Sample records for dissolved oxygen sensor

  1. Field comparison of optical and clark cell dissolved-oxygen sensors

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.; Garcia, L.

    2005-01-01

    Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.

  2. Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.

    2008-02-01

    This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.

  3. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.

    PubMed

    Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen

    2015-08-14

    This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  4. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    USGS Publications Warehouse

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  5. Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers.

    PubMed

    Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R

    2010-06-03

    Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.

  6. Development of a Self-calibrating Dissolved Oxygen Microsensor Array for the Monitoring and Control of Plant Growth in a Space Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy

    2004-01-01

    Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,

  7. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.

    PubMed

    Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P

    2010-06-11

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  9. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-08-16

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

  10. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  11. Dissolved oxygen measurements in aquatic environments: the effects of changing temperature and pressure on three sensor technologies.

    PubMed

    Markfort, Corey D; Hondzo, Miki

    2009-01-01

    Dissolved oxygen (DO) is probably the most important parameter related to water quality and biological habitat in aquatic environments. In situ DO sensors are some of the most valuable tools used by scientists and engineers for the evaluation of water quality in aquatic ecosystems. Presently, we cannot accurately measure DO concentrations under variable temperature and pressure conditions. Pressure and temperature influence polarographic and optical type DO sensors compared to the standard Winkler titration method. This study combines laboratory and field experiments to compare and quantify the accuracy and performance of commercially available macro and micro Clark-type oxygen sensors as well as optical sensing technology to the Winkler method under changing pressure and temperature conditions. Field measurements at various lake depths revealed sensor response time up to 11 min due to changes in water temperature, pressure, and DO concentration. Investigators should account for transient response in DO sensors before measurements are collected at a given location. We have developed an effective model to predict the transient response time for Clark-type oxygen sensors. The proposed procedure increases the accuracy of DO data collected in situ for profiling applications.

  12. Monitoring and controlling the dissolved oxygen (DO) concentration within the high aspect ratio vessel (HARV).

    PubMed

    Saarinen, Mark A; Reece, Julie S; Arnold, Mark A; Murhammer, David W

    2003-01-01

    A probe-type oxygen sensor was developed utilizing a radioluminescent (RL)-based light source and a ruthenium-based sensing chemistry for monitoring the dissolved oxygen (DO) concentration in a modified version of the NASA-designed high aspect ratio vessel (HARV), a batch rotating wall vessel. This sensor provided the means to monitor the DO concentration in the HARV without influencing the flow pattern, thereby retaining the low shear HARV environment conducive to the formation of 3-dimensional cell aggregates. This sensor lost significant signal as a result of exposure to the first three autoclave cycles, but only minimal change in signal was observed following exposure to subsequent autoclave cycles. A new calibration model requiring only one fitted parameter was developed that accurately fit data over the entire range from 0% to 100% oxygen saturation. The ability for DO concentration control within the vessel was demonstrated by using this sensor to monitor the DO concentration inside the HARV.

  13. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems

    PubMed Central

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems’ health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780

  14. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    PubMed

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  15. Studies of protein oxidation as a product quality attribute on a scale-down model for cell culture process development.

    PubMed

    Lee, Nacole D; Kondragunta, Bhargavi; Uplekar, Shaunak; Vallejos, Jose; Moreira, Antonio; Rao, Govind

    2015-01-01

    Of importance to the biological properties of proteins produced in cell culture systems are the complex post-translational modifications that are affected by variations in process conditions. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by such process variations. Dissolved oxygen is a parameter of increasing interest since studies have shown that despite the necessity of oxygen for respiration, there may also be some detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components. Variation, or changes to cell culture products, can affect function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Relative protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by variations in dissolved oxygen levels in cell culture systems. Studies have shown that despite the necessity of oxygen for respiration, there may be detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components, affecting function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. © PDA, Inc. 2015.

  16. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    USGS Publications Warehouse

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.

  17. A Wave Glider for Studies of Biofouling and Ocean Productivity

    DTIC Science & Technology

    2017-11-07

    sensors for conductivity, water and air temperature , dissolved oxygen , chlorophyll-a fluorescence, wind speed and direction, barometric pressure, and...endurance, reduce fuel consumption , and reduce carbon emissions. During deployments, vessels encounter a range of planktonic assemblages and ocean...with an acoustic Doppler current profiler, an optical camera system, and standard sensors for conductivity, water and air temperature , dissolved

  18. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  19. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  20. An Optical Oxygen Sensor for Long-Term Continuous Monitoring of Dissolved Oxygen in Perfused Bioreactors

    NASA Technical Reports Server (NTRS)

    Gao, F. G.; Jeevarajan, A. S.; Anderson, M. M.

    2002-01-01

    For long-term growth of man1ITlalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to quantitate and control level of DO. Continuous measurement of the amount of DO in the cell culture medium in-line under sterile conditions in NASA's perfused bioreactor requires that the oxygen sensor provide increased sensitivity and be sterilizable and nontoxic. Additionally, long-term cell culture experiments require that the calibration be maintained several weeks or months. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions. An optical oxygen sensor (BOXY) based on dynamic fluorescent quenching and a pulsed blue LED light source was developed in our laboratory to address these requirements. Tris( 4,7 -diphenyl-l, 1 O-phenanthroline )ruthenium(II) chloride is employed as the fluorescent dye indicator. The sensing element consists of a glass capillary (OD 4.0 mm; ID 2.0 mm) coated internally with a thin layer of the fluorescent dye in silicone matrix and overlayed with a black shielding layer. Irradiation of the sensing element with blue light (blue LED with emission maximum at 475 nm) generates a red fluorescence centered at 626 nm. The fluorescence intensity is correlated to the concentration of DO present in the culture medium, following the modified non-linear Stern-Volmer equation. By using a pulsed irradiating light source, the problem of dye-bleaching, which is often encountered in long-term continuous measurements of tIns type, 'is minimized. To date we achieved sensor resolution of 0.3 mmHg at 50 mmHg p02, and 0.6 mmHg at 100 mmHg p02, with a response time of about one minute. Calibration was accomplished in sterile phosphate-buffered saline with a blood-gas analyzer (BGA) measurement as reference. Stand-alone software was also developed to control the sensor and bioreactor as well as to acquire data. Two HOXY sensors with a single calibration were employed to continuously monitor the DO in GTSF-2 medium during a Baby Hamster Kidney (BHK-21) cell culture in a Rotating Wall Perfused Vessel (RWPV) bioreactor for 90 days. HOXY sensors were located at the inlet to and outlet from the bioreactor. One of the sensors was placed between an oxygenator and the inlet to the bioreactor. The dissolved oxygen concentrations determined by both sensors were compared with those measured regularly with the BGA reference. The cell culture was maintained for 110 days. Sensor output was found to correlate well with the BGA data throughout the experiment, where the DO of the medium ranged between 25 and 50 mmHg at the bioreactor outlet and 90-130 mmHg at the bioreactor inlet. Measuring DO with the HOXY sensors versus the BGA reference indicated bias values of -2 mmHg and -15 mmHg, and precision values of +/-3mmHg and +/-16 mmHg at the bioreactor inlet and outlet, respectively.

  1. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    PubMed

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.

  2. Staying alive! Sensors used for monitoring cell health in bioreactors.

    PubMed

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  4. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-06-08

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  5. Monochloramine-sensitive amperometric microelectrode: optimization of gold, platinum, and carbon fiber sensing materials for removal of dissolved oxygen interference

    EPA Science Inventory

    Amperometric monochloramine detection using newly fabricated gold, platinum, and carbon-fiber microsensors was investigated to optimize sensor operation and eliminate oxygen interference. Gold and platinum microsensors exhibited no oxygen interference during monochloramine measu...

  6. Amphiphilic Fluorinated Polymer Nanoparticle Film Formation and Dissolved Oxygen Sensing Application

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Zhu, Huie; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-04-01

    Fluorinated polymer nanoparticle films were prepared by dissolving amphiphilic fluorinated polymer, poly (N-1H, 1H-pentadecafluorooctylmethacrylamide) (pC7F15MAA) in two miscible solvents (AK-225 and acetic acid). A superhydrophobic and porous film was obtained by dropcasting the solution on substrates. With higher ratios of AK-225 to acetic acid, pC7F15MAA was densified around acetic acid droplets, leading to the formation of pC7F15MAA nanoparticles. The condition of the nanoparticle film preparation was investigated by varying the mixing ratio or total concentration. A highly sensitive dissolved oxygen sensor system was successfully prepared utilizing a smart surface of superhydrophobic and porous pC7F15MAA nanoparticle film. The sensitivity showed I0/I40 = 126 in the range of dissolved oxygen concentration of 0 ~ 40 mg L-1. The oxygen sensitivity was compared with that of previous reports.

  7. Measurement in a marine environment using low cost sensors of temperature and dissolved oxygen

    USGS Publications Warehouse

    Godshall, F.A.; Cory, R.L.; Phinney, D.E.

    1974-01-01

    Continuous records of physical parameters of the marine environment are difficult as well as expensive to obtain. This paper describes preliminary results of an investigative program with the purpose of developing low cost time integrating measurement and averaging devices for water temperature and dissolved oxygen. Measurements were made in an estuarine area of the Chesapeake Bay over two week periods. With chemical thermometers average water temperature for the two week period was found to be equal to average water temperature measured with thermocouples plus or minus 1.0 C. The slow diffusion of oxygen through the semipermiable sides of plastic bottles permitted the use of water filled bottles to obtain averaged oxygen measurements. Oxygen measurements for two week averaging times using 500 ml polyethylene bottles were found to vary from conventionally measured and averaged dissolved oxygen by about 1.8 mg/l. ?? 1974 Estuarine Research Federation.

  8. Productivity Estimation of Hypersaline Microbial Mat Communities - Diurnal Cycles of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Less, G.; Cohen, Y.; Luz, B.; Lazar, B.

    2002-05-01

    Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10-6 mol O2 m-2 h-1 in summer and winter, respectively. Independent estimate of the gross productivity and respiration is provided by the oxygen isotopic measurements.

  9. Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation.

    PubMed

    John, Gernot T; Klimant, Ingo; Wittmann, Christoph; Heinzle, Elmar

    2003-03-30

    Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 829-836, 2003.

  10. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    NASA Astrophysics Data System (ADS)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  11. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    PubMed

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  12. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  13. Dissolved oxygen control and monitoring implementation in the liquid lead bismuth eutectic loop: HELIOS

    NASA Astrophysics Data System (ADS)

    Nam, Hyo On; Lim, Jun; Han, Dong Yoon; Hwang, Il Soon

    2008-06-01

    A 12 m tall LBE coolant loop, named as HELIOS, has been developed by thermal-hydraulic scaling of the PEACER-300MWe. Thermo-hydraulic experiment and materials test are the principal purposes of HELIOS operation. In this study, an yttria stabilized zirconia (YSZ) based oxygen sensor that was hermetically sealed for long-term applications using the electromagnetically swaged metal-ceramic joining method, have been developed for high temperature oxygen control application over a long period of time. The rugged electrode design has been calibrated to absolute metal-oxide equilibrium by using a first principle of detecting pure metal-oxide transition using electrochemical impedance spectroscopy (EIS). During the materials tests in HELIOS, dissolved oxygen concentration was administered at the intended condition of 10 -6 wt% by direct gas bubbling with Ar + 4%H 2, Ar + 5%O 2 and/or pure Ar while corrosion tests were conducted for up to 1000 h with inspection after each 333 h. During the total 1000 h corrosion test, oxygen concentration was measured by oxygen sensor. The result confirmed that the direct gas bubbling method is a viable and practical option for controlling oxygen concentration in large loops including HELIOS.

  14. Nanofiber Based Optical Sensors for Oxygen Determination

    NASA Astrophysics Data System (ADS)

    Xue, Ruipeng

    Oxygen sensors based on luminescent quenching of nanofibers were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition metal complexes are embedded into a polymer 'core' while a synthetic biocompatible polymer provides a protective 'shell.' Various matrix polymers and luminescent probes were studied in terms of their sensitivity, linear calibration, reversibility, response time, stability and probe-matrix interactions. Due to the small size and high surface area of these nanofibers, all samples showed rapid response and a highly linear response to oxygen. The sensitivity and photostability of the sensors were controlled by the identity of both the probe molecule and the polymer matrix. Such nanofiber sensor forms are particularly suitable in biological applications due to the fact that they do not consume oxygen, are biocompatible and biomimetic and can be easily incorporated into cell culture. Applications of these fibers in cancer cell research, wound healing, breath analysis and waste water treatment were explored.

  15. Net community production from autonomous oxygen observations in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  16. A flexible transcutaneous oxygen sensor using polymer membranes.

    PubMed

    Kudo, Hiroyuki; Iguchi, Shigehito; Yamada, Takua; Kawase, Tatsuya; Saito, Hirokazu; Otsuka, Kimio; Mitsubayashi, Kohji

    2007-02-01

    A wearable and flexible oxygen sensor for transcutaneous blood gas monitoring was fabricated and tested. The sensor has a laminar film-like structure, which was fabricated by pouching KCl electrolyte solution by both non-permeable (metal weldable) sheet and gas-permeable membrane with Pt- and Ag/AgCl-electrodes patterned using microfabrication process. The electrolyte solution was fixed only by heat-sealing the edges of the weldable membranes without any chemical adhesives. The wearable oxygen sensor (thickness: 84 mum) was applied to the electrochemical measurement with a constant potential of -600 mV vs. Ag/AgCl, thus obtaining the calibration range to dissolved oxygen (DO) from 0.0 to 7.0 mg/l with a correlation coefficient of 0.998 and the quick response time (53.4 s to 90% of a steady-state current), which operate similarly to a commercially available oxygen electrode. The sensor was also utilized to transcutaneous oxygen monitoring for healthy human subject. The sensing region of the wearable oxygen sensor was attached onto the forearm-skin surface of the subject inhaling various concentrations of oxygen. As a result of physiological application, the output current was varied from -6.2 microA to -7.8 microA within 2 min when the concentration of inhaling oxygen was changed from atmospheric air to 60% oxygen. Thus, the transcutaneous oxygen was successfully monitored without any inconveniences such as skin inflammation, etc.

