply derived CO2. The southern degassing structure (CDS, Campanian degassing structure) affects the Campania region (~10000 km2) and releases > 3.1 Mt/y of deeply derived CO2. The total CO2 released by TRDS and CDS (> 9.2 Mt/y) is globally significant, being ~10% of the estimated present-day total CO2 discharge from sub aerial volcanoes of the Earth. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS plumes, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes, by reducing fault strength and potentially controlling the nucleation, arrest, and recurrence of both micro and major (M>5) earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. In order to investigate this process, detailed hydro-geochemical campaigns started immediately after the main shock of the 6th of April 2009. The surveys include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. The new data includes the determination of the main dissolved ions, the dissolved gases (CO2, CH4, N2, Ar, He) and the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He). All the springs collected in 2009 show a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers, respect to the 1997. The origin of this regional variation is still under investigation. A monthly sampling of the main spring has been programmed in order to differentiate the variation derived by seasonal processes from eventual signals linked to seismic processes. The first results will be presented and discussed.
Raman Spectroscopic Measurements of Co2 Dissolved in Seawater for Laser Remote Sensing in Water
NASA Astrophysics Data System (ADS)
Somekawa, Toshihiro; Fujita, Masayuki
2016-06-01
We examined the applicability of Raman lidar technique as a laser remote sensing tool in water. The Raman technique has already been used successfully for measurements of CO2 gas dissolved in water and bubbles. Here, the effect of seawater on CO2 Raman spectra has been evaluated. A frequency doubled Q-switched Nd:YAG laser (532 nm) was irradiated to CO2 gas dissolved in a standard seawater. In seawater, the Raman signals at 984 and 1060-1180 cm-1 from SO42- were detected, which shows no spectral interference caused by Raman signals derived from CO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oviedo-Vargas, Diana; Genereux, David P.; Dierick, Diego
In the tropical rainforest at La Selva Biological Station in Costa Rica, regional bedrock groundwater high in dissolved carbon discharges into some streams and wetlands, with the potential for multiple cascading effects on ecosystem carbon pools and fluxes. We investigated carbon dioxide (CO 2) and methane (CH 4) degassing from two streams at La Selva: the Arboleda, where ~1/3 of the streamflow is from regional groundwater, and the Taconazo, fed exclusively by local groundwater recharged within the catchment. The regional groundwater inflow to the Arboleda had no measurable effect on stream gas exchange velocity, dissolved CH 4 concentration, or CHmore » 4 emissions but significantly increased stream CO 2 concentration and degassing. CO 2 evasion from the reach of the Arboleda receiving regional groundwater (lower Arboleda) averaged 5.5 mol C m -2 d -1, ~7.5x higher than the average (0.7 mol C m -2 d -1) from the stream reaches with no regional groundwater inflow (the Taconazo and upper Arboleda). Carbon emissions from both streams were dominated by CO 2; CH 4 accounted for only 0.06-1.70% of the total (average of both streams: 5 x10 -3 mol C m -2 d -1). Annual stream degassing fluxes normalized by watershed area were 48 and 299 g C m -2 for the Taconazo and Arboleda, respectively. CO 2 degassing from the Arboleda is a significant carbon flux, similar in magnitude to the average net ecosystem exchange estimated by eddy covariance. As a result, examining the effects of catchment connections to underlying hydrogeological systems can help avoid overestimation of ecosystem respiration and advance our understanding of carbon source/sink status and overall terrestrial ecosystem carbon budgets.« less
Oviedo-Vargas, Diana; Genereux, David P.; Dierick, Diego; ...
2015-12-22
In the tropical rainforest at La Selva Biological Station in Costa Rica, regional bedrock groundwater high in dissolved carbon discharges into some streams and wetlands, with the potential for multiple cascading effects on ecosystem carbon pools and fluxes. We investigated carbon dioxide (CO 2) and methane (CH 4) degassing from two streams at La Selva: the Arboleda, where ~1/3 of the streamflow is from regional groundwater, and the Taconazo, fed exclusively by local groundwater recharged within the catchment. The regional groundwater inflow to the Arboleda had no measurable effect on stream gas exchange velocity, dissolved CH 4 concentration, or CHmore » 4 emissions but significantly increased stream CO 2 concentration and degassing. CO 2 evasion from the reach of the Arboleda receiving regional groundwater (lower Arboleda) averaged 5.5 mol C m -2 d -1, ~7.5x higher than the average (0.7 mol C m -2 d -1) from the stream reaches with no regional groundwater inflow (the Taconazo and upper Arboleda). Carbon emissions from both streams were dominated by CO 2; CH 4 accounted for only 0.06-1.70% of the total (average of both streams: 5 x10 -3 mol C m -2 d -1). Annual stream degassing fluxes normalized by watershed area were 48 and 299 g C m -2 for the Taconazo and Arboleda, respectively. CO 2 degassing from the Arboleda is a significant carbon flux, similar in magnitude to the average net ecosystem exchange estimated by eddy covariance. As a result, examining the effects of catchment connections to underlying hydrogeological systems can help avoid overestimation of ecosystem respiration and advance our understanding of carbon source/sink status and overall terrestrial ecosystem carbon budgets.« less
NASA Astrophysics Data System (ADS)
Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.
2014-12-01
Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in siderophore treated cores compared to the other treatments. From the results of these experiments, we conclude that arctic soil microbes can use siderophores to maintain a pool of dissolved Fe3+ for DIR. This study provides insight into the mechanisms of DIR in this ecosystem, and has relevance for understanding anaerobic soil respiration in the Arctic.
Photocatalytic degradation of E. coliform in water.
Sun, Darren Delai; Tay, Joo Hwa; Tan, Koh Min
2003-08-01
This study aims to further investigate the total mineralization of the bacteria to the extent of death and cell-mass inactivation using a TiO2-Fe2O3 membrane photocatalytic oxidation reactor. Experimental results clearly indicated that dissolved oxygen (DO), hydraulic retention time (HRT) and concentration of the model bacteria (Escherichia coliform) affected the removal efficiency. It was found that the ultimate removal efficiency was 99% at DO level of 21.34 mg/l, HRT at 60s and high concentration of E. coli at 10(9)CFU/ml. The morphologic studies also showed that E. coliform could be further mineralized into CO2 and H2O. Dissolved organic carbon, pH and gas chromatograph analysis had justified most importantly the evolution of CO2. Experimental results revealed that the photomineralization rate of E. coliform followed pseudo-first-order kinetics by the role of DO. The derived empirical models were found consistent with the proposed reaction pathways of a combined UV breakdown on mass cell and a dual-site Langmuir-Hinshelwood mechanism where the rate-controlling step is the surface interaction between the adsorbed cleavage bacterial cells and hydroxyl radicals.
NASA Astrophysics Data System (ADS)
Arellano, A. R.; Bianchi, T. S.; Osburn, C. L.; D'Sa, E. J.; Oviedo-Vargas, D.; Ward, N. D.; Joshi, I.
2017-12-01
While most blue carbon habitat (wetlands, seagrass beds and mangroves) research has focused on carbon burial/stocks and habitat fragmentation of these communities, few studies have examined physical factors that control exports and losses of blue carbon sources of organic matter (OM) to adjacent coastal waters. Here, we report on spatiotemporal changes in the composition and concentration of dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen, pCO2, δ13C-DOC, δ13C-POC, δ13C-CO2, dissolved lignin-phenols (dΣ8), particulate lignin-phenols (pΣ8) and carbon normalized dissolved and particulate lignin phenol yields (dΛ8 and pΛ8) in surface waters of the Apalachicola and Barataria bays in the Gulf of Mexico. Discriminant analysis described spatial variability along canonical axis I (24.4%) while temporal variability was explained by canonical axis II (23.2%). Apalachicola Bay was low in POC concentration and characterized by high values for pCO2, DOC, C:N, dΣ8 and (Ad:Al)V. The latter three parameters indicated a clear terrestrial source of OM at Apalachicola Bay reflecting the importance of riverine DOM inputs in this system. In contrast, Barataria Bay was characterized by high values for POC, C:V, S:V, and δ13C-POC, indicating blue-carbon sources due to a lack of direct river inputs and high prevalence of wetlands, some recently submerged. Extreme weather, such as intense precipitation events in Apalachicola Bay and enhanced northerly winds in Barataria Bay were characterized by δ13C-CO2, dΛ8, C:V (Barataria), and C:N (Apalachicola). Results indicate that such physical factors can exert strong control on OM sources and sinks across the gradient of coastal wetlands and shelf waters and lead to enhanced transfer and degradation of wetland-derived blue carbon in coastal waters.
NASA Astrophysics Data System (ADS)
Juniper, S. Kim; Sastri, Akash; Mihaly, Steven; Duke, Patrick; Else, Brent; Thomas, Helmuth; Miller, Lisa
2017-04-01
Marine pCO2 sensor technology has progressed to the point where months-long time series from remotely-deployed pCO2 sensors can be used to document seasonal and higher frequency variability in pCO2 and its relationship to oceanographic processes. Ocean Networks Canada recently deployed pCO2 sensors on two cabled platforms: a bottom-moored (400 m depth), vertical profiler at the edge of the northeast Pacific continental shelf off Vancouver Island, Canada, and a subtidal seafloor platform in the Canadian High Arctic (69˚ N) at Cambridge Bay, Nunavut. Both platforms streamed continuous data to a shore-based archive from Pro-Oceanus pCO2 sensors and other oceanographic instruments. The vertical profiler time series revealed substantial intrusions of corrosive (high CO2/low O2), saltier, colder water masses during the summertime upwelling season and during winter-time reversals of along-slope currents. Step-wise profiles during the downcast provided the most reliable pCO2 data, permitting the sensor to equilibrate to the broad range of pCO2 concentrations encountered over the 400 metre depth interval. The Arctic pCO2 sensor was deployed in August 2015. Reversing seasonal trends in pCO2 and dissolved oxygen values can be related to the changing balance of photosynthesis and respiration under sea ice, as influenced by irradiance. Correlation of pCO2 and dissolved oxygen sensor data and the collection of calibration samples have permitted evaluation of sensor performance in relation to operational conditions encountered in vertical profiling and lengthy exposure to subzero seawater.
The influence of tides on biogeochemical dynamics at the mouth of the Amazon River
NASA Astrophysics Data System (ADS)
Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.
2017-12-01
A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ganaha, S.; ITOH, A.
2011-12-01
Coastal seawater on coral reef near Okinawa island in Japan, which is in oligotrophic condition, has a diverse and unique ecosystem. It is possible that nutritive sals and trace metals, classified into nutrient type, are effectively supplied to marine phytoplankton and zooxanthellae from seawater. However, the concentrations and chemical forms of trace metals in coastal seawater on coral reef have been scarcely reported so far. In the present study, the characteristics of the concentrations and chemical forms of trace metals in such a seawater were investigated with seasonal variation by analyzing the coastal seawater at every month, after an analytical method for a simple chemical speciation including on-site treatment was established. The analytical method using a chelating resin and a disposable syringe was employed for de-salt and preconcentration of trace metals in costal seawater. After that, trace metals in the concentrated solution were measured by ICP-MS. Three types of chemical forms of an ionic, a dissolved, and an acid-soluble were separated without any treatment, by filtering with membrane filter of 0.45 μm, and by filtering after adding nitric acid, respectively. Then, a monitoring investigation of the coastal seawater on coral reef, located at Sesoko island near the northern part of Okinawa island, was carried out once at every month from Sep. 2010 to Aug. 2011. As a result, 10 elements in the dissolved form in each sample could be determined. The average concentrations for all samples from Sep. 2010 to Apr. 2011 were as follows: Mo:10.7 ppb, U:3.2 ppb, V:1.5 ppb, Mn:0.17 ppb, Ni:0.16 ppb, Zn:0.13 ppb, Cu:0.070 ppb, Pb:0.024 ppb, Co:0.0022 ppb, Cd:0.0016ppb. The concentrations for most trace metals were almost close to ones in open surface seawater of the Pacific ocean. For the acid-soluble form, the concentrations of V, Mo, and U were almost same with those of the dissolved form, and ones of Mn, Co, Ni, Cu, and Cd were slightly larger than ones in the dissolved form, while ones in Zn and Pb were 3.1- and 2.5-fold larger. These results suggest that a part of trace metals in the nutrient type exists as biogenic particulate matters. For the ionic form, the concentration of Cu was 3-fold smaller than one in the dissolved form. It is considered from the result that a part of Cu in the dissolved form exists not only as the ionic form but also as the colloids and organic complexes. The seasonal variation for each chemical form is now being investigated.
Leaching of organic acids from macromolecular organic matter by non-supercritical CO2
NASA Astrophysics Data System (ADS)
Sauer, P.; Glombitza, C.; Kallmeyer, J.
2012-04-01
The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2-saturated water, revealing a suppressing effect of CO2. Both extractions had higher yields than those reported for soxhlet extraction [2]. LMWOAs found in the extraction fluid may not just result from hydrolysis but also from different secondary reactions. It was suggested that oxalate in aqueous extracts of coals is a result of the decomposition of 1,2-dihydroxy-carboxylic acids [3]. We assume that for oxalate (and maybe for other LMWOAs as well) the extraction yield is not only affected by hydrolysis but also by secondary reactions, which may be inhibited or suppressed in the presence of CO2 in the extraction medium. During soxhlet extraction the sample only gets into contact with freshly distilled water, not with an acidic fluid. This may explain the lower yields.
Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Quin RS; Thompson, Christopher J.; Loring, John S.
2013-07-01
Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratorymore » research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 μm) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.« less
NASA Astrophysics Data System (ADS)
Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.
2017-12-01
Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2,400 14C-years for CO2-C. Seasonal differences in dissolved CH4 revealed a clear influence of trapped ebullition dissolving into the water below lake ice in Boreal, but not Arctic lakes. Together, our data demonstrate that regional surficial geology exerts a larger control than climate on C ages and gas emission pathways from lakes.
Biological carbon dioxide utilisation in food waste anaerobic digesters.
Fernández, Y Bajón; Green, K; Schuler, K; Soares, A; Vale, P; Alibardi, L; Cartmell, E
2015-12-15
Carbon dioxide (CO2) enrichment of anaerobic digesters (AD) was previously identified as a potential on-site carbon revalorisation strategy. This study addresses the lack of studies investigating this concept in up-scaled units and the need to understand the mechanisms of exogenous CO2 utilisation. Two pilot-scale ADs treating food waste were monitored for 225 days, with the test unit being periodically injected with CO2 using a bubble column. The test AD maintained a CH4 production rate of 0.56 ± 0.13 m(3) CH4·(kg VS(fed) d)(-1) and a CH4 concentration in biogas of 68% even when dissolved CO2 levels were increased by a 3 fold over the control unit. An additional uptake of 0.55 kg of exogenous CO2 was achieved in the test AD during the trial period. A 2.5 fold increase in hydrogen (H2) concentration was observed and attributed to CO2 dissolution and to an alteration of the acidogenesis and acetogenesis pathways. A hypothesis for conversion of exogenous CO2 has been proposed, which requires validation by microbial community analysis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.
Liger-Belair, Gérard
2016-04-21
Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.
Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R
2016-01-01
Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.
NASA Astrophysics Data System (ADS)
Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.
2016-07-01
Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea's east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.
Flow Estimate of Carbon Dioxide in a Amazon River Hydrological Station
NASA Astrophysics Data System (ADS)
Moura, J. M. S.; Ferreira, R. B., Jr.; Tapajós, R. P.
2014-12-01
Recent measurements in the Amazon suggest that the flow of CO2 in surface waters may reach the order of 1GT per year and isotopic analyzes suggest that this carbon is a direct result of organic matter degradation (OMD) in rivers and the measured concentration exceeds the value expected for there to be equilibrium with the atmosphere (Richey et al, 2002). This study aimed to measure and check the seasonal variability of CO2 fluxes in a range of six months (September 2013-February 2014) in the Strait Óbidos hydrological station located geographically in the coordinates 55 ° 1 '4 "S and 55 ° 31' 4" W. In addiction, it is intended to correlate the data with physical-chemical water parameters pH, dissolved oxygen (DO), and temperature and humidity. The method used for the measurement of CO2 concentration in the atmosphere-water interface is the floating chamber liked with an infrared gas analyzer (IRGA- Infrared Gas Analyzer). The physical-chemical parameters of water were measured using a multiparameter probe YSI Professional Plus model. The preliminary results shows values average CO2 flux was approximately 15.65 1,01ppm / m2s-1 for the months of September and October and between the months of November, 2013 and February 2014 the CO2 flux average was 4.40 + 1.94 ppm / m2s-1. In addiction to the high temperature in dry season, in the water column there is sufficient convection for the existence of gases transport from water to atmosphere, resulting in increase of exchange. Thus, the decreased amount of radiation and consequently the low temperatures in the humid period (on average 27.2 ° C) should affect the OMD in the river, responsible for the production of dissolved CO2. Keywords: CO2 flux, seasonal variability, amazon river
NASA Astrophysics Data System (ADS)
Duan, Zhenhao; Li, Dedong
2008-10-01
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H +, Na +, Ca 2+, CaHCO3+, Ca(OH) +, OH -, Cl -, HCO3-, CO32-, CO 2(aq) and CaCO 3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO 2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T- P- m range, hence calcite solubility, CO 2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data. One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO 2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility. The functionality of pH value, alkalinity, CO 2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl (aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.
Mangiapia, Mary; Brown, Terry-René W.; Chaput, Dale; Haller, Edward; Harmer, Tara L.; Hashemy, Zahra; Keeley, Ryan; Leonard, Juliana; Mancera, Paola; Nicholson, David; Stevens, Stanley; Wanjugi, Pauline; Zabinski, Tania; Pan, Chongle
2017-01-01
ABSTRACT Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3− + CO32−) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla. IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea. In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota. Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira. PMID:28115547
NASA Astrophysics Data System (ADS)
Alizadeh Nomeli, M.; Riaz, A.
2016-12-01
A new model is developed for geochemical reactions to access dissolution rate of minerals in saline aquifers with respect to saturated concentration of dissolved CO2 as a function of parameters that are dynamically available during computer program execution such as pressure, temperature, and salinity. A general Arrhenius-type equation, with an explicit dependence on the pH of brine, is employed to determine the rates of mineral dissolution. The amount of dissolved CO2 is determined with the help of an accurate PVTx model for the temperature range of 50-100C and pressures up to 600 bar relevant to the geologic sequestration of CO2. We show how activity coefficients for a given salinity condition alters solubility, pH, and reaction rates. We further evaluate the significance of the pre-exponential factor and the reaction order associated with the modified Arrhenius equation to determine the sensitivity of the reaction rates as a function to the pH of the system. It is found that the model can reasonably reproduce experimental data with new parameters that we obtain from sensitivity studies. Using the new rate equation, we investigate geochemically induced alterations of fracture geometry due to mineral dissolution. Finally, we use our model to evaluate the effects of temperature, pressure, and salinity on the actual efficiency of CO2 storage.
Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen
2014-08-19
Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.
NASA Astrophysics Data System (ADS)
Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun
2018-04-01
Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.
Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.
2013-01-01
To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Thompson, Christopher J.; Zhang, Changyong
2012-04-25
In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, andmore » 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO3 • 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.« less
NASA Astrophysics Data System (ADS)
Wu, Xi; Tan, Tingting; Liu, Chunying; Li, Tie; Liu, Xiaoshou; Yang, Guipeng
2018-04-01
The distributions and relationships of O2, CO2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O2 saturation level, partial pressure of CO2 (pCO2), and DMS concentrations (and ranges) were 110% (89%-167%), 374 μatm (91-640 μatm), and 8.53 nmol L-1 (1.10-27.50 nmol L-1), respectively. The sea-to-air fluxes (and ranges) of DMS and CO2 were 8.24 μmol m-2 d-1 (0.26-62.77 μmol m-2 d-1), and -4.7 mmol m-2 d-1 (-110.8-31.7 mmol m-2 d-1), respectively. Dissolved O2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO2. The pCO2 was significantly and negatively correlated with the O2 saturation level, while the DMS concentration showed different positive relationships with the O2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123°E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative decomposition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O2 and produced additional CO2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations appeared between the O2 saturation level, pCO2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O2, CO2, and DMS.
Turner, Andrew; Mawji, Edward
2005-05-01
The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.
Martín Sánchez, A; Ruano Sánchez, A B; de la Torre Pérez, J; Jurado Vargas, M
2015-11-01
Activity concentrations of dissolved (222)Rn and (226)Ra were measured in several underground aquifers, which are candidates for repositories or for the study of analogue natural escapes of CO2. The concentration of both radionuclides in water was determined using liquid scintillation counting. The values obtained for the (222)Rn concentrations varied from 0 to 150 Bq l(-1), while the levels of (226)Ra were in general very low. This indicates that (222)Rn is coming from the decay of the undissolved (226)Ra existing in the rocks and deep layers of the aquifers, being later transported by diffusion in water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Precipitation Coating of Monazite on Woven Ceramic Fibers: 1. Feasibility (Postprint)
2007-02-01
08 Aug 2006. Paper contains color . 14. ABSTRACT Monazite coatings were deposited on woven cloths and tows of NextelTM 610 fibers by heterogeneous...by dissolving concentrated phosphoric acid ( Fish - er Scientific Co., Pittsburgh, PA) or a combination of lantha- num nitrate (Aldrich Chemical Co...Boccaccini, P. Karapappas, J. M. Marijuan, and C. Kaya, ‘‘ TiO2 Coat- ings on Silicon Carbide Fiber Substrates by Electrophoretic Deposition,’’ J.Mater. Sci
NASA Astrophysics Data System (ADS)
Zhang, Yong; Xie, Huixiang; Fichot, CéDric G.; Chen, Guohua
2008-12-01
We investigated the thermal (dark) production of carbon monoxide (CO) from dissolved organic matter (DOM) in the water column of the St. Lawrence estuarine system in spring 2007. The production rate, Qco, decreased seaward horizontally and downward vertically. Qco exhibited a positive, linear correlation with the abundance of chromophoric dissolved organic matter (CDOM). Terrestrial DOM was more efficient at producing CO than marine DOM. The temperature dependence of Qco can be characterized by the Arrhenius equation with the activation energies of freshwater samples being higher than those of salty samples. Qco remained relatively constant between pH 4-6, increased slowly between pH 6-8 and then rapidly with further rising pH. Ionic strength and iron chemistry had little influence on Qco. An empirical equation, describing Qco as a function of CDOM abundance, temperature, pH, and salinity, was established to evaluate CO dark production in the global coastal waters (depth < 200 m). The total coastal CO dark production from DOM was estimated to be from 0.46 to 1.50 Tg CO-C a-1 (Tg carbon from CO a-1). We speculated the global oceanic (coastal plus open ocean) CO dark production to be in the range from 4.87 to 15.8 Tg CO-C a-1 by extrapolating the coastal water-based results to blue waters (depth > 200 m). Both the coastal and global dark source strengths are significant compared to the corresponding photochemical CO source strengths (coastal: ˜2.9 Tg CO-C a-1; global: ˜50 Tg CO-C a-1). Steady state deepwater CO concentrations inferred from Qco and microbial CO uptake rates are <0.1 nmol L-1.
The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters
NASA Astrophysics Data System (ADS)
Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.
2018-03-01
Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.
Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J
2011-01-01
A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.
Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043
NASA Astrophysics Data System (ADS)
Borges, Alberto V.; Morana, Cédric D. T.; Lambert, Thibault; Okello, William; Bouillon, Steven
2017-04-01
Inland waters (streams, rivers, lakes, reservoirs) are quantitatively important components of the global budgets of atmospheric emissions of long-lived greenhouse gases (GHGs) (CO2, CH4, N2O). Available data indicate that a very large fraction of CO2 and CH4 emissions from rivers and reservoirs occurs at tropical latitudes. Data on GHGs at tropical latitudes from lakes however are much more scarse, and the relative importance of emissions, in particular in Africa, remains to be determined. Large tropical lakes are net autotrophic (hence potentially sinks for atmospheric CO2) due generally low dissolved organic carbon concentrations, seasonally near constant light and temperature conditions, and generally deep water columns favourable for export of organic matter to depth. This sharply contrasts with their much better documented temperate and boreal counterparts, usually considered as CO2 sources to the atmosphere sustained by net heterotrophy. Here, we report a data-set of dissolved CO2, CH4, N2O obtained in October 2016 in Lakes Edward and George and adjacent streams and crater lakes in the frame of Belgian Science Policy (BELSPO) HIPE (Human impacts on ecosystem health and resources of Lake Edward, http://www.co2.ulg.ac.be/hipe/) project. Lake George and part of Lake Edward were sinks for atmospheric CO2 and N2O due to high primary production and denitrification in sediments, respectively, and modest sources of CH4 to the atmosphere. Sampled rivers and streams were oversaturated in CO2 and CH4 and close to atmospheric equilibrium with regards to N2O. Spatial variations within rivers and streams were related to elevation and vegetation characteristics on the catchments (savannah versus forest). Levels of CO2, CH4, and N2O were within the range of those we reported in other African rivers. Crater lakes acted as sinks for atmospheric CO2 and N2O but were extremely over-saturated in CH4, due to intense primary production sustained by cyanobacteria. These CH4 levels were much higher than what we have reported in other lakes and reservoirs elsewhere in Sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, K. G.
2016-12-01
The environmental impact and potential human health implications, specifically from the contamination of groundwater sources, has sparked controversy around shale gas extraction in North America. It is clear that understanding the effects of hydraulic fracturing on shallow fresh water aquifers is of great importance, including the threat of stray gas (also referred to as fugitive methane) on groundwater quality. Faulty wells provide a preferential pathway for free gas phase (mostly methane) to migrate from deeper gas-bearing formations of natural gas to shallow aquifers, followed by its dissolution into the surrounding groundwater. An increased understanding of the fate of fugitive methane in shallow aquifers is required to assess the potential risks associated with current and future operations, as well as to better link gas migration, dissolution and the deterioration of groundwater quality. In this study, a series of laboratory experiments were performed using carbon dioxide (CO2) gas as a surrogate for methane to improve our understanding of gas dissolution in groundwater systems. Using CO2, a novel laboratory technique was developed that allows the measurement of dissolved CO2 concentrations using image analysis alongside visualization of free gas mobilization. The technique is based on the acidification of water during CO2 dissolution, which causes a colour change in an indicator dye. The colour change is recorded using a visual light transmission technique, in which digital images are used to track dissolved concentrations at high spatial (1 mm) and temporal (5 s) resolutions in a two-dimensional (25 × 25 × 1 cm3) flow cell. The experiments were completed in both homogeneous sand packs and sand packs containing layered heterogeneities to investigate the dissolution of both gas fingers and gas pools. The results demonstrate the potential of this novel technique for investigating gas dissolution, and showed significant tailing of dissolved CO2 and persistence of other gas phase components. This technique will aid in the development of conceptual models to link fugitive methane to groundwater contamination and provide detailed data required for the validation of numerical models that account for gas-water mass transfer; both of which are required for the development of sound monitoring techniques.
Fate of peat-derived carbon and associated CO2 and CO emissions from two Southeast Asian estuaries
NASA Astrophysics Data System (ADS)
Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Mujahid, A.; Bange, H. W.; Notholt, J.
2015-06-01
Coastal peatlands in Southeast Asia release large amounts of organic carbon to rivers, which transport it further to the adjacent estuaries. However, little is known about the fate of this terrestrial material in the coastal ocean. Although Southeast Asia is, by area, considered a hotspot of estuarine CO2 emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, carbon dioxide (CO2) partial pressure and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. The spatial distribution and the carbon-to-nitrogen ratios of dissolved organic matter (DOM) suggest that peat-draining rivers convey terrestrial organic carbon to the estuaries. We found evidence that a large fraction of this carbon is respired. The median pCO2 in the estuaries ranged between 618 and 5064 μatm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-272 mol m-2 yr-1, which is high compared to other studies from tropical and subtropical sites. In contrast, CO concentrations and fluxes were relatively moderate (0.3-1.4 nmol L-1 and 0.8-1.9 mmol m-2 yr-1) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth. However, the diurnal variation of CO suggests that it is photochemically produced, implying that photodegradation might play a role for the removal of DOM from the estuary as well. We concluded that unlike smaller peat-draining tributaries, which tend to transport most carbon downstream, estuaries in this region function as an efficient filter for organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas mid-estuaries release 0.4 ± 0.2 Tg C yr-1, which corresponds to approximately 80% of the emissions from the aquatic systems in these two catchments.
Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea
Mackey, Katherine R. M.; Buck, Kristen N.; Casey, John R.; Cid, Abigail; Lomas, Michael W.; Sohrin, Yoshiki; Paytan, Adina
2012-01-01
This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity. PMID:23181057
The Effects of Elevated pCO2, Hypoxia and Temperature on ...
Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adverse effects of low dissolved oxygen levels on estuarine fish has been well-documented, the interaction between low DO and elevated pCO2 is not well understood. There is some evidence that low DO and elevated pCO2 interact antagonistically, however little information exists on how projected changes of pCO2 levels in near-shore waters may affect estuarine species, and how these changes may specifically interact with dissolved oxygen and temperature. We explored the survivability of 7-day post fertilization sheepshead minnow, Cyprinodon variegatus, using short term exposure to the combined effects of elevated pCO2 (~1300 µatm; IPCC RCP 8.5) and low dissolved oxygen levels (~2 mg/L). Additionally, we determined if the susceptibility of these fish to elevated pCO2 and low DO was influenced by increases in temperature from 27.5°C to 35°C. Results from this study and future studies will be used to identify estuarine species and lifestages sensitive to the combined effects of elevated pCO2 and low dissolved oxygen. This project was created in order to better understand the interactive effects of projected pCO2 levels and hypoxia in estuarine organisms. This work is currently focused on the se
Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.
2010-01-01
mg/L; low ionic strength (conductivity milliSiemens per centimeter [mS/cm]); a pH of 6.5 to 8; and relatively low concentrations of TCE, 1,2-DCA...include: • Groundwater dissolved oxygen (DO) levels as low as 0.01 mg/L and as high as 8 mg/L; • Groundwater with low ionic strength (conductivity ...held at 980°C. The chlorinated ethene was oxidized in the oven to CO2 and water. The water was removed via a Nafion ™ membrane water trap and the CO2
NASA Astrophysics Data System (ADS)
Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao
2015-09-01
Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.
Chaplin, Jeffrey J.; Cravotta,, Charles A.; Weitzel, Jeffrey B.; Klemow, Kenneth M.