  17. Sensors in the Stream: The High-Frequency Wave of the Present.

    PubMed

    Rode, Michael; Wade, Andrew J; Cohen, Matthew J; Hensley, Robert T; Bowes, Michael J; Kirchner, James W; Arhonditsis, George B; Jordan, Phil; Kronvang, Brian; Halliday, Sarah J; Skeffington, Richard A; Rozemeijer, Joachim C; Aubert, Alice H; Rinke, Karsten; Jomaa, Seifeddine

    2016-10-04

    New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation. Widely available sensors for some physical (temperature) and chemical (conductivity, dissolved oxygen) attributes have become integral to aquatic science, and emerging sensors for nutrients, dissolved CO 2 , turbidity, algal pigments, and dissolved organic matter are now enabling observations of watersheds and streams at time scales commensurate with their fundamental hydrological, energetic, elemental, and biological drivers. Here we synthesize insights from emerging technologies across a suite of applications, and envision future advances, enabled by sensors, in our ability to understand, predict, and restore watershed and stream systems.

  18. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    PubMed

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  19. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardesai, Neha; Rao, Govind; Kostov, Yordan, E-mail: kostov@umbc.edu

    2015-07-15

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devicesmore » while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.« less

  20. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    USGS Publications Warehouse

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.

  1. Long-term performance of Aanderaa optodes and sea-bird SBE-43 dissolved-oxygen sensors bottom mounted at 32 m in Massachusetts Bay

    USGS Publications Warehouse

    Martini, Marinna A.; Butman, Bradford; Mickelson, Michael J.

    2007-01-01

    A field evaluation of two new dissolved-oxygen sensing technologies, the Aanderaa Instruments AS optode model 3830 and the Sea-Bird Electronics, Inc., model SBE43, was carried out at about 32-m water depth in western Massachusetts Bay. The optode is an optical sensor that measures fluorescence quenching by oxygen molecules, while the SBE43 is a Clark polarographic membrane sensor. Optodes were continuously deployed on bottom tripod frames by exchanging sensors every 4 months over a 19-month period. A Sea-Bird SBE43 was added during one 4-month deployment. These moored observations compared well with oxygen measurements from profiles collected during monthly shipboard surveys conducted by the Massachusetts Water Resources Authority. The mean correlation coefficient between the moored measurements and shipboard survey data was >0.9, the mean difference was 0.06 mL L−1, and the standard deviation of the difference was 0.15 mL L−1. The correlation coefficient between the optode and the SBE43 was >0.9 and the mean difference was 0.07 mL L−1. Optode measurements degraded when fouling was severe enough to block oxygen molecules from entering the sensing foil over a significant portion of the sensing window. Drift observed in two optodes beginning at about 225 and 390 days of deployment is attributed to degradation of the sensing foil. Flushing is necessary to equilibrate the Sea-Bird sensor. Power consumption by the SBE43 and required pump was 19.2 mWh per sample, and the optode consumed 0.9 mWh per sample, both within expected values based on manufacturers’ specifications.

  2. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications.

    PubMed

    Pensieri, Sara; Bozzano, Roberto; Schiano, M Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George

    2016-05-17

    In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented.

  3. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications

    PubMed Central

    Pensieri, Sara; Bozzano, Roberto; Schiano, M. Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George

    2016-01-01

    In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented. PMID:27196908

  4. First Autonomous Recording of in situ Dissolved Oxygen from Free-ranging Fish

    NASA Astrophysics Data System (ADS)

    Coffey, D.; Holland, K.

    2016-02-01

    Biologging technology has enhanced our understanding of the ecology of marine animals and has been central to identifying how oceanographic conditions drive patterns in their distribution and behavior. Among these environmental influences, there is increasing recognition of the impact of dissolved oxygen on the distribution of marine animals. Understanding of the impact of oxygen on vertical and horizontal movements would be advanced by contemporaneous in situ measurements of dissolved oxygen from animal-borne sensors instead of relying on environmental data that may not have appropriate spatial or temporal resolution. Here we demonstrate the capabilities of dissolved oxygen pop-up satellite archival tags (DO-PATs) by presenting the results from calibration experiments and trial deployments of two prototype tags on bluntnose sixgill sharks (Hexanchus griseus). The DO-PATs provided fast, accurate, and stable measurements in calibration trials and demonstrated high correlation with vertical profiles obtained via traditional ship-borne oceanographic instruments. Deployments on bluntnose sixgill sharks recorded oxygen saturations as low as 9.4% and effectively captured the oceanography of the region when compared with World Ocean Atlas 2013 values. This is the first study to use an animal-borne device to autonomously measure and record in situ dissolved oxygen saturation from non-air-breathing marine animals. The DO-PATs maintained consistency over time and yielded measurements equivalent to industry standards for environmental sampling. Acquiring contemporaneous in situ measurements of dissolved oxygen saturation alongside temperature and depth data will greatly improve our ability to investigate the spatial ecology of marine animals and make informed predictions of the impacts of global climate change. The information returned from DO-PATs is relevant not only to the study of the ecology of marine animals but will also become a useful new tool for investigating the physical structure of the oceans.

  5. Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples

    NASA Astrophysics Data System (ADS)

    Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.

    2010-02-01

    A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.

  6. Membrane-aerated microbioreactor for high-throughput bioprocessing.

    PubMed

    Zanzotto, Andrea; Szita, Nicolas; Boccazzi, Paolo; Lessard, Philip; Sinskey, Anthony J; Jensen, Klavs F

    2004-07-20

    A microbioreactor with a volume of microliters is fabricated out of poly(dimethylsiloxane) (PDMS) and glass. Aeration of microbial cultures is through a gas-permeable PDMS membrane. Sensors are integrated for on-line measurement of optical density (OD), dissolved oxygen (DO), and pH. All three parameter measurements are based on optical methods. Optical density is monitored via transmittance measurements through the well of the microbioreactor while dissolved oxygen and pH are measured using fluorescence lifetime-based sensors incorporated into the body of the microbioreactor. Bacterial fermentations carried out in the microbioreactor under well-defined conditions are compared to results obtained in a 500-mL bench-scale bioreactor. It is shown that the behavior of the bacteria in the microbioreactor is similar to that in the larger bioreactor. This similarity includes growth kinetics, dissolved oxygen profile within the vessel over time, pH profile over time, final number of cells, and cell morphology. Results from off-line analysis of the medium to examine organic acid production and substrate utilization are presented. By changing the gaseous environmental conditions, it is demonstrated that oxygen levels within the microbioreactor can be manipulated. Furthermore, it is demonstrated that the sensitivity and reproducibility of the microbioreactor system are such that statistically significant differences in the time evolution of the OD, DO, and pH can be used to distinguish between different physiological states. Finally, modeling of the transient oxygen transfer within the microbioreactor based on observed and predicted growth kinetics is used to quantitatively characterize oxygen depletion in the system. Copyright 2004 Wiley Periodicals, Inc.

  7. Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen.

    PubMed

    Liu, Jia-Ming; Jiao, Li; Lin, Li-Ping; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong; Jiang, Shu-Lian

    2013-12-15

    A label-free non-aggregation colorimetric sensor has been designed for the detection of Cu(2+), based on Cu(2+) catalyzing etching of gold nanorods (AuNRs) along longitudinal axis induced by dissolve oxygen in the presence of S2O3(2-), which caused the aspect ratio (length/width) of AuNRs to decrease and the color of the solution to distinctly change. The linear range and the detection limit (LD, calculated by 10 Sb/k, n=11) of this sensor were 0.080-4.8 µM Cu(2+) and 0.22 µM Cu(2+), respectively. This sensor has been utilized to detect Cu(2+) in tap water and human serum samples with the results agreeing well with those of inductively coupled plasma-mass spectroscopy (ICP-MS), showing its remarkable practicality. In order to prove the possibility of catalyzing AuNRs non-aggregation colorimetric sensor for the detection of Cu(2+), the morphological structures of AuNRs were characterized by high resolution transmission electron microscopy (HRTEM) and the sensing mechanism of colorimetric sensor for the detection of Cu(2+) was also discussed. © 2013 Elsevier B.V. All rights reserved.

  8. Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System

    NASA Technical Reports Server (NTRS)

    Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.

  9. Economic comparison of two types of automatic water-quality monitors

    USGS Publications Warehouse

    Katzenbach, Max

    1988-01-01

    A comparison of the U.S. Geological Survey's minimonitor system with a self-contained, 'package-sensor' system indicates that the package-sensor system requires less servicing time. The U.S. Geological Survey minimonitor is powered by an external battery and is housed in a weatherproof shelter. This instrument measures temperature, specific conductance, dissolved oxygen, and pH by means of sensors with extension cables having underewater connectors; data are recorder in binary coded decimal form on a 16-channel punched-paper-tape recorder that is housed in a shelter. The packaged-sensor system also measures temperature, specific conductanoe,dissolved oxygen, and pH by means of sensors housed in a package that is submerged in the stream. It has an internal power supply, no moving parts, anf does not require a weatherproof shelter; data are stored in solid-state memory. Minimonitors were installed at four sites in Ohio where U.S. Geological Survey flowthrough monitors already were in opertion. Two package-sensor systems also assigned to each site and alternated every 2 weeks. Detailed records were kept of (1) time involved in operation and maintenace of the systems, and (2) equipment problems during the test period, which lasted from October 1985 through September 1986. Equipment costs were not considered in the economic evaluation. Results of the comparisons show that the packaged-sensor system required less time to install, operate, and maintain than the minimonitor system.

  10. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  11. Determination of dissolved oxygen in the cryosphere: a comprehensive laboratory and field evaluation of fiber optic sensors.

    PubMed

    Bagshaw, E A; Wadham, J L; Mowlem, M; Tranter, M; Eveness, J; Fountain, A G; Telling, J

    2011-01-15

    Recent advances in the Cryospheric Sciences have shown that icy environments are host to consortia of microbial communities, whose function and dynamics are often controlled by the concentrations of dissolved oxygen (DO) in solution. To date, only limited spot determinations of DO have been possible in these environments. They reveal the potential for rates of change that exceed realistic manual sampling rates, highlighting the need to explore methods for the continuous measurement of DO concentrations. We report the first comprehensive field and laboratory performance tests of fiber-optic sensors (PreSens, Regensburg, Germany) for measuring DO in icy ecosystems. A series of laboratory tests performed at low and standard temperatures (-5 to 20 °C) demonstrates high precision (0.3% at 50 μmol/kg and 1.3% at 300 μmol/kg), rapid response times (<20 s), and minimal drift (<0.4%). Survival of freeze thaw was problematic, unless the sensor film was mechanically fixed to the fiber and protected by a stainless steel sheath. Results of two field deployments of sensors to the Swiss Alps and Antarctica largely demonstrate a performance consistent with laboratory tests and superior to traditional methods.

  12. An integrated optical oxygen sensor fabricated using rapid-prototyping techniques.

    PubMed

    Chang-Yen, David A; Gale, Bruce K

    2003-11-01

    This paper details the design and fabrication of an integrated optical biochemical sensor using a select oxygen-sensitive fluorescent dye, tris(2,2'-bipyridyl) dichlororuthenium(ii) hexahydrate, combined with polymeric waveguides that are fabricated on a glass substrate. The sensor uses evanescent interaction of light confined within the waveguide with the dye that is immobilized on an SU-8 waveguide surface. Adhesion of the dye to the integrated waveguide surface is accomplished using a unique process of spin-coating/electrostatic layer-by-layer formation. The SU-8 waveguide was chemically modified to allow the deposition process. Exposure of the dye molecules to the analyte and subsequent chemical interaction is achieved by directly coupling the fluid channel to the integrated waveguide. The completed sensor was linear in the dissolved oxygen across a wide range of interest and had a sensitivity of 0.6 ppm. A unique fabrication aspect of this sensor is the inherent simplicity of the design, and the resulting rapidity of fabrication, while maintaining a high degree of functionality and flexibility.

  13. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC).

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A submersible microbial fuel cell (SBMFC) was developed as a biosensor for in situ and real time monitoring of dissolved oxygen (DO) in environmental waters. Domestic wastewater was utilized as a sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO levels. With an external resistance of 1000Ω, the current density produced by the sensor (5.6 ± 0.5-462.2 ± 0.5 mA/m(2)) increased linearly with DO level up to 8.8 ± 0.3mg/L (regression coefficient, R(2)=0.9912), while the maximum response time for each measurement was less than 4 min. The current density showed different response to DO levels when different external resistances were applied, but a linear relationship was always observed. Investigation of the sensor performance at different substrate concentrations indicates that the organic matter contained in the domestic wastewater was sufficient to power the sensing activities. The sensor ability was further explored under different environmental conditions (e.g. pH, temperature, conductivity, and alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different environmental waters and the results showed no significant difference (p>0.05) with that measured by DO meter. The simple, compact SBMFC sensor showed promising potential for direct, inexpensive and rapid DO monitoring in various environmental waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. LUMOS--A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range.

    PubMed

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M; Revsbech, Niels-Peter; Glud, Ronnie N; Canfield, Donald E; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented.

  15. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    PubMed Central

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M.; Revsbech, Niels-Peter; Glud, Ronnie N.; Canfield, Donald E.; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented. PMID:26029920

  16. Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds.

    PubMed

    Acosta, Miguel A; Ymele-Leki, Patrick; Kostov, Yordan V; Leach, Jennie B

    2009-06-01

    We present the development and characterization of fluorescent oxygen-sensing microparticles designed for measuring oxygen concentration in microenvironments existing within standard cell culture and transparent three-dimensional (3D) cell scaffolds. The microparticle synthesis employs poly(dimethylsiloxane) to encapsulate silica gel particles bound with an oxygen-sensitive luminophore as well as a reference or normalization fluorophore that is insensitive to oxygen. We developed a rapid, automated and non-invasive sensor analysis method based on fluorescence microscopy to measure oxygen concentration in a hydrogel scaffold. We demonstrate that the microparticles are non-cytotoxic and that their response is comparable to that of a traditional dissolved oxygen meter. Microparticle size (5-40 microm) was selected for microscale-mapping of oxygen concentration to allow measurements local to individual cells. Two methods of calibration were evaluated and revealed that the sensor system enables characterization of a range of hypoxic to hyperoxic conditions relevant to cell and tissue biology (i.e., pO(2) 10-160 mmHg). The calibration analysis also revealed that the microparticles have a high fraction of quenched luminophore (0.90+/-0.02), indicating that the reported approach provides significant advantages for sensor performance. This study thus reports a versatile oxygen-sensing technology that enables future correlations of local oxygen concentration with individual cell response in cultured engineered tissues.

  17. Flexible Microsensor Array for the Monitoring and Control of Plant Growth System

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for maintenance, as well as reduce volume, mass, and power consumption by eliminating bulky diagnosis systems including calibrant (fluid and gas) reservoir and flow system hardware.

  18. MOLYBDENUM ENRICHMENT AS AN INDICATOR OF HYPOXIC WATER CONDITION

    EPA Science Inventory

    Most programs examining the extent of low dissolved oxygen (DO) conditions in marine systems require in-situ sensors to be deployed during periods of low DO. This limits the ability to monitor hypoxia over larger spatial and/or temporal scales. Determination of authigenic molybde...

  19. Use of multiple sensor technologies for quality control of in situ biogeochemical measurements: A SeaCycler case study

    NASA Astrophysics Data System (ADS)

    Atamanchuk, Dariia; Koelling, Jannes; Lai, Jeremy; Send, Uwe; Wallace, Douglas

    2017-04-01

    Over the last two decades observing capacity for the global ocean has increased dramatically. Emerging sensor technologies for dissolved gases, nutrients and bio-optical properties in seawater are allowing extension of in situ observations beyond the traditionally measured salinity, temperature and pressure (CTD). However the effort to extend observations using autonomous instruments and platforms carries the risk of losing the level of data quality achievable through conventional water sampling techniques. We will present results from a case study with the SeaCycler profiling winch focusing on quality control of the in-situ measurements. A total of 13 sensors were deployed from May 2016 to early 2017 on SeaCycler's profiling sensor float, including CTD, dissolved oxygen (O2, 3 sensors), carbon dioxide (pCO2, 2 sensors), nutrients, velocity sensors, fluorometer, transmissometer, single channel PAR sensor, and others. We will highlight how multiple measurement technologies (e.g. for O2 and CO2) complement each other and result in a high quality data product. We will also present an initial assessment of the bio-optical data, their implications for seasonal phytoplankton dynamics and comparisons to climatologies and ocean-color data products obtained from the MODIS satellite.

  20. Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L

    2011-09-08

    Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.

  1. Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds

    PubMed Central

    Acosta, Miguel A.; Ymele-Leki, Patrick; Kostov, Yordan V.; Leach, Jennie B.

    2010-01-01

    We present the development and characterization of fluorescent oxygen-sensing microparticles designed for measuring oxygen concentration in microenvironments existing within standard cell culture and transparent three-dimensional (3D) cell scaffolds. The microparticle synthesis employs poly(dimethylsiloxane) to encapsulate silica gel particles bound with an oxygen-sensitive luminophore as well as a reference or normalization fluorophore that is insensitive to oxygen. We developed a rapid, automated and non-invasive sensor analysis method based on fluorescence microscopy to measure oxygen concentration in a hydrogel scaffold. We demonstrate that the microparticles are non-cytotoxic and that their response is comparable to that of a traditional dissolved oxygen meter. Microparticle size (5–40 μm) was selected for microscale-mapping of oxygen concentration to allow measurements local to individual cells. Two methods of calibration were evaluated and revealed that the sensor system enables characterization of a range of hypoxic to hyperoxic conditions relevant to cell and tissue biology (i.e., pO2 10–160 mm Hg). The calibration analysis also revealed that the microparticles have a high fraction of quenched luminophore (0.90 ± 0.02), indicating that the reported approach provides significant advantages for sensor performance. This study thus reports a versatile oxygen-sensing technology that enables future correlations of local oxygen concentration with individual cell response in cultured engineered tissues. PMID:19285719

  2. Continuous pCO2 time series from Ocean Networks Canada cabled observatories at the northeast Pacific shelf edge and in the sub-tidal Arctic

    NASA Astrophysics Data System (ADS)

    Juniper, S. Kim; Sastri, Akash; Mihaly, Steven; Duke, Patrick; Else, Brent; Thomas, Helmuth; Miller, Lisa

    2017-04-01

    Marine pCO2 sensor technology has progressed to the point where months-long time series from remotely-deployed pCO2 sensors can be used to document seasonal and higher frequency variability in pCO2 and its relationship to oceanographic processes. Ocean Networks Canada recently deployed pCO2 sensors on two cabled platforms: a bottom-moored (400 m depth), vertical profiler at the edge of the northeast Pacific continental shelf off Vancouver Island, Canada, and a subtidal seafloor platform in the Canadian High Arctic (69˚ N) at Cambridge Bay, Nunavut. Both platforms streamed continuous data to a shore-based archive from Pro-Oceanus pCO2 sensors and other oceanographic instruments. The vertical profiler time series revealed substantial intrusions of corrosive (high CO2/low O2), saltier, colder water masses during the summertime upwelling season and during winter-time reversals of along-slope currents. Step-wise profiles during the downcast provided the most reliable pCO2 data, permitting the sensor to equilibrate to the broad range of pCO2 concentrations encountered over the 400 metre depth interval. The Arctic pCO2 sensor was deployed in August 2015. Reversing seasonal trends in pCO2 and dissolved oxygen values can be related to the changing balance of photosynthesis and respiration under sea ice, as influenced by irradiance. Correlation of pCO2 and dissolved oxygen sensor data and the collection of calibration samples have permitted evaluation of sensor performance in relation to operational conditions encountered in vertical profiling and lengthy exposure to subzero seawater.

  3. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring over time scales of months to years utilizing in situ sensors can provide an understanding of processes controlling water transport, respiration and the fate and impacts of accidental and natural gas and oil releases.

  4. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation

    PubMed Central

    Batt, Ryan D.; Carpenter, Stephen R.; Cole, Jonathan J.; Pace, Michael L.; Johnson, Robert A.

    2013-01-01

    Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems. PMID:24101479

  5. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation.

    PubMed

    Batt, Ryan D; Carpenter, Stephen R; Cole, Jonathan J; Pace, Michael L; Johnson, Robert A

    2013-10-22

    Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.

  6. Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds.

    PubMed

    Vieweg, Michael; Trauth, Nico; Fleckenstein, Jan H; Schmidt, Christian

    2013-09-03

    One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.

  7. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    EPA Pesticide Factsheets

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  9. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  10. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  11. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry.

    PubMed

    Camilli, Richard; Duryea, Anthony N

    2009-07-01

    The TETHYS mass spectrometer is intended for long-term in situ observation of dissolved gases and volatile organic compounds in aquatic environments. Its design maintains excellent low mass range sensitivity and stability during long-term operations, enabling characterization of low-frequency variability in many trace dissolved gases. Results are presented from laboratory trials and a 300-h in situ trial in a shallow marine embayment in Massachusetts, U.S.A. This time series consists of over 15000 sample measurements and represents the longest continuous record made by an in situ mass spectrometer in an aquatic environment. These measurements possess sufficient sampling density and duration to apply frequency analysis techniques for study of temporal variability in dissolved gases. Results reveal correlations with specific environmental periodicities. Numerical methods are presented for converting mass spectrometer ion peak ratios to absolute-scale dissolved gas concentrations across wide temperature regimes irrespective of ambient pressure, during vertical water column profiles in a hypoxic deep marine basin off the coast of California, U.S.A. Dissolved oxygen concentration values obtained with the TETHYS instrument indicate close correlation with polarographic oxygen sensor data across the entire depth range. These methods and technology enable observation of aquatic environmental chemical distributions and dynamics at appropriate scales of resolution.

  12. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor.

    PubMed

    Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao

    2017-02-01

    This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    PubMed Central

    Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  14. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions.

    PubMed

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik

    2016-12-01

    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  15. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  16. A robust and reliable optical trace oxygen sensor

    NASA Astrophysics Data System (ADS)

    McDowell, G. R.; Holmes-Smith, A. S.; Uttamlal, M.; Mitchell, C.; Shannon, P. H.

    2017-05-01

    In applications of nitrogen (N2) generation, industrial gas manufacturing and food packaging there is a need to ensure oxygen (O2) is absent from the environment, even at the lowest concentration levels. Therefore, there has been an increased growth in the development of trace O2 parts per million (ppm) sensors over the past decade to detect and quantify the concentration of molecular O2 in the environment whether it be dissolved or gaseous O2. The majority of commercially available trace O2 sensors are based on electrochemical, zirconia and paramagnetic technologies. Here, the development of a luminescence-based optical trace O2 sensor is presented. Luminescence-based sensing is now regarded as one of the best techniques for the detection and quantification of O2. This is due to the high detection sensitivity, no O2 is consumed and there are a vast array of luminescent indicators and sensing platforms (polymers) that can be selected to suit the desired application. The sensor will be shown to operate from -30 °C to +60 °C in the 0-1000 ppm and/or 0-1200 μbar partial pressure of oxygen (ppO2) range and is equipped with temperature and pressure compensation. The luminescence non-depleting principle, sensor specifications and miniaturized nature offers an attractive alternative to other sensing technologies and advantages over other luminescence-based O2 ppm sensors.

  17. Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers

    PubMed Central

    2015-01-01

    Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706

  18. Sensing and imaging of oxygen with parts per billion limits of detection and based on the quenching of the delayed fluorescence of (13)C70 fullerene in polymer hosts.

    PubMed

    Kochmann, Sven; Baleizão, Carlos; Berberan-Santos, Mário N; Wolfbeis, Otto S

    2013-02-05

    We report on a new method for sensing trace oxygen in the gas phase. It is based on the extreme efficiency of the quenching of the thermally activated delayed fluorescence of isotopically enriched carbon-13 fullerene C(70) ((13)C(70)). This fullerene was dissolved in polymer matrixes of varying oxygen permeability, viz., polystyrene (PS), ethyl cellulose (EC) and an organically modified silica gel ("ormosil"; OS). The sensor films (5-10 μm thick), on photoexcitation at 470 nm, display a strong delayed photoluminescence with peaks between 670 and 700 nm. Its quenching by molecular oxygen was studied at 25 and 60 °C and at concentrations from zero up to 150 ppmv of oxygen in nitrogen. The rapid lifetime determination (RLD) method was applied to determine oxygen-dependent lifetimes and for fluorescence lifetime imaging of oxygen. The lower limits of detection (at 1% quenching) vary with the polymer used (EC ∼250 ppbv, OS ∼320 ppbv, PS ∼530 ppbv at 25 °C) and with temperature. The oxygen sensors reported here are the most sensitive ones described so far.

  19. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  20. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    DTIC Science & Technology

    2016-08-01

    every 5 minutes). Other automation features that come with the Bioflo include wet/dry level sensors, dissolved oxygen , pH, temperature and mixing...38 3.4.1 Operation at mesophilic temperature (35oC...38 ERDC/CERL TR-16-13 iv 3.4.2 Operation at ambient temperature (20 oC) ............................................................. 46

  1. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  2. Recent developments in OLED-based chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth

    2007-09-01

    Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.

  3. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    PubMed Central

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r2 = 0.80, p < 0.001), fluorescence intensities (Ex./Em. 370/460 nm) (r2 = 0.91, p < 0.001), the fluorescence index (r2 = 0.88, p < 0.001) and the humification index (r2 = 0.78, p < 0.001), suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r2 = 0.68, p < 0.001), indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r2 = 0.83, p < 0.001), TP (r2 = 0.82, p < 0.001) concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor. PMID:24984060

  4. The potential applications of real-time monitoring of water quality in a large shallow lake (Lake Taihu, China) using a chromophoric dissolved organic matter fluorescence sensor.

    PubMed

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-06-30

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r(2) = 0.80, p < 0.001), fluorescence intensities (Ex./Em. 370/460 nm) (r(2) = 0.91, p < 0.001), the fluorescence index (r(2) = 0.88, p < 0.001) and the humification index (r(2) = 0.78, p < 0.001), suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r(2) = 0.68, p < 0.001), indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r(2) = 0.83, p < 0.001), TP (r(2) = 0.82, p < 0.001) concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor.

  5. Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles.

    PubMed

    Biswas, Aniket; Nagaraja, Ashvin T; McShane, Michael J

    2014-12-10

    Nanosized luminescent sensors were prepared as reagents for optical sensing and imaging of oxygen using ratiometric emission properties of a two-dye system. Polymeric capsules were fabricated utilizing poly(vinylsulfonic acid) (PVSA)-stabilized vaterite CaCO3 nanoparticles (CCNPs) as sacrificial templates. The buffer and polymeric surfactant requirements of the layer-by-layer (LbL) process were evaluated toward deposition of multilayer coatings and, ultimately, formation of hollow capsules using these interesting materials. CCNPs were found to be more stable in alkaline NaHCO3 buffer after repeated cycles of washing under sonication and resuspension. An intermediate PVSA concentration was required to maximize the loading of oxygen-sensitive porphyrin and oxygen-insensitive fluorescent nanoparticles in the CCNPs while maintaining minimal nanoparticle size. The CCNPs were then coated with polyelectrolyte multilayers and subsequent removal of the CaCO3 core yielded nanocapsules containing dye and fluorescent nanoparticles. The resulting nanocapsules with encapsulated luminophores functioned effectively as oxygen sensors with a quenching response of 89.28 ± 2.59%, and O2 (S = 1/2) = 20.91 μM of dissolved oxygen.

  6. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary.

    PubMed

    Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.