2007-01-01
This report characterizes the effects of historical mining and abandoned mine drainage (AMD) on streamflow and water quality and evaluates potential strategies for AMD abatement in the 14-square-mile Newport Creek Basin and 7.6-square-mile Nanticoke Creek Basin. Both basins are mostly within the Northern Anthracite Coal Field and drain to the Susquehanna River in central Luzerne County, Pa. The U.S. Geological Survey (USGS), in cooperation with the Earth Conservancy, conducted an assessment from April 1999 to September 2000 that included (1) continuous stage measurement at 7 sites; (2) synoptic water-quality and flow sampling at 21 sites on June 2-4, 1999, and at 24 sites on October 7-8, 1999; and (3) periodic measurement of flow and water quality at 26 additional sites not included in the synoptic sampling effort. Stream water and surface runoff from the unmined uplands drain northward to the valley, where most of the water is intercepted and diverted into abandoned underground mines. Water that infiltrates into the mine workings becomes loaded with acidity, metals, and sulfate and later discharges as AMD at topographically low points along lower reaches of Newport Creek, Nanticoke Creek, and their tributaries. Differences among streamflows in unmined and mined areas of the watersheds indicated that (1) intermediate stream reaches within the mined area but upgradient of AMD sites generally were either dry or losing reaches, (2) ground water flowing to AMD sites could cross beneath surface-drainage divides, and (3) AMD discharging to the lower stream reaches restored volumes lost in the upstream reaches. The synoptic data for June and October 1999, along with continuous stage data during the study period, indicated flows during synoptic surveys were comparable to average values. The headwaters upstream of the mined area generally were oxygenated (dissolved oxygen range was 4.7 to 11.0 mg/L [milligrams per liter]), near-neutral (pH range was 5.8 to 7.6), and net alkaline (net alkalinity range was 2.0 to 25.0 mg/L CaCO3), with relatively low concentrations of sulfate (6.40 to 24.0 mg/L) and dissolved metals (less than 500 ug/L [micrograms per liter] of iron, manganese, and aluminum). In contrast, the AMD discharges and downstream waters were characterized by elevated concentrations of sulfate and dissolved metals that exceeded Federal and State regulatory limits. The largest AMD sources were the Susquehanna Number 7 Mine discharge entering Newport Creek near its mouth (flow range was 4.7 to 19 ft3/s [cubic feet per second]), the Truesdale Mine Discharge (Dundee Outfall) entering Nanticoke Creek about 0.5 mile upstream of Loomis Park (flow range was 0.00 to 38 ft3/s), and a mine-pit overflow entering near the midpoint of Newport Creek (flow range was 4.0 to 6.9 ft3/s). The three large discharges were poorly oxygenated (dissolved oxygen concentration range was <0.05 to 6.4 mg/L) and had elevated concentrations of sulfate (range was 710 to 890 mg/L) and low concentrations of dissolved aluminum (less than 25 ug/L), but they had distinctive concentrations of net alkalinity and dissolved iron and manganese. Effluent from the Susquehanna Number 7 Mine was near-neutral (pH range was 5.9 to 6.6) and net alkaline (net alkalinity range was 12.0 to 42.0 mg/L CaCO3) with elevated concentrations of sulfate (718 to 1,170 mg/L), dissolved iron (52,500 to 77,400 ug/L), and manganese (5,200 to 5,300 ug/L). Effluent from the Truesdale Mine also was near-neutral (pH range was 5.9 to 6.3) but had variable net alkalinity (-19.0 to 57.0 mg/L CaCO3) with elevated concentrations of sulfate (571 to 740 mg/L), dissolved iron (30,500 to 43,000 ug/L), and manganese (3,600 to 5,200 ug/L). Effluent from the mine-pit overflow in Newport Creek Basin was acidic (pH range was 4.3 to 5.0; net alkalinity range was -42 to -38 mg/L CaCO3) with elevated concentrations of sulfate (800 to 840 mg/L), iron (13,000 to 16,000 ug/L), and manganese (6,800 to 7,000 ug
NASA Astrophysics Data System (ADS)
Tovar-Sánchez, Antonio; Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell
2004-08-01
Despite the fact that Co is an essential trace element for the growth of marine phytoplankton, there is very limited information on the cycling of this trace metal in the marine environment. We report here the distribution of dissolved (<0.4 μm) and particulate (>0.4 μm) Co in surface waters of the Hudson River Estuary (HRE) and San Francisco Bay (SFB). Samples were collected during several cruises (from 1990 to 1995 in SFB and from 1995 to 1997 in the HRE) along the whole salinity gradient. Dissolved Co concentrations (mean±1 standard deviation) were nearly identical in magnitude in both estuaries despite differences in climate, hydrography, riverine-flow conditions and land-usage (HRE=0.91±0.61 nM; SFB=1.12±0.69 nM). Dissolved Co levels in each system showed non-conservative distributions when plotted as a function of salinity, with increasing concentrations downstream from the riverine end-members. Desorption from suspended particulates and sewage inputs, therefore, seems to be the major processes responsible for the non-conservative behavior of Co observed. Mass balance estimates also indicated that most of the estuarine Co is exported out of both estuaries, indicating that they and other estuarine systems are principal sources of this essential trace element to the open ocean.
NASA Astrophysics Data System (ADS)
Gulliver, D. M.; Lowry, G. V.; Gregory, K.
2013-12-01
Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2 following leakage and lead to better strategies for ensuring the quality of potable aquifer water.
NASA Astrophysics Data System (ADS)
López-Lloreda, C.; McDowell, W. H.; Potter, J.
2017-12-01
Recent studies have shown that freshwater ecosystems, mainly lakes and large rivers, can be an important source of greenhouse gas (GHG) emissions. Headwater streams have received less attention but have been identified as being a potentially important contributor to these emissions. The complex biogeochemical interactions between dissolved GHG, stream chemistry and other physicochemical parameters in streams are not well understood, particularly in small, tropical headwater streams. Surface water samples were taken at weekly intervals at 8 sites in the Luquillo Experimental Forest in Puerto Rico. Samples were analyzed for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as dissolved organic carbon (DOC), nitrate (NO3) and other major cations and anions. Additionally, physicochemical parameters and discharge (at a subset of sites) were recorded for each sample. Initial analyses of stream greenhouse gas concentrations showed very little seasonality across all sites as well as no change in concentrations during a drought in 2015. One of our hypothesized drivers, discharge, did not show any significant relationship with any of the greenhouse gases at our two gaged sites. Relationships between GHG and stream chemistry, mainly DOC and NO3, varied across sites. A significant negative relationship was found between NO3 and N2O when data were pooled across all sites, but no significant relationship was found at any individual site. CH4 was positively correlated with NO3, but only at one of our sites. N2O showed a significant positive relationship with DOC at two of our sites but interestingly, CO2 and CH4 did not show any significant relationship with DOC. Our initial results suggest that NO3 can be an important driver for N2O and CH4 concentrations, while DOC can be an important driver for N2O. Our results differ from those found in lowland tropical rivers, suggesting that river order and floodplain connections may be important drivers of GHG biogeochemistry. We have also observed a decoupling between DOC and CO2, similar to that which has been observed in previous long-term research in other biomes. The role of tropical montane streams in GHG evasion thus needs to be assessed directly, and cannot be inferred from work on larger tropical rivers.
Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng
2014-08-19
Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.
Larger CO2 source at the equatorial Pacific during the last deglaciation
Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Obrochta, Stephen; Suzuki, Atsushi
2014-01-01
While biogeochemical and physical processes in the Southern Ocean are thought to be central to atmospheric CO2 rise during the last deglaciation, the role of the equatorial Pacific, where the largest CO2 source exists at present, remains largely unconstrained. Here we present seawater pH and pCO2 variations from fossil Porites corals in the mid equatorial Pacific offshore Tahiti based on a newly calibrated boron isotope paleo-pH proxy. Our new data, together with recalibrated existing data, indicate that a significant pCO2 increase (pH decrease), accompanied by anomalously large marine 14C reservoir ages, occurred following not only the Younger Dryas, but also Heinrich Stadial 1. These findings indicate an expanded zone of equatorial upwelling and resultant CO2 emission, which may be derived from higher subsurface dissolved inorganic carbon concentration. PMID:24918354
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
Responses of invasive silver and bighead carp to a carbon dioxide barrier in outdoor ponds
Cupp, Aaron R.; Erickson, Richard A.; Fredricks, Kim T.; Swyers, Nicholas M.; Hatton, Tyson; Amberg, Jon J.
2017-01-01
Resource managers need for effective methods to prevent the movement of silver (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) from the Mississippi River basin into the Laurentian Great Lakes. In this study, we evaluated dissolved carbon dioxide (CO2) as a barrier and deterrent to silver (278 ± 30.5 mm) and bighead (212 ± 7.7 mm) carp movement in continuous-flow outdoor ponds. As a barrier, CO2 significantly reduced upstream movement but was not 100% effective at blocking fish passage. As a deterrent, we observed a significant shift away from areas of high CO2 relative to normal movement before and after injection. Carbon dioxide concentrations varied across the pond during injection and reached maximum concentrations of 74.5±1.9 mg/L CO2; 29 532 – 41 393 µatm at the site of injection during three independent trials. We conclude that CO2 altered silver and bighead carp movement in outdoor ponds and recommend further research to determine barrier effectiveness during field applications.
Biocompatibility of “On-Command” Dissolvable Tympanostomy Tube in the Rat Model
Mai, Johnny P.; Dumont, Matthieu; Rossi, Christopher; Cleary, Kevin; Wiedermann, Joshua; Reilly, Brian K.
2016-01-01
Objectives/Hypothesis A prototype tympanostomy tube, composed of (polybutyl/methyl methacrylate-co-dimethyl amino ethyl methacrylate (PBM)), was tested to (1) evaluate the effect of PBM tubes on rat dermis as a corollary for biocompatibility and (2) to observe the efficacy of dissolution with isopropyl alcohol (iPrOH) and ethanol (EtOH). Subjects and Methods A two-part study was conducted to assess biocompatible substance with inducible dissolvability as a critical characteristic for a newly engineered tympanostomy tube. First, tympanostomy tubes were inserted subcutaneously in 10 rats, which served as an animal model for biosafety and compared to traditional tubes with respect to histologic reaction. Tissue surrounding the PBM prototype tubes was submitted for histopathology and demonstrated no tissue reactivity or signs of major inflammation. In the second part, we evaluated the dissolvability of the tube with either isopropyl alcohol, ethanol, ofloxacin, ciprodex, water, and soapy water. PBM tubes were exposed to decreasing concentrations of iPrOH and EtOH with interval qualitative assessment of dissolution. Results (1) Histologic examination did not reveal pathology with PBM tubes; (2) Concentrations of at least 50% iPrOH and EtOH dissolve PBM tubes within 48 hours while concentrations of at least 75% iPrOH and EtOH were required for dissolution when exposure was limited to four 20-minute intervals. Conclusion PBM is biocompatible in the rat model. Additionally, PBM demonstrates rapid dissolution upon alcohol-based stimuli, validating the proof-of-concept of dissolvable “on-command” or biocommandible ear tubes. Further testing of PBM is needed with a less ototoxic dissolver and in a better simulated middle ear environment, before testing can be performed in humans. PMID:27796039
NASA Astrophysics Data System (ADS)
Tang, Kai-Wen; Chen, Cheng-Hong; Liu, Tsung-Kwei
2016-04-01
Annual rainfall in Taiwan is up to 2500 mm, about 2.5 times the average value of the world. However due to high topographic relief of the Central Mountain Range in Taiwan, groundwater storage is critical for water supply. Mountain region of the Goaping river watershed in southern Taiwan is one of the potential areas to develop groundwater recharge model. Therefore the target of this study is to understand sources of groundwater and surface water using dissolved gas and fluid chemistry. Four groundwater and 6 surface water samples were collected from watershed, 5 groundwater and 13 surface water samples were collected from downstream. All samples were analyzed for stable isotopes (hydrogen and oxygen), dissolved gases (including nitrogen, oxygen, argon, methane and carbon dioxide), noble gases (helium and radon) and major ions. Hydrogen and oxygen isotopic ratios of surface water and groundwater samples aligned along meteoric water line. For surface water, dissolved gases are abundant in N2 (>80%) and O2 (>10%); helium isotopic ratio is approximately equal to 1 RA (RA is 3He/4He ratio of air); radon-222 concentration is below the detection limit (<200 Bq/m3); and concentrations of major anions and cations are low (Na+ <20 ppm, Ca2+ < 60 ppm, Cl- <2 ppm). All these features indicate that surface waters are predominately recharged by precipitation. For groundwater, helium isotopic ratios (0.9˜0.23 RA) are lower and radon-222 concentrations (300˜6000 Bq/m3) are much higher than the surface water. Some samples have high amounts of dissolved gases, such as CH4 (>20%) or CO2 (>10%), most likely contributed by biogenic or geogenic sources. On the other hand, few samples that have temperature 5° higher than the average of other samples, show significantly high Na+ (>1000 ppm), Ca2+ (>150 ppm) and Cl- (>80 ppm) concentrations. An interaction between such groundwater and local hot springs is inferred. Watershed and downstream samples differ in dissolved gas species and fluid chemistry for groundwater and surface water. The higher hydrogen and oxygen isotopic ratios for surface water from downstream are most probably caused by evaporation. Low radon-222 concentrations of some groundwater from downstream may represent sources from different aquifers. Therefore, we conclude that surface water from downstream are recharged directly from its watershed, but groundwater are influenced by the local geological environment. Keywords: groundwater, dissolved gas, noble gas, radon in water, 3He/4He
Song, Lei; Tian, Peng; Zhang, Jinbo; Jin, Guangze
2017-12-31
Continuously enhanced nitrogen (N) deposition alters the pattern of N and carbon (C) transformations, and thus influences greenhouse gas emissions. It is necessary to clarify the effect of N deposition on greenhouse gas emissions and soil N dynamics for an accurate assessment of C and N budgets under increasing N deposition. In this study, four simulated N deposition treatments (control [CK: no N addition], low-N [L: 20kgNha -1 yr -1 ], medium-N [M: 40kgNha -1 yr -1 ], and high-N [H: 80kgNha -1 yr -1 ]) were operated from 2014. Carbon dioxide, methane and nitrous oxide fluxes were monitored semimonthly, as were soil variables such as temperature, moisture and the concentrations of total dissolved N (TDN), NO 3 - , NO 2 - , NH 4 + , and dissolved organic N (DON) in soil solutions. The simulated N deposition resulted in a significant increase in TDN, NO 3 - and DON concentrations in soil solutions. The average CO 2 emission rate ranged from 222.6mgCO 2 m -2 h -1 in CK to 233.7mgCO 2 m -2 h -1 in the high-N treatment. Three years of simulated N deposition had no effect on soil CO 2 emission, which was mainly controlled by soil temperature. The mean N 2 O emission rate during the whole 3years was 0.02mgN 2 Om -2 h -1 for CK, which increased significantly to 0.05mgN 2 Om -2 h -1 in the high-N treatment. The N 2 O emission rate positively correlated with NH 4 + concentrations, and negatively correlated with soil moisture. The average CH 4 flux during the whole 3years was -0.74μgCH 4 m -2 h -1 in CK, which increased to 1.41μgCH 4 m -2 h -1 in the low-N treatment. CH 4 flux positively correlated with NO 3 - concentrations. These results indicate that short-term N deposition did not affect soil CO 2 emissions, while CH 4 and N 2 O emissions were sensitive to N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.
2016-02-01
Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; He, Yixin; Yuan, Xingzhong; Chen, Huai; Peng, Changhui; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Liu, Shuangshuang
2017-04-01
Greenhouse gas (GHG) emissions from reservoirs and global urbanization have gained widespread attention, yet the response of GHG emissions to the watershed urbanization is poorly understood. Meanwhile, there are millions of small reservoirs worldwide that receive and accumulate high loads of anthropogenic carbon and nitrogen due to watershed urbanization and can therefore be hotspots of GHG emissions. In this study, we assessed the GHG concentrations and fluxes in sixteen small reservoirs draining urban, agricultural and forested watersheds over a period of one year. The concentrations of pCO2, CH4 and N2O in sampled urban reservoirs that received more sewage input were higher than those in agricultural reservoirs, and were 3, 7 and 10 times higher than those in reservoirs draining in forested areas, respectively. Accordingly, urban reservoirs had the highest estimated GHG flux rate. Regression analysis indicated that dissolved total phosphorus, dissolved organic carbon (DOC) and chlorophyll-a (Chl-a) had great effect on CO2 production, while the nitrogen (N) and phosphorus (P) content of surface water were closely related to CH4 and N2O production. Therefore, these parameters can act as good predictors of GHG emissions in urban watersheds. Given the rapid progress of global urbanization, small urban reservoirs play a crucial role in accounting for regional GHG emissions and cannot be ignored.
Acid-base properties of Baltic Sea dissolved organic matter
NASA Astrophysics Data System (ADS)
Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.
2017-09-01
Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.
Erda, F G; Bloemen, J; Steppe, K
2014-01-01
In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2 *]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T(stem)), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T(stem) and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T(stem) to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 ± 0.01% under-estimation and 3.97 ± 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pH(x) is in the more sensitive range (pH(x) > 6.5). © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Agrahari, P; Singh, D K
2013-11-01
Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. © 2012 Blackwell Verlag GmbH.
Dry habitats sustain high CO2 emissions from temporary ponds across seasons.
Obrador, Biel; von Schiller, Daniel; Marcé, Rafael; Gómez-Gener, Lluís; Koschorreck, Matthias; Borrego, Carles; Catalán, Núria
2018-02-14
Despite the increasing understanding of the magnitude and drivers of carbon gas emissions from inland waters, the relevance of water fluctuation and associated drying on their dynamics is rarely addressed. Here, we quantified CO 2 and CH 4 fluxes from a set of temporary ponds across seasons. The ponds were in all occasion net CO 2 emitters irrespective of the presence or absence of water. While the CO 2 fluxes were in the upper range of emissions for freshwater lentic systems, CH 4 fluxes were mostly undetectable. Dry habitats substantially contributed to these emissions and were always a source of CO 2 , whereas inundated habitats acted either as a source or a sink of atmospheric CO 2 along the year. Higher concentrations of coloured and humic organic matter in water and sediment were linked to higher CO 2 emissions. Composition of the sediment microbial community was related both to dissolved organic matter concentration and composition, but we did not find a direct link with CO 2 fluxes. The presence of methanogenic archaea in most ponds suggested the potential for episodic CH 4 production and emission. Our results highlight the need for spatially and temporally inclusive approaches that consider the dry phases and habitats to characterize carbon cycling in temporary systems.
Lobaccaro, Peter; Singh, Meenesh R; Clark, Ezra Lee; Kwon, Youngkook; Bell, Alexis T; Ager, Joel W
2016-09-29
In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. We show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena taking place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of <10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. We show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2 .
Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee; ...
2016-09-06
In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. Here we show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena takingmore » place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of < 10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. Finally, we show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee
In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. Here we show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena takingmore » place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of < 10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. Finally, we show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2.« less
Takahashi, Masato; Sawada, Yoshisuke; Aoyagi, Hideki
2017-08-23
Monitoring the environmental factors during shake-flask culture of microorganisms can help to optimise the initial steps of bioprocess development. Herein, we developed a circulation direct monitoring and sampling system (CDMSS) that can monitor the behaviour of CO 2 and O 2 in the gas-liquid phases and obtain a sample without interrupting the shaking of the culture in Erlenmeyer flasks capped with breathable culture plugs. Shake-flask culturing of Escherichia coli using this set-up indicated that a high concentration of CO 2 accumulated not only in the headspace (maximum ~100 mg/L) but also in the culture broth (maximum ~85 mg/L) during the logarithmic phase (4.5-9.0 h). By packing a CO 2 absorbent in the gas circulation unit of CDMSS, a specialised shake-flask culture was developed to remove CO 2 from the headspace. It was posited that removing CO 2 from the headspace would suppress increases in the dissolved CO 2 concentration in the culture broth (maximum ~15 mg/L). Furthermore, the logarithmic growth phase (4.5-12.0 h) was extended, the U.O.D. 580 and pH value increased, and acetic acid concentration was reduced, compared with the control. To our knowledge, this is the first report of a method aimed at improving the growth of E. coli cells without changing the composition of the medium, temperature, and shaking conditions.
Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream
Kent, Robert; Belitz, Kenneth; Burton, Carmen
2005-01-01
This study examined algal productivity and nitrate assimilation in a 2.85 km reach of Cucamonga Creek, California, a concrete lined channel receiving treated municipal wastewater. Stream nitrate concentrations observed at two stations indicated nearly continuous loss throughout the diel study. Nitrate loss in the reach was approximately 11 mg/L/d or 1.0 g/m2/d as N, most of which occurred during daylight. The peak rate of nitrate loss (1.13 mg/l/hr) occurred just prior to an afternoon total CO2 depletion. Gross primary productivity, as estimated by a model using the observed differences in dissolved oxygen between the two stations, was 228 mg/L/d, or 21 g/m2/d as O2. The observed diel variations in productivity, nitrate loss, pH, dissolved oxygen, and CO2indicate that nitrate loss was primarily due to algal assimilation. The observed levels of productivity and nitrate assimilation were exceptionally high on a mass per volume basis compared to studies on other streams; these rates occurred because of the shallow stream depth. This study suggests that concrete‐lined channels can provide an important environmental service: lowering of nitrate concentrations similar to rates observed in biological treatment systems.
Methanogenic biodegradation of charcoal production wastes in groundwater at Kingsford, Michigan, USA
Michael, Godsy E.; Warren, E.; Westjohn, D.B.
2001-01-01
A house exploded in the City of Kingsford, Michigan USA. The explosion was caused by CH4 that leaked into the basement from the surrounding soil. Evidence suggests that biodegradation of products from the distillation and spillage at or near a former wood carbonization plant site was the major source of CH4 and CO2 in the groundwater system. The plant area is directly upgradient from deep groundwater, samples of which are green-yellow in colour, have a very strong odour of burnt wood, contain high concentrations of mononuclear aromatic and phenolic compounds, and extremely high concentrations of volatile fatty acids. The majority of the dissolved compounds in these groundwater samples have been shown, using laboratory microcosms, to be anaerobically biodegradable to CH4 and CO2. The biodegradable compounds, and the amounts of CH4 and CO2 produced in the microcosms, are consistent with observations from field samples.
Element budgets in an Arctic mesocosm CO2 perturbation study
NASA Astrophysics Data System (ADS)
Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Siljakova, A.; Riebesell, U.
2012-08-01
Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation) all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and enhanced cycling of dissolved organics was pushing the system towards a retention type food chain with overall negative effects on export potential.
Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten
2015-10-01
Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.
Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten
2015-01-01
Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a “business-as-usual” emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m3 each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments. PMID:26601292
Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide
NASA Astrophysics Data System (ADS)
Maier, H. J.
2016-02-01
CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. This can involve increased stress in populations, and alteration in individual physiology, which can eventually be expressed through an organism's behavior. If sustained, CO2 induced ocean acidification has the potential to cause major impacts on marine food chains, including on services they provide. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crab Clibanarius digueti, a crustacean inhabiting the littoral zone. We hypothesized that an increase in dissolved carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the physiology of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into the treatment tank and measured as dissolved CO2 by using a NaOH titration method. Additionally, water conditions were characterized for light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We found a marked treatment effect on C. digueti behavior. The population experiencing increased CO2 performed daily shell changes after first day of exposure for each of the 4-day trials, as compared to individuals unexposed to dissolved CO2, that experienced no shell changes. From this study we conclude that the behavior of C. Digueti can be a good indicator of changes in dissolved CO2. This would allow us to better interpret patterns in marine animal behavior in response to climate change.
Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.
Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús
2016-04-01
Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore
NASA Astrophysics Data System (ADS)
Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni
2018-03-01
Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.
NASA Astrophysics Data System (ADS)
Biswas, Haimanti; Rahman Shaik, Aziz Ur; Bandyopadhyay, Debasmita
2014-05-01
Bay of Bengal (BoB), a low productive part of the North Indian Ocean, often possesses low CO2 levels in its surface water and diatoms dominate the phytoplankton communities. Virtually no studies are available from this area reporting how this diatom dominated phytoplankton community would respond any increase in dissolved CO2 levels either naturally or anthopogenically. In most of the marine phytoplankton, the inefficiency of the sole carbon fixing enzyme Rubisco necessitates the need of concentrating dissolved inorganic carbon (DIC) (mostly as HCO3) inside the cell in excess of the ambient water concentrations in order to maintain high rate of photosynthesis under low CO2 levels through an energy consuming carbon concentration mechanisms (CCMs). The ubiquitous enzyme carbonic anhydrase (CA) plays a vital role in CCMs by converting HCO3- to CO2 and usually utilizes the trace metal zinc (Zn) as a cofactor. However, it is evident in many marine phytoplankton species that with increasing external CO2 levels, CCMs can be down-regulated leading to energetic savings which can be reallocated to growth; although exceptions occur. Hence, in order to predict their responses to the projected changes, it is imperative to understand their carbon metabolism patterns. We have conducted a series of incubation experiments in microcosms with natural phytoplankton communities from the coastal waters of BoB under different CO2 levels. Our results revealed that the rate of net photosynthetic oxygen evolution and biomass build-up increased in response to increasing CO2 levels. The depletion in δ13CPOM values were more in the high CO2 treatments relative to the low CO2 treated cells (control), indicating that dissolved CO2 uptake was higher when CO2 levels were increased. When additional Zn was added to the low CO2 treated cells, net photosynthetic oxygen evolution rate was increased significantly than that of the untreated control. It is likely that upon the supply of Zn under low CO2 levels, CA activity was enhanced and accelerated DIC transport and photosynthetic rate. Moreover, δ13CPOM values of low CO2 samples (both Zn treated and untreated) were almost identical, though the rate of photosynthesis was higher in response to Zn addition. This could be because of the fact that under low CO2 levels, DIC was possibly transported as HCO3- and an active HCO3- transport can contribute to low discrimination of 13C compared to diffusive CO2uptake leading to unaltered values of δ13CPOM. Furthermore, under low CO2 treatments, the need of nitrogen resource can be higher to maintain an active CCM (to build-up required proteins, Rubisco and CCM components) and our results showed higher values of δ15NPOMunder low CO2 levels relative to the high CO2treatments suggesting higher nitrogen utilization efficiency in the former case. These observations strengthen the possibility of operating an active CCM under low CO2 levels. HPLC pigment analysis revealed the occurrences of diatoxanthin (DT) [indicator of non-photo-chemical quenching (NPQ)] and high values of photoprotective carotenoid to light harvesting carotenoid ratios (PPC/LHC) in the low CO2 treated cells indicating light stress. This is likely that, when CO2, the only substrate for Rubisco, is low, absorbed light energy within the cell can be surplus leading to photo-damage and to protect the cell from potential damage, DT was produced by energy dissipation via NPQ and PPC were synthesized in excess of LHC. Conversely, in Zn and high CO2 treated cells, the absence of DT and reduced values of PPC/LHC indirectly indicates reduced light stress which was possibly because of enhanced supply of Rubisco substrate either via active bicarbonate transport or diffusive CO2 supply. Thus, we infer that the diatom dominated phytoplankton communities from the study area perform CCMs under low CO2 conditions and the same can be down regulated upon the increasing levels of CO2 and the community may benefit from the increasing CO2 levels followed by increased rate of carbon fixation. These can have large biogeochemical significance.
NASA Astrophysics Data System (ADS)
Deirmendjian, Loris; Loustau, Denis; Augusto, Laurent; Lafont, Sébastien; Chipeaux, Christophe; Poirier, Dominique; Abril, Gwenaël
2018-02-01
We studied the export of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from forested shallow groundwater to first-order streams, based on groundwater and surface water sampling and hydrological data. The selected watershed was particularly convenient for such study, with a very low slope, with pine forest growing on sandy permeable podzol and with hydrology occurring exclusively through drainage of shallow groundwater (no surface runoff). A forest plot was instrumented for continuous eddy covariance measurements of precipitation, evapotranspiration, and net ecosystem exchanges of sensible and latent heat fluxes as well as CO2 fluxes. Shallow groundwater was sampled with three piezometers located in different plots, and surface waters were sampled in six first-order streams; river discharge and drainage were modeled based on four gauging stations. On a monthly basis and on the plot scale, we found a good consistency between precipitation on the one hand and the sum of evapotranspiration, shallow groundwater storage and drainage on the other hand. DOC and DIC stocks in groundwater and exports to first-order streams varied drastically during the hydrological cycle, in relation with water table depth and amplitude. In the groundwater, DOC concentrations were maximal in winter when the water table reached the superficial organic-rich layer of the soil. In contrast, DIC (in majority excess CO2) in groundwater showed maximum concentrations at low water table during late summer, concomitant with heterotrophic conditions of the forest plot. Our data also suggest that a large part of the DOC mobilized at high water table was mineralized to DIC during the following months within the groundwater itself. In first-order streams, DOC and DIC followed an opposed seasonal trend similar to groundwater but with lower concentrations. On an annual basis, leaching of carbon to streams occurred as DIC and DOC in similar proportion, but DOC export occurred in majority during short periods of the highest water table, whereas DIC export was more constant throughout the year. Leaching of forest carbon to first-order streams represented a small portion (approximately 2 %) of the net land CO2 sink at the plot. In addition, approximately 75 % of the DIC exported from groundwater was not found in streams, as it returned very fast to the atmosphere through CO2 degassing.
Organic fuels for respiration in tropical river systems
NASA Astrophysics Data System (ADS)
Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.
2011-12-01
Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from Obidos to Macapa and subtracted from the observed concentration at Obidos. The calculated theoretical concentration at Macapa was only 1.1% less than the observed in situ concentration. A theoretical dissolved concentration was then calculated by adding the lignin lost from the particulate phase and subtracting the loss of dissolved lignin from the observed dissolved lignin concentration at Obidos. Again, the theoretical concentration was only 6.1% less than the observed concentration in Macapa. This calculation does not include other processes such as sorption or tributary inputs, but indicates that microbial degradation is likely a large controlling factor on lignin concentrations across the river continuum.
Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes
NASA Astrophysics Data System (ADS)
Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.
2017-06-01
Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.
Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean
NASA Astrophysics Data System (ADS)
Gray, William R.; Rae, James W. B.; Wills, Robert C. J.; Shevenell, Amelia E.; Taylor, Ben; Burke, Andrea; Foster, Gavin L.; Lear, Caroline H.
2018-05-01
The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling-Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling-Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling-Allerød and contributed to the deglacial CO2 rise.
NASA Astrophysics Data System (ADS)
Furukawa, Makoto; Sato, Toru; Suzuki, Yoshimi; Casareto, Beatriz E.; Hirabayashi, Shinichiro
2018-06-01
Ocean surface acidification due to increasing atmospheric CO2 concentration is currently attracting much attention. Coccolithophores distribute widely across the world's oceans and represent a carbon sink containing about 100 million tonnes of carbon. For this reason, there is concern about dissolution of their shells, which are made of calcium carbonate, due to decreasing pH. In this study, intracellular calcification, photosynthesis, and mass transport through biomembranes of Emiliania huxleyi were modelled numerically for understanding biological response in calcifying organisms. Unknown parameters were optimised by a generic algorithm to match existing experimental results. The model showed that the production of calcium carbonate rather than its dissolution is promoted under an acidified environment. Calcite remains at saturation levels in a coccolith even when it is below saturation levels in the external seawater. Furthermore, a coccolith can dissolve even in water where calcite saturation exceeds 1, because the saturation may be below the threshold level locally around the cell membrane. The present model also showed that the different calcification rates of E. huxleyi with respect to rising CO2 concentrations reported in the literature are due to differences in experimental conditions; in particular, how the CO2 concentration is matched. Lastly, the model was able to reproduce differences in calcification rates among coccolithophore species. The above biochemical-kinetic model was then incorporated into an ecosystem model, and the behaviour of coccolithophores in the ecosystem and the influence of increases in CO2 concentration on water quality were simulated and validated by comparison with existing experimental results. The model also suggests that increased CO2 concentration could lead to an increase in the biomass ratio of coccolithophores to diatoms at high CO2 concentrations, particularly in oligotrophic environments, and to a consequent decrease in pH due to calcium dissolution.
NASA Astrophysics Data System (ADS)
Dean, Joshua F.; Billett, Michael F.; Dinsmore, Kerry J.; Garnett, Mark H.; van der Velde, Ype
2017-04-01
Radiocarbon (14C) dating of dissolved organic carbon (DOC) in Arctic freshwaters has been used as a crucial tool for detecting old C mobilised from thawing permafrost, but DO14C in major Arctic rivers is usually quite young. New methods for the collection of both CO2 and CH4 from inland waters allow novel observation of dissolved 14CO2 and 14CH4 alongside DO14C, and provide a more sensitive method than aquatic OC alone - published Arctic freshwater 14C studies to date focus only on DOC, particulate OC, or ebullition CH4/CO2. The mobilisation of old C sourced from deepening permafrost soil active-layers into Arctic freshwaters has the potential to form a significant positive climate feedback. We compare 14C in DOC, dissolved CO2 and dissolved CH4 at five time points over a single growing season from streams, ponds and lakes underlain by continuous permafrost in the western Canadian Arctic. Using age distribution analysis based on atmospheric 14CO2 records, we estimated the age of aquatic C that would otherwise be labelled as "modern" due to the 14C bomb peak. We then calculated the vertical and lateral C fluxes in the study systems, and estimated the proportion derived from old permafrost C. The upper organic-rich soils are the dominant hydrologic pathway, which were completely thawed by late season, and we hypothesised that mobilisation of older, deeper organic soil C would be visible in the aquatic 14C by late in the growing season. Early in the season, median aquatic DO14C and CO2 ages were 65-131 years old (all 14C ages reported here are years before sampling date). By the end of the season, DO14C was 156-271 years old, while CO2 was 113-161 years old, demonstrating that aquatic C ages reflect the mobilisation of thawing older permafrost C. CH4 concentrations were generally low throughout and only two dates were obtained: 202 and 1,970 years old. Overall there was limited evidence of very old permafrost organic C, which comprised 0-10% of vertical and lateral aquatic fluxes. Our results demonstrate that permafrost thaw will result in the mobilisation of old C into the aquatic phase as DOC, CO2 and CH4, but also indicate potential resilience within these systems in response to climate change.
Oxic limestone drains for treatment of dilute, acidic mine drainage
Cravotta, Charles A.
1998-01-01
Limestone treatment systems can be effective for remediation of acidic mine drainage (AMD) that contains moderate concentrations of dissolved O2 , Fe3+ , or A13+ (1‐5 mg‐L‐1 ). Samples of water and limestone were collected periodically for 1 year at inflow, outflow, and intermediate points within underground, oxic limestone drains (OLDs) in Pennsylvania to evaluate the transport of dissolved metals and the effect of pH and Fe‐ and Al‐hydrolysis products on the rate of limestone dissolution. The influent was acidic and relatively dilute (pH <4; acidity < 90 mg‐L‐1 ) but contained 1‐4 mg‐L‐1 Of O2 , Fe3+ , A13+ , and Mn2+ . The total retention time in the OLDs ranged from 1.0 to 3.1 hours. Effluent remained oxic (02 >1 mg‐L‐1 ) but was near neutral (pH = 6.2‐7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs. The hydrous oxides, nominally Fe(OH)3 and AI(OH)3, were visible as loosely bound, orange‐yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)3 and AI(OH)3 particles were transported downflow. During the first 6 months of the experiment, Mn 2+ was transported conservatively through the OLDs; however, during the second 6 months, concentrations of Mn in effluent decreased by about 50% relative to influent. The accumulation of hydrous oxides and elevated pH (>5) in the downflow part of the OLDs promoted sorption and coprecipitation of Mn as indicated by its enrichment relative to Fe in hydrous‐oxide particles and coatings on limestone. Despite thick (~1 mm) hydrous‐oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within the OLD where the limestone was not coated. The rate of limestone dissolution decreased with increased residence time, pH, and concentrations of Ca2+ and HCO3‐ and decreased PCO2. The following overall reaction shows alkalinity as an ultimate product of the iron hydrolysis reaction in an OLD:Fe2+ + 0.25 O2 +CaCO3 + 2.5 H2O --> Fe(OH)3 + 2 Ca2+ + 2 HCO3-where 2 moles of CaCO3 dissolve for each mole of Fe(OH)3 produced. Hence, in an OLD, rapidly dissolving limestone surfaces are not stable substrates for Fe(OH)3 attachment and armoring. Because overall efficiency is increased by combining neutralization and hydrolysis reactions, an OLD followed by a settling pond requires less land area than needed for a two‐stage treatment system consisting of an anoxic limestone drain an oxidation‐settling pond or wetland. To facilitate removal of hydrous‐oxide sludge, a perforated‐pipe subdrain can be installed within an OLD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshkov, V.G.; Makarieva, A.M.
The oceanic phytoplancton productivity may essentially influence the total rate of the atmospheric CO{sub 2} absorption by the ocean - that is, a considerable amount of CO{sub 2} will be taken-up in the 50 micrometers thick layer near the air-sea interface. Even if phytoplancton production constitutes only 5% of the total oceanic biota production, this will increase the rate of CO{sub 2} absorption more than twice compared with the present estimates. The reason is that metabolic activity of phytoplancton leads to the emergence in a thin scin (50 micrometers, the average size of phytoplancton cells) layer near the water surfacemore » of an additional minimum in the CO{sub 2} partial pressure profile and of an additional maximum of {Delta} {sup 13}C in the same area. These two extremums cannot be detected if the corresponding characteristics are averaged over any microscopic area in the well mixing layer that is more than 1 meter deep, which is usually the case when the oceanic concentrations of CO{sub 2} are measured. This effect may account for the observed contradiction between the existing estimates of the rate of CO{sub 2} absorption, that are based either on measuring gradient of the concentrations of the dissolved organic and inorganic carbon or on measuring of the physical flux of CO{sub 2} through the air-sea interface.« less
NASA Astrophysics Data System (ADS)
Loring, J.
2015-12-01
Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2-enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of Na-, Cs-, and NH4+-saturated montmorillonite (Na-, Cs-, and NH4-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane, carbon dioxide, and CO2/CH4 mixtures (3 and 25 mole% CO2) were investigated using in situ IR spectroscopic titrations, in situ XRD, in situ MAS-NMR, and ab initio electronic structure calculations. The overarching goal was to better understand the hydration/expansion behavior of Na-SWy-2 in CO2/CH4 fluid mixtures by comparison to Cs-, and NH4+-saturated clays. Specific aims were to (1) determine if CH4 intercalates the clays, (2) probe the effects of increasing dissolved CO2 and H2O concentrations, and (3) understand the role of cation solvation by H2O and/or CO2. In pure CH4, no evidence of CH4 intercalation was detected by IR for any of the clays. Similarly, no measurable changes to the basal spacing were observed by XRD in the presence of pure CH4. However, when dry Cs- and NH4-SWy-2 were exposed to dry fluids containing CO2, IR showed maximum CO2 penetrated the interlayer, XRD indicated the clays expanded, and NMR showed evidence for cation solvation by CO2, in line with theoretical predictions. IR titration of these clays with water showed sorbed H2O concentrations decreased with increasing dissolved CO2, suggesting competition for interlayer residency by CO2 and H2O. For Na-SWy-2, on the other hand, CO2 intercalated the clay and was at a maximum only after a minimum sorbed H2O was achieved. Further increases in sorbed H2O led to displacement of intercalated CO2. These findings demonstrate that complicated H2O and CO2 intercalation processes could lead to permeability changes that directly impact methane transmissivity in shales.
Nitrate loading and CH4 and N2O Flux from headwater streams
NASA Astrophysics Data System (ADS)
Sousa, C. H. R. D.; Hilker, T.; Hall, F. G.; Moura, Y. M.; McAdam, E.
2014-12-01
Freshwater ecosystems transport and process significant amounts of terrestrial carbon and can be considerable sources of CO2, CH4, and N2O. A great deal of uncertainty, however, remains in both global estimates and our understanding of drivers of freshwater greenhouse gas emissions. Furthermore, small headwater streams have received insufficient attention to date and may contribute disproportionately to global GHG flux. Our objective was to quantify GHG flux and assess the impact of changes in DOC and NO3 concentrations in surface and subsurface water on flux rates in three streams in the Lamprey River watershed in New Hampshire, USA, that contrast in surface water DOC:NO3. We measured DOC, NO3 and dissolved gas concentrations in surface waters of each stream monthly from May 2011 to April 2012. Empirical measurements of reaeration coefficients were used to convert dissolved gas concentrations to fluxes. We found higher GHG concentrations and fluxes in the two streams with high DOC concentrations, particularly gases produced by anaerobic metabolism (CH4, N2O from methanogenesis and denitrification, respectively). The stream with high DOC and high NO3 showed high N2O and low CH4 flux, while the high DOC, low NO3 stream showed high CH4 and low N2O flux. Our results are consistent with a model in which C inputs drive total GHG production, while NO3 input regulates the relative importance of CH4 and N2O by suppressing methanogenesis and stimulating denitrification. The magnitude of GHG fluxes suggests that streams in this region are likely to be small sources of CO2, but potentially important sources of CH4 and N2O. Since CH4 and N2O are many times more powerful than CO2 at trapping heat in the atmosphere, freshwater emissions of these gases have the potential to offset a significant proportion of the climate benefits of the terrestrial carbon sink, a possibility that has not been sufficiently incorporated into climate models.
Nitrate loading and CH4 and N2O Flux from headwater streams
NASA Astrophysics Data System (ADS)
Schade, J. D.; Bailio, J.; McDowell, W. H.
2015-12-01
Freshwater ecosystems transport and process significant amounts of terrestrial carbon and can be considerable sources of CO2, CH4, and N2O. A great deal of uncertainty, however, remains in both global estimates and our understanding of drivers of freshwater greenhouse gas emissions. Furthermore, small headwater streams have received insufficient attention to date and may contribute disproportionately to global GHG flux. Our objective was to quantify GHG flux and assess the impact of changes in DOC and NO3 concentrations in surface and subsurface water on flux rates in three streams in the Lamprey River watershed in New Hampshire, USA, that contrast in surface water DOC:NO3. We measured DOC, NO3 and dissolved gas concentrations in surface waters of each stream monthly from May 2011 to April 2012. Empirical measurements of reaeration coefficients were used to convert dissolved gas concentrations to fluxes. We found higher GHG concentrations and fluxes in the two streams with high DOC concentrations, particularly gases produced by anaerobic metabolism (CH4, N2O from methanogenesis and denitrification, respectively). The stream with high DOC and high NO3 showed high N2O and low CH4 flux, while the high DOC, low NO3 stream showed high CH4 and low N2O flux. Our results are consistent with a model in which C inputs drive total GHG production, while NO3 input regulates the relative importance of CH4 and N2O by suppressing methanogenesis and stimulating denitrification. The magnitude of GHG fluxes suggests that streams in this region are likely to be small sources of CO2, but potentially important sources of CH4 and N2O. Since CH4 and N2O are many times more powerful than CO2 at trapping heat in the atmosphere, freshwater emissions of these gases have the potential to offset a significant proportion of the climate benefits of the terrestrial carbon sink, a possibility that has not been sufficiently incorporated into climate models.
Magnesium transport extraction of transuranium elements from LWR fuel
Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.
Bolide impacts and the oxidation state of carbon in the earth's early atmosphere
NASA Technical Reports Server (NTRS)
Kasting, James F.
1990-01-01
A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.
Quantification of CO2-FLUID-ROCK Reactions Using Reactive and Non-Reactive Tracers
NASA Astrophysics Data System (ADS)
Matter, J.; Stute, M.; Hall, J. L.; Mesfin, K. G.; Gislason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Alfredsson, H. A.; Gunnlaugsson, E.; Broecker, W. S.
2013-12-01
Carbon dioxide mineralization via fluid-rock reactions provides the most effective and long-term storage option for geologic carbon storage. Injection of CO2 in geologic formations induces CO2 -fluid-rock reactions that may enhance or decrease the storage permanence and thus the long-term safety of geologic carbon storage. Hence, quantitative characterization of critical CO2 -fluid-rock interactions is essential to assess the storage efficiency and safety of geologic carbon storage. In an attempt to quantify in-situ fluid-rock reactions and CO2 transport relevant for geologic carbon storage, we are testing reactive (14C, 13C) and non-reactive (sodium fluorescein, amidorhodamine G, SF5CF3, and SF6) tracers in an ongoing CO2 injection in a basaltic storage reservoir at the CARBFIX pilot injection site in Iceland. At the injection site, CO2 is dissolved in groundwater and injected into a permeable basalt formation located 500-800 m below the surface [1]. The injected CO2 is labeled with 14C by dynamically adding calibrated amounts of H14CO3-solution into the injection stream in addition to the non-reactive tracers. Chemical and isotopic analyses of fluid samples collected in a monitoring well, reveal fast fluid-rock reactions. Maximum SF6 concentration in the monitoring well indicates the bulk arrival of the injected CO2 solution but dissolved inorganic carbon (DIC) concentration and pH values close to background, and a potentially lower 14C to SF6 ratio than the injection ratio suggest that most of the injected CO2 has reacted with the basaltic rocks. This is supported by δ13CDIC, which shows a drop from values close to the δ 13C of the injected CO2 gas (-3‰ VPDB) during breakthrough of the CO2 plume to subsequent more depleted values (-11.25‰ VPDB), indicating precipitation of carbonate minerals. Preliminary mass balance calculations using mixing relationships between the background water in the storage formation and the injected solution, suggest that approximately 85% of the injected CO2 must have reacted along the flow path from the injection well to the monitoring well within less than one year. Monitoring is still going on and we will extend the time series and the mass balance accordingly. Our study demonstrates that by combining reactive and non-reactive tracers, we are able to quantify CO2-fluid-rock interactions on a reservoir scale. [1] Gislason et al. (2010), Int. J. Greenh. Gas Con. 4, 537-545.
Parker, Stephen R.; Gammons, Christopher H.; Poulson, Simon R.; DeGrandpre, Michael D.
2007-01-01
Many rivers undergo diel (24-h) concentration fluctuations of pH, dissolved gases, trace metals, nutrients, and other chemical species. A study conducted in 1994 documented such behavior in the upper Clark Fork River, Montana, a stream whose headwaters have been severely impacted by historic metal mining, milling, and smelting. The purpose of the present investigation was to expand on these earlier findings by conducting simultaneous diel samplings at two sites on the upper Clark Fork River separated by 2.5 h of stream travel time. By monitoring two stations, it was possible to more closely examine the processes that control temporal and spatial gradients in stream chemistry. Another objective was to examine diel changes in the δ13C composition of dissolved inorganic C (DIC) and their relationship to biological activity in the stream. The most important findings of this study include: (1) concentrations of dissolved and particulate heavy metals increased during the night and decreased during the day, in agreement with previous work; (2) these changes were positively correlated to diel changes in pH, dissolved O2, and water temperature; (3) dissolved concentrations increased during the night at the lower site, but showed the opposite behavior at the upper site; and (4) diel changes in δ13C-DIC were noted at both sites, although the timing and magnitudes of the cycles differed. Hypotheses to explain the first two observations include: cyclic co-precipitation of divalent metals with carbonate minerals; pH- and temperature-dependent sorption of metal cations onto the streambed and suspended particles; or photosynthetically enhanced oxidation and removal of Fe and Mn oxides at biofilm surfaces during the daytime. The latter model explains the majority of the field observations, including night-time increases in particulate forms of Fe and other elements.
Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen
NASA Astrophysics Data System (ADS)
Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.
2014-12-01
The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may normally be controlled by other oxidative pathways in which oxygen plays an indirect role.
Ocean Fertilization and Ocean Acidification
NASA Astrophysics Data System (ADS)
Cao, L.; Caldeira, K.
2008-12-01
It has been suggested that ocean fertilization could help diminish ocean acidification. Here, we quantitatively evaluate this suggestion. Ocean fertilization is one of several ocean methods proposed to mitigate atmospheric CO2 concentrations. The basic idea of this method is to enhance the biological uptake of atmospheric CO2 by stimulating net phytoplankton growth through the addition of iron to the surface ocean. Concern has been expressed that ocean fertilization may not be very effective at reducing atmospheric CO2 concentrations and may produce unintended environmental consequences. The rationale for thinking that ocean fertilization might help diminish ocean acidification is that dissolved inorganic carbon concentrations in the near-surface equilibrate with the atmosphere in about a year. If ocean fertilization could reduce atmospheric CO2 concentrations, it would also reduce surface ocean dissolved inorganic carbon concentrations, and thus diminish the degree of ocean acidification. To evaluate this line of thinking, we use a global ocean carbon cycle model with a simple representation of marine biology and investigate the maximum potential effect of ocean fertilization on ocean carbonate chemistry. We find that the effect of ocean fertilization on ocean acidification depends, in part, on the context in which ocean fertilization is performed. With fixed emissions of CO2 to the atmosphere, ocean fertilization moderately mitigates changes in ocean carbonate chemistry near the ocean surface, but at the expense of further acidifying the deep ocean. Under the SRES A2 CO2 emission scenario, by year 2100 simulated atmospheric CO2, global mean surface pH, and saturation state of aragonite is 965 ppm, 7.74, and 1.55 for the scenario without fertilization and 833 ppm, 7.80, and 1.71 for the scenario with 100-year (between 2000 and 2100) continuous fertilization for the global ocean (For comparison, pre-industrial global mean surface pH and saturation state of aragonite is 8.18 and 3.5). As a result of ocean fertilization, 10 years from now, the depth of saturation horizon (the depth below which ocean water is undersaturated with respect to calcium carbonate) for aragonite in the Southern Ocean shoals from its present average value of about 700 m to 100 m. In contrast, no significant change in the depth of aragonite saturation horizontal is seen in the scenario without fertilization for the corresponding period. By year 2100, global mean calcite saturation horizon shoals from its present value of 3150 m to 2965 and 2534 m in the case without fertilization and with it. In contrast, if the sale of carbon credits from ocean fertilization leads to greater CO2 emissions to the atmosphere (e.g., if carbon credits from ocean fertilization are used to offset CO2 emissions from a coal plant), then there is the potential that ocean fertilization would further acidify the deep ocean without conferring any chemical benefit to surface ocean waters.
Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment
NASA Astrophysics Data System (ADS)
Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf
2016-11-01
About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.
NASA Technical Reports Server (NTRS)
Kieffer, Susan W.; Brown, K. L.; Simmons, Stuart F.; Watson, Arnold
2004-01-01
Water in the Earth's crust generally contains dissolved gases such as CO2. Models for both 'Blue Mars' (H2O-driven processes) and 'White Mars' (CO2-driven processes) predict liquid H2O with dissolved CO2 at depth. The fate of dissolved CO2 as this mixture rises toward the surface has not been quantitatively explored. Our approach is a variation on NASA's 'Follow the Water' as we 'Follow the Fluid' from depth to the surface in hydrothermal areas on Earth and extrapolate our results to Mars. This is a preliminary report on a field study of fluid flow in a producing geothermal well. For proprietary reasons, the name and location of this well cannot be revealed, so we have named it 'Earth1' for this study.
Manasypov, Rinat M; Shirokova, Liudmila S; Pokrovsky, Oleg S
2017-02-15
Thaw of frozen peat in discontinuous permafrost zone produces a significant number of thermokarst lakes, which are known to contribute to Green House Gases (GHG) emission in the atmosphere. In palsa peatland of western Siberia, the thermokarst lake formation includes soil subsidences, lichen submergence and peat abrasion, leading to lateral spreading of the lake border, often intensified by ground fires. Mesocosm experiments were conducted during 3weeks on two thermokarst lake waters interacting in 30-L tanks with surface horizon of peat, the dominant ground vegetation (lichen Cladonia sp.) and the ash produced by lichen burning at 450°C. The obtained results allowed a better understanding of physico-chemical factors controlling the enrichment of thermokarst lake water in organic carbon and metals, and evaluating CO 2 sequestration/emission potential. The changes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), major element and divalent metal concentration in response to peat and lichen biomass addition were less than a factor of 2 over full duration of the experiment. Iron (Fe) concentration in the lake water decreased by a factor of 2 to 3 after the addition of peat and lichen biomass. The concentration of low-soluble trivalent and tetravalent hydrolysates decreased by ca. 30 to 50%, presumably due to their co-precipitation with Fe hydroxide. The dissolved carbon dioxide (CO 2 ) in tank with lichen increased by a factor of 5.5±0.5, likely due to respiration of algal component in closed environment. Strong enrichment of the lake water in DIC, P, K, Ca, Mg, Si, Al, Ti, Mn, Mo, Rb, As, Sb and U upon the ash addition persisted over full duration of experiments and was significant (p<0.0001) compared to peat and lichen biomass treatments. These elements may serve as indicators of ground fire impact on thermokarst lake water's chemistry. The overall effect of ash leaching on aquatic ecosystems after ground fire of frozen Siberian peatland is predicted to be much stronger than that currently recognized for non-permafrost regions. Copyright © 2016 Elsevier B.V. All rights reserved.
Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Ren, Chunyan; Yang, Guipeng; Lu, Xiaolan
2014-06-01
Carbon monoxide (CO) plays a significant role in global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. CO at surface ocean is primarily produced from the photochemical degradation of chromophoric dissolved organic matter (CDOM). In this study, the effects of photobleaching, temperature and the origin (terrestrial or marine) of CDOM on the apparent quantum yields (AQY) of CO were studied for seawater samples collected from Jiaozhou Bay. Our results demonstrat that photobleaching, temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The concentration, absorbance and fluorescence of CDOM exponentially decreased with increasing light dose. Terrestrial riverine organic matter could be more prone to photodegradation than the marine algae-derived one. The relationships between CO AQY and the dissolved organic carbon-specific absorption coefficient at 254 nm for the photobleaching study were nonlinear, whereas those of the original samples were strongly linear. This suggests that: 1) terrestrial riverine CDOM was more efficient than marine algae-derived CDOM for CO photoproduction; 2) aromatic and olefinic moieties of the CDOM pool were affected more strongly by degradation processes than by aliphatic ones. Water temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The photoproduction rate of CO in autumn was estimated to be 31.98 μmol m-2 d-1 and the total DOC photomineralization was equivalent to 3.25%-6.35% of primary production in Jiaozhou Bay. Our results indicate that CO photochemistry in coastal areas is important for oceanic carbon cycle.
NASA Astrophysics Data System (ADS)
Schulz, K. G.; Bellerby, R. G. J.; Brussaard, C. P. D.; Büdenbender, J.; Czerny, J.; Engel, A.; Fischer, M.; Koch-Klavsen, S.; Krug, S. A.; Lischka, S.; Ludwig, A.; Meyerhöfer, M.; Nondal, G.; Silyakova, A.; Stuhr, A.; Riebesell, U.
2013-01-01
Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in Kongsfjorden on the west coast of Spitsbergen (Norway), in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured as high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2-related shifts in nutrient flow into different phytoplankton groups (mainly dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
NASA Astrophysics Data System (ADS)
Schulz, K. G.; Bellerby, R. G. J.; Brussaard, C. P. D.; Büdenbender, J.; Czerny, J.; Engel, A.; Fischer, M.; Koch-Klavsen, S.; Krug, S. A.; Lischka, S.; Ludwig, A.; Meyerhöfer, M.; Nondal, G.; Silyakova, A.; Stuhr, A.; Riebesell, U.
2012-09-01
Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
NASA Astrophysics Data System (ADS)
Marieni, C.; Teagle, D. A. H.; Matter, J. M.
2015-12-01
Reactions between divalent cation-rich silicate minerals and CO2-bearing fluids to form (Ca, Mg, Fe) carbonate minerals could facilitate the safe and permanent storage of anthropogenic carbon dioxide. Deep-sea basalt formations provide large storage reservoir capacities and huge potential sources of Ca2+, Mg2+ and Fe2+. However, better knowledge of silicate mineral reaction rates with carbonate-bearing fluids is required to understand the overall carbon storage potential of these reservoirs. This study investigates key reactions associated with progressive seawater-rock interaction using far-from equilibrium dissolution experiments. The experiments were carried out at 40 ˚C and at constant CO2 partial pressure of 1 atm. Mid-ocean ridge basalts from the Juan de Fuca and Mid-Atlantic Ridges and a gabbro from the Troodos ophiolite were reacted with 500 mL of CO2-charged seawater using thick-walled fluorinated polypropylene bottles combined with rubber stoppers. The starting material was crushed, sieved and thoroughly cleaned to remove fine particles (< 63 μm) to ensure a particle grain size between 63 and 125 μm for all the samples. The seawater chemistry and the pH were monitored throughout the experiments by daily analysis of 1 mL of fluid. The pH increased rapidly from 4.8 to 5.0 before stabilizing at 5.1 after 10 days of reaction time. The analysis of anions (S, Cl) highlighted a substantial evaporation (up to 15 %) during the experiments, requiring a correction factor for the measured dissolved ion concentrations. Evaporation corrected silicon (Si) and calcium (Ca) concentrations in the seawater increased by 5900 % and 14 %, resulting in total dissolved Si and Ca from basalt of 0.3 % and 2.4 %, respectively. The results are comparable with literature data for fresh water experiments conducted on basaltic glass at higher temperature or pressure, illustrating the considerable potential of the mineral sequestration of CO2 in submarine basalts.
Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects
NASA Technical Reports Server (NTRS)
Neumann, K.; DesMarais, D. J.
1998-01-01
We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.
MIR hollow waveguide (HWG) isotope ratio analyzer for environmental applications
NASA Astrophysics Data System (ADS)
Wang, Zhenyou; Zhuang, Yan; Deev, Andrei; Wu, Sheng
2017-05-01
An advanced commercial Mid-InfraRed Isotope Ratio (IR2) analyzer was developed in Arrow Grand Technologies based on hollow waveguide (HWG) as the sample tube. The stable carbon isotope ratio, i.e. δ13C, was obtained by measuring the selected CO2 absorption peaks in the MIR. Combined with a GC and a combustor, it has been successfully employed to measure compound specific δ13C isotope ratios in the field. By using both the 1- pass HWG and 5-path HWG, we are able to measure δ13C isotope ratio at a broad CO2 concentration of 300 ppm-37,500 ppm. Here, we demonstrate its applications in environmental studies. The δ13C isotope ratio and concentration of CO2 exhaled by soil samples was measured in real time with the isotope analyzer. The concentration was found to change with the time. We also convert the Dissolved Inorganic Carbon (DIC) into CO2, and then measure the δ13C isotope ratio with an accuracy of better than 0.3 ‰ (1 σ) with a 6 min test time and 1 ml sample usage. Tap water, NaHCO3 solvent, coca, and even beer were tested. Lastly, the 13C isotope ratio of CO2 exhaled by human beings was obtained <10 seconds after simply blowing the exhaled CO2 into a tube with an accuracy of 0.5‰ (1 σ) without sample preconditioning. In summary, a commercial HWG isotope analyzer was demonstrated to be able to perform environmental and health studies with a high accuracy ( 0.3 ‰/Hz1/2 1 σ), fast sampling rate (up to 10 Hz), low sample consumption ( 1 ml), and broad CO2 concentration range (300 ppm-37,500 ppm).
Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes
NASA Astrophysics Data System (ADS)
Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.
2016-12-01
Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between < 0.06 and 22 μmol L-1. The filtered water samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.
Xu, T.; Kharaka, Y.K.; Doughty, C.; Freifeld, B.M.; Daley, T.M.
2010-01-01
To demonstrate the potential for geologic storage of CO2 in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO2 were injected into a high-permeability sandstone and the resulting subsurface plume of CO2 was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO2 injection for baseline geochemical characterization, during the CO2 injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO2 breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO3- and aqueous Fe, and significant shifts in the isotopic compositions of H2O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO2 plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO2 concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO2 could ultimately be sequestered as carbonate minerals. ?? 2010 Elsevier B.V.
Southern Ocean biogeochemical control of glacial/interglacial carbon dioxide change
NASA Astrophysics Data System (ADS)
Sigman, D. M.
2014-12-01
In the effort to explain the lower atmospheric CO2 concentrations observed during ice ages, two of the first hypotheses involved redistributing dissolved inorganic carbon (DIC) within the ocean. Broecker (1982) proposed a strengthening of the ocean's biological pump during ice ages, which increased the dissolved inorganic carbon gradient between the dark, voluminous ocean interior and the surface ocean's sun-lit, wind-mixed layer. Boyle (1988) proposed a deepening in the ocean interior's pool of DIC associated with organic carbon regeneration, with its concentration maximum shifting from intermediate to abyssal depths. While not irrefutable, evidence has arisen that these mechanisms can explain much of the ice age CO2 reduction and that both were activated by changes in the Southern Ocean. In the Antarctic Zone, reduced exchange of water between the surface and the underlying ocean sequestered more DIC in the ocean interior (the biological pump mechanism). Dust-borne iron fertilization of the Subantarctic surface lowered CO2 partly by the biological pump mechanism and partly by Boyle's carbon deepening. Each mechanism owes a part of its CO2 effect to a transient increase in seafloor calcium carbonate dissolution, which raised the ice age ocean's alkalinity, causing it to absorb more CO2. However, calcium carbonate cycling also sets limits on these mechanisms and their CO2 effects, such that the combination of Antarctic and Subantarctic changes is needed to achieve the full (80-100 ppm) ice age CO2 decline. Data suggest that these changes began at different phases in the development of the last ice age, 110 and 70 ka, respectively, explaining a 40 ppm CO2 drop at each time. We lack a robust understanding of the potential causes for both the implied reduction in Antarctic surface/deep exchange and the increase in Subantarctic dust supply during ice ages. Thus, even if the evidence for these Southern Ocean changes were to become incontrovertible, conceptual gaps stand in the way of a theory of glacial cycles that includes Southern Ocean-driven CO2 change. There are more compelling proposals for the causes of deglacial change, with a sharp reduction in North Atlantic deep water formation implicated as a trigger of increased surface/deep exchange in the Antarctic and the resulting release of CO2 to the atmosphere.
A perspective on underwater photosynthesis in submerged terrestrial wetland plants
Colmer, Timothy D.; Winkel, Anders; Pedersen, Ole
2011-01-01
Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO2 acquisition. Scope Floodwaters are variable in dissolved O2, CO2, light and temperature, and these parameters influence underwater PN and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO2 uptake and thus aid PN under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO2 at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces PN. Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO2 entry. Conclusions Submergence inhibits PN by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater PN is enhanced. Underwater PN provides sugars and O2 to submerged plants. Floodwaters often contain dissolved CO2 above levels in equilibrium with air, enabling at least some PN by terrestrial species when submerged, although rates remain well below those in air. PMID:22476500
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Mcdonald, R. C.; Mesick, H. H.
1985-01-01
Foliage plants were evaluated for their ability to sorb carbon monoxide and nitrogen dioxide, the two primary gases produced during the combustion of fossil fuels and tobacco. The spider plant (Chlorophytum elatum var. vittatum) could sorb 2.86 micrograms CO/sq cm leaf surface in a 6 h photoperiod. The golden pothos (Scindapsus aureus) sorbed 0.98 micrograms CO/sq cm leaf surface in the same time period. In a system with the spider plant, greater than or equal to 99 percent of an initial concentration of 47 ppm NO2 could be removed in 6 h from a void volume of approximately 0.35 cu m. One spider plant potted in a 3.8 liter container can sorb 3300 micrograms CO and effect the removal of 8500 micrograms NO2/hour, recognizing the fact that a significant fraction of NO2 at high concentrations will be lost by surface sorption, dissolving in moisture, etc.
NASA Astrophysics Data System (ADS)
Arellano, A. R.; Bianchi, T. S.; Osburn, C. L.; D'Sa, E. J.; Oviedo Vargas, D.; Ward, N. D.; Joshi, I.; Ko, D. S.
2016-12-01
Globally, coastal blue carbon environments (wetlands, seagrass beds and mangroves) sequester an estimated 67-215 Tg C yr-1. While most blue carbon research has focused on carbon burial/stocks and habitat fragmentation of these communities, few studies have examined the export and loss of blue carbon sources of particulate organic matter (POM) and dissolved organic matter (DOM) to adjacent coastal waters. These shifts in losses of DOM and POM are also partly due to large-scale changes in land-use and climate change. Due to the complexity of vascular plant inputs to estuarine systems (e.g. terrestrial vs. blue carbon), being able to separate blue carbon sources of POM and DOM are critical. Here, we investigate the temporal variability of the abundance, sources and breakdown of particulate and dissolved organic carbon (POC and DOC) in particle-dominated (Barataria Bay) and blackwater river-dominated (Apalachicola Bay) estuaries in the northern Gulf of Mexico, using bulk carbon, dissolved lignin phenols, δ13C and dissolved CO2. The range of DOC:POC ratios for Barataria and Apalachicola bays were 0.5-3.1 and 2.3-57.0, respectively. δ13C-POC values were more depleted in Apalachicola (x̅=-27.3‰) compared to those in Barataria (x̅=-24.8‰), and C:N ratios were higher in Apalachicola (x̅=10.8) than in Barataria (x̅=9.3). Although there was no significant temporal variability with δ13C-POC in both systems, Barataria Bay had the highest POC (0.08-0.23 mM) and C:N (7.0-13.4) values during spring, when enhanced southerly winds likely resulted in higher resuspension and marsh erosion rates. Additionally, in Apalachicola, the lowest C:N values (6.2-16.1) were observed during the dry season when fluvial DOM inputs were minimal. The highest dissolved lignin phenol and DOC (0.10-2.98 mM) concentrations in Apalachicola occurred during the wet season, reflecting the importance of riverine inputs to this system. In particular, the Carabelle River plume region had C:V and S:V values that indicated woody inputs (long-leaf pine communities), while the bay proper/East Bay were more indicative of blue carbon sources. Spatial and temporal variability of dissolved CO2 concentrations will be discussed as it relates to possible linkages with the export and losses of blue carbon-derived DOC and POC.
Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.
Reis, P C J; Barbosa, F A R
2014-08-01
It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.
The carbon cycle implications of chemical weathering in retrogressive thaw slump-impacted streams
NASA Astrophysics Data System (ADS)
Zolkos, S.; Tank, S. E.; Kokelj, S. V.
2016-12-01
Permafrost thaw is "unlocking" and exposing significant amounts of sediment, solutes and organic carbon previously maintained in frozen soils to biochemical processing and fluvial transport. While microbial respiration of permafrost organic carbon contributes significantly to CO2 in Arctic headwater streams, chemical weathering of minerals unearthed by thawing permafrost may fix CO2 as bicarbonate (HCO3), thus removing it from the active carbon cycle. However, the degree to which mineral weathering acts to temper CO2 generated during permafrost thaw is largely unknown. During summer 2015, we investigated these dynamics in eight streams (orders 1-3) impacted by retrogressive thaw slumps across the Peel Plateau (NT, Canada), where thaw slumps expose permafrost that is comprised of abundant glacial tills, and glaciofluvial and glaciolacustrine sediments. Thaw slump activity had a discernible signature in all streams: conductivity, pH, dissolved inorgnaic carbon (DIC), and solute concentrations (Ca, Mg, Na, K, SO4, Cl) increased in the downstream (thaw slump-impacted) reach, relative to upstream, while CO2 decreased. This corresponded with an isotopically-enriched DIC pool in impacted streams (mean δ13CDIC = -9.80‰), perhaps indicating the dissolution of carbonate minerals following exposure by thaw slump activity. Despite a general decrease downstream of thaw slumps, CO2 remained supersaturated in impacted streams (mean pCO2 = 915 µatm). However, the highest partial pressures of CO2 were found in thaw slump runoff (mean pCO2 = 4,600 µatm), above the point where runoff entered downstream systems. High pCO2 levels in slump runoff may be derived from microbial respiration of slump-released dissolved organic carbon or, for some slumps, carbonate dissolution (range δ13CDIC = 0.67 - -23.37‰). While this work suggests thaw slumps in the Western Canadian Arctic may act to partially temper CO2 in headwater streams, these stream networks will likely persist as significant sources of CO2 to the atmosphere.
Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides
Sasan, Koroush; Brady, Patrick V.; Krumhansl, James L.; ...
2017-11-07
The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)·4H 2O)), with large surface area of active alumina (AA, (Al 2O 3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Ourmore » results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.« less
Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasan, Koroush; Brady, Patrick V.; Krumhansl, James L.
The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)·4H 2O)), with large surface area of active alumina (AA, (Al 2O 3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Ourmore » results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.« less
Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.
Ortega-Calvo, José-Julio; Gschwend, Philip M
2010-07-01
Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.
Photodecarboxylation (often stoichiometrically expressed as RCOOH + (1/2)O2 (ROH + CO2) has long been postulated to be principally responsible for generating CO2 from photooxidation of dissolved organic matter (DOM). In this study the quantitative relationships were investigated ...
NASA Astrophysics Data System (ADS)
Bianchi, Thomas S.; Butman, David; Raymond, Peter A.; Ward, Nicholas D.; Kates, Rory J. S.; Flessa, Karl W.; Zamora, Hector; Arellano, Ana R.; Ramirez, Jorge; Rodriguez, Eliana
2017-03-01
Here we report on the effects of an experimental flood on the carbon cycling dynamics in the dry watercourse of the Colorado River in Mexico. We observed post-flood differences in the degree of decay, age, and concentration of dissolved organic carbon (DOC), as well as dissolved CH4 and CO2 concentrations throughout the study site. Our results indicate that this flooded waterway was a limited source of CH4 and CO2 to the atmosphere during the event and that DOC age increased with time of flooding. Based on our findings, we suggest that the interplay between storage and mobilization of carbon and greenhouse gases in arid and semiarid regions is potentially sensitive to changing climate conditions, particularly hydrologic variability. Changes in the radiocarbon age of DOC throughout the flooding event suggest that organic matter (OM) that had been stored for long periods (e.g., millennial) was mobilized by the flooding event along with CO2. The OM residing in the dry riverbed that was mobilized into floodwaters had a signature reflective of degraded vascular plant OM and microbial biomass. Whether this microbial OM was living or dead, our findings support previous work in soils and natural waters showing that microbial OM can remain stable and stored in ecosystems for long time periods. As human appropriation of water resources continues to increase, the episodic drying and rewetting of once natural riverbeds and deltas may fundamentally alter the processing and storage of carbon in such systems.
Agrawal, Abinash; Ferguson, William J; Gardner, Bruce O; Christ, John A; Bandstra, Joel Z; Tratnyek, Paul G
2002-10-15
The effect of precipitates on the reactivity of iron metal (Fe0) with 1,1,1-trichloroethane (TCA) was studied in batch systems designed to model groundwaters that contain dissolved carbonate species (i.e., C(IV)). At representative concentrations for high-C(IV) groundwaters (approximately 10(-2) M), the pH in batch reactors containing Fe0 was effectively buffered until most of the aqueous C(IV) precipitated. The precipitate was mainly FeCO3 (siderite) but may also have included some carbonate green rust. Exposure of the Fe0 to dissolved C(IV) accelerated reduction of TCA, and the products formed under these conditions consisted mainly of ethane and ethene, with minor amounts of several butenes. The kinetics of TCA reduction were first-order when C(IV)-enhanced corrosion predominated but showed mixed-order kinetics (zero- and first-order) in experiments performed with passivated Fe0 (i.e., before the onset of pitting corrosion and after repassivation by precipitation of FeCO3). All these data were described by fitting a Michaelis-Menten-type kinetic model and approximating the first-order rate constant as the ratio of the maximum reaction rate (Vm) and the concentration of TCA at half of the maximum rate (K(1/2)). The decrease in Vm/K(1/2) with increasing C(IV) exposure time was fit to a heuristic model assuming proportionality between changes in TCA reduction rate and changes in surface coverage with FeCO3.
Exploration of H2O-CO2 Solubility in Alkali Basalt at low-H2O
NASA Astrophysics Data System (ADS)
Roggensack, K.; Allison, C. M.; Clarke, A. B.
2017-12-01
A number of recent experimental studies have found conflicting evidence for and against the influence of H2O on CO2 solubility in basalt and alkali-rich mafic magma (e.g. Behrens et al., 2009; Shishkina et al., 2010;2014; Iacono-Marziano et al., 2012). Some of the uncertainty is due to the error with spectroscopic determination (FTIR) of carbon and the challenge of controlling H2O abundance in experiments. It's been widely observed that even experimental capsules without added H2O may produce hydrous glasses containing several wt.% H2O. We conducted fluid-saturated, mixed-fluid (H2O-CO2) experiments to determine the solubility in alkali basalt with particular emphasis on conditions at low-H2O. To limit possible H2O contamination, materials were dried prior to loading and experimental capsules were sealed under vacuum. Experiments were run using a piston-cylinder, in Pt (pre-soaked in Fe) or AuPd capsules and operating at pressures from 400 to 600 MPa. Post-run the capsules were punctured under vacuum and fluids were condensed, separated, and measured by mercury manometry. A comparison between two experiments run at the same temperature and pressure conditions but with different fluid compositions illustrates the correlation between carbonate and H2O solubility. Uncertainties associated with using concentrations calculated from FTIR data can be reduced by directly comparing analyses on wafers of similar thickness. We observe that the experiment with greater H2O absorbance also has a higher carbonate absorbance than the experiment with lower H2O absorbance. Since the experiments were run at the same pressure, the experiment with more water-rich fluid, and higher dissolved H2O, has lower CO2 fugacity, but surprisingly has higher dissolved CO2 content. Overall, the results show two distinct trends. Experiments conducted at low-H2O (0.5 to 0.8 wt.%) show lower dissolved CO2 than those conducted at moderate-H2O (2 to 3 wt.%) at similar CO2 fugacity. These data show that the presence of H2O enhances CO2 solubility at low to moderate H2O abundance. One implication of these results is that volatile-saturated magmas will behave differently depending on H2O abundance. Magmas with low H2O abundance could undergo isobaric degassing through addition of a CO2-rich fluid.
Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe
2004-05-11
In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.
Dawes, Melissa A; Hagedorn, Frank; Handa, Ira Tanya; Streit, Kathrin; Ekblad, Alf; Rixen, Christian; Körner, Christian; Hättenschwiler, Stephan
2013-03-01
We evaluated the impacts of elevated CO2 in a treeline ecosystem in the Swiss Alps in a 9-year free-air CO2 enrichment (FACE) study. We present new data and synthesize plant and soil results from the entire experimental period. Light-saturated photosynthesis (A max) of ca. 35-year-old Larix decidua and Pinus uncinata was stimulated by elevated CO2 throughout the experiment. Slight down-regulation of photosynthesis in Pinus was consistent with starch accumulation in needle tissue. Above-ground growth responses differed between tree species, with a 33 % mean annual stimulation in Larix but no response in Pinus. Species-specific CO2 responses also occurred for abundant dwarf shrub species in the understorey, where Vaccinium myrtillus showed a sustained shoot growth enhancement (+11 %) that was not apparent for Vaccinium gaultherioides or Empetrum hermaphroditum. Below ground, CO2 enrichment did not stimulate fine root or mycorrhizal mycelium growth, but increased CO2 effluxes from the soil (+24 %) indicated that enhanced C assimilation was partially offset by greater respiratory losses. The dissolved organic C (DOC) concentration in soil solutions was consistently higher under elevated CO2 (+14 %), suggesting accelerated soil organic matter turnover. CO2 enrichment hardly affected the C-N balance in plants and soil, with unaltered soil total or mineral N concentrations and little impact on plant leaf N concentration or the stable N isotope ratio. Sustained differences in plant species growth responses suggest future shifts in species composition with atmospheric change. Consistently increased C fixation, soil respiration and DOC production over 9 years of CO2 enrichment provide clear evidence for accelerated C cycling with no apparent consequences on the N cycle in this treeline ecosystem.
Sharp, Jonathan D; Byrne, Robert H; Liu, Xuewu; Feely, Richard A; Cuyler, Erin E; Wanninkhof, Rik; Alin, Simone R
2017-08-15
This work describes an improved algorithm for spectrophotometric determinations of seawater carbonate ion concentrations ([CO 3 2- ] spec ) derived from observations of ultraviolet absorbance spectra in lead-enriched seawater. Quality-control assessments of [CO 3 2- ] spec data obtained on two NOAA research cruises (2012 and 2016) revealed a substantial intercruise difference in average Δ[CO 3 2- ] (the difference between a sample's [CO 3 2- ] spec value and the corresponding [CO 3 2- ] value calculated from paired measurements of pH and dissolved inorganic carbon). Follow-up investigation determined that this discordance was due to the use of two different spectrophotometers, even though both had been properly calibrated. Here we present an essential methodological refinement to correct [CO 3 2- ] spec absorbance data for small but significant instrumental differences. After applying the correction (which, notably, is not necessary for pH determinations from sulfonephthalein dye absorbances) to the shipboard absorbance data, we fit the combined-cruise data set to produce empirically updated parameters for use in processing future (and historical) [CO 3 2- ] spec absorbance measurements. With the new procedure, the average Δ[CO 3 2- ] offset between the two aforementioned cruises was reduced from 3.7 μmol kg -1 to 0.7 μmol kg -1 , which is well within the standard deviation of the measurements (1.9 μmol kg -1 ). We also introduce an empirical model to calculate in situ carbonate ion concentrations from [CO 3 2- ] spec . We demonstrate that these in situ values can be used to determine calcium carbonate saturation states that are in good agreement with those determined by more laborious and expensive conventional methods.
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.
2017-11-01
In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.
NASA Astrophysics Data System (ADS)
Cusnir, Ruslan; Christl, Marcus; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal
2017-06-01
The interaction of trace environmental plutonium with dissolved natural organic matter (NOM) plays an important role on its mobility and bioavailability in freshwater environments. Here we explore the speciation and biogeochemical behavior of Pu in freshwaters of the karst system in the Swiss Jura Mountains. Chemical extraction and ultrafiltration methods were complemented by diffusive gradients in thin films technique (DGT) to measure the dissolved and bioavailable Pu fraction in water. Accelerator mass spectrometry (AMS) was used to accurately determine Pu in this pristine environment. Selective adsorption of Pu (III, IV) on silica gel showed that 88% of Pu in the mineral water is found in +V oxidation state, possibly in a highly soluble [PuO2+(CO3)n]m- form. Ultrafiltration experiments at 10 kDa yielded a similar fraction of colloid-bound Pu in the organic-rich and in mineral water (18-25%). We also found that the concentrations of Pu measured by DGT in mineral water are similar to the bulk concentration, suggesting that dissolved Pu is readily available for biouptake. Sequential elution (SE) of Pu from aquatic plants revealed important co-precipitation of potentially labile Pu (60-75%) with calcite fraction within outer compartment of the plants. Hence, we suggest that plutonium is fully available for biological uptake in both mineral and organic-rich karstic freshwaters.
Ebbert, J.C.
2002-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.
NASA Astrophysics Data System (ADS)
Watanabe, N.; Bilke, L.; Fischer, T.; Kalbacher, T.; Nagel, T.; Naumov, D.; Rink, K.; Shao, H.; Wang, W.; Kolditz, O.
2014-12-01
The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.
NASA Astrophysics Data System (ADS)
Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.
2009-04-01
The surface ocean currently absorbs about one-fourth of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts with seawater to form carbonic acid, increasing ocean acidity and shifting the partitioning of inorganic carbon species towards increased CO2 at the expense of CO32- concentrations. While the decrease in [CO32-] and/or increase in [H+] has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.
SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater
Nakajima, Kensuke; Tanaka, Atsuko; Matsuda, Yusuke
2013-01-01
Photosynthesis in marine diatoms is a vital fraction of global primary production empowered by CO2-concentrating mechanisms. Acquisition of HCO3− from seawater is a critical primary step of the CO2-concentrating mechanism, allowing marine photoautotrophic eukaryotes to overcome CO2 limitation in alkaline high-salinity water. However, little is known about molecular mechanisms governing this process. Here, we show the importance of a plasma membrane-type HCO3− transporter for CO2 acquisition in a marine diatom. Ten putative solute carrier (SLC) family HCO3− transporter genes were found in the genome of the marine pennate diatom Phaeodactylum tricornutum. Homologs also exist in marine centric species, Thalassiosira pseudonana, suggesting a general occurrence of SLC transporters in marine diatoms. Seven genes were found to encode putative mammalian-type SLC4 family transporters in P. tricornutum, and three of seven genes were specifically transcribed under low CO2 conditions. One of these gene products, PtSLC4-2, was localized at the plasmalemma and significantly stimulated both dissolved inorganic carbon (DIC) uptake and photosynthesis in P. tricornutum. DIC uptake by PtSLC4-2 was efficiently inhibited by an anion-exchanger inhibitor, 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, in a concentration-dependent manner and highly dependent on Na+ ions at concentrations over 100 mM. These results show that DIC influx into marine diatoms is directly driven at the plasmalemma by a specific HCO3− transporter with a significant halophilic nature. PMID:23297242
Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep
Wang, Min; Ungerfeld, Emilio M.; Wang, Rong; Zhou, Chuan She; Basang, Zhu Zha; Ao, Si Man; Tan, Zhi Liang
2016-01-01
Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4, and H2 (aq) was closely associated with the VFA profile and CH4 (aq) concentration. The assumption of equilibrium between dissolved gases and gaseous phase affected ΔG estimation. PMID:27379028
Zahid, A.; Hassan, M.Q.; Balke, K.-D.; Flegr, M.; Clark, D.W.
2008-01-01
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25-33 m) and deep (191-318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl- and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl-. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43- in shallow well samples. In general, most ions are positively correlated with Cl-, with Na+ showing an especially strong correlation with Cl-, indicating that these ions are derived from the same source of saline waters. The relationship between Cl-/HCO 3- ratios and Cl- also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3- reflect the degree of water-rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO 42- and NO 3- and high concentrations of dissolved Fe and PO 43- and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO 42- and NO 3- but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43- and NH 4+ ions. ?? 2007 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Brown, Christopher F.
2014-06-13
In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios weremore » conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1,520 kPa and 25°C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments.« less
Carbonate buffering and metabolic controls on carbon dioxide in rivers
Stets, Edward; Butman, David; McDonald, Cory P.; Stackpoole, Sarah M.; DeGrandpre, Michael D.; Striegl, Robert G.
2017-01-01
Multiple processes support the significant efflux of carbon dioxide (CO2) from rivers and streams. Attribution of CO2 oversaturation will lead to better quantification of the freshwater carbon cycle and provide insights into the net cycling of nutrients and pollutants. CO2 production is closely related to O2consumption because of the metabolic linkage of these gases. However, this relationship can be weakened due to dissolved inorganic carbon inputs from groundwater, carbonate buffering, calcification, and anaerobic metabolism. CO2and O2 concentrations and other water quality parameters were analyzed in two data sets: a synoptic field study and nationwide water quality monitoring data. CO2 and O2 concentrations were strongly negatively correlated in both data sets (ρ = −0.67 and ρ = −0.63, respectively), although the correlations were weaker in high-alkalinity environments. In nearly all samples, the molar oversaturation of CO2 was a larger magnitude than molar O2 undersaturation. We used a dynamically coupled O2CO2 model to show that lags in CO2 air-water equilibration are a likely cause of this phenomenon. Lags in CO2 equilibration also impart landscape-scale differences in the behavior of CO2 between high- and low-alkalinity watersheds. Although the concept of carbonate buffering and how it creates lags in CO2 equilibration with the atmosphere is well understood, it has not been sufficiently integrated into our understanding of CO2 dynamics in freshwaters. We argue that the consideration of carbonate equilibria and its effects on CO2 dynamics are primary steps in understanding the sources and magnitude of CO2 oversaturation in rivers and streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Lewicki; G. E. Hilley; L. Dobeck
A set of CO2 flux, geochemical, and hydrologic measurement techniques was used to characterize the source of and quantify gaseous and dissolved CO2 discharges from the area of Soda Springs, southeastern Idaho. An eddy covariance system was deployed for approximately one month near a bubbling spring and measured net CO2 fluxes from - 74 to 1147 g m- 2 d- 1. An inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions mapped the surface CO2 flux distribution within and quantified CO2 emission rate (24.9 t d- 1) from a 0.05 km2 area surrounding the spring. Soilmore » CO2 fluxes (< 1 to 52,178 g m- 2 d- 1) were measured within a 0.05 km2 area of diffuse degassing using the accumulation chamber method. The estimated CO2 emission rate from this area was 49 t d- 1. A carbon mass balance approach was used to estimate dissolved CO2 discharges from contributing sources at nine springs and the Soda Springs geyser. Total dissolved inorganic carbon (as CO2) discharge for all sampled groundwater features was 57.1 t d- 1. Of this quantity, approximately 3% was derived from biogenic carbon dissolved in infiltrating groundwater, 35% was derived from carbonate mineral dissolution within the aquifer(s), and 62% was derived from deep source(s). Isotopic compositions of helium (1.74–2.37 Ra) and deeply derived carbon (d13C approximately 3‰) suggested contribution of volatiles from mantle and carbonate sources. Assuming that the deeply derived CO2 discharge estimated for sampled groundwater features (approximately 35 t d- 1) is representative of springs throughout the study area, the total rate of deeply derived CO2 input into the groundwater system within this area could be ~ 350 t d- 1, similar to CO2 emission rates from a number of quiescent volcanoes.« less
Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior
NASA Astrophysics Data System (ADS)
Zigah, Prosper K.; Minor, Elizabeth C.; Werne, Josef P.
2012-03-01
We present a lake-wide investigation of Lake Superior carbon and organic matter biogeochemistry using radiocarbon, stable isotope, and carbon concentrations. Dissolved inorganic carbon (DIC) abundance in the lake was 121-122 Tg C, with offshore concentration andδ13C values being laterally homogenous and tightly coupled to the physical and thermal regime and biochemical processes. Offshore Δ14C of DIC (50-65‰) exhibited lateral homogeneity and was more 14C enriched than co-occurring atmospheric CO2 (˜38‰); nearshore Δ14C of DIC (36-38‰) was similar to atmospheric CO2. Dissolved organic carbon (DOC) abundance was 14.2-16.4 Tg C. DOC's concentration and δ13C were homogenous in June (mixed lake), but varied laterally during August (stratification) possibly due to spatial differences in lake productivity. Throughout sampling, DOC had modern radiocarbon values (14-58‰) indicating a semilabile nature with a turnover time of ≤60 years. Lake particulate organic carbon (POC, 0.9-1.3 Tg C) was consistently 13C depleted relative to DOC. The δ15N of epilimnetic particulate organic nitrogen shifted to more negative values during stratification possibly indicating greater use of nitrate (rather than ammonium) by phytoplankton in August. POC's radiocarbon was spatially heterogeneous (Δ14C range: 58‰ to -303‰), and generally 14C depleted relative to DOC and DIC. POC 14C depletion could not be accounted for by black carbon in the lake but, because of its spatial and temporal distribution, is attributed to sediment resuspension. The presence of old POC within the epilimnion of the open lake indicates possible benthic-pelagic coupling in the lake's organic carbon cycle; the ultimate fate of this old POC bears further investigation.
Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina
NASA Astrophysics Data System (ADS)
Parker, Stephen R.; Gammons, Christopher H.; Pedrozo, Fernando L.; Wood, Scott A.
2008-12-01
Rio Agrio in Patagonia, Argentina is a geogenically acidic stream that derives its low-pH waters from condensation of acidic gases near its headwaters on the flanks of the active Copahue Volcano. This study reports the results of three diel (24-h) water samplings in three different pH regimes (3.2, 4.4 and 6.3) along the river. Changes in the concentration and speciation of Fe dominated the diel chemical changes at all three sites, although the timing and intensity of these cycles were different in each reach. At the two acidic sampling sites, total dissolved Fe and dissolved Fe(III) concentrations decreased during the day and increased at night, whereas dissolved Fe(II) showed the reverse pattern. These cycles are explained by Fe(III) photoreduction, as well as enhanced rates of precipitation of hydrous ferric oxide (HFO) during the warm afternoon hours. A strong correlation was observed between Fe(III) and As at the furthest upstream (pH 3.2) site, most likely due to co-precipitation of As with HFO. At the downstream (pH 6.3) location, Fe(II) concentrations increased at night, as did concentrations of rare earth elements and dissolved Al. Photoreduction does not appear to be an important process at pH 6.3, although it may be indirectly responsible for the observed diel cycle of Fe(II) due to advection of photochemically produced Fe(II) from acidic upstream waters. The results of this study of a naturally-acidic river are very similar to diel trends recently obtained from mining-impacted streams receiving acid rock drainage. The results are also used to explore the link between geochemistry and microbiology in acidic eco-systems. For example, Fe(III) photoreduction produces chemical potential energy (in the form of metastable Fe 2+) that helps support the bacterial community in this unique extreme environment.
NASA Astrophysics Data System (ADS)
Locati, Corrado; Lafont, Ugo; Peters, Cor J.; Kelder, Erik M.
Ionic liquids (ILs) are typically molten salts at temperatures lower than 100 °C. Because of their thermal and electrochemical properties, they are good candidates to replace the state-of-the-art electrolytes used in today's Li-ion batteries. These commercial batteries often suffer from hazards caused by possible misuse. Elevated voltages and high temperatures usually lead to electrolyte degradation due to parasitic reactions with the electrodes leading to gas (mainly CO 2) evolution and may then eventually catch fire. Also, ILs are able to dissolve various gas molecules, making it possible to prevent a built-up of an overpressure inside the battery in case of undesired gas evolution. In this work, CO 2 storage in two different ionic liquids, i.e. PYR 14TFSI and [BMIm][BF4] is studied with regard to their respective Li-salt. Mixtures of ILs plus different concentrations of CO 2 were made. Phase diagrams of the pressure vs. temperature of the systems "liquid + vapour" to liquid transitions are drawn. Data points from 1.5 bar to 70 bar are collected with a Cailletet apparatus. Both of the ILs show good CO 2 dissolution ability; an increase of the temperature leads to an increase of the pressure needed to dissolve similar amounts of CO 2. The presence of a Li-salt hampers gas storage, particularly for PYR 14TFSI. A model based on the Langmuir adsorption theory is used to describe the solubility of the CO 2 in [BMIm][BF4]. The PYR 14TFSI IL does not obey the Langmuir-like solubility behaviour. Hence, the solubility then is described by the formation of discrete bonds between the CO 2 and the solvent, similarly to the concept of adspecies and surface sites.
Coupled hydrology and biogeochemistry of Paleocene–Eocene coal beds, northern Gulf of Mexico
McIntosh, Jennifer C.; Warwick, Peter D.; Martini, Anna M.; Osborn, Stephen G.
2010-01-01
Thirty-six formation waters, gas, and microbial samples were collected and analyzed from natural gas and oil wells producing from the Paleocene to Eocene Wilcox Group coal beds and adjacent sandstones in north-central Louisiana, USA, to investigate the role hydrology plays on the generation and distribution of microbial methane. Major ion chemistry and Cl−Br relations of Wilcox Group formation waters suggest mixing of freshwater with halite-derived brines. High alkalinities (up to 47.8 meq/L), no detectable SO4, and elevated δ13C values of dissolved inorganic carbon (up to 20.5‰ Vienna Peedee belemnite [VPDB]) and CO2 (up to 17.67‰ VPDB) in the Wilcox Group coals and adjacent sandstones indicate the dominance of microbial methanogenesis. The δ13C and δD values of CH4, and carbon isotope fractionation of CO2 and CH4, suggest CO2 reduction is the major methanogenic pathway. Geochemical indicators for methanogenesis drop off significantly at chloride concentrations above ∼1.7 mol/L, suggesting that high salinities inhibit microbial activity at depths greater than ∼1.6 km. Formation waters in the Wilcox Group contain up to 1.6% modern carbon (A14C) to at least 1690 m depth; the covariance of δD values of co-produced H2O and CH4 indicate that the microbial methane was generated in situ with these Late Pleistocene or younger waters. The most enriched carbon isotope values for dissolved inorganic carbon (DIC) and CO2, and highest alkalinities, were detected in Wilcox Group sandstone reservoirs that were CO2 flooded in the 1980s for enhanced oil recovery, leading to the intriguing hypothesis that CO2 sequestration may actually enhance methanogenesis in organic-rich formations.
Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.
Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O
2017-07-18
When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.
The impacts of no-till practice on nitrate and phosphorus loss: A meta-analysis
NASA Astrophysics Data System (ADS)
Wang, L.; Daryanto, S.; Jacinthe, P. A.
2017-12-01
Although no-till (NT) has been promoted as an alternative land management practice to conventional tillage (CT), its impact on water quality, especially nitrate (NO3-) and phosphorus (P) loss remain controversial. We conducted a meta-analysis to compare NO3- and P (dissolved P, particulate P and total P) concentration and load in NT and CT systems, including the co-varying physical (e.g., climate region, rainfall variability, transport pathways, slope gradient) and management variables (e.g., NT duration, crop species). In general, NT increased the amount of dissolved nutrient loss (both NO3- and P), but reduced that of particulate nutrient (particulate P). Specifically, NT resulted in an overall increase of runoff NO3- concentration in comparison to CT, but similar runoff NO3- load. In contrast, NO3- load via leaching was greater under NT than under CT, although NO3- concentration in leachate was similar under both tillage practices, indicating that the effect of NT on NO3- load was largely determined by changes in water flux. NT adoption, in comparison to CT, reduced particulate P concentration by 45% and load by 55%, but increased dissolved P loss by 35% (for both concentration and load). Some variations, however, were recorded with different co-varying variables. NT was, for example, least effective in reducing leachate NO3- concentration in fields planted with wheat, but generated lower leachate NO3- concentration from soybean fields (no N fertilizer applied). In contrast, total P concentration was similar with CT at NT fields planted with soybean and at sites under prolonged NT duration ( 10 years). The limited impact of NT on dissolved nutrient loss (both NO3- and P) remains a serious impediment toward harnessing the water quality benefits of this management practice and suggests that NT needs to be complemented with other management practices (e.g., cover crops, split fertilizer application, occasional tillage).
NASA Astrophysics Data System (ADS)
Khadka, Mitra B.; Martin, Jonathan B.; Jin, Jin
2014-05-01
Assessing the origin, transformation and transport of terrestrially derived carbon in river systems is critical to regional and global carbon cycles, particularly in carbonate terrains, which represent the largest carbon reservoir on the earth’s surface. For this reason, we evaluated sources, cycling, and fluxes of dissolved organic and inorganic carbon (DOC and DIC) and riverine CO2 degassing to the atmosphere in the Santa Fe River in north-central Florida, a sub-tropical river that flows across two distinct hydrogeological settings of a region dominated by carbonate karst. One setting occurs in the upper river catchment, where the carbonate Floridan aquifer is confined by the siliciclastic Hawthorn Group, while the other setting occurs in the lower catchment where the river flows across the unconfined Floridan aquifer. The upper catchment is characterized by DOC-rich and DIC-poor water and the DIC has more variable and lower δ13C values compared to the lower catchment. The river in the upper catchment degasses more CO2 to the atmosphere (1156 g C m-2 yr-1) than in the lower catchment (402 g C m-2 yr-1) because soil respired carbon and organic matter decomposition increase dissolved CO2 concentration, much of which is consumed during carbonate dissolution reactions in the lower catchment. The CO2 flux from the water surface to the atmosphere during a flood event is three times greater than during base flow, suggesting that excess precipitation flushes soil organic carbon to the river through interflow and enhances the loss of terrestrial carbon via river water to the atmosphere. Our values of CO2 fluxes to the atmosphere lie within the range of fluxes from the world’s rivers, but fluxes from the carbonate dominated region are at the low end, while fluxes from the siliciclastic region are at the high end. These results indicate that catchment lithologies, particularly whether carbonate or siliciclastic, as well as flow, are critical to carbon budgets in rivers and thus are linked to the global carbon cycle.
Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Mohamed, Abdul Rahman; Shamsuddin, Abdul Halim
2017-02-07
Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO 2 concentration (C TOT ) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at x CO2 of 5% vol/vol and the rate consequently decreased when the C TOT and OPR were 0.015 k mol m -3 and 0.55 mL h -1 , respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.
Liberation of microbial substrates from macromolecular organic matter by non-supercritical CO2
NASA Astrophysics Data System (ADS)
Sauer, P.; Glombitza, C.; Kallmeyer, J.
2012-12-01
The worldwide search for suitable underground storage formations for CO2 also considers coal-bearing strata. CO2 is already injected into coal seams for enhanced recovery of coal bed methane. However, the geochemical and microbiological effects of increased CO2 concentrations on organic matter rich formations are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced under acidic conditions. Recent investigations outlined the importance of LMWOAs as a feedstock for subsurface microbial life [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effects of highly CO2-saturated waters on the release of LMWOAs from coal, we developed an inexpensive high-pressure-high-temperature system that allows manipulating the concentration of dissolved gases up to 60 MPa and 120°C, respectively. The sample is placed in a flexible, gas-tight and inert PVDF sleeve, separating it from the pressure fluid and allowing for subsampling without loss of pressure. Lignite samples from the DEBITS-1 well, Waikato Basin, NZ and the Welzow-Süd open-cast mine, Niederlausitz, Germany, were extracted at 90° C and 5 MPa, with either pure water, CO2-saturated water, CO2/NO2 or CO2/SO2-saturated water. Subsamples were taken at different time points during the 72 hrs. long extraction. Extraction of LMWOAs from coal samples with our pressurised system resulted in yields that were up to four times higher than those reported for Soxhlet extraction [2]. These higher yields may be explained by the fact that during Soxhlet extraction the sample only gets into contact with freshly distilled water, whereas in our system the extraction fluid is circulated, resulting in more acidic extraction conditions. In comparison to pure water extractions, CO2-saturated water affected the extraction yield in both directions by up to 40 percent. For the lignite from DEBITS-1 well, CO2-saturated water resulted in a permanently lower yield, whereas the lignites from the Lausitz showed an increase in formate and a decrease in oxalate. LMWOAs found in the extraction fluid may not just result from hydrolysis but also from different secondary reactions. It was suggested that oxalate in aqueous extracts of coals is a result of the decomposition of 1,2-dihydroxy-carboxylic acids [3]. We assume that for oxalate (and maybe for other LMWOAs as well) the extraction yield is not only affected by hydrolysis but also by secondary reactions, which may be suppressed in the presence of CO2 and other gasses dissolved in the extraction medium. These results show the importance of performing laboratory simulations of subsurface processes under conditions that resemble the true in-situ conditions as closely as possible. References [1] Glombitza et al., 2009, Org. Geochem. 40, 175-183 [2] Vieth et al., 2008, Org. Geochem. 39, 985-991 [3] Bou-Raad et al., 2000, Fuel 79, 1185-1193
A New Fast, Reliable Technique for the Sampling of Dissolved Inorganic Carbon in Sea Ice
NASA Astrophysics Data System (ADS)
Hu, Y.; Wang, F.; Rysgaard, S.; Barber, D. G.