  7. Developing monitoring plans to detect spills related to natural gas production.

    PubMed

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  8. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  9. Microbial sensor for drug susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    Zhang, Z-T; Wang, D-B; Li, C-Y; Deng, J-Y; Zhang, J-B; Bi, L-J; Zhang, X-E

    2018-01-01

    Drug susceptibility testing (DST) of clinical isolates of Mycobacterium tuberculosis is critical in treating tuberculosis. We demonstrate the possibility of using a microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The sensor is made of an oxygen electrode with M. tuberculosis cells attached to its surface. This sensor monitors the residual oxygen consumption of M. tuberculosis cells after treatment with anti-TB drugs with glycerine as a carbon source. In principle, after drug pretreatment for 4-5 days, the response differences between the sensors made of drug-sensitive isolates are distinguishable from the sensors made of drug-resistant isolates. The susceptibility of the M. tuberculosis H37Ra strain, its mutants and 35 clinical isolates to six common anti-TB drugs: rifampicin, isoniazid, streptomycin, ethambutol, levofloxacin and para-aminosalicylic acid were tested using the proposed method. The results agreed well with the gold standard method (LJ) and were determined in significantly less time. The whole procedure takes approximately 11 days and therefore has the potential to inform clinical decisions. To our knowledge, this is the first study that demonstrates the possible application of a dissolved oxygen electrode-based microbial sensor in M. tuberculosis drug resistance testing. This study used the microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The overall detection result of the microbial sensor agreed well with that of the conventional LJ proportion method and takes less time than the existing phenotypic methods. In future studies, we will build an O 2 electrode array microbial sensor reactor to enable a high-throughput drug resistance analysis. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  10. A new wireless system for decentralised measurement of physiological parameters from shake flasks

    PubMed Central

    Vasala, Antti; Panula, Johanna; Bollók, Monika; Illmann, Lutz; Hälsig, Christian; Neubauer, Peter

    2006-01-01

    Background Shake flasks are widely used because of their low price and simple handling. Many researcher are, however, not aware of the physiological consequences of oxygen limitation and substrate overflow metabolism that occur in shake flasks. Availability of a wireless measuring system brings the possibilities for quality control and design of cultivation conditions. Results Here we present a new wireless solution for the measurement of pH and oxygen from shake flasks with standard sensors, which allows data transmission over a distance of more than 100 metres in laboratory environments. This new system was applied to monitoring of cultivation conditions in shake flasks. The at-time monitoring of the growth conditions became possible by simple means. Here we demonstrate that with typical protocols E. coli shake flask cultures run into severe oxygen limitation and the medium is strongly acidified. Additionally the strength of the new system is demonstrated by continuous monitoring of the oxygen level in methanol-fed Pichia pastoris shake flask cultures, which allows the optimisation of substrate feeding for preventing starvation or methanol overfeed. 40 % higher cell density was obtained by preventing starvation phases which occur in standard shake flask protocols by adding methanol when the respiration activity decreased in the cultures. Conclusion The here introduced wireless system can read parallel sensor data over long distances from shake flasks that are under vigorous shaking in cultivation rooms or closed incubators. The presented technology allows centralised monitoring of decentralised targets. It is useful for the monitoring of pH and dissolved oxygen in shake flask cultures. It is not limited to standard sensors, but can be easily adopted to new types of sensors and measurement places (e.g., new sensor points in large-scale bioreactors). PMID:16504107

  11. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

    PubMed Central

    Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  12. Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    NASA Technical Reports Server (NTRS)

    Pappas, D.; Jeevarajan, A.; Anderson, M. M.

    2004-01-01

    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could offer automated, continuous monitoring of cell cultures with a temporal resolution of 1 minute, which is not attainable by sampling via handheld blood analyzer (i-STAT). Conclusion: The resulting bias and precision found in these cell culture-based studies is comparable to Paratrend sensor clinical results. Although the large error in p02 measurements (+/-18 mm Hg) may be acceptable for clinical applications, where Paratrend values are periodically adjusted to a BGA measurement, the O2 sensor in this bundle may not be reliable enough for the single-calibration requirement of sensors used in NASA's bioreactors. The pH and pC02 sensors in the bundle are reliable and stable over the measurement period, and can be used without recalibration to measure cell cultures in rn.jcrogravity biotechnology experiments. Future work will test additional Paratrend sensors to provide statistical assessment of sensor performance.

  13. Chemical, biochemical, and environmental fiber sensors IV; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992

    NASA Astrophysics Data System (ADS)

    Lieberman, Robert A.

    Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.

  14. Water Quality Investigations at Lake Merritt in Oakland, California

    NASA Astrophysics Data System (ADS)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that has the greatest number and diversity of organisms as indicated through visual observation, which is located where marine waters flow directly into the Lake. In addition, high levels of dissolved oxygen were measured at two sites along an approximately 500 meters stretch of the Lake's eastern shoreline, where swift moving currents were observed. Dissolved oxygen levels were lowest in areas where storm drain runoff waters flow into the Lake, as well as those that include trash-filled, stagnant sections. Overall, our work has generated information that may be used to better understand important factors that affect Lake Merritt's water quality. Such studies should be continued in the future and used to help maintain a healthy ecosystem in and around Lake Merritt.

  15. Evaluation of a Prototype pCO2 Optical Sensor

    NASA Astrophysics Data System (ADS)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.

    2016-12-01

    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  16. Spatially complex distribution of dissolved manganese in a fjord as revealed by high-resolution in situ sensing using the autonomous underwater vehicle Autosub.

    PubMed

    Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A

    2005-12-15

    Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (<25 to >600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.

  17. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems.

    PubMed

    Marques, Ricardo; Rodriguez-Caballero, A; Oehmen, Adrian; Pijuan, Maite

    2016-08-01

    Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Cai, Yuankun; Shinar, Ruth; Shinar, Joseph

    2009-08-01

    Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.

  19. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    NASA Astrophysics Data System (ADS)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  20. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  1. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    NASA Astrophysics Data System (ADS)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 μmol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 μmol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.

  2. The Evolution of Deepwater Dissolved Oxygen in the Northern South China Sea During the Past 400 ka

    NASA Astrophysics Data System (ADS)

    Wang, N.; Huang, B.; Dong, Y.

    2016-12-01

    Reconstruction of dissolved oxygen in paleo-ocean contributes toward understanding the history of ocean circulation, climate, causes of extinctions, and the evolution of marine organisms. Based on analysis of benthic foraminifera oxygen index (BFOI), the redox-sensitive trace elements (Mo/Al), the percentage of epifaunal benthic foraminifera and infaunal/epifaunal ratio at core MD12-3432, we reconstruct the evolution of deep water dissolved oxygen in northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable dissolved oxygen. Both BFOI and Mo/Al are redox indicators. Similar trends confirm that they reflect the variation of dissolved oxygen in seawater since 400 ka accurately. BFOI and Mo/Al indicate that dissolved oxygen was high in MIS 11-MIS 7 and decreased gradually during MIS 6- MIS 2. The percentage of epifauna decreased and infaunal/epifaunal ratio increased with decreasing dissolved oxygen. By comparison of dissolved oxygen and productivity indexes such as phytoplankton total (PT) and species abundances, we found that when PT fluctuated in the average range of 1000-1500 ng/g, the abundances of Bulimina and Uvigerina which represent high productivity increased. However, when PT reached the range of 2500-3000 ng/g, the abundances of Bulimina and Uvigerina didn't increase, but the abundances of dysoxic species Chilostomella oolina and Globobulimina pacifica increased and the dissolved oxygen reached low value. The reasons may be that the decomposition of excessive organic matter consumed more dissolved oxygen. The low dissolved oxygen suppressed the growth of Bulimina and Uvigerina and accelerated the boom of C. oolina and G. oolina. The dissolved oxygen is not only associated with productivity, but also affected by the thermohaline circulation. Benthic foraminifera F. favus is the representative species in Pacific deep water. Its appearance at 194 ka, 205 ka, 325, the 328 ka in MD12-3432 indicate that the upper border of western Pacific deep water was beyond the sill of Bashi Strait and high dissolved oxygen deep water was brought into Northern SCS. The millennium-scale rapid variability and decline of dissolved oxygen in MIS 4, 3, 2 may be caused by fluctuations and slowdown of thermohaline circulation transported from the northern Atlantic to the northern SCS.

  3. Prediction model of dissolved oxygen in ponds based on ELM neural network

    NASA Astrophysics Data System (ADS)

    Li, Xinfei; Ai, Jiaoyan; Lin, Chunhuan; Guan, Haibin

    2018-02-01

    Dissolved oxygen in ponds is affected by many factors, and its distribution is unbalanced. In this paper, in order to improve the imbalance of dissolved oxygen distribution more effectively, the dissolved oxygen prediction model of Extreme Learning Machine (ELM) intelligent algorithm is established, based on the method of improving dissolved oxygen distribution by artificial push flow. Select the Lake Jing of Guangxi University as the experimental area. Using the model to predict the dissolved oxygen concentration of different voltage pumps, the results show that the ELM prediction accuracy is higher than the BP algorithm, and its mean square error is MSEELM=0.0394, the correlation coefficient RELM=0.9823. The prediction results of the 24V voltage pump push flow show that the discrete prediction curve can approximate the measured values well. The model can provide the basis for the artificial improvement of the dissolved oxygen distribution decision.

  4. The influence of dissolved oxygen on winter habitat selection by largemouth bass: an integration of field biotelemetry studies and laboratory experiments.

    PubMed

    Hasler, C T; Suski, C D; Hanson, K C; Cooke, S J; Tufts, B L

    2009-01-01

    In this study, field biotelemetry and laboratory physiology approaches were coupled to allow understanding of the behavioral and physiological responses of fish to winter hypoxia. The biotelemetry study compared dissolved oxygen levels measured throughout the winter period with continually tracked locations of nine adult largemouth bass obtained from a whole-lake submerged telemetry array. Fish habitat usage was compared with habitat availability to assess whether fish were selecting for specific dissolved oxygen concentrations. The laboratory study examined behavioral and physiological responses to progressive hypoxia in juvenile largemouth bass acclimated to winter temperatures. Results from the dissolved oxygen measurements made during the biotelemetry study showed high variance in under-ice dissolved oxygen levels. Avoidance of water with dissolved oxygen <2.0 mg/L by telemetered fish was demonstrated, but significant use of water with intermediate dissolved oxygen levels was also found. Results from the lab experiments showed marked changes in behavior (i.e., yawning and vertical movement) at <2.0 mg/L of dissolved oxygen but no change in tissue lactate, an indicator of anaerobic metabolism. Combined results of the biotelemetry and laboratory studies demonstrate that a dissolved oxygen content of 2.0 mg/L may be a critical threshold that induces behavioral responses by largemouth bass during the winter. In addition, the use by fish of areas with intermediate levels of dissolved oxygen suggests that there are multiple environmental factors influencing winter behavior.

  5. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and/or abundance of key microbial populations. Together, the data provide an explanation for the seasonal decrease in methane oxidation: rates of oxygen consumption increase over the season, which decreases the amount of oxygen dissolved in porewater at the peatland surface and reduces rates of methane oxidation.

  6. Sea Surface Scanner: An advanced catamaran to study the sea surface

    NASA Astrophysics Data System (ADS)

    Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.

    2016-02-01

    The Sea Surface Scanner is a remote-controlled catamaran with the capability to sample the sea-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the sea surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the sea surface microlayer. We discuss the variability of biochemical properties of the sea surface and its implication on air-sea interaction.

  7. Surface-water hydrology and quality, and macroinvertebrate and smallmouth bass populations in four stream basins in southwestern Wisconsin, 1987-90

    USGS Publications Warehouse

    Graczyk, David J.; Lillie, Richard A.; Schlesser, Roger A.; Mason, John W.; Lyons, John D.; Kerr, Roger A.; Graczyk, David J.

    1993-01-01

    Low concentrations of dissolved oxygen constituted the most detrimental water-quality problem affecting smallmouth bass populations. Dissolved-oxygen concentrations were occasionally less than 3 milligrams per liter, a dissolved-oxygen concentration that may be detrimental to early-life stages of smallmouth bass in the streams; however, smallmouth bass were apparently able to withstand these low dissolved-oxygen concentrations and seem to have survived in some situations when dissolved-oxygen concentration decreased to1 milligram per liter.

  8. Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies.

    PubMed

    Wu, Shanshan; Wu, Siying; Yi, Zheyuan; Zeng, Fei; Wu, Weizhen; Qiao, Yuan; Zhao, Xingzhong; Cheng, Xing; Tian, Yanqing

    2018-02-13

    In this study, we developed fluorescent dual pH and oxygen sensors loaded in multi-well plates for in-situ and high-throughput monitoring of oxygen respiration and extracellular acidification during microbial cell growth for understanding metabolism. Biocompatible PHEMA-co-PAM materials were used as the hydrogel matrix. A polymerizable oxygen probe (OS2) derived from PtTFPP and a polymerizable pH probe (S2) derived from fluorescein were chemically conjugated into the matrix to solve the problem of the probe leaching from the matrix. Gels were allowed to cure directly on the bottom of 96-well plates at room-temperature via redox polymerization. The influence of matrix's composition on the sensing behaviors was investigated to optimize hydrogels with enough robustness for repeatable use with good sensitivity. Responses of the dual sensing hydrogels to dissolved oxygen (DO) and pH were studied. These dual oxygen-pH sensing plates were successfully used for microbial cell-based screening assays, which are based on the measurement of fluorescence intensity changes induced by cellular oxygen consumption and pH changes during microbial growth. This method may provide a real-time monitoring of cellular respiration, acidification, and a rapid kinetic assessment of multiple samples for cell viability as well as high-throughput drug screening. All of these assays can be carried out by a conventional plate reader.

  9. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD.

    PubMed

    Ma, Yuhan; Berman, Avery J L; Pike, G Bruce

    2016-12-01

    To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  10. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  11. Seasonal and interannual variability of dissolved oxygen around the Balearic Islands from hydrographic data

    NASA Astrophysics Data System (ADS)

    Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.

    2014-10-01

    Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.

  12. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.

  13. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A novel microbial fuel cell sensor with biocathode sensing element.

    PubMed

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-08-15

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA% -1 cm -2 ) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA% -1 cm -2 ). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  16. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M.

    2018-04-01

    The purpose of this research was to discover the process of enrichment of dissolved oxygen in fish cultivation media using nanobubble technology. This study was conducted with two treatments, namely a cultivation media without fish and a cultivation media containing 8 fish with an average body length of 24.5 cm. The results showed that the concentration of dissolved oxygen increased from 6.5 mg/L to 25 mg/L. The rate of increase in dissolved oxygen concentration for 30 minutes is 0.61 pp/minute. The rate of decrease in dissolved oxygen concentration in treatment 1 is 3.08 ppm/day and in treatment 2 is 0.23 ppm/minute. It was concluded that nanobubble is able to increase dissolved oxygen.

  17. Perils of categorical thinking: "Oxic/anoxic" conceptual model in environmental remediation

    USGS Publications Warehouse

    Bradley, Paul M.