2015-12-01
For a long time, sea ice was considered to act as a lid over seawater preventing CO2 exchange between the atmosphere and ocean. Recent observations suggest that sea ice can be an active source or a sink for CO2, although its magnitude is not very clear. The direct measurements on CO2 flux based on the chamber method and eddy covariance often do not agree with each other. It is therefore important to measure the dissolved inorganic carbon (DIC) stock in sea ice precisely in order to better understand the CO2 flux through sea ice. The challenges in sea ice DIC sampling is how to melt the ice core without being exposed to the air gaining or losing CO2. A common practice is to seal the ice core in a self-prepared gas-tight plastic bag and suck the air out of the bag gently using a syringe (together with a needle) through a valve mounted on one side of the bag. However, this method is time consuming (takes up to several minutes to suck the air out) and very often there is large headspace found in the bag after the ice melts due to the imperfect bag-preparation, which might affect the DIC concentration in melt ice-water. We developed a new technique by using a commercially available plastic bag with a vacuum sealer to seal the ice core. In comparison to syringe-based method, this technique is fast and easy to operate; it takes less than 10 seconds to vacuum and seal the bag all in one button with no headspace left in the bag. Experimental tests with replicate ice cores sealed by those two methods showed that there is no difference in the DIC concentration measured after these two methods, suggesting that there is no loss of DIC during the course of vacuum sealing. In addition, a time series experiment on DIC in melt ice-water stored in the new bag shows that when the samples were not poisoned, the DIC concentration remains unchanged for at least 3 days in the bag; while poisoned by HgCl2, there is no change in DIC for at least 21 days, indicating that this new bag is impermeable to CO2. Therefore, this new technique offers a convenient yet reliable method for DIC sampling of sea ice.
NASA Astrophysics Data System (ADS)
Xu, T.; Kharaka, Y.; Benson, S.
2006-12-01
A total of 1600 tons of CO2 were injected into the Frio ~{!0~}C~{!1~} sandstone layer at a depth of 1500 m over a period of 10 days. The pilot, located near Dayton, Texas, employed one injection well and one observation well, separated laterally by about 30 m. Each well was perforated over 6 m in the upper portion of the 23-m thick sandstone. Fluid samples were taken from both wells before, during, and after the injection. Following CO2 breakthrough, observations indicate drops in pH (6.5 to 5.7), pronounced increases in concentrations of HCO3- (100 to 3000 mg/L), in Fe (30 to 1100), and dissolved organic carbon. Numerical modeling was used in this study to understand changes of aqueous HCO3- and Fe caused by CO2 injection. The general multiphase reactive geochemical transport simulator TOUGHREACT was used, which includes new fluid property module ECO2N with an accurate description of the thermophysical properties of mixtures of water, brine, and CO2 at conditions of interest for CO2 storage. A calibrated 1-D radial well flow model was employed for the present reactive geochemical transport simulations. Mineral composition used was taken from literatures relevant to Frio sandstone. Increases in HCO3- concentration were well reproduced by an initial simulation. Several scenarios were used to capture increases in Fe concentration including (1) dissolution of carbonate minerals, (2) dissolution of iron oxyhydroxides, (3) de-sorption of previously coated Fe. Future modeling, laboratory and field investigations are proposed to better understand the CO2-brine-mineral interactions at the Frio site. Results from this study could have broad implication for subsurface storage of CO2 and potential water quality impacts.
Chan, Eric W; Kessler, John D; Shiller, Alan M; Joung, DongJoo; Colombo, Frank
2016-03-15
Previous studies of microbially mediated methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on what factor(s) are limiting in these types of environments. These factors include the availability of methane, O2, trace metals, nutrients, the density of cell population, and the influence that CO2 production may have on pH. To look at this process in its entirety, we developed an automated mesocosm incubation system with a Dissolved Gas Analysis System (DGAS) coupled to a myriad of analytical tools to monitor chemical changes during methane oxidation. Here, we present new high temporal resolution techniques for investigating dissolved methane and carbon dioxide concentrations and stable isotopic dynamics during aqueous mesocosm and pure culture incubations. These techniques enable us to analyze the gases dissolved in solution and are nondestructive to both the liquid media and the analyzed gases enabling the investigation of a mesocosm or pure culture experiment in a completely closed system, if so desired.
Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2.
McNeil, Ben I; Matear, Richard J
2008-12-02
Southern Ocean acidification via anthropogenic CO(2) uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO(3)(2-)) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO(3)(2-) and pH. Our analysis shows an intense wintertime minimum in CO(3)(2-) south of the Antarctic Polar Front and when combined with anthropogenic CO(2) uptake is likely to induce aragonite undersaturation when atmospheric CO(2) levels reach approximately 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.
Role of Southern Ocean stratification in glacial atmospheric CO2 reduction
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Oka, A.
2014-12-01
Paleoclimate proxy data at the glacial period shows high salinity of more than 37.0 psu in the deep South Atlantic. At the same time, data also indicate that the residence time of the water mass was more than 3000 years. These data implies that the stratification by salinity was stronger in the deep Southern Ocean (SO) in the Last Glacial Maximum (LGM). Previous studies using Ocean General Circulation Model (OGCM) fail to explain the low glacial atmospheric carbon dioxide (CO2) concentration at LGM. The reproducibility of salinity and water mass age is considered insufficient in these OGCMs, which may in turn affect the reproducibility of the atmospheric CO2concentration. In coarse-resolution OGCMs, The deep water is formed by unrealistic open-ocean deep convection in the SO. Considering these facts, we guessed previous studies using OGCM underestimated the salinity and water mass age at LGM. This study investigate the role of the enhanced stratification in the glacial SO on the variation of atmospheric CO2 concentration by using OGCM. In order to reproduce the recorded salinity of the deep water, relaxation of salinity toward value of recorded data is introduced in our OGCM simulations. It was found that deep water formation in East Antarctica is required for explaining the high salinity in the South Atlantic. In contrast, it is difficult to explain the glacial water mass age, even if we assume the situation vertical mixing is very weak in the SO. Contrary to previous estimate, the high salinity of the deep SO resulted in increase of Antarctic Bottom water (AABW) flow and decrease the residence time of carbon in the deep ocean, which increased atmospheric CO2 concentration. On the other hand, the weakening of the vertical mixing in the SO contributed to increase the vertical gradient of dissolved inorganic carbon (DIC), which decreased atmospheric CO2 concentration. Adding the contribution of the enhanced stratification in the glacial SO, we obtained larger reduction in atmospheric CO2 concentration than previous studies. However, we still fail to explain the full amplitude of recorded glacial reduction of atmospheric CO2 concentration. The carbonate compensation process, which is not incorporated in our simulations, might be required for further reduction in atmospheric CO2 concentration.
NASA Astrophysics Data System (ADS)
Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean
2016-03-01
The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.
Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N
2014-04-01
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
NASA Astrophysics Data System (ADS)
Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.
2013-05-01
Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.
NASA Astrophysics Data System (ADS)
Huang, Zhen; Shao, Yiming; Shiga, Seiichi; Nakamura, Hisao
1994-09-01
This paper presents a recent advance in the study of injection of fuel containing dissolved gas (IFCDG). Using diesel fuel containing dissolved CO2, experiments were performed under atmospheric conditions on a diesel hole-type nozzle and simple nozzles. The effects of gas concentration in the fuel, injection pressure and the nozzle L/D ratio were examined. In order to reveal the controlling mechanism of IFCDG, the orifice flow pattern, pressure characteristics and their effects were also investigated. The result shows that IFCDG can produce a parabolic-shaped spray pattern with good atomization, which suggests the existence of a new atomization mechanism. In terms of atomization, the beneficial effect of the IFCDG is obtained at the dissolved gas concentration above the transition and in the region of larger nozzle L/D ratio. However, under unfavorable conditions, IFCDG will lead to deterioration of atomization with coarse fuel droplets. It is found that the big difference of the orifice pressure characteristics caused by the variation of the nozzle L/D ratio has a dominant influence on the separation of the dissolved gas from the fuel inside the orifice and is verified to account for a dramatic change in the spray pattern and determine the effect of IFCDG. It is considered that the concept of IFCDG could be attractive in producing more efficient, clean engine and find use in a wide range of application.
Arai, Y.; Sparks, D.L.; Davis, J.A.
2004-01-01
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [PCO2 = 10 -3.5 atm and ???0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L -1, [As(V)]0 = 1.5 mM and / = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L-1, [As(V)] 0 = 0.5 mM and / = 0.01 M NaCl], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (PCO2 = 10-3.5 atm)than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear (???2.8 A??) and bidentate binuclear (???3.3 A??) bonding at pH 4.5-8 and loading levels of 0.46-3.10 ??M m-2. Using the results of the pseudoequilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the PCO2 = 10-3.5 atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).
NASA Astrophysics Data System (ADS)
Beaubien, Stan; De Vittor, Cinzia; McGinnis, Dan; Bigi, Sabina; Comici, Cinzia; Ingrosso, Gianmarco; Lombardi, Salvatore; Ruggiero, Livio
2014-05-01
Carbon capture and storage is expected to provide an important, short-term contribution to mitigate global climate change due to anthropogenic emissions of CO2. Offshore reservoirs are particularly favourable, however concerns exist regarding the potential for CO2 leakage into the water column (with possible ecosystem impacts) and the atmosphere. Although laboratory experiments and modelling can examine these issues, the study of natural systems can provide a more complete and realistic understanding. For this reason the natural CO2 emission site off the coast of Panarea Island (Italy) was chosen for study within the EC-funded ECO2 project. The present paper discusses the results of field experiments conducted at this site to better understand the fate of CO2 gas bubbles as they rise through the water column, and to use this real-world data as input to test the predictive capabilities of a bubble model. Experiments were conducted using a 1m wide x 1m deep x 3m tall, hollow-tube structure equipped with a vertical guide on the front face and a dark, graduated cloth for contrast and depth reference on the back. A Plexiglas box was filled with the naturally emitted gas and fixed on the seafloor inside the structure. Tubes exit the top of the box to make bubbles of different diameters, while valves on each tube control bubble release rate. Bubble rise velocity was measured by tracking each bubble with a HD video camera mounted in the guide and calculating values over 20 cm intervals. Bubble diameter was measured by filming the bubbles as they collide with a graduated Plexiglas sheet deployed horizontally at the measurement height. Bubble gas was collected at different heights using a funnel and analysed in the laboratory for CO2, O2+Ar, N2, and CH4. Water parameters were measured by performing a CTD cast beside the structure and collecting water samples at four depths using a Niskin bottle; samples were analysed in the laboratory for all carbonate system species, DO, and dissolved gases. An in-house developed GasPro sensor was also mounted on the structure to monitor pCO2 over the entire 2.5 hour duration of the experiment. The obtained data were used as input into the Discrete Bubble Model (DBM) (e.g., McGinnis et al., 2011, doi:10.1029/2010JC006557). The DBM uses mass balance to predict the gas flux across the bubble surface, whereby gas flux direction depends on internal bubble gas concentration and ambient concentration, and considering the Henry's coefficient and partial pressure of the gas. The model uses bubble-size dependent relationships for the mass transfer rate and the bubble rise velocity. Important model input parameters include: bubble size; depth; ambient dissolved gas concentrations, temperature and salinity; and initial bubble gas concentrations. Measured and modelled results are compared, showing good general agreement. Based on the concentrations measured at the lowest level, the modelled and measured bubble concentrations match very closely. Bubble size values do not match as well if this initial concentration is used, however they improve as a value closer to 100% CO2 is applied. This preliminary study has shown promising results and highlight areas where experimental design and data quality should be improved in the next phase of the study.
Geochemical characterisation of gases along the dead sea rift: Evidences of mantle-co2 degassing
NASA Astrophysics Data System (ADS)
Inguaggiato, C.; Censi, P.; D'Alessandro, W.; Zuddas, P.
2016-06-01
The Dead Sea Transform (DST) fault system, where a lateral displacement between the African and Arabian plates occurs, is characterised by anomalous heat flux in the Israeli area close to the border with Syria and Jordan. The concentration of He and CO2, and isotopic composition of He and total dissolved inorganic carbon were studied in cold and thermal waters collected along the DST, in order to investigate the source of volatiles and their relationship with the tectonic framework of the DST. The waters with higher temperature (up to 57.2 °C) are characterised by higher amounts of CO2 and helium (up to 55.72 and 1.91 ∗ 10- 2 cc l- 1, respectively). Helium isotopic data (R/Ra from 0.11 to 2.14) and 4He/20Ne ratios (0.41-106.86) show the presence of deep-deriving fluids consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/3He ratios) indicate a larger contribution of mantle-derived fluids affecting the northern part of the investigated area, where the waters reach the highest temperature. These evidences suggest the occurrence of a favourable tectonic framework, including a Moho discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic activity recognised in the northern part of Israel.
Jokiel, P L
2013-08-07
Data on calcification rate of coral and crustose coralline algae were used to test the proton flux model of calcification. There was a significant correlation between calcification (G) and the ratio of dissolved inorganic carbon (DIC) to proton concentration ([DIC] : [H(+)] ratio). The ratio is tightly correlated with [CO3(2-)] and with aragonite saturation state (Ωa). An argument is presented that correlation does not prove cause and effect, and that Ωa and [CO3(2-)] have no basic physiological meaning on coral reefs other than a correlation with [DIC] : [H(+)] ratio, which is the driver of G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jesus
Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less
Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S
2008-09-01
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment
NASA Astrophysics Data System (ADS)
Chapman, H.; Wigley, M.; Bickle, M.; Kampman, N.; Dubacq, B.; Galy, A.; Ballentine, C.; Zhou, Z.
2012-04-01
Dissolution of CO2 in brines and reactions of the acid brines ultimately dissolving silicate minerals and precipitating carbonate minerals are the prime long-term mechanisms for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they are likely to depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. Noble gas isotopic spikes were detected at producing wells within days of initial CO2 injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretations are complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution as the lack of increase in S and Cl concentrations preclude additions of more saline waters. Early calcite dissolution was followed by re-precipitation. 87Sr/86Sr ratios in the waters apparently exceed the 87Sr/86Sr ratios of acetic and hydrochloric acid leaches of carbonate fractions of the reservoir rocks and the silicate residues from the leaching. This may indicate incongruent dissolution of Sr or larger scale isotopic heterogeneity of the reservoir. This is being investigated further by analyses of rock and mineral clasts from core. A surprising result of this study is the extent to which CO2 has dissolved in brines to drive fluid-rock reactions during the short duration of this experiment. However, simple one-dimensional flow modelling with lateral diffusion of CO2 into brines demonstrates that the natural heterogeneities in permeability in the reservoir on the scale of ~ 1 m are sufficient to cause extensive fingering of the CO2 along the highest permeability horizons. Because flow of brines is fastest in the relatively high permeability layers adjacent to the CO2-bearing layers, production of this more CO2-rich water dominates the output from production wells.
Organic Carbon Release from Groundwater Sediments under Changing Geochemical Conditions
NASA Astrophysics Data System (ADS)
Tinnacher, R. M.; Bhattacharyya, A.; Fox, P. M.; Nico, P. S.
2016-12-01
Due to climate change, local weather patterns are expected to change, especially with respect to precipitation, the frequency of extreme storm water events, and `drought-like' conditions. This in turn, may affect groundwater recharge, the geochemical conditions in natural groundwater systems, and the chemical and microbiological processes involved in organic matter degradation. Besides the complexity of organic matter structures and local limitations in nutrients, the association of organic carbon with sediment minerals can strongly limit organic matter bioaccessability and degradability. In this study, we investigate how variations in groundwater chemistry, e.g. with respect to dissolved CO2 concentrations, may potentially affect the release of natural organic carbon from groundwater sediments, and render organic matter more bioaccessible. In lab-scale experiments under anaerobic conditions, aquifer sediments from the floodplain of the Colorado River (Rifle, USA) were brought into contact with fresh, organic-carbon free groundwater solutions, at natural or reduced CO2 concentration levels. During the repeated exchange of solutions at two temperature settings (room-temperature and 4 °C), supernatant solutions were characterized in terms of pH, dissolved metal and organic carbon (OC) concentrations, and potential changes in released OC characteristics. Sediment samples were evaluated for possible differences in Fe-speciation before and after the experiment based on EXAFS (bulk Fe K-edge). Preliminary results for 20 exchanges of groundwater solutions show a repeated release of low OC concentrations ( 0.5-2 mg OC/g sediment; 0.05-0.2% of sediment-associated OC) without any apparent depletion in the overall source term over 50 days. After 14 days, room-temperature samples released slightly higher OC concentrations than samples kept at 4 °C. An increase in solution pH, after switching to a `CO2-free' groundwater solution, did not trigger a higher OC release. Last, specific UV absorbance measurements for room-temperature samples suggest changes in released OC characteristics due to repeated solution exchanges. Additional sample characterization is ongoing, with the goal to elucidate potential changes in released OC characteristics over the course of the experiment.
NASA Astrophysics Data System (ADS)
Ingrosso, Gianmarco; Giani, Michele; Cibic, Tamara; Karuza, Ana; Kralj, Martina; Del Negro, Paola
2016-03-01
In this paper we investigated, for two years and with a bi-monthly frequency, how physical, chemical, and biological processes affect the marine carbonate system in a coastal area characterized by high alkalinity riverine discharge (Gulf of Trieste, northern Adriatic Sea, Mediterranean Sea). By combining synoptic measurements of the carbonate system with in situ determinations of the primary production (14C incorporation technique) and secondary prokaryotic carbon production (3H-leucine incorporation) along a river-sea gradient, we showed that the conservative mixing between river endmember and off-shore waters was the main driver of the dissolved inorganic carbon (DIC) distribution and seasonal variation. However, during spring and summer seasons also the influence of biological uptake and release of DIC was significant. In the surface water of June 2012, the spreading and persistence of nutrient-rich freshwater stimulated the primary production (3.21 μg C L- 1 h- 1) and net biological DIC decrease (- 100 μmol kg- 1), reducing the dissolved CO2 concentration and increasing the pHT. Below the pycnocline of August 2012, instead, an elevated bacterial carbon production rate (0.92 μg C L- 1 h- 1) was related with net DIC increase (92 μmol kg- 1), low dissolved oxygen concentration, and strong pHT reduction, suggesting the predominance of bacterial heterotrophic respiration over primary production. The flux of carbon dioxide estimated at the air-sea interface exerted a low influence on the seasonal variation of the carbonate system. A complex temporal and spatial dynamic of the air-sea CO2 exchange was also detected, due to the combined effects of seawater temperature, river discharge, and water circulation. On annual scale the system was a sink of atmospheric CO2. However, in summer and during elevated riverine discharges, the area close to the river's mouth acted as a source of carbon dioxide. Also the wind speed was crucial in controlling the air-sea CO2 exchange, with strong Bora events (a typical ENE wind of the Gulf of Trieste) that drastically increased the absorption (- 32.2 mmol m- 2 day- 1) or the release (5.34 mmol m- 2 day- 1) of carbon dioxide.
Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite
NASA Astrophysics Data System (ADS)
Miller, Hannah M.; Mayhew, Lisa E.; Ellison, Eric T.; Kelemen, Peter; Kubo, Mike; Templeton, Alexis S.
2017-07-01
Dissolved hydrogen is common in mafic and ultramafic aquifers; however, the water/rock reactions that give rise to hydrogen production at near-surface temperatures are enigmatic. Similarly, mineral hydration experiments have not yet unequivocally demonstrated whether H2 can be produced at low-temperatures at significant rates from reaction of aqueous fluids with basalts and peridotites for prolonged amounts of time. We conducted laboratory-based water/rock reactions between partially serpentinized Oman dunite and a simulated Oman rainwater (RW) media, as well as a simulated seawater (SW) media, to quantify H2 generation rates at 100 °C. Throughout more than 9 months of water/rock reaction, extensive hydrogen production and consumption were observed in RW and SW media. In the first 24 h of reaction in anoxic fluids containing only dissolved N2 and CO2, the room-temperature pH in both RW and SW media increased from 6.5 to ∼9, and the average pH then remained relatively constant at pH 8.5 (±0.5 pH) for the duration of the experiments. We also measured some of the highest hydrogen concentrations observed in experimental low-temperature serpentinization reactions. The maximum measured H2 concentrations in SW media were 470 nmol H2 per g mineral after ∼3 months, while RW media H2 concentrations reached 280 nmol/g H2 after ∼3 months. After reaching micromolar dissolved H2(aq), the H2 concentrations notably declined, and CO2 was almost fully consumed. We measured the formation of formate (up to 98 μM) and acetate (up to 91 μM) associated with a drawdown of H2 and CO2 in the experiments. No CH4 or carbonate formation was observed. To identify reactions giving rise to low-temperature hydrogen production, the mineralogy and oxidation state of the Fe-bearing species in the dunite were extensively characterized before and after reaction using Raman spectroscopy, Quantitative Evaluation of Minerals by SCANing electron microscopy (QEMSCAN), powder X-ray diffraction (XRD), magnetic susceptibility, scanning electron microscopy (SEM), and Fe K-edge X-ray absorption near edge structure (XANES) spectroscopic techniques. The mineralogy of the solid starting material was dominated by olivine and serpentine with minor brucite, pyroxene and spinel. After reaction, additional serpentine and magnetite could be detected as reaction products, and pre-existing brucite was consumed. No changes were observed in the abundance or grain sizes of olivine or pyroxene. Thus, we propose that the destabilization of Fe(II)-bearing brucite and the subsequent oxidation of the aqueous Fe(II) to form magnetite and Fe(III)-rich serpentine give rise to H2 production at 100 °C. This work demonstrates that dissolved hydrogen and low molecular weight organic acids can be produced by the reaction of labile Fe(II)-bearing minerals generated during a prior stage of water/rock reactions. In particular, progressive alteration of partially-serpentinized peridotites containing brucite may generate sufficient electron donors to fuel in-situ subsurface microbial activity.
NASA Technical Reports Server (NTRS)
Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.
2003-01-01
In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.
In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.
Endogenous gas hazard at Pizzillo (Stromboli Island, Italy)
NASA Astrophysics Data System (ADS)
Tarchini, L.; Carapezza, M. L.; Ranaldi, M.; Ricci, T.
2009-04-01
In open-conduit volcanoes like Stromboli or Etna, the major degassing is associated to the plume emission from the craters. However the presence of faults and fractures acts as preferential pathway for gas escaping to the surface, thus there is also a relevant CO2 diffuse degassing from the soil from most of the edifice. In the inhabited areas on these volcanoes, natural gases can accumulate in houses generating potential hazards. Pizzillo is one of the anomalous degassing zone located near the sea shore, in the inhabited area of Stromboli. It is well known to local people for the presence of a mofette lethal to small animals and of a shallow thermal aquifer (T= 35-42 °C). It has a high dissolved CO2 content and is mostly fed by sea water and heated by gas rising from depth. High CO2 concentration has been found in the soil (17 % and 40 %, at 50 and 100 cm depth). Chemical and isotopic data of soil gas indicate a deep magmatic provenance. Interesting anomalies of CO2 and other dissolved gases, including C and He isotopes, have been recorded in this thermal shallow aquifer before the 2002 eruption onset and the 5 April 2003 paroxysm, suggesting an increasing input of gas released from an uprising magma body. The presence in this coastal zone of NE-SW trending fractures is confirmed also by the results of a shallow electromagnetic survey carried out in 2004 using a multifrequency (625 to 19,925 Hz) GEM 300 with investigation depth of 30 to 50 m depending on ground resistivity. Most of the CO2 emission of Pizzillo occurs along a N64E° trending fracture extending uphill toward Rina Grande, and along which a series of flank collapses occurred. The CO2 soil flux map, carried out over 3200 m2, delineates two anomalies oriented NE-SW on both sides of an house, that is severely exposed to gas hazard. This house, where people mostly live during summer, is located just in the middle of the most CO2 soil emissive zone. It has a window very near to the rock cut from where most CO2 is emitted. As such a location is severely exposed to gas hazard, indoor CO2 air concentration was repeatedly measured within a ground room where the gas, denser than air, could accumulate up to reach dangerous levels. An automatic Dräger X-am 7000 devise, which records CO2 concentration every minute, was used; it was placed at 10 cm from the ground. The first measures, carried out from 29 July to 2 August 2006, gave very dangerous concentration values up to 8 vol.% that were always recorded in periods of no or very low wind. A longer survey was carried out from 7 March to 15 May 2007, during and after the last Stromboli eruption, with some interruptions due to power cuts. Results confirm the high gas hazard of this house, as immediately lethal CO2 air concentration (10 %) is often reached or exceeded. In order to ascertain from where the gas was coming, a second Dräger was placed on the windowsill at 2 m from the ground. Results clearly show that CO2 was mostly entering the room from this window, as very high concentrations were found with peaks shortly preceding those recorded near the ground. This prevented to recommend room aeration, which is the most elementary precautionary measure in these cases. We suggested the owner to wall up that window and impermeabilise the floor. During five days of measurements, carried out in January 2008 after the completion of these works, [CO2] was mostly at its normal air value.
Long-Duration Carbon Dioxide Anesthesia of Fish Using Ultra Fine (Nano-Scale) Bubbles.
Kugino, Kenji; Tamaru, Shizuka; Hisatomi, Yuko; Sakaguchi, Tadashi
2016-01-01
We investigated whether adding ultrafine (nano-scale) oxygen-carrying bubbles to water concurrently with dissolved carbon-dioxide (CO2) could result in safe, long-duration anesthesia for fish. To confirm the lethal effects of CO2 alone, fishes were anesthetized with dissolved CO2 in 20°C seawater. Within 30 minutes, all fishes, regardless of species, died suddenly due to CO2-induced narcosis, even when the water was saturated with oxygen. Death was attributed to respiration failure caused by hypoxemia. When ultrafine oxygen-carrying bubbles were supplied along with dissolved CO2, five chicken grunts were able to remain anesthetized for 22 hours and awoke normally within 2-3 hours after cessation of anesthesia. The high internal pressures and oxygen levels of the ultrafine bubbles enabled efficient oxygen diffusion across the branchia and permitted the organismal oxygen demands of individual anesthetized fish to be met. Thus, we demonstrated a method for safe, long-duration carbon dioxide anesthesia in living fish under normal water temperatures.
Impact fracture experiments simulating interstellar grain-grain collisions
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas
1990-01-01
Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture, plus metal vapor. This points: (1) at complex reaction mechanisms between dissolved H2O, CO/CO2 (and N2) components within the mineral structure or during fracture, and (2) at the possibility that similar emission processes occur following grain-grain collisions in interstellar dust clouds.
Coral Reefs on the Edge? Carbon Chemistry on Inshore Reefs of the Great Barrier Reef
Uthicke, Sven; Furnas, Miles; Lønborg, Christian
2014-01-01
While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff. PMID:25295864
Grotti, M; Soggia, F; Ardini, F; Magi, E
2011-09-01
In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).
Bubble Stripping as a Tool to Reduce High Dissolved CO2 in Coastal Marine Ecosystems
NASA Astrophysics Data System (ADS)
Koweek, D.; Mucciarone, D. A.; Dunbar, R. B.
2016-02-01
High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism and long residence times. Many of the socially, commercially, and recreationally important species may have adapted to this natural variability over time. However, eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use an empirically validated numerical model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a non-bubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change emphasizes the need to both adapt to and mitigate the effects of climate change and ocean acidification. We believe shallow water bubble stripping could be one approach for reducing high CO2 conditions in coastal ecosystems and should be added to the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.
Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.
1998-01-01
Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
NASA Astrophysics Data System (ADS)
Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong
2016-09-01
The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect deduction) is only about 77% of the value calculated with the assumption that carbonic acid donates all the protons involved in the weathering reaction.
Carbonate Mineralization of Volcanic Province Basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.
2010-03-31
Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested inmore » single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the precipitates suggest changes in fluid chemistry unique to the dissolution behavior of each basalt sample reacted with CO2-saturated water. The Karoo basalt from South Africa appeared the least reactive, with very limited mineralization occurring during the testing with CO2-saturated water. The relative reactivity of different basalt samples were unexpectedly different in the experiments conducted using aqueous dissolved CO2-H2S mixtures versus those reacted with aqueous dissolved CO2 mixtures. For example, the Karoo basalt was highly reactive in the presence of aqueous dissolved CO2-H2S, as evident by small nodules of carbonate coating the basalt grains after 181 days of testing. However the most reactive basalt in CO2-H2O, Newark Basin, formed limited amounts of carbonate precipitates in the presence of aqueous dissolved CO2-H2S mixture. Basalt reactivity in CO2-H2O mixtures appears to be controlled by the composition of the glassy mesostasis, which is the most reactive component in the basalt rock. With the addition of H2S to the CO2-H2O system, basalt reactivity appears to be controlled by precipitation of coatings of insoluble Fe sulfides.« less
Heavy metals content in acid mine drainage at abandoned and active mining area
NASA Astrophysics Data System (ADS)
Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim
2013-11-01
This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD appeared to be influenced by acidity and the formation of Fe, Mn oxide and hydroxide.
One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn
2011-01-01
Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.
Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media
NASA Astrophysics Data System (ADS)
Wang, Ning; Tong, Tiezheng; Xie, Minwei; Gaillard, Jean-François
2016-08-01
We have assessed the persistence and lifetime of ZnO nanoparticles (ZnO-NPs) by performing dissolution experiments in three different aqueous media. These experiments were performed at ZnO-NP concentration levels close to the solubility of zincite (˜8 μM or 650 μg l-1 of ZnO)—a concentration that is orders of magnitude higher than current estimated relevant environmental concentrations. The kinetics were followed by voltammetry, while maintaining the pH at about 7.5 using a CO2/N2 gas mixture to remove di-oxygen interference. Our results show that, under these conditions, ZnO-NPs readily dissolve with a lifetime expectancy that does not exceed 90 min. Water chemistry, especially the presence of dissolved organic matter (DOM), plays an important role in ZnO-NP dissolution. Dissolution rates significantly increase in the presence of strong chelating agents, EDTA and L-cysteine, while the addition of polymeric DOM, such as sodium alginate, has the opposite effect. Our results suggest that ZnO-NPs are unlikely to persist in natural aqueous media and that the toxicity should be primarily related to the released Zn2+ ions rather than effects commonly associated to the presence of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.E.; Dickhut, R.M.
1997-03-01
Gas sparging, semipermeable-membrane devices (SPMDs), and filtration with sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin were evaluated for determining the concentrations of freely dissolved PAHs in estuarine waters of southern Chesapeake Bay at sites ranging from rural to urban and highly industrialized. Gas sparging had significant sampling artifacts due to particle scavenging by rising bubbles, and SPMDs were kinetically limited for four-ring and larger PAHs relative to short-term temporal changes in water concentrations. Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was found to be the most accurate and feasible method for determining concentrationsmore » of freely dissolved PAHs in estuarine water. Concentrations and distribution coefficients of dissolved and particulate PAHs were measured using the filtration/XAD-2 method. Concentrations of PAHs in surface waters of southern Chesapeake Bay were higher than those reported for the northern bay; concentrations in the Elizabeth River were elevated relative to all other sites. A gradient for particulate PAHs was observed from urban to remote sites. No seasonal trends were observed in dissolved or particle-bound PAH fractions at any site. Distributions of dissolved and particulate PAHs in surface waters of the Chesapeake Bay are near equilibrium at all locations and during all seasons.« less
Variability in organic carbon reactivity across lake residence time and trophic gradients
NASA Astrophysics Data System (ADS)
Evans, Chris D.; Futter, Martyn N.; Moldan, Filip; Valinia, Salar; Frogbrook, Zoe; Kothawala, Dolly N.