    2012-01-01

    Given ambient atmospheric oxygen concentrations of about 21 percent (by volume), the lower limit for reliable quantitation of dissolved oxygen concentrations in groundwater samples is in the range of 0.1–0.5 mg/L. Frameworks for assessing in situ redox condition are often applied using a simple two-category (oxic/anoxic) model of oxygen condition. The "oxic" category defines the environmental range in which dissolved oxygen concentrations are clearly expected to impact contaminant biodegradation, either by supporting aerobic biodegradation of electron-donor contaminants like petroleum hydrocarbons or by inhibiting anaerobic biodegradation of electron-acceptor contaminants like chloroethenes. The tendency to label the second category "anoxic" leads to an invalid assumption that oxygen is insignificant when, in fact, the dissolved oxygen concentration is less than detection but otherwise unknown. Expressing dissolved oxygen concentrations as numbers of molecules per volume, dissolved oxygen concentrations that fall below the 0.1 mg/L field detection limit range from 1 to 1017 molecules/L. In light of recent demonstrations of substantial oxygen-linked biodegradation of chloroethene contaminants at dissolved oxygen concentrations well below the 0.1–0.5 mg/L field detection limit, characterizing "less than detection" oxygen concentrations as "insignificant" is invalid.

  18. Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.

    PubMed

    Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il

    2010-05-01

    Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC < or =0.015%, 10 min at BAC < or =0.010%, and 5 min at BAC < or =0.006%. The high dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p < 0.05). In analyzing pharmacokinetic parameters, AUC(inf) and K(el) of the high oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.

  19. Water Quality and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.; Buktenica, M.W.; Girdner, Scott

    2007-01-01

    We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994a??1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996a??1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994a??1995) and a weak ventilation year (1996a??1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 thana?#1997. Thus, the details of surface cooling and wind-driven mixing during the early stages ofa?#reverse stratification may determine the neta?#amount of ventilation possible during a particular year.

  20. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    PubMed

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-06-01

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments

    DTIC Science & Technology

    2015-12-23

    force on the sediment. Over the course of the experiment, dissolved and particulate metal concentrations, dissolved oxygen , temperature , turbidity, pH...dissolved oxygen , and temperature . A 16-hour multiple resuspension was also implemented in the SeFEC, intended to replicate intermittent ship traffic...was sampled at the end of hours 4, 8, 12, and 16. Samples were analyzed for: dissolved metals, pH, dissolved oxygen , and temperature (three

  2. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system.

    PubMed

    Gong, Yanming; Radachowsky, Sage E; Wolf, Michael; Nielsen, Mark E; Girguis, Peter R; Reimers, Clare E

    2011-06-01

    Supported by the natural potential difference between anoxic sediment and oxic seawater, benthic microbial fuel cells (BMFCs) promise to be ideal power sources for certain low-power marine sensors and communication devices. In this study a chambered BMFC with a 0.25 m(2) footprint was used to power an acoustic modem interfaced with an oceanographic sensor that measures dissolved oxygen and temperature. The experiment was conducted in Yaquina Bay, Oregon over 50 days. Several improvements were made in the BMFC design and power management system based on lessons learned from earlier prototypes. The energy was harvested by a dynamic gain charge pump circuit that maintains a desired point on the BMFC's power curve and stores the energy in a 200 F supercapacitor. The system also used an ultralow power microcontroller and quartz clock to read the oxygen/temperature sensor hourly, store data with a time stamp, and perform daily polarizations. Data records were transmitted to the surface by the acoustic modem every 1-5 days after receiving an acoustic prompt from a surface hydrophone. After jump-starting energy production with supplemental macroalgae placed in the BMFC's anode chamber, the average power density of the BMFC adjusted to 44 mW/m(2) of seafloor area which is better than past demonstrations at this site. The highest power density was 158 mW/m(2), and the useful energy produced and stored was ≥ 1.7 times the energy required to operate the system.

  3. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    PubMed

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  4. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    PubMed Central

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  5. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation.

    PubMed

    Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S

    2008-09-01

    The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.

  6. A Sixteen-year Decline in Dissolved Oxygen in the Central California Current.

    PubMed

    Ren, Alice S; Chai, Fei; Xue, Huijie; Anderson, David M; Chavez, Francisco P

    2018-05-08

    A potential consequence of climate change is global decrease in dissolved oxygen at depth in the oceans due to changes in the balance of ventilation, mixing, respiration, and photosynthesis. We present hydrographic cruise observations of declining dissolved oxygen collected along CalCOFI Line 66.7 (Line 67) off of Monterey Bay, in the Central California Current region, and investigate likely mechanisms. Between 1998 and 2013, dissolved oxygen decreased at the mean rate of 1.92 µmol kg -1 year -1 on σ θ 26.6-26.8 kg m -3 isopycnals (250-400 m), translating to a 40% decline from initial concentrations. Two cores of elevated dissolved oxygen decline at 130 and 240 km from shore, which we suggest are a California Undercurrent and a California Current signal respectively, occurred on σ θ ranges of 26.0-26.8 kg m -3 (100-400 m). A box model suggests that small annual changes in dissolved oxygen in source regions are sufficient to be the primary driver of the mid-depth declines. Variation in dissolved oxygen at the bottom of the surface mixed layer suggests that there is also a signal of increased local remineralization.

  7. Numerical Solution of a 3-D Advection-Dispersion Model for Dissolved Oxygen Distribution in Facultative Ponds

    NASA Astrophysics Data System (ADS)

    Sunarsih; Sasongko, Dwi P.; Sutrisno

    2018-02-01

    This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.

  8. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  9. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.

    2016-11-01

    The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.

  10. Development of a Portable Fiberoptic Surface Enhanced Raman Sensor for In-Situ Detection and Monitoring of Perchlorate and Energetics

    DTIC Science & Technology

    2012-01-01

    spectroscopic analysis of ClO4- at concentrations of a: 0, b: 10-10, c: 10-9, d: 10-8, e: 10-7, and f: 10-6 M using DMAE -modified Au nanoparticles...M) obtained from six randomly selected spots (inset) on a substrate made of DMAE -modified Au nanoparticles. Each spectrum was offseted for the...trimethylammonium bromide DI Deionized DMAE 2-(dimethylamino)-ethanethiol hydrochloride DO Dissolved oxygen DOE Department of Energy DoD

  11. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    PubMed

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  12. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes

    USGS Publications Warehouse

    Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.

    2009-01-01

    1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

  13. Application of polymer-coated metal-insulator-semiconductor sensors for the detection of dissolved hydrogen

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Medlin, J. W.; Bastasz, R.

    2006-06-01

    The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized.

  14. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t

  15. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system.

    PubMed

    Moya, A; Ortega-Ribera, M; Guimerà, X; Sowade, E; Zea, M; Illa, X; Ramon, E; Villa, R; Gracia-Sancho, J; Gabriel, G

    2018-06-12

    The demand for real-time monitoring of cell functions and cell conditions has dramatically increased with the emergence of organ-on-a-chip (OOC) systems. However, the incorporation of co-cultures and microfluidic channels in OOC systems increases their biological complexity and therefore makes the analysis and monitoring of analytical parameters inside the device more difficult. In this work, we present an approach to integrate multiple sensors in an extremely thin, porous and delicate membrane inside a liver-on-a-chip device. Specifically, three electrochemical dissolved oxygen (DO) sensors were inkjet-printed along the microfluidic channel allowing local online monitoring of oxygen concentrations. This approach demonstrates the existence of an oxygen gradient up to 17.5% for rat hepatocytes and 32.5% for human hepatocytes along the bottom channel. Such gradients are considered crucial for the appearance of zonation of the liver. Inkjet printing (IJP) was the selected technology as it allows drop on demand material deposition compatible with delicate substrates, as used in this study, which cannot withstand temperatures higher than 130 °C. For the deposition of uniform gold and silver conductive inks on the porous membrane, a primer layer using SU-8 dielectric material was used to seal the porosity of the membrane at defined areas, with the aim of building a uniform sensor device. As a proof-of-concept, experiments with cell cultures of primary human and rat hepatocytes were performed, and oxygen consumption rate was stimulated with carbonyl-cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), accelerating the basal respiration of 0.23 ± 0.07 nmol s-1/106 cells up to 5.95 ± 0.67 nmol s-1/106 cells s for rat cells and the basal respiration of 0.17 ± 0.10 nmol s-1/106 cells by up to 10.62 ± 1.15 nmol s-1/106 cells for human cells, with higher oxygen consumption of the cells seeded at the outflow zone. These results demonstrate that the approach of printing sensors inside an OOC has tremendous potential because IJP is a feasible technique for the integration of different sensors for evaluating metabolic activity of cells, and overcomes one of the major challenges still remaining on how to tap the full potential of OOC systems.

  16. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture.

    PubMed

    Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.

  17. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    PubMed

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  18. A New Optical Oxygen Sensor Reveals Spatial and Temporal Variations of Dissolved Oxygen at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.

    2015-12-01

    The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w

  19. Dissolved Oxygen Data for Coos Estuary (Oregon)

    EPA Science Inventory

    The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...

  20. A novel Multi-Fiber Optode sensor system (MuFO) for monitoring oxygen

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.; Fischer, J.; Wenzhöfer, F.

    2012-04-01

    In the marine environment, dissolved oxygen concentrations often vary significantly spatially as well as temporally. Monitoring these variations is essential for our understanding of the biological and chemical processes controlling the oxygen dynamics in water columns and sediments. Such investigations require a high number of measuring points and a high temporal resolution. A Multi-Fiber Optode sensor system (MuFO) was designed to assess these requirements. The MuFO system simultaneously controls 100 fiber optodes enabling continuous monitoring of oxygen in 100 positions within a 5-10m radius. The measurements are based on quenching of an oxygen sensitive luminophore, which is immobilised at the end of each fiber optode. The optical oxygen measurements are based on lifetime-imaging, which are converted into oxygen concentrations using a multipoint calibration. At a constant temperature of 21C, the system overall had a mean accuracy of 1.3%, a precision of 0.2% air saturation, the average 90% response time was 16 seconds and the detection limit was 0.1% air saturation. The MuFO set-up was build into a waterproof titanium casing for marine field applications. The system is battery-powered and has a maximum operational capacity of 15 hours for continuous measurements. The MuFO system was recently used for various research tasks in the marine environment: Mounted on a lander, the in situ MuFO system was used for investigations of oxygen dynamics in marine water columns placing the fiber optodes in a vertical line on a 7m high pole. For studies of oxygen dynamics in marine wetland rhizospheres, the sensing ends of the fiber optodes were covered with a 50cm protective sleeve made from stainless steel tubing, and the sensors were manually pushed into the rhizosphere. For laboratory measurements of sediment oxygen demand, the MuFO system was used to simultaneously monitor the oxygen consumption in multiple sediment slurry incubations. The MuFO system proved to be a useful tool for field studies as well as in the laboratory and the system has multiple applications in marine research. This work was supported by the 7th framework EU-projects SENSEnet and HYPOX.

  1. Long-Term Observations of Ocean Biogeochemistry with Nitrate and Oxygen Sensors in Apex Profiling Floats

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Coletti, L.; Jannasch, H.; Martz, T.; Swift, D.; Riser, S.

    2008-12-01

    Long-term, autonomous observations of ocean biogeochemical cycles are now feasible with chemical sensors in profiling floats. These sensors will enable decadal-scale observations of trends in global ocean biogeochemical cycles. Here, we focus on measurements on nitrate and dissolved oxygen. The ISUS (In Situ Ultraviolet Spectrophotometer) optical nitrate sensor has been adapted to operate in a Webb Research, Apex profiling float. The Apex float is of the type used in the Argo array and is designed for multi-year, expendable deployments in the ocean. Floats park at 1000 m depth and make 60 nitrate and oxygen measurements at depth intervals ranging from 50 m below 400 m to 5 m in the upper 100 m as they profile to the surface. All data are transmitted to shore using the Iridium telemetry system and they are available on the Internet in near-real time. Floats equipped with ISUS and an Aanderaa oxygen sensor are capable of making 280 vertical profiles from 1000 m. At a 5 day cycle time, the floats should have nearly a four year endurance. Three floats have now been deployed at the Hawaii Ocean Time series station (HOT), Ocean Station Papa (OSP) in the Gulf of Alaska and at 50 South, 30 East in the Southern Ocean. Two additional floats are designated for deployment at the Bermuda Atlantic Time Series station (BATS) and in the Drake Passage. The HOT float has made 56 profiles over 260 days and should continue operating for 3 more years. Nitrate concentrations are in excellent agreement with the long-term mean observed at HOT. No significant long-term drift in sensor response has occurred. A variety of features have been observed in the HOT nitrate data that are linked to contemporaneous changes in oxygen production and mesoscale dynamics. The impacts of these features will be briefly described. The Southern Ocean float has operated for 200 days and is now observing reinjection of nitrate into surface waters as winter mixing occurs(surface nitrate > 24 micromolar). We expect that the OSP and Southern Ocean floats will provide a quantitative measurement of the timing and magnitude of the spring bloom via the drawdown of surface nitrate. We are funded through NSF and NOPP to continue float deployments at HOT, BATS, OSP and the Southern Ocean for the next 3 years and to refine the sensor so it can be offered as a commercial option for all float users. New sensors in development for float deployments include a stable ISFET pH sensor.

  2. Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Study of temperature, oxygen dependence and in vivo experiment.

    PubMed

    Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila

    2007-04-15

    Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.

  3. The optimal dissolved oxygen profile in a nitrifying activated sludge process - comparisons with ammonium feedback control.

    PubMed

    Amand, L; Carlsson, B

    2013-01-01

    Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.

  4. Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core-Shell Nanosensors.

    PubMed

    Ehgartner, Josef; Strobl, Martin; Bolivar, Juan M; Rabl, Dominik; Rothbauer, Mario; Ertl, Peter; Borisov, Sergey M; Mayr, Torsten

    2016-10-04

    A powerful online analysis setup for the simultaneous detection of oxygen and pH is presented. It features core-shell nanosensors, which enable contactless and inexpensive read-out using adapted oxygen meters via modified dual lifetime referencing in the frequency domain (phase shift measurements). Lipophilic indicator dyes were incorporated into core-shell structured poly(styrene-block-vinylpyrrolidone) nanoparticles (average diameter = 180 nm) yielding oxygen nanosensors and pH nanosensors by applying different preparation protocols. The oxygen indicator platinum(II) meso-tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF) was entrapped into the polystyrene core (oxygen nanosensors) and a pH sensitive BF 2 -chelated tetraarylazadipyrromethene dye (aza-BODIPY) was incorporated into the polyvinylpyrrolidone shell (pH nanosensors). The brightness of the pH nanoparticles was increased by more than 3 times using a light harvesting system. The nanosensors have several advantages such as being excitable with red light, emitting in the near-infrared spectral region, showing a high stability in aqueous media even at high particle concentrations, high ionic strength, or high protein concentrations and are spectrally compatible with the used read-out device. The resolution for oxygen of the setup is 0.5-2.0 hPa (approximately 0.02-0.08 mg/L of dissolved oxygen) at low oxygen concentrations (<50 hPa) and 4-8 hPa (approximately 0.16-0.32 mg/L of dissolved oxygen) at ambient air oxygen concentrations (approximately 200 hPa at 980 mbar air pressure) at room temperature. The pH resolution is 0.03-0.1 pH units within the dynamic range (apparent pK a 7.23 ± 1.0) of the nanosensors. The sensors were used for online monitoring of pH changes during the enzymatic transformation of Penicillin G to 6-aminopenicillanic acid catalyzed by Penicillin G acylase in miniaturized stirred batch reactors or continuous flow microreactors.