2017-11-01
The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for.
In-situ arsenic remediation by aquifer iron coating: Field trial in the Datong basin, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xianjun; Pi, Kunfu; Liu, Yaqing
2016-01-01
In situ As removal from groundwater used for water supply has been performed in Daying village of Shanyin County where mild alkaline groundwater contains high dissolved As concentration. The objective of this study was to evaluate in situ As treatment by aquifer Fe coating technology. The groundwater in the studied aquifer contains As dominated by aqueous As(III) and low dissolved Fe(II) concentration, which are unfavorable conditions for forming Fe-oxides/hydroxides for As removal. In addition, high As(III) concentration limits As adsorption onto Fe-oxides/hydroxides. Accordingly, dissolved Fe(II) (5mM) and NaClO (5mM) were injected into the studied aquifer to form Fe-oxides/hydroxides and oxidizemore » As(III) to As(V), creating favorable conditions for As removal via adsorption and/or co-precipitation. During alternatively cycled injection of Fe(II) and NaClO, the As concentration in groundwater from the pumping well significantly decreased to below drinking water standard. The developed approach can be applied similarly in many parts of the world containing high As concentrations.« less
Toussaint, Marie; Vidal, Jean-Claude; Salmon, Jean-Michel
2014-04-02
The management of dissolved and headspace gases during bottling and the choice of packaging are both key factors for the shelf life of wine. Two kinds of 75 cL polyethylene terephthalate (PET) bottles (with or without recycled PET) were compared to glass bottles filled with a rosé wine, closed with the same screwcaps and stored upright at 20 °C in light or in the dark. Analytical monitoring (aphrometric pressure, headspace volume, O2, N2, CO2, and SO2) was carried out for 372 days. After the consumption of O2 trapped during bottling, the total O2 content in glass bottles remained stable. A substantial decrease of CO2 and SO2 concentration and an increase of O2 concentration were observed in the PET bottles after 6 months because of the considerable gas permeability of monolayer PET. Light accelerated O2 consumption during the early months. Finally, the kinetic monitoring of partial pressures in gas and liquid phases in bottles showed contrasting behavior of O2 and N2 in comparison with CO2.
McClure, Ryan P; Hamre, Kathleen D; Niederlehner, B R; Munger, Zackary W; Chen, Shengyang; Lofton, Mary E; Schreiber, Madeline E; Carey, Cayelan C
2018-04-30
Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH 4 ) and carbon dioxide (CO 2 ). The vertical distribution and diffusive efflux of CH 4 and CO 2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH 4 accumulated within the anoxic MOM, reaching a maximum of 120 μM, and elevated concentrations of CO 2 accumulated in the oxic hypolimnion, reaching a maximum of 780 μM. Interestingly, the largest observed diffusive CH 4 effluxes occurred before fall turnover in both years, while peak diffusive CO 2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH 4 and CO 2 in the water column in reservoirs, resulting in the accumulation of CH 4 in the metalimnion (vs. at the sediments) and CO 2 in the hypolimnion. Copyright © 2018 Elsevier B.V. All rights reserved.
Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California
Ball, J.W.; Izbicki, J.A.
2004-01-01
About 200 samples from selected public supply, domestic, and observation wells completed in alluvial aquifers underlying the western Mojave Desert were analyzed for total dissolved Cr and Cr(VI). Because Cr(VI) is difficult to preserve, samples were analyzed by 3 methods. Chromium(VI) was determined in the field using both a direct colorimetric method and EPA method 218.6, and samples were speciated in the field for later analysis in the laboratory using a cation-exchange method developed for the study described in this paper. Comparison of the direct colorimetric method and EPA method 218.6 with the new cation-exchange method yielded r2 values of 0.9991 and 0.9992, respectively. Total dissolved Cr concentrations ranged from less than the 0.1 ??g/l detection limit to 60 ??g/l, and almost all the Cr present was Cr(VI). Near recharge areas along the mountain front pH values were near neutral, dissolved O2 concentrations were near saturation, and Cr(VI) concentrations were less than the 0.1 ??g/l detection limit. Chromium(VI) concentrations and pH values increased downgradient as long as dissolved O 2 was present. However, low Cr(VI) concentrations were associated with low dissolved O2 concentrations near ground-water discharge areas along dry lakes. Chromium(VI) concentrations as high as 60 ??g/l occurred in ground water from the Sheep Creek fan alluvial deposits weathered from mafic rock derived from the San Gabriel Mountains, and Cr(VI) concentrations as high as about 36 ??g/l were present in ground water from alluvial deposits weathered from less mafic granitic, metamorphic, and volcanic rocks. Chromium(III) was the predominant form of Cr only in areas where dissolved O2 concentrations were less than 1 mg/l and was detected at a median concentration of 0.1 ??g/l, owing to its low solubility in water of near-neutral pH. Depending on local hydrogeologic conditions and the distribution of dissolved O2, Cr(VI) concentrations may vary considerably with depth. Samples collected under pumping conditions from different depths within wells show that Cr(VI) concentrations can range from less than the 0.1 ??g/l detection limit to 36 ??g/l in a single well and that dissolved O2 concentrations likely control the concentration and redox speciation of Cr in ground water.
Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.
Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E
2009-07-01
The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.
NASA Astrophysics Data System (ADS)
Imm, J.
2015-12-01
Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.
NASA Astrophysics Data System (ADS)
Imm, J.
2016-02-01
Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.
Partition of heavy metals in a tropical river system impacted by municipal waste.
Duc, Trinh Anh; Loi, Vu Duc; Thao, Ta Thi
2013-02-01
A research program was established to identify the governing factors for the partition coefficient (K(D)) of heavy metals between suspended particulate and dissolved phases in the Day River system a tropical, highly alluvial aquatic system, in Vietnam. The targeted river system, draining an urbanized-industrialized catchment where discharged wastewater is mostly untreated, could be separated into the least impacted, pristine area, and the most impacted, polluted area. Organic matter degradation was shown to govern the variation of parameters like total organic carbon, biochemical oxygen demand, chemical oxygen demand, nutrients, conductivity, or redox potential. Heavy metals in both dissolved and particulate phases were enriched in severely polluted area because of wastewater inflow that contains concentrated metals and intensification of metal influx from sediment. Results show log K(D) in the order Mn < As < Zn < Hg < Ni < Cu < Cd < Co < Pb < Cr < Fe and As < Zn < Ni < Mn < Cr < Cu < Co < Fe in the polluted zone and the pristine zone, respectively. A decreasing tendency of partition coefficients of 11 heavy metals considered from the pristine to the impacted zones was observed. Three explanations for the difference are: (1) increase of solubility of most heavy metals in low redox potential, (2) competition for the binding sites with major and minor cations, and (3) complexation with dissolved organic matter concentrated in municipal waste impacted water. Apart from domestic waste impact, statistical analysis has contributed to identify the influence of climate condition and hydrological regime to the partition of heavy metals in the area.
Stoliker, Deborah L; Campbell, Kate M; Fox, Patricia M; Singer, David M; Kaviani, Nazila; Carey, Minna; Peck, Nicole E; Bargar, John R; Kent, Douglas B; Davis, James A
2013-08-20
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.
2013-01-01
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
NASA Astrophysics Data System (ADS)
Cahill, Aaron G.; Marker, Pernille; Jakobsen, Rasmus
2014-02-01
A shallow aquifer CO2 contamination experiment was performed to investigate evolution of water chemistry and sediment alteration following leakage from geological storage by physically simulating a leak from a hypothetical storage site. In a carbonate-free aquifer, in western Denmark, a total of 1600 kg of gas phase CO2 was injected at 5 and 10 m depth over 72 days through four inclined injection wells into aeolian and glacial sands. Water chemistry was monitored for pH, EC, and dissolved element evolution through an extensive network of multilevel sampling points over 305 days. Sediment cores were taken pre and postinjection and analyzed to search for effects on mineralogy and sediment properties. Results showed the simulated leak to evolve in two distinct phases; an advective elevated ion pulse followed by increasing persistent acidification. Spatial and temporal differences in evolution of phases suggest separate chemical mechanisms and geochemical signatures. Dissolved element concentrations developed exhibiting four behaviors: (1) advective pulse (Ca, Mg, Na, Si, Ba, and Sr), (2) pH sensitive abundance dependent (Al and Zn), (3) decreasing (Mn and Fe), and (4) unaffected (K). Concentration behaviors were characterized by: (1) a maximal front moving with advective flow, (2) continual increase in close proximity to the injection plane, (3) removal from solution, and (4) no significant change. Only Al was observed to exceed WHO guidelines, however significantly so (10-fold excess). The data indicate that pH is controlled by equilibrium with gibbsite which is again coupled to cation exchange processes. Pre and postinjection sediment analysis indicated alteration of sediment composition and properties including depletion of reactive mineral species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PAUL, JOHN H
Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plumemore » (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic nutrient input. The offshore ORP was characterized by haptophyte and in places Prochlorococcus carbon fixation gene expression in surface water, with greater heterokont rbcL RNA at SCM depths. MODIS satellite chlorophyll-a data implied a plume of high chlorophyll water far into the eastern Caribbean, yet field observations did not support this, most likely because of high levels of colored dissolved organic matter (cDOM) in the ORP. The presence of pelagic nitrogen fixers (Trichodesmium and cyanobacterial diatom endosymbionts) most likely provided N for the offshore MRP production. The results underscore the importance of oceanic river plumes as sinks for CO2 and the need for their incorporation in global carbon models as well as estimates of CO2 sequestration.« less
NASA Astrophysics Data System (ADS)
Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.
2012-12-01
Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.
Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2
McNeil, Ben I.; Matear, Richard J.
2008-01-01
Southern Ocean acidification via anthropogenic CO2 uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO32−) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO32− and pH. Our analysis shows an intense wintertime minimum in CO32− south of the Antarctic Polar Front and when combined with anthropogenic CO2 uptake is likely to induce aragonite undersaturation when atmospheric CO2 levels reach ≈450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification. PMID:19022908
Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon.
Rejomon, G; Kumar, P K Dinesh; Nair, M; Muraleedharan, K R
2010-12-01
Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (μg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009. Copyright © 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Geilfus, N.-X.; Carnat, G.; Dieckmann, G. S.; Halden, N.; Nehrke, G.; Papakyriakou, T.; Tison, J.-L.; Delille, B.
2013-01-01
report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg-1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg-1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg-1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg-1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m-2 d-1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor.
NASA Astrophysics Data System (ADS)
Wolfe, Alexander P.; Siver, Peter A.
2013-12-01
Chrysophyte algae are common in the plankton of oligotrophic lakes and produce a rich microfossil record of siliceous cysts and scales. Paleolimnological investigations and phytoplankton records suggest that chrysophyte populations are increasing in a wide range of boreal and arctic lakes, ultimately representing one component of the limnological response to contemporary global changes. However, the exact mechanisms responsible for widespread increases of chrysophyte populations remain elusive. We hypothesize that recent increases in chrysophytes are related to rising pCO2 in lakes, in part because these algae lack carbon concentrating mechanisms and therefore rely on diffusive entry of CO2 to Rubisco during photosynthesis. We assessed the abundance of modern sediment chrysophyte microfossils in relation to summer CO2 relative saturation in 46 New England (USA) lakes, revealing significant positive relationships for both cysts and scales. These observations imply that correlations between chrysophytes and limnological conditions including low pH, oligotrophy, and elevated dissolved organic matter are ultimately underscored by the high pCO2 associated with these conditions. In lakes where chrysophyte populations have expanded over recent decades, we infer that increasingly heterotrophic conditions with respect to CO2 have stimulated production by these organisms. This linkage is supported by the remarkable abundance and diversity of chrysophytes from middle Eocene lake sediments, deposited under atmospheric CO2 concentrations significantly higher than present. The Eocene assemblages suggest that any chrysophyte-CO2 connection borne out of results from modern and sub-recent sediments also operated on evolutionary time scales, and thus the absence of carbon concentrating mechanisms appears to be an ancient feature within the group. Chrysophyte microfossils may potentially provide important insights concerning the temporal dynamics of carbon cycling in aquatic ecosystems.
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
NASA Astrophysics Data System (ADS)
Smith, Rose M.; Kaushal, Sujay S.; Beaulieu, Jake J.; Pennino, Michael J.; Welty, Claire
2017-06-01
Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3- ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3- and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78), and methane (CH4, r2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.
Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field
Sathaye, Kiran J.; Hesse, Marc A.; Cassidy, Martin; Stockli, Daniel F.
2014-01-01
The injection of carbon dioxide (CO2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO2 emissions from fossil fuels. Dissolution of the injected CO2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO2 storage. We use thermochronology to estimate the timing of CO2 emplacement at Bravo Dome, a large natural CO2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraints on the magnitude, mechanisms, and rates of CO2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2–1.5 Ma. The CO2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO2 storage is possible. Integrating geophysical and geochemical data, we estimate that 1.3 Gt CO2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m2y). The similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO2 on the 10-ky timescale typically considered for storage projects. PMID:25313084
Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.
1994-01-01
Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (C03), chloride (Cl), dissolved organic carbon, magnesium (Mg), potassium (K), silica NOD, sodium (Na), and sulfate (S04). Dissolved nutrients included ammonium ion (NH4), nitrate (N03), nitrite (N02), and orthophosphate (P04) . Dissolved trace elements included aluminum (Al), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantities of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, Cl, Cr, K, Li, Mg, Mo, Na, S04, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as Al, As, Ba, Be, Co, Cu, Ni, N03, N02, NH4, P04, and Si02, varied with time as discharge decreased after the crest of the flood. For most constituents, the load transported during floods generally is much greater than that transported during low-flow conditions. How ever, for Cd, Cr, Fe, Mn, V, and Zn, loads increased substantially as water discharge decreased after the crest of the flood.
Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2
Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.
2013-01-01
Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).
NASA Astrophysics Data System (ADS)
Lefèvre, Nathalie; da Silva Dias, Francisco Jose; de Torres, Audálio Rebelo; Noriega, Carlos; Araujo, Moacyr; de Castro, Antonio Carlos Leal; Rocha, Carlos; Jiang, Shan; Ibánhez, J. Severino P.
2017-06-01
To reduce uncertainty regarding the contribution of continental shelf areas in low latitude regions to the air-sea CO2 exchange, more data are required to understand the carbon turnover in these regions and cover gaps in coverage. For the first time, inorganic carbon and alkalinity were measured along a cross-shelf transect off the coast of Maranhão (North Brazil) in 9 cruises spawning from April 2013 to September 2014. On the last 4 transects, dissolved organic matter and nutrients were also measured. The highest inorganic and organic carbon concentrations are observed close to land. As a result of low productivity and significant remineralization, heterotrophy dominates along the transect throughout the year. Although the temporal variability is significantly reduced at the offshore station with carbon concentrations decreasing seaward, the fugacity of CO2 (fCO2) at this station remains significantly higher, especially during the wet season, than the open ocean values measured routinely by a merchant ship further west. Overall, the continental shelf is a weak source of CO2 to the atmosphere throughout the year with an annual mean flux of 1.81±0.84 mmol m-2 d-1. The highest magnitudes of fCO2 are observed during the wet season when the winds are the weakest. As a result, the CO2 flux does not show a clear seasonal pattern. Further offshore, fCO2 is significantly lower than on the continental shelf. However, the oceanic CO2 flux, with an annual mean of 2.32±1.09 mmol m-2 d-1, is not statistically different from the CO2 flux at the continental shelf because the wind is stronger in the open ocean.
NASA Astrophysics Data System (ADS)
Vermilyea, A.; Sanders, A.; Vazquez, E.
2017-12-01
The transformation of freshwater dissolved organic carbon (DOC) can have important implications for water quality, aquatic ecosystem health, and our climate. DOC is an important nutrient for heterotrophic microorganisms near the base of the aquatic food chain and the extent of conversion of DOC to CO2 is a critical piece of the global carbon cycle. Photochemical pathways have the potential to transform recalcitrant DOC into more labile forms that can then be converted to smaller DOC molecules and eventually be completely mineralized to CO2. This may lead to a DOC pool with different bioavailability depending on the structural composition of the original DOC pool and the mechanistic pathways undergone during transformation. This study aimed to measure the changes in DOC concentration and bioavailability due solely to photochemical processes in three watersheds of northern Vermont, USA that have varied land cover, land use (LCLU) attributes. Our hypothesis was that photochemical transformations will lead to (1) an overall loss of DOC due to mineralization to CO2 and (2) a relative increase in the bioavailable fraction of DOC. Additionally, the influence of LCLU and base flow versus storm flow on both mineralization rates and changes in DOC bioavailability was investigated. Irradiation of filtered samples in quartz vessels under sunlight led to small changes in DOC concentration over time, but significant changes in DOC bioavailability. In general, fluorescence excitation-emission matrices (EEMs) showed a shift from an initially more humic-like DOC pool, to a more protein-like (bioavailable) DOC pool. Specific UV index (SUVA) along with bioavailable DOC (BDOC) incubations were also used to characterize DOC and its bioavailability. There were only small differences in the DOC transformation that took place among sites, possibly due to only small differences in the initial bioavailability and fluorescent properties between water samples. Photochemical transformation appears to play an important role in the transformation of a more recalcitrant (humic) pool of DOC into a more bioavailable DOC pool that can then be utilized by aquatic heterotrophs and ultimately be converted to CO2.
Lower Respiration in the Littoral Zone of a Subtropical Shallow Lake
They, Ng Haig; da Motta Marques, David; Souza, Rafael Siqueira
2013-01-01
Macrophytes are important sources of dissolved organic carbon (DOC) to littoral zones of lakes, but this DOC is believed to be mostly refractory to bacteria, leading to the hypothesis that bacterial metabolism is different in littoral and pelagic zones of a large subtropical shallow lake. We tested this hypothesis by three approaches: (I) dissolved inorganic carbon (DIC) accumulation in littoral and pelagic water; (II) O2 consumption estimate for a cloud of points (n = 47) covering the entire lake; (III) measurement of O2 consumption and CO2 accumulation in dark bottles, pCO2 in the water, lake-atmosphere fluxes of CO2 (fCO2) and a large set of limnological variables at 19 sampling points (littoral and pelagic zones) during seven extensive campaigns. For the first two approaches, DIC and O2 consumption were consistently lower in the littoral zone, and O2 consumption increased marginally with the distance to the nearest shore. For the third approach, we found in the littoral zone consistently lower DOC, total phosphorus (TP), and chlorophyll a, and a higher proportion of low-molecular-weight substances. Regression trees confirmed that high respiration (O2 consumption and CO2 production) was associated to lower concentration of low-molecular-weight substances, while pCO2 was associated to DOC and TP, confirming that CO2 supersaturation occurs in an attempt to balance phosphorus deficiency of macrophyte substrates. Littoral zone fCO2 showed a tendency to be a CO2 sink, whereas the pelagic zone showed a tendency to act as CO2 source to the atmosphere. The high proportion of low-molecular-weight, unreactive substances, together with lower DOC and TP may impose lower rates of respiration in littoral zones. This effect of perennial stands of macrophytes may therefore have important, but not yet quantified implications for the global carbon metabolism of these lakes, but other issues still need to be carefully addressed before rejecting the general belief that macrophytes are always beneficial to bacteria. PMID:23293635
Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan
2016-01-01
Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.
Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature
Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan
2016-01-01
Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C–O–H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred. PMID:26813580
Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature.
Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan
2016-01-27
Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Consequences of CO2-rich water intrusion into the Critical Zone
NASA Astrophysics Data System (ADS)
Gal, Frédérick; Lions, Julie
2017-04-01
From a geochemical point of view, the sensitivity of the Critical Zone to hazards is not only linked to its proximity to the surface. It may also be linked to - albeit less common - intrusion of upward migrating fluids. One of the hazard scenarios to observe these pathways in surface environments is the occurrence of CO2-rich fluid leakage from deeper horizons and especially leakage from reservoir in the case of underground storage such as Carbon Storage applications. Much effort is done to prevent this risk but it necessary to consider the mitigation of this leak to insure safe storage. Numerous active or planned CO2 storage sites belong to large sedimentary basins. In that perspective, a CO2 injection has been performed in a multi-layered - carbonated aquifer (Beauce aquifer) from the Paris basin as this basin has been considered for such applications. The aquifer mineralogy of the targeted site is dominated by calcite (95 to 98%) with traces of quartz and clay minerals. Around 10,000 liters of CO2 were injected at 50 m depth during a series of gaseous pulsed injections for 5 days. After 3 days of incubation in the aquifer, the groundwater was pumped during 5 days allowing the recovery of 140 m3 of backward water. Physico-chemical parameters, major and trace elements concentrations and dissolved CO2 concentrations were monitored to evaluate water-rock interactions occurring within the aquifer and impacts onto water quality. Main changes that were observed during the CO2 release are in good agreement with results from previous experiments performed worldwide. A strong decrease of the pH value (2 units), a rise of the electrical conductivity (2 fold) and changes in the redox conditions (from oxidising to less oxidising) are monitored few hours after the initiation of the pumping. The dissolution of CO2 induces a drop of pH that favours water-rock interaction processes. The kinetic of reactions appears to be dominated by the dissolution of carbonate, mainly calcite, and probably by desorption processes onto clay minerals. Thus higher concentrations in HCO3 (+225%), Ca (+95%), Mg (+45%), Na (+14%) and SiO2 (+11%) as major elements and in Sr, Mn, Ba, B, As or Li as trace elements (2 to 3 fold increase) were monitored. Congruent rise in the concentration in dissolved CO2 is also observed. Nonetheless, the effects onto water physico-chemical parameters and water chemistry are transient and vanished in few days (4-5) when pumping is done. In the case of a punctual leakage event, even if pumping was not performed, natural flow of the water will also have induced natural attenuation and progressive vanish of anomalies. From a site management perspective, this suggests that sudden and time limited events may not be noticeable in the near surface if the monitoring locations are located remotely from the source. This highlights the need to have extensive site characterization prior setting a storage site.
Net alkalinity and net acidity 2: Practical considerations
Kirby, C.S.; Cravotta, C.A.
2005-01-01
The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.
Révész, Kinga M.; Doctor, Daniel H.
2014-01-01
The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.
2013-12-01
Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of < 100 μmol kg-1. Snowfall events caused the sea ice to warm, dissolving ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.
Olive oil mill wastewater for soil nitrogen and carbon conservation.
Aguilar, Manuel Jimenez
2009-06-01
In this work the application of two levels of N fertilizer (NH(4)NO(3)) dissolved in water or olive oil mill wastewater (OOMW) diluted 10 or 20 times in water, has been studied in relation to the properties of two soils (Loam and Silt-Clay-Loam). Also, the effect of irrigation water bubbled with CO(2) (Dissolved Inorganic Carbon, DIC) was studied. Nitrate N, ammonium N, total N, organic C (OC), and CaCO(3) contents were determined in the soil as well as pH, electrical conductivity (EC), oxidation-reduction potential (ORP), and absorbance at 250 and 360 nm. Our data provide evidence that inorganic-N fertilizer dissolved in OOMW significantly reduced the emission of nitrates from soils for two months, increasing OC values. Moreover, OOMW significantly lowered the ORP. The irrigation with DIC also increased soil OC. Thus, the application of inorganic-N fertilizers dissolved in OOMW diluted with water on soils and the irrigation with water bubbled with CO(2) could reduce the environmental impact of OOMW, nitrates, and CO(2).
Paclitaxel solubility in aqueous dispersions and mixed micellar solutions of lecithin.
Sznitowska, Malgorzata; Klunder, Malgorzata; Placzek, Marcin
2008-01-01
The aim of this study was to find a biocompatible, lecithin-based carrier for paclitaxel (PTX) suitable for intravenous infusion and ensuring a soluble PTX concentration of 100 mg/100 ml or higher for at least 24 h. Aqueous dispersions of egg or soya lecithin (water-lecithin dispersions, WLD), mixed micellar (MM) solutions of egg lecithin and sodium deoxycholate, and formulations containing lecithin plus the co-surfactants and co-solvents poloxamer, polysorbate, Span, benzalkonium chloride, and macrogol were investigated. Amorphous PTX was prepared by lyophilization. PTX co-lyophilized with surfactants was also studied. Unlike crystalline PTX, the drug in an amorphous form is easily soluble in 1-5% (w/w) WLD or in MM. The highest solubility (up to 570 mg/100 ml) was achieved in 5% WLD. Dissolved PTX precipitated from all tested formulations over 24 h. Despite this, concentrations of dissolved PTX of 100 mg/100 ml or higher were observed after 24 h in 5% egg WLD, 1-5% soya WLD, and in 5% MM (lecithin : deoxycholate ratio 1 : 1 w/w). When four different batches of 5% egg WLD were prepared, containing PTX in clinically relevant concentration of 100 mg/100 ml, no precipitation of PTX was observed within 24 h and this formulation is the most promising candidate for further in vivo studies. Neither additional surfactants nor co-lyophilization increased PTX solubility in the lecithin-based carriers. The use of parenteral emulsions as solvents for the co-lyophilized PTX also failed to increase the solubility of the drug up to the target concentration.
Xing, Jianwei; Song, Jinming; Yuan, Huamao; Wang, Qidong; Li, Xuegang; Li, Ning; Duan, Liqin; Qu, Baoxiao
2017-05-01
To analyze the fluxes, seasonal variations, sources and potential ecological effects of dissolved trace elements (TEs) in atmospheric wet deposition (AWD), one-year wet precipitation samples were collected and determined for nine TEs in Jiaozhou Bay (JZB) between June 2015 and May 2016. Both the volume-weighted mean (VWM) concentration and flux sequence for the measured TEs was Al > Mn > Zn > Fe > Pb > Se > Cr > Cd > Co. Al was the most abundant TE with a VWM concentration and wet flux of 33.8 μg L -1 and 29.2 mg m -2 yr -1 , which were 2 and 3 orders of magnitude higher than those of Co, respectively. The emission intensities of pollutants, rainfall amount and wind speed were the dominating factors influencing seasonal variations of TEs in AWD. Based on enrichment factors, correlation analysis and principal component analysis, most of the TEs in AWD were primarily originated from anthropogenic activities except for Al and Fe, which are typically derived from re-suspended soil dusts. Although the TE inputs by AWD were significantly lower than those by rivers, the TE inputs via short-term heavy rains would distinctly increase surface seawater TE concentrations and then pollute the marine environment of JZB. AWD would have both profound impacts on the biogeochemical cycles of TEs and dual ecological effects (nutrient and toxicity) on aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, S.; Webster, J. D.
2017-12-01
Magmatic degassing involving multiple volatile components (C, O, H, S, Cl, etc.) is one of the key factors influencing the timing and nature of volcanic eruptions, and the chemistry of volcanic gases released to the surface. In particular, exsolution of these volatiles from silicic magma during ascent could trigger explosive volcanic eruptions, which can exert strong impacts on surface temperature, ecology and human health. However, quantitative evaluation of this process in silicic magma remains ambiguous due to the lack of experiments in such chemically complex systems. Rhyolite-fluid(s) equilibria experiments were conducted in an IHPVat 100-300 MPa and 800 ° C to determine the solubilities, fluid-melt partitioning, and mixing properties of H2O, CO2, S, and Cl in the oxygen fugacity (fO2) range of FMQ to FMQ+3. The integrated bulk fluids contain up to 94 mol% H2O, 32 mol% CO2, 1 mol% S and 1mol% Cl. Rhyolite melt dissolved 20- 770 ppm CO2 and 4-7 wt.% H2O, varying with pressure, fluid composition, and fO2. Concentrations of H2O and CO2 in melt from C-O-H-S-Cl- bearing experiments at 100 and 200 MPa, and from C-O-H only experiments are generally consistent with the predictions of existing CO2-H2O solubility models based on the C-O-H only system [1-4], while the solubilities of H2O and CO2 in melt with addition of S±Cl at 300 MPa are less than those of the C-O-H- only system. This reduction in H2O and CO2 solubilities exceeds the effects of simple dilution of the coexisting fluid owing to addition of other volatiles, and rather, reflects complex mixing relations. Rhyolite melt also dissolved 20-150 ppm S and 850-2000 ppm Cl, varying with pressure. At 300 MPa, S concentrations in the melt change with fO2. The partitioning of CO2 and S between fluid and melt varies as a function of fluid composition and fO2. Solubilities and complex mixing relationships of CO2, H2O, S and Cl revealed in our experiments can be applied to massive rhyolitic eruptions like those of the Bishop tuff, Toba tuff and Pinatubo to better understand the degassing process, to estimate fluid compositions, and thus, to evaluate the potential environmental impacts of these super eruptions. [1] Ghiorso amd Gualda, 2015, CMP; [2] Liu et al., 2005, J. Volcanol. Geotherm. Res.; [3] Newman and Lowenstern, 2002, Comput. Geosci.; [3] Tamic et al., 2001, Chem. Geol..
Ocean Acidification: Adaptive Challenge or Extinction Threat?
NASA Astrophysics Data System (ADS)
Caldeira, K.
2012-12-01
Most of the carbon dioxide that we emit to this atmosphere through fossil-fuel burning and deforestation is ultimately absorbed by the oceans. The effects of excess carbon dioxide on the inorganic chemistry of the ocean are largely well understood, but it is less clear what these chemical changes mean for the future of marine biota. Excess dissolved CO2 increases hydrogen-ion concentration (i.e., decreases pH) and decreases carbonate-ion concentrations, affecting the chemical speciation of nutrients and other chemicals dissolved in the ocean, and affecting the ability of organisms to form calcium carbonate shells or skeletons. Some organisms, such as corals, develop shells or skeletons made from aragonite, a particularly soluble form of calcium carbonate. The uptake of O2 and the release of CO2 from the blood of fish are affected by pH, with lower pH leading to a decrease in both O2 uptake and CO2 release. Of these concerns, the effects of excess CO2 on calcification may be the most worrisome. Doubling or quadrupling of atmospheric CO2 content within the space of a few centuries means doubling or quadrupling hydrogen-ion concentrations and halving or quartering the carbonate-ion concentration within a few centuries. Experiments and theory indicate that chemical changes of this magnitude could have important biotic consequences. Changes of this magnitude and rapidity have not occurred on this planet with the possible exception of various paroxysmal extreme events buried deep in Earth history. Most major changes to ocean chemistry occurred over millions of years allowing (i) seawater chemistry to be in approximate equilibrium with respect to riverine and sedimentary fluxes and (ii) marine biota to adapt in evolutionary time. Man's great geochemical experiment will go on at global scale for thousands of years. But experiments can be done in the laboratory in small tanks or in the sea in small enclosures only for limited periods of time. It is difficult to infer from these small scale experiments the potential for adaptation in ecological or evolutionary time. The current evidence points to ocean acidification being catastrophic for at least some organisms and ecosystems (e.g., possibly coral reefs) and likely to lead to the extinction of at least some species. On the other hand, for many organisms and ecosystems (e.g., perhaps some open ocean fish-dominated ecosystems), ocean acidification may represent little more than a minor adaptive challenge. Science can help us to understand the risks, even if some central questions will of necessity remain unanswered. Hopefully, CO2 emissions will be curtailed, and we will never find out which of the more pessimistic or more optimistic projections were correct.
NASA Astrophysics Data System (ADS)
Schade, J. D.; Kuhn, M. A.; Mann, P. J.; Holmes, R. M.; Natali, S.; Ludwig, S.; Wagner, S.