  5. Topical dissolved oxygen penetrates skin: model and method.

    PubMed

    Roe, David F; Gibbins, Bruce L; Ladizinsky, Daniel A

    2010-03-01

    It has been commonly perceived that skin receives its oxygen supply from the internal circulation. However, recent investigations have shown that a significant amount of oxygen may enter skin from the external overlying surface. A method has been developed for measuring the transcutaneous penetration of human skin by oxygen as described herein. This method was used to determine both the depth and magnitude of penetration of skin by topically applied oxygen. An apparatus consisting of human skin samples interposed between a topical oxygen source and a fluid filled chamber that registered changes in dissolved oxygen. Viable human skin samples of variable thicknesses with and without epidermis were used to evaluate the depth and magnitude of oxygen penetration from either topical dissolved oxygen (TDO) or topical gaseous oxygen (TGO) devices. This model effectively demonstrates transcutaneous penetration of topically applied oxygen. Topically applied dissolved oxygen penetrates through >700 microm of human skin. Topically applied oxygen penetrates better though dermis than epidermis, and TDO devices deliver oxygen more effectively than TGO devices. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. Application of Aquaculture Monitoring System Based on CC2530

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Liu, X. Q.

    In order to improve the intelligent level of aquaculture technology, this paper puts forward a remote wireless monitoring system based on ZigBee technology, GPRS technology and Android mobile phone platform. The system is composed of wireless sensor network (WSN), GPRS module, PC server, and Android client. The WSN was set up by CC2530 chips based on ZigBee protocol, to realize the collection of water quality parameters such as the water level, temperature, PH and dissolved oxygen. The GPRS module realizes remote communication between WSN and PC server. Android client communicates with server to monitor the level of water quality. The PID (proportion, integration, differentiation) control is adopted in the control part, the control commands from the android mobile phone is sent to the server, the server again send it to the lower machine to control the water level regulating valve and increasing oxygen pump. After practical testing to the system in Liyang, Jiangsu province, China, temperature measurement accuracy reaches 0.5°C, PH measurement accuracy reaches 0.3, water level control precision can be controlled within ± 3cm, dissolved oxygen control precision can be controlled within ±0.3 mg/L, all the indexes can meet the requirements, this system is very suitable for aquaculture.

  7. 76 FR 76161 - Clean Water Act Section 303(d): Availability of Three Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Ponchatoula Creek and Dissolved Ponchatoula River. oxygen. 041201 Bayou Labranche-- Dissolved Headwaters to Lake oxygen. Pontchartrain (Scenic) (Estuarine). 041805 Lake Borgne Canal (Violet Dissolved Canal)--MS River siphon oxygen. at Violet to Bayou Dupre (Scenic) (Estuarine). The EPA requests the public provide...

  8. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  9. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture

    PubMed Central

    Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394

  10. Long-period variability of oxygen dissolved in Black Sea waters

    NASA Astrophysics Data System (ADS)

    Polonsky, A. B.; Kotolypova, A. A.

    2017-09-01

    Using an archival database from the Institute of Natural and Technical Systems, the low-frequency variability of oxygen dissolved in the deep-water and northwestern parts of the Black Sea for the period of 1955-2004 is analyzed. The upper mixed layer (UML) is characterized by quasi-periodic variability in the dissolved oxygen concentration in the interdecadal scale. Deeper, a long-term decrease in the oxygen concentration is recorded.

  11. Measurement and Control of Oxygen Partial Pressure in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2014-01-01

    Recently the NASA Marshall Space Flight Center electrostatic levitation (ESL) laboratory has been upgraded to include an oxygen control system. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, at elevated temperatures, theoretically in the range from 10(exp -36) to 10(exp 0) bar. The role of active surface agents in liquid metals is fairly well known; however, published surface tension data typically has large scatter, which has been hypothesized to be caused by the presence of oxygen. The surface tension of metals is affected by even a small amount of adsorption of oxygen. It has even been shown that oxygen partial pressures may need to be as low as 10(exp -24) bar to avoid oxidation. While electrostatic levitation is done under high vacuum, oxide films or dissolved oxygen may have significant effects on materials properties, such as surface tension and viscosity. Therefore, the ability to measure and control the oxygen partial pressure within the chamber is highly desirable. The oxygen control system installed at MSFC contains a potentiometric sensor, which measures the oxygen partial pressure, and an oxygen ion pump. In the pump, a pulse-width modulated electric current is applied to yttrium-stabilized zirconia, resulting in oxygen transfer into or out of the system. Also part of the system is a control unit, which consists of temperature controllers for the sensor and pump, PID-based current loop for the ion pump, and a control algorithm. This system can be used to study the effects of oxygen on the thermophysical properties of metals, ceramics, glasses, and alloys. It can also be used to provide more accurate measurements by processing the samples at very low oxygen partial pressures. The oxygen control system will be explained in more detail and an overview of its use and limitations in an electrostatic levitator will be described. Some preliminary measurements have been made, and the results to date will be provided.

  12. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions

  13. Relation between flows and dissolved oxygen in the Roanoke River between Roanoke Rapids Dam and Jamesville, North Carolina, 2005-2009

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Wagner, Chad R.

    2011-01-01

    The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.

  14. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  15. A unique noninvasive approach to monitoring dissolved O2 and CO2 in cell culture.

    PubMed

    Chatterjee, Madhubanti; Ge, Xudong; Uplekar, Shaunak; Kostov, Yordan; Croucher, Leah; Pilli, Manohar; Rao, Govind

    2015-01-01

    Although online monitoring of dissolved oxygen (DO) and carbon dioxide (DCO2 ) is highly desirable in bioprocesses, small-scale bioreactors are usually not monitored due to the lack of suitable sensors. Traditional electrochemical sensors are usually not used because they are bulky and invasive. Disposable optical sensors are small and only partially invasive, but there are concerns regarding the toxicity of the patch and the phototoxicity of the illuminating light. Here we present a novel, noninvasive, rate-based technique for monitoring DO and DCO2 in cell cultures. A silicone sampling loop which allowed the diffusion of O2 and CO2 through its wall was inserted inside a bioreactor, and then flushed with N2 until the CO2 and O2 inside the loop were completely removed. The gas inside the loop was then allowed to recirculate through gas impermeable tubing to the O2 and CO2 sensors. We have shown that by measuring the initial diffusion rate we were able to determine the partial pressures of the two gases in the culture. The technique could be readily automated and measurements could be made in minutes. It was tested in demonstration experiments by growing murine hybridoma cells in a T-flask and a spinner-flask at 37°C. The results were comparable to those measured with commercially available fluorescence-based patch sensors. These results show that the rate-based method is an effective way to monitor small-scale cell cultures. This measurement mechanism can be easily built into disposable cell culture vessels for facile use. © 2014 Wiley Periodicals, Inc.

  16. Measuring pH variability using an experimental sensor on an underwater glider

    NASA Astrophysics Data System (ADS)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38. 65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O2), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.

  17. Feasibility analysis of marine ecological on-line integrated monitoring system

    NASA Astrophysics Data System (ADS)

    Chu, D. Z.; Cao, X.; Zhang, S. W.; Wu, N.; Ma, R.; Zhang, L.; Cao, L.

    2017-08-01

    The in-situ water quality sensors were susceptible to biological attachment. Moreover, sea water corrosion and wave impact damage, and many sensors scattered distribution would cause maintenance inconvenience. The paper proposed a highly integrated marine ecological on-line integrated monitoring system, which can be used inside monitoring station. All sensors were reasonably classified, the similar in series, the overall in parallel. The system composition and workflow were described. In addition, the paper proposed attention issues of the system design and corresponding solutions. Water quality multi-parameters and 5 nutrient salts as the verification index, in-situ and systematic data comparison experiment were carried out. The results showed that the data consistency of nutrient salt, PH and salinity was better. Temperature and dissolved oxygen data trend was consistent, but the data had deviation. Turbidity fluctuated greatly; the chlorophyll trend was similar with it. Aiming at the above phenomena, three points system optimization direction were proposed.

  18. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  19. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  20. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for West Fork Blue River, Washington County, Indiana

    USGS Publications Warehouse

    Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.

    1979-01-01

    A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)

  1. Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring

    NASA Technical Reports Server (NTRS)

    Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.

    2004-01-01

    BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  2. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.

    PubMed

    Hu, Junlang; Lei, Pan; Mohsin, Ali; Liu, Xiaoyun; Huang, Mingzhi; Li, Liang; Hu, Jianhua; Hang, Haifeng; Zhuang, Yingping; Guo, Meijin

    2017-09-12

    Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13 C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden-Meyerhof-Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD + ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. This study shows that integration of transcriptomics, 13 C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin's regulatory mechanisms in B. subtilis grown under different dissolved oxygen tension conditions. The two-component system, ResD-ResE, was considered as the signal receiver of DO tension and gene regulator that led to differences between biomass and riboflavin production after triggering the shifts in gene expression, metabolic flux distributions and metabolite pool sizes.

  3. Earth resources data acquisition sensor study

    NASA Technical Reports Server (NTRS)

    Grohse, E. W.

    1975-01-01

    The minimum data collection and data processing requirements are investigated for the development of water monitoring systems, which disregard redundant and irrelevant data and process only those data predictive of the onset of significant pollution events. Two approaches are immediately suggested: (1) adaptation of a presently available ambient air monitoring system developed by TVA, and (2) consideration of an air, water, and radiological monitoring system developed by the Georgia Tech Experiment Station. In order to apply monitoring systems, threshold values and maximum allowable rates of change of critical parameters such as dissolved oxygen and temperature are required.

  4. Structurally Integrated Photoluminescent Chemical and Biological Sensors: An Organic Light-Emitting Diode-Based Platform

    NASA Astrophysics Data System (ADS)

    Shinar, J.; Shinar, R.

    The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.

  5. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen standards do not specify whether the numeric criteria are based on depth-averaged dissolved oxygen concentration; this was an interpretation of the standards rule by the Oregon Department of Environmental Quality (ODEQ). In this study, both depth-averaged and volume-averaged dissolved oxygen concentrations were calculated from model output. Results showed that modeled depth-averaged concentrations typically were lower than volume-averaged dissolved oxygen concentrations because depth-averaging gives a higher weight to small volume areas near the channel bottom that often have lower dissolved oxygen concentrations. Results from model scenarios in this study are reported using volume-averaged dissolved oxygen concentrations. * Under all scenarios analyzed, violations of the dissolved oxygen standard occurred most often in summer. Of the three dissolved oxygen criteria that must be met, the 30-day standard was violated most frequently. Under the base case (current conditions), fewer violations occurred in the upstream part of the reach. More violations occurred in the down-stream direction, due in part to oxygen demand from the decay of algae and organic matter from Link River and other inflows. * A condition in which Upper Klamath Lake and its Link River outflow achieved Upper Klamath Lake TMDL water-quality targets was most effective in reducing the number of violations of the dissolved oxygen standard in the Link River to Keno Dam reach of the Klamath River. The condition in which point and nonpoint sources within the Link River to Keno Dam reach met Klamath River TMDL allocations had no effect on dissolved oxygen compliance in some locations and a small effect in others under current conditions. On the other hand, meeting TMDL allocations for nonpoint and point sources was predicted to be important in meeting dissolved oxygen criteria when Upper Klamath Lake and Link River also met Upper Klamath TMDL water-quality targets. * The location of greatest dissolved oxygen improvement from nutrient and organic matter reductions was downstream from point and nonpoint source inflows because time and distance are required for decay to occur and for oxygen demand to be exerted. * After assessing compliance with dissolved oxygen standards at all 102 model segments in the Link River to Keno Dam reach, it was determined that the seven locations used by ODEQ appear to be a representative subset of the reach for dissolved oxygen analysis. * The USGS and TMDL models were qualitatively compared by running both models for the 2006–09 period but preserving the essential characteristics of each, such as organic matter partitioning, bathymetric representation, and parameter rates. The analysis revealed that some constituents were not greatly affected by the differing algorithms, rates, and assumptions in the two models. Conversely, other constituents, especially organic matter, were simulated differently by the two models. Organic matter in this river system is best represented by a mixture of relatively labile particulate material and a substantial concentration of refractory dissolved material. In addition, the use of a first-order sediment oxygen demand, as in the USGS model, helps to capture the seasonal and dynamic effect of settled organic and algal material. * Simulation of shunting (diverting) particulate material away from the intake of four Klamath Project diversion canals, so that the material stayed in the river and out of the Project area, caused higher concentrations of particulate material to occur in the river. In all cases modeled, the increase in in-river particulate material also produced decreased dissolved oxygen concentrations and an increase in the number of days when dissolved oxygen standards were violated. * If particulate material were shunted back into the river at the Klamath Project diversion canals, less organic matter and nutrients would be taken into the Klamath Project area and the Lost River basin, resulting in return flows to the Klamath River via Lost River Diversion Channel that may have reduced nutrient concentrations. Model scenarios bracketing potential end-member nutrient concentrations showed that the composition of the return flows had little to no effect on dissolved oxygen compliance under simulated conditions.

  6. Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range

    DTIC Science & Technology

    2016-05-12

    and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and ᝺% for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above

  7. Evaluation of Eurasian Watermilfoil Control Techniques Using Aquatic Herbicides in Fort Peck Lake, Montana

    DTIC Science & Technology

    2015-07-01

    19 Table 3. Temperature , dissolved oxygen , pH, and wind...21 Table 4. Temperature , dissolved oxygen , and pH measured in the study plots following treatment, Fort Peck Lake, MT, 2012...quality, particularly temperature , pH, dissolved oxygen , and nutrient cycling (Prentki et al. 1979; Carpenter and Lodge 1986, Frodge et al. 1990; Boylen

  8. Dissolved oxygen as a key parameter to aerobic granule formation.

    PubMed

    Sturm, B S McSwain; Irvine, R L

    2008-01-01

    Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s(-1). When less than 1 cm s(-1) shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L(-1) to 5 mg L(-1), affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s(-1), but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L(-1), with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force. Copyright IWA Publishing 2008.

  9. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    PubMed

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  10. Improved Arterial Blood Oxygenation Following Intravenous Infusion of Cold Supersaturated Dissolved Oxygen Solution

    PubMed Central

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764

  11. Prototype of a low cost multiparameter probe

    NASA Astrophysics Data System (ADS)

    Koski, K.; Schwingle, R.; Pullin, M.

    2010-12-01

    Commercial multi-parameter probes provide accurate, high-resolution temporal data collection of a variety of water quality parameters, but their cost (>5,000) prohibits more than a few sampling locations. We present a design and prototype for a low cost (<250) probe. The cost of the probe is ~5% of commercially available probes, allowing for data collection from ~20 times more sampling points in a field location. The probe is constructed from a single-board microcontroller, a commercially available temperature sensor, a conductivity sensor, and a fabricated optical rhodamine sensor. Using a secure digital (SD) memory card, the probe can record over a month of data at a user specified interval. Construction, calibration, field deployment and data retrieval can be accomplished by a skilled undergraduate. Initial deployment will take place as part of a tracer test in the Valles Caldera National Preserve in northern New Mexico. Future work includes: addition of commercial ion selective electrodes (pH, bromide, nitrate, and others); construction of optically based sensors (chlorophyll, dissolved oxygen, and others); wireless networking between the sensors; and reduction of biofouling.

  12. Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study.

    PubMed

    Usher, Courtney R; Cleveland, Curtis A; Strongin, Daniel R; Schoonen, Martin A

    2004-11-01

    FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.

  13. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  14. TOPICAL REVIEW: Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Shinar, Ruth

    2008-07-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.

  15. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    PubMed

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p < 0.001), indicating that CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC <2 mg/L and total suspended matter (TSM) concentrations <15 mg/L. These results demonstrate that the CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  16. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for East Fork White River, Bartholomew County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, James G.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)

  17. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di

  18. Data-Logging--A Plug-and-Play Oxygen Probe?

    ERIC Educational Resources Information Center

    Warne, Peter

    1997-01-01

    Presents an experiment on collecting data while measuring the dissolved-oxygen levels in Thames River tap water straight from the water mains and dissolved-oxygen levels in rainwater containing Hornwort water weed over 24 hours. (Author/ASK)

  19. Controlling Processes on Carbonate Chemistry across the Pacific

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.

    2016-12-01

    The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.

  20. Design of high efficiency and energy saving aeration device for aquaculture

    NASA Astrophysics Data System (ADS)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  1. Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature

    NASA Astrophysics Data System (ADS)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan

    2017-12-01

    A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).

  2. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  3. Instrumentation design and installation for monitoring air injection ground water remediation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, B.L.; Baldwin, C.K.; Lachmar, T.E.

    2000-03-31

    An in situ instrumentation bundle was designed for inclusion in monitoring wells that were installed at the Wasatch Trailer Sales site in Layton, Utah, to evaluate in situ air sparging (IAS) and in-well aeration (IWA). Sensors for the bundle were selected based on laboratory evaluation of accuracy and precision, as well as consideration of size and cost. SenSym pressure transducers, Campbell Scientific, Inc. (CSI) T-type thermocouples, and dissolved oxygen (DO) probes manufactured by Technalithics Inc. (Waco, Texas), were selected for each of the 27 saturated zone bundles. Each saturated zone bundle also included a stirring blade to mix water nearmore » the DO probe. A Figaro oxygen sensor was included in the vadose zone bundle. The monitoring wells were installed by direct push technique to minimize soil disruption and to ensure intimate contact between the 18 inch (46 cm) long screens and the soil. A data acquisition system, comprised of a CSI 21X data logger and four CSI AM416 multiplexers, was used to control the stirring blades and record signals from more than 70 in situ sensors. The instrumentation performed well during evaluation of IAS and IWA at the site. However, the SenSym pressure transducers were not adequately temperature compensated and will need to be replaced.« less

  4. [Influence of the Concentration of Dissolved Oxygen on Embryonic Development of the Common Toad (Bufo bufo)].

    PubMed

    Dmitrieva, E V

    2015-01-01

    Several series of experiments investigating the influence of dissolved oxygen concentrations on the growth rates and mortality in the embryogenesis of the common toad Bufo bufo were carried out. The experiments showed that, when the eggs develop singly, the lack of oxygen does not lead to an increase in mortality by the time of hatching and results only in a change in the dynamics of mortality: mortality occurs at an earlier stage of development than in the conditions of normal access to oxygen. Taking into account the combined effect of the density of eggs and the dissolved oxygen concentration, we increase the accuracy of analysis of the experimental results and improve the interpretation of the results. In the conditions of different initial density of eggs, the impact of the concentration of dissolved oxygen on mortality and rates of development of the common toad embryos is manifested in different ways. At high density, only a small percentage of embryos survives by the time of hatching, and the embryos are significantly behind in their development compared with the individuals that developed in normal oxygen conditions. The lack of oxygen dissolved in the water slows down the development of embryos of the common toad.

  5. Global Visualization in Water using AnodizedAluminum PressureSensitive Paint and Dissolved Oxygen as Tracer

    NASA Astrophysics Data System (ADS)

    Ozaki, Tatsuya; Ishikawa, Hitoshi; Sakaue, Hirotaka

    2009-11-01

    We have developed anodized-aluminum pressuresensitive paint (AA-PSP) for flow visualization in water using dissolved oxygen as a tracer. Developed AA-PSP is characterized using water calibration setup by controlling a dissolved oxygen concentration. It is shown that the developed AA-PSP gives 4.0 percent change in luminescence per 1 mg/l of oxygen concentration. This AA-PSP is applied to visualize flows in a water tunnel. Oxygen concentrations of the water tunnel and the dissolved oxygen are 9.5 mg/l and 20 mg/l, respectively. We can capture horseshoe vortices over the base of 10 mm cylinder by using this technique at Reynolds number of 1000 and a water speed of 100 mm/s, respectively. Unlike conventional tracers such as ink, milk, and fluorescent dyes, this visualization technique gives flow information on the AA-PSP coated surface without integrating flows between the AA-PSP and an optical detector. Because of using dissolved oxygen as a tracer, it holds the material properties of testing water except for the amount of oxygen. The tracer does not interfere with optical measurements and it does not contaminate the testing water. A conventional visualization technique using milk as a tracer is also employed for comparison.

  6. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Cedar Creek, Dekalb and Allen counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)

  7. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to 24 days longer to reach emergence. In contrast, within each dissolved oxygen treatment, it took about 20 days longer to reach hatch at 13 C than at 16.5 C (no data for 17 C) and up to 41 days longer to reach emergence. Overall, this study indicates that exposure to water temperatures up to 16.5 C will not have deleterious impacts on survival or growth from egg to emergence if temperatures decline at a rate of greater than or equal to 0.2 C/day following spawning. Although fall Chinook salmon survived low initial dissolved oxygen levels, the delay in emergence could have significant long-term effects on their survival. Thus, an exemption to the state water quality standards for temperature but not oxygen may be warranted in the Snake River where fall Chinook salmon spawn.« less

  8. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  9. Modelling algae growth and dissolved oxygen in the Seine River downstream the Paris urban area: contribution of high frequency measurements

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Escoffier, Nicolas; Groleau, Alexis; Poulin, Michel; Flipo, Nicolas

    2014-05-01

    Dissolved oxygen is a key variable in the hydro-ecological functioning of river systems. The accurate representation of the different biogeochemical processes affecting algal blooms and dissolved oxygen in the water column in hydro-ecological models is crucial for the use of these models as reliable management tools. This study focuses on the water quality of the Seine River along a 225 km stretch, from Paris to the Seine estuary. The study area is highly urbanized and located downstream France's largest agricultural area, and therefore receives large amounts of nutrients. During the last decades, nutrient inputs have been significantly reduced, especially with the implementation of new sewage water treatment technologies. Even though the frequency and the intensity of observed algal blooms have decreased, blooms were observed in 2011 and 2012. These blooms are generally followed by a period of high organic matter accumulation, leading to high mineralization fluxes and potential oxygen depletion. The hydrodynamics and the water quality of the Seine River are simulated for the 2011-2012 period with the distributed process-based hydro-ecological model ProSe (Even et al., 1998). The simulated chlorophyll a and dissolved oxygen concentrations are compared to high frequency measurements at the Bougival monitoring station (50 km downstream from Paris), which is part of the CarboSeine monitoring network. The high frequency continuous dataset allows calibrating of primary producers' physiological parameters. New growth parameters are defined for the diatom community. The blooms occur at the end of the winter period (march 2011 and march 2012) and the optimal temperature for diatom growth is calibrated at 10°C, based on an analysis of the physiological response of the diatom community. One of the main outcomes of the modelling exercise is that the precise identification of the constituting communities of algal blooms must be achieved prior to the modelling itself. With the new growth parameters and by considering additional communities, as dinoflagellates, in the model, chlorophyll a peak values (over 60 µg/L in 2011 and over 30 in 2012) are accurately simulated. Moreover, the production rate of the communities constituting an algal bloom can be estimated by interpreting the high frequency diel dissolved oxygen curves (Escoffier et al., 2013). The modelled production rate during the 2011 bloom is of the same order of magnitude as the one estimated with this method (0.5 to 2 g/m3/day of oxygen), which validates the representation of photosynthesis in the model. Therefore the simulated oxygen response is also improved. References: Even S., Poulin M., Garnier J., Billen G., Servais P., Chesterikoff A., Coste M., 1998. River ecosystem modelling: Application of the ProSe model to the Seine river (France). Hydrobiologia 373, 27-37. Escoffier N., Bensoussan N., Métivier F., Rocher V., Bernard C., Arnaud D., Vilmin L., Poulin M., Flipo N., Groleau A., 2013. Intergrating large river trophic functioning from real time sensors network measurements. American Society of Limnology and Oceanography Congress. New Orleans, February 2013.

  10. Net production of oxygen in the subtropical ocean.

    PubMed

    Riser, Stephen C; Johnson, Kenneth S

    2008-01-17

    The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production.

  11. Dissolved Oxygen Levels in Lake Chabot

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Pica, R.

    2014-12-01

    Dissolved oxygen levels are crucial in every aquatic ecosystem; it allows for the fish to breathe and it is the best indicator of water quality. Lake Chabot is the main backup water source for Castro Valley, making it crucial that the lake stays in good health. Last year, research determined that the water in Lake Chabot was of good quality and not eutrophic. This year, an experiment was conducted using Lake Chabot's dissolved oxygen levels to ensure the quality of the water and to support the findings of the previous team. After testing three specifically chosen sites at the lake using a dissolved oxygen meter, results showed that the oxygen levels in the lake were within the healthy range. It was then determined that Lake Chabot is a suitable backup water source and it continues to remain a healthy habitat.

  12. An evaluation of a micro programmable logic controller for oxygen monitoring and control in tanks of a recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Control of dissolved gases, especially oxygen is an essential component of recirculating aquaculture systems. The use of pure oxygen in a recirculating aquaculture system creates supersaturated concentrations of dissolved oxygen and can reduce fish production costs by supporting greater fish and fee...

  13. Pericellular oxygen concentration of cultured primary human trophoblasts

    PubMed Central

    Chen, Baosheng; Longtine, Mark S.; Nelson, D. Michael

    2012-01-01

    Introduction Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. Methods We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. Results The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤ 0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. Conclusions We conclude that culture conditions of 21% oxygen are unable to replicate the pO2 of 40–60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions. PMID:23211472

  14. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  15. Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1982-01-01

    A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.

  16. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  17. In situ observations of ocean productivity using the SeaCycler mooring in the central Labrador Sea

    NASA Astrophysics Data System (ADS)

    Atamanchuk, Dariia; Koelling, Jannes; Devred, Emmanuel; Siddall, Greg; Send, Uwe; Wallace, Douglas

    2017-04-01

    The Central Labrador Sea is a major deep-convection region in the NW Atlantic which is the most intense sink for anthropogenic carbon in the global ocean (de Vries et al, 2013). CO2 enters the ocean by air-sea exchange and is transported into the ocean's interior mainly though the biological pump (Longhurst et al., 1989). Despite its important role for CO2 uptake and high natural variability, the Labrador Sea is undersampled due to rough conditions and an overall lack of volunteer observing ship (VOS) transits. The SeaCycler moored profiler is currently providing year-round data from the central Labrador Sea and resolves daily changes of inorganic carbon and related properties from the upper 150m of the water column. SeaCycler's sensor float is equipped with 13 physical, chemical and biooptical sensors which measure temperature, salinity, dissolved gases, nutrients and optical properties of seawater. A combination of Pro-CV (Pro-Oceanus Inc, Canada) and CO2 optode (Aanderaa, Norway) sensors in profiling mode provides a detailed description of Dissolved Inorganic Carbon (DIC) dynamics in the upper 150m over the productive season. This allows, for the first time, high-resolution carbon-based estimates of ocean productivity from throughout the euphotic zone over an annual cycle which can be compared to estimates derived from simultaneous oxygen and nitrate (Deep SUNA, Satlantic LP, Canada) profiles. These in situ carbon, nitrogen and oxygen-based estimates of using in-situ data are further compared with remotely-sensed estimates from MODIS satellite data. The SeaCycler data allow estimation of the annual cycle of the air-sea CO2 flux and carbon export. Concurrently recorded in-situ bio-optical data allow direct comparison of optical measurements of biomass change and reveal key patterns in the seasonal succession of phytoplankton groups responsible for carbon drawdown.

  18. Online monitoring of dissolved oxygen tension in microtiter plates based on infrared fluorescent oxygen-sensitive nanoparticles.