2016-12-01
Northern latitudes are experiencing rapid changes in climate that are profoundly altering permafrost-dominated ecosystems. Increased permafrost thaw and fire frequency and severity are changing the structure and function of these ecosystems in ways likely to alter greenhouse gas (GHG) emission, leading to feedbacks on climate that may accelerate warming. Our objective was to investigate changes in GHG emissions and carbon and nitrogen dynamics in aquatic ecosystems in response to recent fires in the Yukon-Kuskokwim river delta in western Alaska. In summer 2015, more area in the YK Delta burned then in the previous 74 years combined (726 km2 in 2015 vs. 477 km2 during 1940-2014). In June of 2016, we sampled water and dissolved gases from a variety of aquatic ecosystems, including small upland ponds and wetlands and streams lower in the landscape, in recently burned and control sites near the Kuka Creek 2015 burn scar in the Yukon Delta National Wildlife Refuge. We measured a range of physical parameters, including water temperature, conductivity, dissolved oxygen, and pH. We also estimated fluxes of CO2 and CH4 from surface waters using a floating chamber connected to a Los Gatos Ultraportable gas analyzer. Water samples were analyzed for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). Results show reduced DOC concentrations in small upland ponds in burned sites and evidence for loss of DOC downslope in control sites. In contrast, TDN concentration was higher in streams draining burned sites, suggesting fire mobilized N in soils, which was then transported to downslope ecosystems. Furthermore, fire generally increased pH, particularly in small ponds. Finally, we observed 3-4 fold higher CO2 and CH4 fluxes from aquatic ecosystems in burned sites as compared with control sites. We hypothesize that this is due to increased thaw depth and increased pH, which combine to increase resource availability and release methane-producing microbes from the constraints of low pH. These results suggest a strong positive feedback on climate from short-term responses of aquatic ecosystems to fire in the Arctic.
NASA Astrophysics Data System (ADS)
Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.
2017-12-01
The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing of NO3- and production of dissolved gases within the groundwater system. Use of hydrologic models combined with dissolved gas concentrations will provide estimates of denitrification rates and indirect gaseous emissions.
NASA Astrophysics Data System (ADS)
Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.
2017-12-01
A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to improve quantitative models for feedbacks between terrestrial and atmospheric CO2.
Satoh, Dan; Hiraoka, Yasutaka; Colman, Brian; Matsuda, Yusuke
2001-01-01
A single intracellular carbonic anhydrase (CA) was detected in air-grown and, at reduced levels, in high CO2-grown cells of the marine diatom Phaeodactylum tricornutum (UTEX 642). No external CA activity was detected irrespective of growth CO2 conditions. Ethoxyzolamide (0.4 mm), a CA-specific inhibitor, severely inhibited high-affinity photosynthesis at low concentrations of dissolved inorganic carbon, whereas 2 mm acetazolamide had little effect on the affinity for dissolved inorganic carbon, suggesting that internal CA is crucial for the operation of a carbon concentrating mechanism in P. tricornutum. Internal CA was purified 36.7-fold of that of cell homogenates by ammonium sulfate precipitation, and two-step column chromatography on diethylaminoethyl-sephacel and p-aminomethylbenzene sulfone amide agarose. The purified CA was shown, by SDS-PAGE, to comprise an electrophoretically single polypeptide of 28 kD under both reduced and nonreduced conditions. The entire sequence of the cDNA of this CA was obtained by the rapid amplification of cDNA ends method and indicated that the cDNA encodes 282 amino acids. Comparison of this putative precursor sequence with the N-terminal amino acid sequence of the purified CA indicated that it included a possible signal sequence of up to 46 amino acids at the N terminus. The mature CA was found to consist of 236 amino acids and the sequence was homologous to β-type CAs. Even though the zinc-ligand amino acid residues were shown to be completely conserved, the amino acid residues that may constitute a CO2-binding site appeared to be unique among the β-CAs so far reported. PMID:11500545
Removal of dissolved actinides from alkaline solutions by the method of appearing reagents
Krot, Nikolai N.; Charushnikova, Iraida A.
1997-01-01
A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.
Distributions and seasonal variations of dissolved carbohydrates in the Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Yang, Gui-Peng; Zhang, Yan-Ping; Lu, Xiao-Lan; Ding, Hai-Bing
2010-06-01
Surface seawater samples were collected in the Jiaozhou Bay, a typical semi-closed basin located at the western part of the Shandong Peninsula, China, during four cruises. Concentrations of monosaccharides (MCHO), polysaccharides (PCHO) and total dissolved carbohydrates (TCHO) were measured with the 2,4,6-tripyridyl- s-triazine spectroscopic method. Concentrations of TCHO varied from 10.8 to 276.1 μM C for all samples and the ratios of TCHO to dissolved organic carbon (DOC) ranged from 1.1 to 67.9% with an average of 10.1%. This result indicated that dissolved carbohydrates were an important constituent of DOC in the surface seawater of the Jiaozhou Bay. In all samples, the concentrations of MCHO ranged from 2.9 to 65.9 μM C, comprising 46.1 ± 16.6% of TCHO on average, while PCHO ranged from 0.3 to 210.2 μM C, comprising 53.9 ± 16.6% of TCHO on average. As a major part of dissolved carbohydrates, the concentrations of PCHO were higher than those of MCHO. MCHO and PCHO accumulated in January and July, with minimum average concentration in April. The seasonal variation in the ratios of TCHO to DOC was related to water temperature, with high values in January and low values in July and October. The concentrations of dissolved carbohydrates displayed a decreasing trend from the coastal to the central areas. Negative correlations between concentrations of TCHO and salinity in July suggested that riverine input around the Jiaozhou Bay had an important effect on the concentrations of dissolved carbohydrates in surface seawater. The pattern of distributions of MCHO and PCHO reported in this study added to the global picture of dissolved carbohydrates distribution.
Modeling the kinetics of bubble nucleation in champagne and carbonated beverages.
Liger-Belair, Gérard; Parmentier, Maryline; Jeandet, Philippe
2006-10-26
In champagne and carbonated beverages, bubble nucleation was mostly found to take place from tiny Taylor-like bubbles trapped inside immersed cellulose fibers stuck on the glass wall. The present paper complements a previous paper about the thorough examination of the bubble nucleation process in a flute poured with champagne (Liger-Belair et al. J. Phys. Chem. B 2005, 109, 14573). In this previous paper, a model was built that accurately reproduces the dynamics of these tiny Taylor-like bubbles that grow inside the fiber's lumen by diffusion of CO(2)-dissolved molecules. In the present paper, by use of the model recently developed, the frequency of bubble formation from cellulose fibers is accessed and linked with various liquid and fiber parameters, namely, the concentration c(L) of CO(2)-dissolved molecules, the liquid temperature theta, its viscosity eta, the ambient pressure P, the course of the gas pocket growing trapped inside the fiber's lumen before releasing a bubble, and the radius r of the fiber's lumen. The relative influence of the latter parameters on the bubbling frequency is discussed and supported with recent experimental observations and data.
Cotovicz, Luiz C; Knoppers, Bastiaan A; Brandini, Nilva; Poirier, Dominique; Costa Santos, Suzan J; Abril, Gwenaël
2018-04-01
The dynamics of the aragonite saturation state (Ω arag ) were investigated in the eutrophic coastal waters of Guanabara Bay (RJ-Brazil). Large phytoplankton blooms stimulated by a high nutrient enrichment promoted the production of organic matter with strong uptake of dissolved inorganic carbon (DIC) in surface waters, lowering the concentrations of dissolved carbon dioxide (CO 2aq ), and increasing the pH, Ω arag and carbonate ion (CO 3 2- ), especially during summer. The increase of Ω arag related to biological activity was also evident comparing the negative relationship between the Ω arag and the apparent utilization of oxygen (AOU), with a very close behavior between the slopes of the linear regression and the Redfield ratio. The lowest values of Ω arag were found at low-buffered waters in regions that receive direct discharges from domestic effluents and polluted rivers, with episodic evidences of corrosive waters (Ω arag <1). This study showed that the eutrophication controlled the variations of Ω arag in Guanabara Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.
2017-12-01
Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.
Greenhouse gases emission from the sewage draining rivers.
Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang
2018-01-15
Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO 2 , CH 4 and N 2 O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH 4 was more obvious than the others. CO 2 and N 2 O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH 4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO 3 - +NO 2 - -N) and ammonia (NH 4 + -N) were positively correlated with CO 2 concentration and CH 4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH 4 concentration and N 2 O concentration. The effect of human activities on carbon and nitrogen cycling in river is great. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, K.; Ko, Y. H.
2016-12-01
In the ocean without the measurable levels of nitrate, new production, i.e. the amount of carbon transported from the sunlit upper water to deep water, was estimated by summing the seasonal reduction in the total dissolved inorganic carbon (NCT = CT x 35/S) concentration in the surface mixed layer. Total reduction in the mixed layer NCT inventory in each 4o latitude by 5o longitude was calculated using an annual cycle of NCT, which was deduced from global monthly records of partial pressure of CO2 (based on more than 6.5 million data) and total alkalinity fields using thermodynamic models. The estimation of total NCT reduction for each pixel was then corrected for small changes caused by atmospheric nitrogen deposition and net air-sea CO2 exchange. This novel method yields 0.8 ± 0.3 petagrams of global new production per year (Pg C yr, Pg = 1015 grams), which is likely to be mediated exclusively by dinitrogen (N2) fixing microorganisms. These organisms utilize the inexhaustible pool of dissolved N2 and thereby circumvent nitrate limitation, particularly in the oligotrophic tropical and subtropical ocean.
NASA Astrophysics Data System (ADS)
Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.
2012-12-01
The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by increases in absorbance of the OH stretching and HOH bending modes of the intercalated waters. The ATR-IR data also indicate that CO2 is intercalated in the clay. The asymmetric stretching band of the CO2 molecules that are intercalated in the clay is narrower than that stretching band of bulk scCO2, which indicates that the spectral contribution from rotational fine structure is minimal and the intercalated CO2 is rotationally constrained. A chemometrics analysis of the complete set of ATR-IR spectra spanning the range of total water concentrations covered in the titration finds that there are at least two types of intercalated waters, two types of intercalated CO2 molecules, and the concentrations of these intercalated waters and CO2 molecules are correlated. These quantitative data, when coupled with in situ XRD results that predict interlayer spacing and clay volume, demonstrate that water and CO2 intercalation processes in expandable montmorillonite clays could lead to porosity and permeability changes that directly impact caprock performance.
NASA Astrophysics Data System (ADS)
Cino, C.; Seyfried, W. E., Jr.; Tan, C.; Fu, Q.
2017-12-01
Yellowstone National Park is a dynamic environment home to an array of geysers, hot springs, and hydrothermal vents fueled by the underlying continental magmatic intrusion. Yellowstone Lake vent fluids accounts for approximately 10% of the total geothermal flux for all of Yellowstone National Park. Though studying this remote hydrothermal system poses severe challenges, it provides an excellent natural laboratory to research hydrothermal fluids that undergo higher pressure and temperature conditions in an environment largely shielded from atmospheric oxygen. The location of these vents also provides chemistry that is characteristic of fluids deeper in the Yellowstone hydrothermal system. In August 2016, hydrothermal fluids were collected from the Stevenson Island vents in collaboration with the Hydrothermal Dynamics of Yellowstone Lake (HD-YLAKE) project using novel sampling techniques and monitoring instrumentation. The newly built ROV Yogi was deployed to reach the vents in-situ with temperatures in excess of 151oC at 100-120 m depth, equipped with a 12-cylinder isobaric sampler to collect the hydrothermal fluids. Results from geochemical analyses indicate the fluids are rich in gases such as CO2, CH4, and H2S, with sample concentrations of approximately 12 mM, 161 μm, and 2.1 mM respectively. However, lake water mixing with the hydrothermal endmember fluid likely diluted these concentrations in the collected samples. Isotopic analyses indicate CO2 has a δ13C of -6 indicating magmatic origins, however the CH4 resulted in a δ13C of -65 which is in the biological range. This biogenic signature is likely due to the pyrolysis of immature organic matter in the lake bottom sediment, since the high temperatures measured for the fluids would not allow the presence of methanogens. H2S concentrations have not been previously measured for the hydrothermal fluids in Yellowstone Lake, and our vent fluid samples indicate significantly higher H2S concentrations than reported for subaerial vents. The cause of these measured high dissolved H2S concentrations in Yellowstone Lake may result from temperature and/or redox effects.
Replenishment of fish populations is threatened by ocean acidification
Munday, Philip L.; Dixson, Danielle L.; McCormick, Mark I.; Meekan, Mark; Ferrari, Maud C. O.; Chivers, Douglas P.
2010-01-01
There is increasing concern that ocean acidification, caused by the uptake of additional CO2 at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO2 predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO2, with many individuals becoming attracted to the smell of predators. At 850 ppm CO2, the ability to sense predators was completely impaired. Larvae exposed to elevated CO2 were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5–9 times higher mortality from predation than current-day controls, with mortality increasing with CO2 concentration. Our results show that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations. PMID:20615968
Secular decline of seawater calcium increases seawater buffering and pH
NASA Astrophysics Data System (ADS)
Hain, M.; Sigman, D. M.; Higgins, J. A.; Haug, G. H.
2015-12-01
Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model (Millero and Pierrot, 1998) to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+] (Hain et al., 2015). We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increase in seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.
Jacquemet, Nicolas; Pironon, Jacques; Saint-Marc, Jérémie
2008-01-01
The reactivity of a crushed well cement in contact with (1) a brine with dissolved H2S-CO2; (2) a dry H2S-CO2 supercritical phase; (3) a two-phase fluid associating a brine with dissolved H2S-CO2 and a H2S-CO2 supercritical phase was investigated in batch experiments at 500 bar and 120, 200 degrees C. All of the experiments showed that following 15-60 days cement carbonation occurred. The H2S reactivity with cement is limited since it only transformed the ferrites (minor phases) by sulfidation. It appeared that the primary parameter controlling the degree of carbonation (i.e., the rate of calcium carbonates precipitation and CSH (Calcium Silicate Hydrates) decalcification) is the physical state of the fluid phase contacting the minerals. The carbonation degree is complete when the minerals contact at least the dry H2S-CO2 supercritical phase and partial when they contactthe brine with dissolved H2S-CO2. Aragonite (calcium carbonate polymorph) precipitated specifically within the dry H2S-CO2 supercritical phase. CSH cristallinity is improved by partial carbonation while CSH are amorphized by complete carbonation. However, the features evidenced in this study cannot be directly related to effective features of cement as a monolith. Further studies involving cement as a monolith are necessary to ascertain textural, petrophysical, and mechanical evolution of cement.
Oldham, V E; Swenson, M M; Buck, K N
2014-02-15
Total dissolved copper (Cu) and Cu speciation were examined from inshore waters of Bermuda, in October 2009 and July-August 2010, to determine the relationship between total dissolved Cu, Cu-binding ligands and bioavailable, free, hydrated Cu(2+) concentrations. Speciation was performed using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV). Mean total dissolved Cu concentrations ranged from 1.4 nM to 19.2 nM, with lowest concentrations at sites further from shore, consistent with previous measurements in the Sargasso Sea, and localized Cu enrichment inshore in enclosed harbors. Ligand concentrations exceeded dissolved [Cu] at most sites, and [Cu(2+)] were correspondingly low at those sites, typically <10(-13) M. One site, Hamilton Harbour, was found to have [Cu] in excess of ligands, resulting in [Cu(2+)] of 10(-10.7) M, and indicating that Cu may be toxic to phytoplankton here. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cailleaud, Emilie; Guérin, Frédéric; Bouillon, Steven; Sarrazin, Max; Serça, Dominique
2014-05-01
At the Petit Saut Reservoir (PSR, French Guiana, South America), vertical profiles were performed at 5 stations in the open waters (OW) and 6 stations in two shallow flooded forest (FF) areas between April 2012 and September 2013. Measurements included physico-chemical parameters, ammonium, nitrate and dissolved greenhouse gas (CO2, CH4, N2O) concentrations, dissolved and particulate organic carbon (DOC, POC) and nitrogen (PN), δ13C-POC and δ15N-PN . The diffusive fluxes were calculated from surface concentrations. The aim of this study was to estimate the spatial variations of greenhouse gas emissions at a dentrical hydroelectric reservoir located in the tropics and flooding primary forest. Twenty years after impoundment, the water column of the PSR is permanently and tightly stratified thermally in the FF whereas in the OW, the thermal gradients are not as stable. The different hydrodynamical behaviours between the two different zones have significant consequences on the biogeochemistry: oxygen barely diffuses down to the hypolimnion in the FF whereas destratification occurs sporadically during the rainy season in the OW. Although we found the same range of POC in the FF and the OW (2.5-29 μmol L-1) and 20% more DOC at the bottom of OW than in the FF (229-878 μmol L-1), CO2 and CH4 concentrations were always significantly higher in the FF (CO2: 11-1412 μmol L-1, CH4: 0.001-1015 μmol L-1) than in the OW. On average, the CO2 concentrations were 30-40% higher in the FF than in the OW and the CH4 concentrations were three times higher in the FF than in the OW. The δ13C-POC and C:N values did not suggest substantial differences in the sources of OM between the FF and OW. At all stations, POC at the bottom has an isotopic signature slightly lighter than the terrestrial OM in the surrounding forest whereas the isotopic signature of surface POM would result from phytoplankton and methanotrophs. The vertical profiles of nitrogen compounds reveal that the main source of nitrogen in the water column of the PSR is the NH4+ produced during the mineralisation of the OM at the bottom of the reservoir. In OW, the production of NO3- and N2O is enhanced compared to the FF. As a result, N2O concentrations are three times higher at the bottom of OW but surface concentrations are similar in the FF and OW. CO2 diffusive fluxes are 40% higher and CH4 diffusive fluxes are three times higher in FF (CO2: 42±20 mmol m-2 d-1 ; CH4: 0.7±1.4 mmol m-2 d-1) than in OW (CO2: 27±17 mmol m-2 d-1 ; CH4: 0.2±0.3 mmol m-2 d-1). In shallow FF, average CH4 ebullition is 3±10 mmol m-2 d-1 whereas ebullition was never observed in OW. N2O emissions did not exhibit any spatial variability (9±4 μmol m-2 d-1). At the PSR, FF which represents one third of the surface area, is responsible of half of the GHG emissions from the reservoir. This implies that the emissions from most of the tropical reservoirs flooding primary forest need to be reassessed since FF environments are usually overlooked.
Thompson; Parks; Brown
2000-02-15
The uptake and release behavior of cobalt(II) was studied over thousands of hours in CO(2)-free aqueous suspensions of kaolinite under three pairs of total cobalt concentration (Co(T)) and near-neutral pH (7.5-7.8) conditions. Dissolved cobalt, aluminum, and silicon concentrations were monitored by ICPMS, and cobalt-containing products were identified by EXAFS spectroscopy. In each uptake experiment, cobalt sorbed to kaolinite as a mixture of surface-adsorbed monomers or polymers and hydrotalcite-like precipitates of the approximate composition Co(x)Al(OH)(2x+2)(A(n-))(1/n), where 2=x=4 and A(n-) is nitrate or silicate anion. Precipitate stoichiometry varied with experimental conditions, with the highest Co:Al ratio in the high Co(T)/high pH experiment. Cobalt surface adsorption occurred within seconds, whereas precipitation was slower and continued for the duration of the experiments. Consequently, the proportion of precipitate in the sorbed mixture increased with time in all experiments. The most rapid precipitation occurred in the high Co(T)/high pH experiment, where solutions were most supersaturated with respect to cobalt hydrotalcite. Precipitates incorporated some previously adsorbed cobalt, as well as cobalt from solution. Cobalt release from the solid phase was effected by lowering solution pH to 7.0. Release experiments initiated after shorter sorption times returned a larger fraction of cobalt to solution than those initiated after longer sorption times, for a fixed duration of release. In other words, sorption product stability increased with sorption time. Specifically, under the conditions of the release experiments, the hydrotalcite-like precipitates are more stable than smaller adsorbates, and precipitates that formed over longer time periods are more stable than those that formed rapidly. The latter result suggests that precipitates ripened or modified their structure or composition to become more stable over the course of the several-thousand-hour sorption experiments. Precipitates that formed over hundreds of hours or longer did not dissolve over thousands of hours at the lower pH. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Wu, X.; Lu, W.
2017-12-01
The concentration detection of the volatiles such as CH4 and CO2 in the hydrothermal systems and fluid inclusions is critical for understanding the fluxes of volatiles from mantle to crust and atmosphere. In-situ Raman spectroscopy has been developed successfully in laboratory, fluid inclusions and submarine environment because of its non-destructive and non-contact advantages. For improving the ability of detecting different species quantitatively by in-situ Raman spectroscopy in the extreme environment, such as the hydrothermal system and fluid inclusion, we studied the temperature- and salinity-dependence of Raman scattering cross section (RSCS) of the water OH stretching band at temperatures from 20 to 300 oC under 30 MPa. This is important because the water is often used as internal standard in the Raman quantitative application. Based on our previous study of NaCl-H2O system, we made further investigation on the CaCl2-H2O system. Our results revealed that the cation shows negligible effect on the RSCS of water OH stretching band, while the cations seems to have more obvious different effect on the structure of water within high temperatures. Besides the NaCl-CH4-H2O system, we also take the CO2-H2O system into account. Further conclusion can be made that the variation of the Raman quantitative factor (QF) (both PAR/mCH4 and PAR/mCO2) with the temperature and salinity is mainly caused by the temperature- and Cl- concentration-dependence of the relative RSCS of the water OH stretching band. If the Raman quantitative factor at ambient condition still being used, the RSCS of the water OH stretching band would induce about 47%, 34% and 29% error for the determined concentration of dissolved CH4 or CO2 (in mol/kg·H2O) by in-situ Raman spectroscopy for 0 m Cl-, 3 m Cl- and 5 m Cl- aqueous system when the temperature increases from 20 to 300 oC, respectively. Considering the wide range of the temperature and salinity in hydrothermal systems and fluid inclusions, the following equation can be used to calculate the relative QF at different temperatures and salinity referencing to the 0 m Cl- aqueous solution at 20 oC: QF(T, salinity)/QF(20 oC, 0 m Cl-)=k(T-20 oC)+b, where a=-0.0035× mCl-1/2+0.00168, b=-0.03× mCl-+1;
NASA Astrophysics Data System (ADS)
Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Schulz, K. G.; Riebesell, U.
2007-11-01
Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 750 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) but not a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Although specific phosphate affinity and specific APA tended to be higher in 3×CO2 than in 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, no statistical differences were found. Responses of specific glucose affinity for bacteria were similar at the three different pCO2 levels. Measured specific glucose affinities were consistently much lower than the theoretical maximum predicted from the diffusion-limited model, suggesting that bacterial growth was not limited by the availability of labile dissolved organic carbon. These results suggest that availability of phosphate and glucose was similar at the three different pCO2 levels.
Fukuda, Shin-Ya; Suzuki, Yurina; Shiraiwa, Yoshihiro
2014-09-01
Ocean acidification, one of the great global environmental issues at present, is expected to result in serious damage on marine calcareous organisms such as corals and calcifying algae, which potentially release huge amounts of CO2 from the ocean to the atmosphere. The coccolithophore, Emiliania huxleyi (Haptophyceae), which frequently produces blooms, has greatly contributed to the biological CO2 pump. This study was aimed at analyzing effects of how E. huxleyi responds to acidification. Acidification was performed by two methods, namely by just adding HCl under bubbling ordinary air at 8.2-8.4, 7.6-7.8 and 7.1-7.3 (acidification by HCl) and by bubbling with ordinary air or with increased CO2 concentration such as 406, 816 and 1,192 ppm that maintained pH of the medium at 8.0-8.3, 7.6-7.9 and 7.5-7.7 (acidification by CO2 enrichment). As a result, cell growth and cellular calcification of E. huxleyi were strongly damaged by acidification by HCl, but not by acidification by CO2 enrichment. The activities of photosystems such as F v/F m and ϕPSII were not affected by any acidification conditions while photosynthetic O2 evolution was slightly stimulated. A (45)Ca-radiotracer experiment revealed that Ca(2+)-uptake was strongly suppressed by acidification with HCl. This suppression recovered after increasing the dissolved inorganic carbon (DIC) concentration and further stimulated by an additional increase in DIC concentration. The production of storage and coccolith polysaccharides was increased by acidification by HCl and also highly stimulated by acidification with CO2 enrichment. The present study clearly showed that the coccolithophore, E. huxleyi, has an ability to respond positively to acidification with CO2 enrichment, but not just acidification.
NASA Astrophysics Data System (ADS)
Milesi, Vincent; Guyot, François; Brunet, Fabrice; Richard, Laurent; Recham, Nadir; Benedetti, Marc; Dairou, Julien; Prinzhofer, Alain
2015-04-01
Laboratory experiments were conducted to investigate the chemical processes governing the carbon speciation associated to hydrothermal decomposition of siderite. Experiments were carried out in sealed gold capsules using synthetic siderite and deionised water. The samples were reacted at 200 and 300 °C, under a pressure of 50 MPa. Siderite dissolved to reach the 3FeCO3 + H2O = Fe3O4 + 3CO2 + H2 equilibrium and magnetite, Fe3O4, was produced accordingly. The gas phase was dominated by CO2, H2 and CH4, the latter being in strong thermodynamic disequilibrium with CO2. Contrary to the other gas products, H2 concentration was found to decrease with run duration. TEM observations showed the occurrence of condensed carbon phases at the surfaces of magnetite and residual siderite grains. Thermodynamic calculations predict the formation of condensed carbon in the experiments according to the reaction: CO2 + 2H2 ⇒ C + 2H2O, which accounted for the observed H2 concentration decrease up to the point where H2 and CO2 activities were buffered by the graphite-siderite-magnetite assemblage. The well-organized structure of the carbon coating around magnetite emphasizes the high catalytic potential of magnetite surface for carbon reduction and polymerization. The formation of such C-rich phases may represent a potential source of CH4 by hydrogenation. On the other hand, the catalysis of Fischer-Tropsch type reactions may be poisoned by the presence of carbon coating on mineral surfaces. In any case, this study also demonstrates that abiotic H2 generation by water reduction, widely studied in recent years in ultrabasic contexts, can also occur in sedimentary contexts where siderite is present. We show that, in the latter case, natural H2 concentration will be buffered by a condensed carbon phase associated with magnetite.
Dissolved Carbon Fluxes During the 2017 Mississippi River Flood
NASA Astrophysics Data System (ADS)
Reiman, J. H.; Xu, Y. J.
2017-12-01
The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.
Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard
2015-04-07
A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.
Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.
Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A
2016-06-01
Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.
Mobility of nutrients and trace metals during weathering in the late Archean
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-08-01
The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible dissolved Cr in Archean river water. However, amorphous Cr(OH)3 representing easily-weatherable Cr-bearing minerals dissolved totally during the weathering simulations, resulting in concentrations of Cr(III) in the river water of up to 0.14 μmolar, higher than at the present-day. Late Archean weathering of accessory chalcopyrite produced chalcocite and bornite, and extremely low concentrations of Cu (<10-15 molar) because of the low solubilities of the copper sulfides. However, pulses of either O2,g or HNO3 produced native copper, chalcocite, and bornite, much more hematite, and river water containing levels of dissolved Cu comparable to the present-day. Copper mineralogy predicted by weathering models might provide a new correlation with evidence from studies of copper mineral evolution. Overall, our results implied that the redox state of the atmosphere, the pH of surface waters, and the availability of easily-weatherable minerals are all important factors controlling the dissolution of trace elements in river water. Interpretation of the sedimentary signatures of trace elements should consider not only the redox state but also the pH and availability of accessory minerals.
Schmidt, A.R.; Stamer, J.K.
1987-01-01
Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)
Establishing the environmental risk of metal contaminated river bank sediments
NASA Astrophysics Data System (ADS)
Lynch, Sarah; Batty, Lesley; Byrne, Patrick
2016-04-01
Climate change predictions indicate an increase in the frequency and duration of flood events along with longer dry antecedent conditions, which could alter patterns of trace metal release from contaminated river bank sediments. This study took a laboratory mesocosm approach. Chemical analysis of water and sediment samples allowed the patterns of Pb and Zn release and key mechanisms controlling Pb and Zn mobility to be determined. Trace metal contaminants Pb and Zn were released throughout flooded periods. The highest concentrations of dissolved Pb were observed at the end of the longest flood period and high concentrations of dissolved Zn were released at the start of a flood. These concentrations were found to exceed environmental quality standards. Key mechanisms controlling mobility were (i) evaporation, precipitation and dissolution of Zn sulphate salts, (ii) anglesite solubility control of dissolved Pb, (iii) oxidation of galena and sphalerite, (iv) reductive dissolution of Mn/Fe hydroxides and co-precipitation/adsorption with Zn. In light of climate change predictions these results indicate future scenarios may include larger or more frequent transient 'pulses' of dissolved Pb and Zn released to river systems. These short lived pollution episodes could act as a significant barrier to achieving the EU Water Framework Directive objectives.
Hydrological controls on riverine carbon export in a seasonally wet tropical catchment
NASA Astrophysics Data System (ADS)
Duvert, C.; Hutley, L. B.; Bossa, M.; Bird, M. I.; Munksgaard, N.; Wynn, J. G.; Setterfield, S. A.; Northwood, M.
2017-12-01
Understanding the movement of carbon (C) through the landscape is critical for accurate C accounting. Failure to account for the transport of terrestrially-derived C to aquifers and streams can result in a considerable over-estimation of the C sequestration by the biosphere. Here we report on the magnitude of C export via shallow groundwater and adjacent streams in a savanna-covered seasonally wet tropical catchment of northern Australia. Riverine fluxes of carbon dioxide (CO2), dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) were measured at a high resolution over a full year to gain insight into the drivers of C export in this system. Water and C stable isotopes were also measured in order to elucidate water sources and dominant flow pathways. Our results suggest that CO2 evasion was the major process contributing to riverine C loss in the catchment (111 kg C ha-1 yr-1). The downstream export of C was dominated by DOC (78 kg C ha-1 yr-1), while DIC accounted for 39 kg C ha-1 yr-1 of the annual export. The bulk of annual DOC export was flushed out during the very first high-flow events, with export decreasing throughout the wet season to pre-flood levels. In contrast, the DIC flux was more important during flow recession, upon activation of deeper flowpaths carrying geologically-derived C. Shallow groundwater measured in boreholes was supersaturated with CO2 (15,000 < pCO2 < 55,000 ppm), whereas in-stream concentrations were an order of magnitude lower, suggesting substantial outgassing of CO2. Our findings outline the key role of point-source groundwater discharge in riverine CO2 evasion, with C largely sourced from seasonally productive savanna vegetation. Given the complexity of this pathway and the magnitude of this flux, new methods are needed to more precisely quantify CO2 evasion.
NASA Astrophysics Data System (ADS)
Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.
2014-08-01
The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our results led to several conclusions: (i) based on our experimental setup, higher substrate concentration resulted in a higher concentration of non-labile DOC; (ii) TEP, generated by bacteria, degrade rapidly, thus limiting their potential contribution to carbon sequestration; (iii) the molecular signatures of DOM derived from algal exudates and glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years, however, the molecular patterns of DOM in glucose incubations were more similar to deep ocean DOM whereas the degraded exudate was still different.
NASA Astrophysics Data System (ADS)
Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.
2015-12-01
Natural variations of 238U/235U in marine carbonates are being explored as a paleoredox proxy. However, in order for this proxy to be robust, it is important to understand how pH and alkalinity affect the fractionation of 238U/235U during coprecipitation with calcite and aragonite. Recent work suggests that the U/Ca ratio of foraminiferal calcite may vary with seawater [CO32-] concentration due to changes in U speciation[1]. Here we explore analogous isotopic consequences in inorganic laboratory co-precipitation experiments. Uranium coprecipitation experiments with calcite and aragonite were performed at pH 8.5 ± 0.1 and 7.5 ± 0.1 using a constant addition method [2]. Dissolved U in the remaining solution was periodically collected throughout the experiments. Samples were purified with UTEVA resin and 238U/235U was determined using a 233U-236U double-spike and MC-ICP-MS, attaining a precision of ± 0.10 ‰ [3]. Small but resolvable U isotope fractionation was observed in aragonite experiments at pH ~8.5, preferentially enriching heavier U isotopes in the solid phase. 238U/235U of the dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00002 - 1.00009. In contrast, no resolvable U isotope fractionation was detected in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among dissolved U species is the most likely mechanism driving these isotope effects. Our quantitative model of this process assumes that charged U species are preferentially incorporated into CaCO3 relative to the neutral U species Ca2UO2(CO3)3(aq), which we hypothesize to have a lighter equilibrium U isotope composition than the charged U species. According to this model, the magnitude of U isotope fractionation should scale with the fraction of the neutral U species in the solution, in agreement with our experimental results. These findings suggest that U isotope variations in abiotic CaCO3 reflect changes in aqueous U(VI) speciation, which are in turn a function of carbonate ion chemistry and pH. Hence, the door is opened to the development of a possible 238U/235U proxy for the carbonate ion system. [1] DeCarlo et al., (2015), GCA, 162,151-165. [2] Reeder et a., (2001), GCA, 65, 3491-3503. [3] Weyer et al., (2008) GCA 72, 345-359.
Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer
Lee, R.W.; Bennett, P.C.
1998-01-01
Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.
NASA Astrophysics Data System (ADS)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.
2018-01-01
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was laboratory air. Because of strong aqueous U(VI)-carbonate solution complexes, the measurement of DIC concentrations was even important for systems set up in the 'absence' of CO2, due to low levels of CO2 contamination during the experiment.
Hydrogeology and ground-water quality of northern Bucks County, Pennsylvania
Sloto, Ronald A.; Schreffler, Curtis L.
1994-01-01
Water from wells in the crystalline rocks has the lowest median pH (5.8), the lowest median specific conductance (139 microsiemens per centimeter), the lowest median alkalinity [16 mg/L (milligrams per liter) as CaCOg], and the highest dissolved oxygen concentration (9.0 mg/L) of the hydrogeologic units. Water from wells in carbonate rocks has the highest median pH (7.8) and the highest median alkalinity (195 mg/L as CaCO3) of the hydrogeologic units. Water from wells in the Lockatong Formation has the highest median specific conductance (428 microsiemens per centimeter) and the lowest dissolved oxygen concentration (0.8 mg/L) of the hydrogeologic units. Water from wells in crystalline rocks contains the lowest concentrations of total dissolved solids (TDS) of the hydrogeologic units. Water from the Lockatong Formation contains the highest concentration of TDS of the hydrogeologic units. Water from only 1 of 83 wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant level (SMCL) for TDS; the well is in the Lockatong Formation. Five of 86 samples (6 percent) and 6 of 75 samples (8 percent) exceed the USEPA SMCL for iron and manganese, respectively. Nitrate is the most prevalent nitrogen species in ground water. The median nitrate concentration for all hydrogeologic units is 2.3 mg/L. Of 71 water samples from wells, no concentrations of nitrate exceed the USEPA maximum contaminant level. The median dissolved radon-222 activity was highest for water samples from wells in crystalline rock [3,600 pCi/L (picocuries per liter)] and lowest for water samples from wells in the Lockatong Formation (340 pCi/L) and diabase (350 pCi/L). Water samples for analysis for volatile organic compounds (VOC's) were collected from 34 wells in areas where the potential existed for the presence of VOC's in ground water. VOC's were detected in 23 percent of the 34 wells sampled. The most commonly detected compound was trichloroethylene (13 percent of sampled wells).
NASA Astrophysics Data System (ADS)
Koschinsky, Andrea
Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.
Effects of climate change on surface-water photochemistry: a review.
De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2014-10-01
Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.
NASA Astrophysics Data System (ADS)
Ha, Jong Heon; Jeen, Sung-Wook
2017-04-01
Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.
Shirokova, L S; Pokrovsky, O S; Moreva, O Yu; Chupakov, A V; Zabelina, S A; Klimov, S I; Shorina, N V; Vorobieva, T Ya
2013-10-01
The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (<0.22 μm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW(<1 kDa) fraction. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Putron, S. J.; McCorkle, D. C.; Cohen, A. L.; Dillon, A. B.
2011-06-01
Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after 2 weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation—calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was nonlinear. A statistically significant decrease in calcification was only detected between Ωar = <2.5 and Ωar = 1.1-1.5, where calcification of new recruits was reduced by 22-37% per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.
Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA
NASA Astrophysics Data System (ADS)
Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.
2015-12-01
Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.
NASA Astrophysics Data System (ADS)
Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.
Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.
POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Arnell; Malcolm Pitts; Jie Qi
2004-11-01
A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals inmore » these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.« less
Constraining pre-eruptive volatile contents and degassing histories in submarine lavas
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Liao, Y.; Le Roux, V.; Brodsky, H.; Kurz, M. D.
2017-12-01
Vesicle textures in submarine lavas have been used to calculate total (pre-eruption) volatile concentrations in mid-ocean ridge basalts (MORB), which provide constraints on upper mantle volatile contents and CO2 fluxes along the global MOR. In this study, we evaluate vesicle size distributions and volatile contents in a suite of 20 MORB samples, which span the range of typical vesicularities and bubble number densities observed in global MORB. We demonstrate that 2D imaging coupled with traditional stereological methods closely reproduces vesicle size distributions and vesicularities measured using 3D x-ray micro-computed tomography (μ-CT). We further demonstrate that x-ray μ-CT provides additional information about bubble deformation and clustering that are linked to bubble nucleation and lava emplacement dynamics. The validation of vesicularity measurements allows us to evaluate the methods for calculating total CO2 concentrations in MORB using dissolved volatile content (SIMS), vesicularity, vesicle gas density, and equations of state. We model bubble and melt contraction during lava quenching and show that the melt viscosity prevents bubbles from reaching equilibrium at the glass transition temperature. Thus, we suggest that higher temperatures should be used to calculate exsolved volatile concentrations based on observed vesicularities. Our revised method reconciles discrepancies between exsolved volatile contents measured by gas manometry and calculated from vesicularity. In addition, our revised method suggests that some previous studies may have overestimated MORB volatile concentrations by up to a factor of two, with the greatest differences in samples with the highest vesicularities (e.g., `popping rock' 2πD43). These new results have important implications for CO2/Nb of `undegassed' MORB and global ridge CO2 fluxes. Lastly, our revised method yields constant total CO2 concentrations in sample suites from individual MOR eruptions that experienced syn-eruptive degassing. These results imply closed-system degassing during magma ascent and emplacement following equilibration at the depth of melt storage in the crust.
Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János
2015-04-01
The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.
Shim, Suin; Wan, Jiandi; Hilgenfeldt, Sascha; Panchal, Prathamesh D; Stone, Howard A
2014-07-21
We studied the dissolution dynamics of CO2 gas bubbles in a microfluidic channel, both experimentally and theoretically. In the experiments, spherical CO2 bubbles in a flow of a solution of sodium dodecyl sulfate (SDS) first shrink rapidly before attaining an equilibrium size. In the rapid dissolution regime, the time to obtain a new equilibrium is 30 ms regardless of SDS concentration, and the equilibrium radius achieved varies with the SDS concentration. To explain the lack of complete dissolution, we interpret the results by considering the effects of other gases (O2, N2) that are already dissolved in the aqueous phase, and we develop a multicomponent dissolution model that includes the effect of surface tension and the liquid pressure drop along the channel. Solutions of the model for a stationary gas bubble show good agreement with the experimental results, which lead to our conclusion that the equilibrium regime is obtained by gas exchange between the bubbles and liquid phase. Also, our observations from experiments and model calculations suggest that SDS molecules on the gas-liquid interface form a diffusion barrier, which controls the dissolution behaviour and the eventual equilibrium radius of the bubble.
High-pressure sorption of nitrogen, carbon dioxide, and their mixtures on Argonne Premium Coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreas Busch; Yves Gensterblum; Bernhard M. Krooss
2007-06-15
Gas sorption isotherms have been measured for carbon dioxide and nitrogen and their binary mixture (N{sub 2}/CO{sub 2} {approximately} 80/20) on three different moisture-equilibrated coals from the Argonne Premium Coal Sample Program by the U.S. Department of Energy, varying in rank from 0.25 to 1.68% vitrinite reflectance (VR{sub r}). The measurements were conducted at 55 C and at pressures up to 27 MPa for the pure gases and up to 10 MPa for the gas mixture. The effects of the large differences in equilibrium moisture contents (0.8 to 32.2%) on sorption capacity were estimated on the basis of the aqueousmore » solubility of CO{sub 2} and N{sub 2} at experimental conditions. Especially for the Beulah-Zap coal with an equilibrium moisture content of {approximately} 32%, the amount of dissolved CO{sub 2} contributes significantly to the overall storage capacity, whereas the amounts of N{sub 2} dissolved in the moisture water are low and can be neglected. Sorption measurements with nitrogen/carbon dioxide mixtures showed very low capacities for N{sub 2}. For Illinois coal, these excess sorption values were even slightly negative, probably due to small volumetric effects (changes in condensed phase volume). The evolution of the composition of the free gas phase in contact with the coal sample has been monitored continuously during each pressure step of the sorption tests. This composition changed strongly over time. Apparently, CO{sub 2} reaches sorption sites very quickly initially and is subsequently partly replaced by N{sub 2} molecules until concentration equilibration is reached. 18 refs., 10 figs., 2 tabs.« less
On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer
NASA Astrophysics Data System (ADS)
Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus
2016-04-01
An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.
NASA Astrophysics Data System (ADS)
Kim, Mi Seon; Choi, Man Sik; Kim, Chan-Kook
2016-03-01
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels ( Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving-Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.
Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.; Khojasteh, Jam
2015-01-01
Stable-isotope analyses are valuable in karst settings, where characterizing biogeochemical cycling of carbon along groundwater flow paths is critical for understanding and protecting sensitive cave and karst water resources. This study quantified the seasonal changes in concentration and isotopic composition (δ13C) of aqueous and gaseous carbon species—dissolved inorganic carbon (DIC) and gaseous carbon dioxide (CO2)—to characterize sources and transfer of these species along a karst flow path, with emphasis on a cave environment. Gas and water samples were collected from the soil and a cave in northwestern Arkansas approximately once a month for one year to characterize carbon cycling along a conceptual groundwater flow path. In the soil, as the DIC concentration increased, the isotopic composition of the DIC became relatively lighter, indicating an organic carbon source for a component of the DIC and corroborating soil DIC as a proxy for soil respiration. In the cave, a positive correlation between DIC and surface temperature was due to increased soil respiration as the organic carbon signal from the soil was transferred to the cave environment via the aqueous phase. CO2 concentration was lowest in the cave during colder months and increased exponentially with increasing surface temperature, presumably due to higher rates of soil respiration during warmer periods and changing ventilation patterns between the surface and cave atmosphere. Isotopic disequilibrium between CO2 and DIC in the cave was greatest when CO2 concentration was changing during November/ December and March/April, presumably due to the rapid addition or removal of gaseous CO2. The isotopic disequilibrium between DIC and CO2 provided evidence that cave CO2 was a mixture of carbon from several sources, which was mostly constrained by mixture between atmospheric CO2 and soil CO2. The concentration and isotopic composition of gaseous and aqueous carbon species were controlled by month-to-month variations in temperature and precipitation and provided insight into the sources of carbon in the cave. Stable carbon isotope ratios provided an effective tool to explore carbon transfer from the soil zone and into the cave, identify carbon sources in the cave, and investigate how seasonality affected the transfer of carbon in a shallow karst system.
NASA Astrophysics Data System (ADS)
Umling, Natalie E.; Thunell, Robert C.
2018-06-01
A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.
Gas solubility in hydrophobic confinement.
Luzar, Alenka; Bratko, Dusan
2005-12-01
Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the apparent validity of Henry's law in the pores over a broad fugacity range.
Singhania, Amit; Gupta, Shipra Mital
2017-01-01
Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.
Environmental Monitoring of Microbe Metabolic Transformation
NASA Technical Reports Server (NTRS)
Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)
2013-01-01
Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.
Carbon cycling in the mantled karst of the Ozark Plateaus, central United States
Knierim, Katherine J.; Pollock, Erik D.; Covington, Matthew D.; Hays, Phillip D.; Brye, Kristofor R.
2017-01-01
The nature of carbon (C) cycling in the unsaturated zone where groundwater is in contact with abundant gas-filled voids is poorly understood. The objective of this study was to trace inorganic-C cycling in a karst landscape using stable-C isotopes, with emphasis on a shallow groundwater flow path through the soil, to an underlying cave, and to the spring outlet of a cave stream in the Ozark Plateaus of northwestern Arkansas. Carbon dioxide (CO2) concentration and isotopic composition (δ13C-CO2) in gas and dissolved inorganic carbon (DIC) concentration and isotopic composition (δ13C-DIC) in water were measured in samples collected from two suction-cup soil samplers above the cave, three sites in the cave, and at the spring outlet of the cave stream. Soil-gas CO2 concentration (median 2,578 ppm) and δ13C-CO2 (median − 21.5‰) were seasonally variable, reflecting the effects of surface temperature changes on soil-CO2 production via respiration and organic-matter decomposition. Cave-air CO2 (median 1,026 ppm) was sourced from the soil zone and the surface atmosphere, with seasonally changing proportions of each source controlled by surface temperature-driven air density gradients. Soil-DIC concentration (median 1.7 mg L− 1) was lower and soil-δ13C-DIC (median − 19.5‰) was lighter compared to the cave (median 23.3 mg L− 1 and − 14.3‰, respectively) because carbonate-bedrock dissolution provided an inorganic source of C to the cave. Carbon species in the soil had a unique, light stable-C isotopic signature compared to the cave. Discrimination of soil-C sources to karst groundwater was achieved, which is critical for developing hydrologic budgets using environmental tracers such as C.
Riscassi, Ami; Miller, Carrie; Brooks, Scott
2015-11-17
Sediments and floodplain soils in the East Fork Poplar Creek watershed (Oak Ridge, TN, USA) are contaminated with high levels of mercury (Hg) from an industrial source at the headwaters. Although baseflow conditions have been monitored, concentrations of Hg and methylmercury (MeHg) during high-flow storm events, when the stream is more hydrologically connected to the floodplain, have yet to be assessed. This paper evaluated baseflow and event-driven Hg and MeHg dynamics in East Fork Poplar Creek, 5 km upstream of the confluence with Poplar Creek, to determine the importance of hydrology to in-stream concentrations and downstream loads and to ascertainmore » whether the dynamics are comparable to those of systems without an industrial Hg source. Particulate Hg and MeHg were positively correlated with discharge (r 2 = 0.64 and 0.58, respectively) and total suspended sediment (r 2 = 0.97 and 0.89, respectively), and dissolved Hg also increased with increasing flow (r 2 = 0.18) and was associated with increases in dissolved organic carbon (r 2 = 0.65), similar to the dynamics observed in uncontaminated systems. Dissolved MeHg decreased with increases in discharge (r 2 = 0.23) and was not related to dissolved organic carbon concentrations (p = 0.56), dynamics comparable to relatively uncontaminated watersheds with a small percentage of wetlands (<10%). Finally, although stormflows exert a dominant control on particulate Hg, particulate MeHg, and dissolved Hg concentrations and loads, baseflows were associated with the highest dissolved MeHg concentration (0.38 ng/L) and represented the majority of the annual dissolved MeHg load.« less
NASA Astrophysics Data System (ADS)
Lv, Lina; Yang, Yanling; Tian, Junguo; Li, Yaojian; Li, Jun; Yan, Shengjun
2018-02-01
In this study, a salinity wastewater was produced during the fly ash treatment in the waste incineration plant. Chemical precipitation method was applied for heavy metals removal in the salinity wastewater. The effect of salinity on the removal of dissolved heavy metal ions (Zn2+, Cu2+, Pb2+, Ni2+ and Cd2+) was studied, especially on the removal of Pb2+ and Cd2+. Because of the formation of [PbCl3]- and [PbCl4]2- complexes, the residual concentration of dissolved Pb2+ increased from 0.02 mg/L to 4.08 mg/L, as the NaCl concentration increased from 0 % to 10 %. And the residual concentration of dissolved Cd2+ increased from 0.02 mg/L to 1.39 mg/L, due to the formation of [CdCl3]-, [CdCl4]2- and [CdCl6]4- complexes.
Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation
Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro
2014-01-01
‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530
NASA Astrophysics Data System (ADS)
Winnick, M.; Rainaldi, G. R.; Lawrence, C. R.; McCormick, M. E.; Hsu, H. T.; Druhan, J. L.; Williams, K. H.; Maher, K.
2016-12-01
Dissolved organic carbon (DOC) is a critical chemical attribute of freshwater systems, affecting nutrient availability, toxicity and solubility of metals, and biological activity via the absorption of light and microbial consumption of O2 during DOC mineralization. Although DOC contributions to streams are distributed across the landscape in the shallow subsurface, many studies have demonstrated area-outsized contributions from riparian zones with high biological productivity and low subsurface O2 concentrations. In the East River, CO, a high-elevation watershed located in the central Rocky Mountains, initial observations show that DOC concentrations of two tributaries, Rock Creek and Gothic Creek, are elevated by 3-10 times compared to concentrations in the main East River and its other tributaries. These elevated concentrations are qualitatively linked to the unique presence of large wetlands in the headwaters of Rock and Gothic creeks, which due to potential anoxic conditions, experience reduced rates of organic matter decomposition and serve as an elevated source of DOC. In this study we quantify the cycling of organic matter in these alpine wetlands and their area-outsized contributions to East River DOC fluxes. We present concentration profiles of DOC along stream reaches and along subsurface flowpaths that span the transition from hillslope to wetland coupled with high-resolution mapping of chronically-saturated zones and calculate area-weighted fluxes of DOC from wetlands to Rock and Gothic creeks at multiple times through the 2016 growing season. Additionally, soil and groundwater DOC fluxes are compared with depth-resolved organic carbon content from soil cores, substrate quality (C:N), and soil surface CO2 fluxes to evaluate organic carbon budgets in the hillslope and wetland areas feeding Rock Creek. The characterization of these hotspots of DOC generation and transport in the East River is vital to the ability to predict nutrient cycling changes into the future.
Constraints on the magnitude and rate of CO 2 dissolution at Bravo Dome natural gas field
Sathaye, Kiran J.; Hesse, Marc A.; Cassidy, M.; ...
2014-10-13
The injection of carbon dioxide (CO 2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO 2 emissions from fossil fuels. Dissolution of the injected CO 2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO 2 storage. We use thermochronology to estimate the timing of CO 2 emplacement at Bravo Dome, a large natural CO 2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraintsmore » on the magnitude, mechanisms, and rates of CO 2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2–1.5 Ma. The CO 2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO 2 storage is possible. Here, integrating geophysical and geochemical data, we estimate that 1.3 Gt CO 2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO 2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO 2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m 2y). Finally, the similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO 2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO 2 on the 10-ky timescale typically considered for storage projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primeau, Francois William
2016-02-11
This report lists the accomplishments of the project, which includes: (1) analysis of inorganic nutrient concentration data as well as suspended particulate organic matter data in the ocean to demonstrate that the carbon to nitrogen to phosphorus ratios (C:N:P) of biological uptake and export vary on large spatial scales, (2) the development of a new computationally efficient method for simulating biogeochemical tracers in earth system models, (3) the application of the method to help calibrate an improved representation of dissolved organic matter in the ocean that includes variable C:N:P stoichiometry. This research is important because biological uptake of carbon andmore » nutrients in the upper ocean and export by sinking particles and downward mixing of dissolved organic matter helps maintain a vertical gradient in the carbon dioxide concentration in the ocean. This gradient is key to understanding the partitioning of CO2 between the ocean and the atmosphere. The final report lists seven peer reviewed scientific publications, one Ph.D. thesis, one technical report and two papers in preparation.« less
Oursel, B; Garnier, C; Durrieu, G; Mounier, S; Omanović, D; Lucas, Y
2013-04-15
Quantification and characterization of chronic inputs of trace metals and organic carbon in a coastal Mediterranean area (the city of Marseille) during the dry season was carried out. The 625 km(2) watershed includes two small coastal rivers whose waters are mixed with treated wastewater (TWW) just before their outlet into the sea. Dissolved and particulate Cu, Pb, Cd, Zn, Co, Ni and organic carbon concentrations in the rivers were comparable to those in other Mediterranean coastal areas, whereas at the outlet, 2- to 18-fold higher concentrations reflected the impact of the TWW. A non-conservative behavior observed for most of the studied metals in the mixing zone was validated by a remobilization experiment performed in the laboratory. The results showed that sorption/desorption processes could occur with slow kinetics with respect to the mixing time in the plume, indicating non-equilibrium in the dissolved/particulate metal distribution. Thus, a sample filtration immediately after sampling is strictly required. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wallmann, K.; Schneider, B.; Sarnthein, M.
2016-02-01
We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.
Brown, C.J.; Misut, P.E.
2010-01-01
The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water with acceptably low concentrations of dissolved Fe could be extracted than was injected. Scenarios with larger amounts of pyrite in aquifer sediments generally resulted in less goethite precipitation, increased acidity, and increased concentrations of dissolved Fe in extracted water. In these pyritic scenarios, the lower amounts of goethite precipitated and the lower pH during the extraction phase resulted in decreased sorption of Fe2+ and a decreased amount of extractable water with acceptably low concentrations of dissolved Fe (5.4??10-6M). A linear decrease in recovery efficiency with respect to dissolved Fe concentrations is caused by pyrite dissolution and the associated depletion of dissolved O2 (DO) and increase in acidity. Simulations with more than 0.0037M of pyrite, which is the maximum amount dissolved in the baseline scenario, had just over a 50% recovery efficiency. The precipitation of ferric hydroxide minerals (goethite) at the well screen, and a possible associated decrease in specific capacity of the ASR well, was not apparent during the extraction phase of ASR simulations, but the model does not incorporate the microbial effects and biofouling associated with ferric hydroxide precipitation.The host groundwater chemistry in calcite-poor Cretaceous aquifers of the NYC area consists of low alkalinity and moderate to low pH. The dissolution of goethite in scenarios with unbuffered injectate indicates that corrosion of the well could occur if the injectate is not buffered. Simulations with buffered injectate resulted in greater precipitation of goethite, and lower concentrations of dissolved Fe, in the extracted water. Dissolved Fe concentrations in extracted water were highest in simulations of aquifers (1) in which pyrite and siderite in the aquifer were in equilibrium, and (2) in coastal areas affected by saltwater intrusion, where high dissolved-cation concentrations provide a greater exchange of Fe2+ (FeX2). Results indicate that ASR in pyrite-beari
NASA Astrophysics Data System (ADS)
Bowles, Marshall; Hunter, Kimberley S.; Samarkin, Vladimir; Joye, Samantha
2016-07-01
We collected 69 sediment cores from distinct ecological and geological settings along the deep slope in the Northern Gulf of Mexico to evaluate whether specific geochemical- or habitat-related factors correlated with rates of microbial processes and geochemical signatures. By collecting replicate cores from distinct habitats across multiple sites, we illustrate and quantify the heterogeneity of cold seep geochemistry and microbial activity. These data also document the factors driving unique aspects of the geochemistry of deep slope gas, oil and brine seeps. Surprisingly little variation was observed between replicate (n=2-5) cores within sites for most analytes (except methane), implying that the common practice of collecting one core for geochemical analysis can capture the signature of a habitat in most cases. Depth-integrated concentrations of methane, dissolved inorganic carbon (DIC), and calcium were the predominant geochemical factors that correlated with a site's ecological or geological settings. Pore fluid methane concentration was related to the phosphate and DIC concentration, as well as to rates of sulfate reduction. While distinctions between seep habitats were identified from geochemical signatures, habitat specific geochemistry varied little across sites. The relative concentration of dissolved inorganic nitrogen versus phosphorus suggests that phosphorus availability limits biomass production at cold seeps. Correlations between calcium, chloride, and phosphate concentrations were indicative of brine-associated phosphate transport, suggesting that in addition to the co-migration of methane, dissolved organic carbon, and ammonium with brine, phosphate delivery is also associated with brine advection.
The Coastal Carbonate Chemistry in Bolinao-Anda, Pangasinan, Northern Philippines
NASA Astrophysics Data System (ADS)
Lagumen, M. C. T.; San Diego-McGlone, M. L.; Araujo, M.; Noriega, C.
2016-12-01
The coastal ocean represents only 7% of the total ocean area, but the interactions of CO2 (dissolved, atmospheric) within the coastal area is very dynamic. This study was conducted in the coastal waters of the Bolinao-Anda channel, Pangasinan, Philippines. The 28 stations were divided into 3 groups: coral, seagrass and mariculture area. Samples were collected for carbonate parameters namely total alkalinity (TA), dissolved inorganic carbon (DIC) and pH. Air-sea surface CO2 flux (FCO2) was estimated from the difference between partial pressure of CO2 at sea surface (pCO2) and the concentration of CO2 in the atmosphere (pCO2atm). TA ranged from 1226 to 2240 µmol/kg with highest value in the seagrass stations and lowest in the mariculture stations. Mean TA in coral and seagrass stations were similar at 2104.11 ± 6.54 µmol/kg and 2093.32 ± 62.67 µmol/kg, respectively. DIC ranged from 1270.12 µmol/kg to 2006.26 µmol/kg. Mean DIC values were 1868.12 ± 20.25 µmol/kg for coral stations, 1776.82 ± 87.87 µmol/kg for seagrass stations, and 1715.94 ± 52.61 µmol/kg for mariculture stations. A higher range of pH (7.95 to 8.52) and Ωarg (1.97 to 4.85) were determined for the coral and seagrass stations compared to mariculture stations. Mean pH value in mariculture stations was 7.60 ± 0.04, while the mean pH of coral stations was 8.05 ± 0.03, and seagrass stations was 8.27 ± 0.09. The mariculture area is a source of CO2 with flux of 44.72 mmol m-2 day-1 and the coral area too athough flux is small at 0.31 mmol m-2 day-1, while the seagrass area is a sink for CO2 with mean flux of -5.91 mmol m-2 day-1. It is likely that water quality conditions due to mariculture can affect the corals and seagrass areas due to the hydrodynamics of the area.
Response of soil C fluxes to warming and irrigation in a lysimeter experiment
NASA Astrophysics Data System (ADS)
Beck, Kerstin; Schindlbacher, Andreas; Borken, Werner
2017-04-01
Current climate change alters the temperature and precipitation regime of alpine forests, but its impact on soil carbon (C) dynamics is not well known. Recent studies suggest substantial soil C losses through persistently enhanced mineralization of soil organic matter in the Northern European Calcareous Alps. These C losses could result from increasing soil respiration as the most important pathway of soil C processes followed by leaching of dissolved inorganic and organic C (DIC, DOC). Here, we studied the response of these three C fluxes to (I) soil warming (+4°C), (II) irrigation (+40% water), and (III) a combination of soil warming and irrigation relative to a (IV) control in a field lysimeter experiment. The lysimeters (n=5 per treatment) were filled with mineral soil from a humus-rich A-horizon of a Rendzic Leptosol and detrital dolomite (C-horizon). Soil warming revealed an increase in soil respiration by 52%, but no or little change in soil CO2 concentration, DIC and DOC leaching during the growing season. Irrigation increased DIC and DOC leaching by >70% but had no effect on soil respiration. The combination of soil warming and irrigation increased soil CO2 efflux by only 28%, while the DIC and DOC fluxes increased by about 70% as in the irrigation treatment. The positive correlation between seepage fluxes and DIC fluxes (R2=0.97) suggests that precipitation is a strong driver of DIC losses. Despite the strong linear relationship between DIC and soil CO2 concentrations (R2=0.82), latter was poorly correlated with DIC losses (R2=0.44). A first estimate using the concentrations of dissolved Mg and Ca cations in seepage suggests that abiogenic DIC from dolomite weathering contributed about 30% to the total DIC flux. The biogenic DIC flux contributed 1-3% and the DOC flux <1% to the total soil C loss during the growing season. Taking average seepage fluxes of about 1000 mm into account, as typical for the Northern European Alps, the DIC flux could account for up to 7% of the annual soil C loss. Our results suggest that warming triggers elevated C losses by CO2 efflux, while increasing precipitation enhances DIC losses.
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques
2014-08-01
The formation constants of magnesium bicarbonate and carbonate ion pairs have been experimentally determined in dilute hydrothermal solutions to 150 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using two pH indicators, 2-naphthol and 4-nitrophenol, at 25 and 80-150 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for MgHCO3+(aq) (KMgHCO3+) and MgCO3(aq) (KMgCO3) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The formation constants of MgHCO3+(aq) and MgCO3(aq) ion pairs increased significantly with increasing temperature, with values of logKMgHCO3+ = 1.14 and 1.75 and of logKMgCO3 = 2.86 and 3.48 at 10 °C and 100 °C, respectively. These ion pairs are important aqueous species under neutral to alkaline conditions in moderately dilute to concentrated Mg-containing solutions, with MgCO3(aq) predominating over CO32-(aq) in solutions at pH >8. The predominance of magnesium carbonate over carbonate is dependent on the concentration of dissolved magnesium and the ratio of magnesium over carbonate. With increasing temperature and at alkaline pH, brucite solubility further reduced the magnesium concentration to levels below 1 mmol kg-1, thus limiting availability of Mg2+(aq) for magnesite precipitation.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
NASA Astrophysics Data System (ADS)
Suresh Babu, S.
2016-12-01
Forty two samples were acquired from the surface and bottom water profiles along 5 transects spread over Bahia Magdalena lagoon, Baja California Sur to assess the behavior of trace metals in a high influenced upwelling region on the Pacific coast. To elaborate the fate of metals, also the physico-chemical parameters (pH, temperature, salinity, conductivity, dissolved oxygen). Determination of the concentrations of trace metals (Fe, Mn, Cr, Cu, Co, Pb, Ni, Zn, Cd As, Hg) were measured using Atomic absorption spectrometry. The results demonstrated high values of As, Ni and Co which is attributed to the local geology and phosphate deposits. Low values of Fe and Mn are attested to the oxic conditions of the lagoon which are responsible for the oxidation of Fe and Mn. The region witnesses raised temperatures (28.92ºC) and salinities of 35.2 PSU for its arid climatic conditions and high rates of evaporation. In general, the region presented minor quantities of dissolved trace metals due to dispersion and high intense interaction with the open sea. The results were also compared with other studies to understand the enrichment pattern in this side of the pacific coast which experiences various geothermal activities and upwelling phenomenon.
Raman spectroscopic studies of chemical speciation in calcium chloride melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windisch, Charles F.; Lavender, Curt A.
2005-02-01
Raman spectroscopy was applied to CaCl2 melts at 900 degrees C under both non-electrolyzed and electrolyzed conditions. The later used titania cathodes supplied by TIMET, Inc. and graphite anodes. Use of pulse-gating to collect the Raman spectra successfully eliminated any interference from black-body radiation and other stray light. The spectrum of molten CaCl2 exhibited no distinct, resolvable bands that could be correlated with a calcium chloride complex similar to MgCl42- in MgCl2 melts. Rather, the low frequency region of the spectrum was dominated by a broad “tail” arising from collective oscillations of both charge and mass in the molten saltmore » “network.” Additions of both CaO and Ca at concentrations of a percent or two resulted in no new features in the spectra. Addition of CO2, both chemically and via electrolysis at concentrations dictated by stability and solubility at 900 degrees C and 1 bar pressure, also produced no new bands that could be correlated with either dissolved CO2 or the carbonate ion. These results indicated that Raman spectroscopy, at least under the conditions evaluated in the research, was not well suited for following the reactions and coordination chemistry of calcium ions, nor species such as dissolved metallic Ca and CO2 that are suspected to impact current efficiency in titanium electrolysis cells using molten CaCl2. Raman spectra of TIMET titania electrodes were successfully obtained as a function of temperature up to 900 degrees C, both in air and in-situ in CaCl2 melts. However, spectra of these electrodes could only be obtained when the material was in the unreduced state. When reduced, either with hydrogen or within an electrolysis cell, the resulting electrodes exhibited no measurable Raman bands under the conditions used in this work.« less
Kragh, Theis; Søndergaard, Morten; Tranvik, Lars
2008-05-01
This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.
Inorganic carbon speciation and fluxes in the Congo River
NASA Astrophysics Data System (ADS)
Wang, Zhaohui Aleck; Bienvenu, Dinga Jean; Mann, Paul J.; Hoering, Katherine A.; Poulsen, John R.; Spencer, Robert G. M.; Holmes, Robert M.
2013-02-01
Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11-61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m-2 yr-1. The basin-wide DIC yield was ~8.84 × 104 mol km-2 yr-1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr-1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers.
Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.
2012-12-01
The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.