    PubMed

    Ladner, Tobias; Flitsch, David; Schlepütz, Tino; Büchs, Jochen

    2015-10-09

    During the past years, new high-throughput screening systems with capabilities of online monitoring turned out to be powerful tools for the characterization of microbial cell cultures. These systems are often easy to use, offer economic advantages compared to larger systems and allow to determine many important process parameters within short time. Fluorescent protein tags tremendously simplified the tracking and observation of cellular activity in vivo. Unfortunately, interferences between established fluorescence based dissolved oxygen tension (DOT) measurement techniques and fluorescence-based protein tags appeared. Therefore, the applicability of new oxygen-sensitive nanoparticles operated within the more suitable infrared wavelength region are introduced and validated for DOT measurement. The biocompatibility of the used dispersed oxygen-sensitive nanoparticles was proven via RAMOS cultivations for Hansenula polymorpha, Gluconobacter oxydans, and Escherichia coli. The applicability of the introduced DOT measurement technique for online monitoring of cultivations was demonstrated and successfully validated. The nanoparticles showed no disturbing effect on the online measurement of the fluorescence intensities of the proteins GFP, mCherry and YFP measured by a BioLector prototype. Additionally, the DOT measurement was not influenced by changing concentrations of these proteins. The kLa values for the applied cultivation conditions were successfully determined based on the measured DOT. The introduced technique appeared to be practically as well as economically advantageous for DOT online measuring in microtiter plates. The disadvantage of limited availability of microtiter plates with immobilized sensor spots (optodes) does not apply for this introduced technique. Due to the infrared wavelength range, used for the DOT measurement, no interferences with biogenic fluorescence or with expressed fluorescent proteins (e.g. YFP, GFP or mCherry) occur.

  19. PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL

    EPA Science Inventory

    Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...

  20. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    USGS Publications Warehouse

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  1. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  2. Modelling in-stream temperature and dissolved oxygen at sub-daily time steps: an application to the River Kennet, UK.

    PubMed

    Williams, Richard J; Boorman, David B

    2012-04-15

    The River Kennet in southern England shows a clear diurnal signal in both water temperature and dissolved oxygen concentrations through the summer months. The water quality model QUESTOR was applied in a stepwise manner (adding modelled processes or additional data) to simulate the flow, water temperature and dissolved oxygen concentrations along a 14 km reach. The aim of the stepwise model building was to find the simplest process-based model which simulated the observed behaviour accurately. The upstream boundary used was a diurnal signal of hourly measurements of water temperature and dissolved oxygen. In the initial simulations, the amplitude of the signal quickly reduced to zero as it was routed through the model; a behaviour not seen in the observed data. In order to keep the correct timing and amplitude of water temperature a heating term had to be introduced into the model. For dissolved oxygen, primary production from macrophytes was introduced to better simulate the oxygen pattern. Following the modifications an excellent simulation of both water temperature and dissolved oxygen was possible at an hourly resolution. It is interesting to note that it was not necessary to include nutrient limitation to the primary production model. The resulting model is not sufficiently proven to support river management but suggests that the approach has some validity and merits further development. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. Water-quality conditions in the New River, Imperial County, California

    USGS Publications Warehouse

    Setmire, James G.

    1979-01-01

    The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)

  4. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.

  5. DIEL OXYGEN-INDUCED MOVEMENT OF FISH ASSEMBLAGES IN A GREAT LAKES COASTAL WETLAND

    EPA Science Inventory

    To determine the importance of dissolved oxygen conditions in influencing daily ovement patterns of fishes in Great Lakes coastal wetlands, we sampled migrating fish assemblages from habitats with varying diurnal dissolved oxygen patterns in a Lake Superior coastal wetland during...

  6. Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan.

    PubMed

    Fan, Cheng-Wei; Kao, Shuh-Ji

    2008-04-15

    The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.

  7. In situ measurements of dissolved oxygen, pH and redox potential of biocathode microenvironments using microelectrodes.

    PubMed

    Wang, Zejie; Deng, Huan; Chen, Lihui; Xiao, Yong; Zhao, Feng

    2013-03-01

    Biofilms are the core component of bioelectrochemical systems (BESs). To understand the polarization effects on biocathode performance of BES, dissolved oxygen concentrations, pHs and oxidation-reduction potentials of biofilm microenvironments were determined in situ. The results showed that lower polarization potentials resulted in the generation of larger currents and higher pH values, as well as the consumption of more oxygen. Oxidation-reduction potentials of biofilms were mainly affected by polarization potentials of the electrode rather than the concentration of dissolved oxygen or pH value, and its changes in the potentials corresponded to the electric field distribution of the electrode surface. The results demonstrated that a sufficient supply of dissolved oxygen and pH control of the biocathode are necessary to obtain optimal performance of BESs; a lower polarization potential endowed microorganisms with a higher electrochemical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  9. An experimental study on the cavitation of water with dissolved gases

    NASA Astrophysics Data System (ADS)

    Li, Buxuan; Gu, Youwei; Chen, Min

    2017-12-01

    Cavitation inception is generally determined by the tensile strengths of liquids. Investigations on the tensile strength of water, which is essential in many fields, will help understand the promotion/prevention of cavitation and related applications in water. Previous experimental studies, however, vary in their conclusions about the value of tensile strength of water; the difference is commonly attributed to the existence of impurities in water. Dissolved gases, especially oxygen and nitrogen from the air, are one of the most common kinds of impurities in water. The influence of these gases on the tensile strength of water is still unclear. This study investigated the effects of dissolved gases on water cavitation through experiments. Cavitation in water is generated by acoustic method. Water samples are prepared with dissolved oxygen and nitrogen in different gas concentrations. Results show that under the same temperature, the tensile strength of water with dissolved oxygen or nitrogen decreases with increased gas concentration compared with that of ultrapure water. Under the same gas concentration and temperature, water with dissolved oxygen shows a lower tensile strength than that with dissolved nitrogen. Possible reasons of these results are also discussed.

  10. Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores

    NASA Astrophysics Data System (ADS)

    Guo, D.; Keating-Bitonti, C.; Payne, J.

    2014-12-01

    Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.

  11. Theoretical technique for predicting the cumulative impact of iron and manganese oxidation in streams receiving discharge from coal mines

    USGS Publications Warehouse

    Bobay, Keith E.

    1986-01-01

    Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved iron, 1.50 mg/L increase in dissolved manganese, and 0.24 mg/L decrease in dissolved oxygen concentration.

  12. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.

    PubMed

    Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg

    2004-05-20

    In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.

  13. Guidelines and standard procedures for continuous water-quality monitors: Site selection, field operation, calibration, record computation, and reporting

    USGS Publications Warehouse

    Wagner, Richard J.; Mattraw, Harold C.; Ritz, George F.; Smith, Brett A.

    2000-01-01

    The U.S. Geological Survey uses continuous water-quality monitors to assess variations in the quality of the Nation's surface water. A common system configuration for data collection is the four-parameter water-quality monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data, although systems can be configured to measure other properties such as turbidity or chlorophyll. The sensors that are used to measure these water properties require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. Data from sensors can be used in conjunction with collected samples and chemical analyses to estimate chemical loads. This report provides guidelines for site-selection considerations, sensor test methods, field procedures, error correction, data computation, and review and publication processes. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.

  14. Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel.

    EPA Science Inventory

    Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...

  15. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    PubMed

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of the study as suspended solids discharge improved. Nitrogen fixation was demonstrated throughout the study using an acetylene reduction assay. Based on nitrogen balances around the plant, there was a 55, 354 and 98% increase in nitrogen during Phases 1, 2 and 3 respectively. There was a significant decrease in phosphorus between Phases 1 and 2, and Phase 3 of the study, as well as a significant increase in nitrogen between Phases 2 and 3 which masked the effect of changing the dissolved oxygen. Operation at low dissolved oxygen appeared to confer a competitive advantage to the nitrogen-fixing bacteria.

  16. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  17. Reduction of Dissolved Oxygen at a Copper Rotating Disc Electrode

    ERIC Educational Resources Information Center

    Kear, Gareth; Albarran, Carlos Ponce-de-Leon; Walsh, Frank C.

    2005-01-01

    Undergraduates from chemical engineering, applied chemistry, and environmental science courses, together with first-year postgraduate research students in electrochemical technology, are provided with an experiment that demonstrates the reduction of dissolved oxygen in aerated seawater at 25°C. Oxygen reduction is examined using linear sweep…

  18. Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel - CERF 2015

    EPA Science Inventory

    Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...

  19. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.

  20. Oxygen Transfer Characteristics of Miniaturized Bioreactor Systems

    PubMed Central

    Kirk, Timothy V; Szita, Nicolas

    2013-01-01

    Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h-1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h-1 kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real-time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc. PMID:23280578

  1. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  2. Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.

    2016-02-01

    Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.

  3. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.

    PubMed

    Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P

    2013-08-01

    The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4)  μmol cm(-2)  s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. The Measurement of Dissolved Oxygen

    ERIC Educational Resources Information Center

    Thistlethwayte, D.; And Others

    1974-01-01

    Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

  5. Hydrology, aquatic macrophytes, and water quality of Black Earth Creek and its tributaries, Dane County, Wisconsin, 1985-86

    USGS Publications Warehouse

    Field, S.J.; Graczyk, D.J.

    1990-01-01

    An increase in oxygen demand, caused by agricultural runoff, has resulted in reduced dissolved-oxygen content of the water in both Black Earth and Garfoot Creeks. The most substantial reduction occurred at Black Earth Creek at Cross Plains on July 25, 1985, as a result of the largest storm runoff event during the study. A rainfall of 5.54 inches caused streamflow discharges to increase from 9 to 122 ft3/s and dissolved-oxygen concentrations to decline to 3.0 mg/L; the dissolved-oxygen concentration was less than 6.0 mg/L for 30 hours.

  6. Water-Quality Monitoring in Response to Young-of-the-Year Smallmouth Bass (Micropterus dolomieu) Mortality in the Susquehanna River and Major Tributaries, Pennsylvania: 2008

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.

    2009-01-01

    Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods that dissolved oxygen was less than 5.0 mg/L in microhabitats of the Susquehanna and Juniata Rivers were 8.5 and 5.5 hours, respectively. Dissolved-oxygen concentrations lower than the national criterion generally occurred during nighttime and early-morning hours between midnight and 0800. The lowest instantaneous dissolved-oxygen concentrations measured in microhabitats during the critical period were 3.3 mg/L for the Susquehanna River at Clemson Island (June 11, 2008) and 4.1 mg/L for the Juniata River at Howe Township Park (July 22, 2008). Comparison of 2008 data to available continuous-monitoring data from 1974 to 1979 in the Susquehanna River at Harrisburg, Pa., indicates the critical period of 2008 had an average daily mean dissolved-oxygen concentration that was 1.1 mg/L lower (p-value < 0.0001) than in the 1970s and an average daily mean water temperature that was 0.8 deg C warmer (p-value = 0.0056). Streamflow was not significantly different (p-value = 0.0952) between the two time periods indicating that it is not a likely explanation for the differences in water quality. During the critical period in 2008, dissolved-oxygen concentrations were lower in the Susquehanna River at Harrisburg, Pa., than in the Delaware River at Trenton, N.J., or Allegheny River at Acmetonia near Pittsburgh, Pa. Daily minimum dissolved-oxygen concentrations were below the national criterion of 5.0 mg/L on 6 days during the critical period in the Susquehanna River at Harrisburg compared to no days in the Delaware River at Trenton and the Allegheny River at Acmetonia. Average daily mean water temperature in the Susquehanna River at Harrisburg was 1.8 deg C warmer than in the Delaware River at Trenton and 3.4 deg C warmer than in the Allegheny River at Acmetonia. These results indicate that any stress induced by dissolved oxygen or other environmental conditions is likely to be magnified by elevated temperature in the Susquehanna River at Harrisburg compared to the Delaw

  7. Plasma corticosteroid dynamics in channel catfish, Ictalurus punctatus (Rafinesque), during and after oxygen depletion

    USGS Publications Warehouse

    Tomasso J.R., Davis; Parker, N.C.

    1981-01-01

    Plasma corticosteroid concentrations in channel catfish, Ictalurus punctatus, (normally 1.0 ± 0.3 μg/100 ml) increased significantly (to 5.9 ± 1.2μg/100 ml) in response to acute oxygen depletion and then returned to control levels within 30 min after the dissolved oxygen concentration was increased; however, a secondary increase in plasma corticosteroid levels was observed 6 h after exposure. Corticosteroid levels also increased in fish exposed to dissolved oxygen concentration of <0.2 mg/1 for three days. Methylene blue was not effective in preventing interrenal response to low dissolved oxygen. No diurnal plasma corticosteroid rhythm was observed in fish exposed to diurnal chemical rhythms of culture ponds.

  8. Scaling oxygen microprofiles at the sediment interface of deep stratified waters

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien

    2017-02-01

    Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.

  9. 78 FR 59555 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Fluted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... physical and chemical water quality parameters (such as temperature, dissolved oxygen, pH, and conductivity... unknown. High temperatures can reduce dissolved oxygen concentrations in the water, which slows growth... encystment, increase oxygen consumption, reduce the speed in which they orient themselves in the substrate...

  10. Spatial variability in plankton biomass and hydrographic variables along an axial transect in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Roman, M.; Kimmel, D.; McGilliard, C.; Boicourt, W.

    2006-05-01

    High-resolution, axial sampling surveys were conducted in Chesapeake Bay during April, July, and October from 1996 to 2000 using a towed sampling device equipped with sensors for depth, temperature, conductivity, oxygen, fluorescence, and an optical plankton counter (OPC). The results suggest that the axial distribution and variability of hydrographic and biological parameters in Chesapeake Bay were primarily influenced by the source and magnitude of freshwater input. Bay-wide spatial trends in the water column-averaged values of salinity were linear functions of distance from the main source of freshwater, the Susquehanna River, at the head of the bay. However, spatial trends in the water column-averaged values of temperature, dissolved oxygen, chlorophyll-a and zooplankton biomass were nonlinear along the axis of the bay. Autocorrelation analysis and the residuals of linear and quadratic regressions between each variable and latitude were used to quantify the patch sizes for each axial transect. The patch sizes of each variable depended on whether the data were detrended, and the detrending techniques applied. However, the patch size of each variable was generally larger using the original data compared to the detrended data. The patch sizes of salinity were larger than those for dissolved oxygen, chlorophyll-a and zooplankton biomass, suggesting that more localized processes influence the production and consumption of plankton. This high-resolution quantification of the zooplankton spatial variability and patch size can be used for more realistic assessments of the zooplankton forage base for larval fish species.

  11. Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil).

    PubMed

    Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C

    2009-06-01

    The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.

  12. Impact of variability in coastal fog on photosynthesis and dissolved oxygen levels in shallow water habitats: Salmon Creek estuary case study

    NASA Astrophysics Data System (ADS)

    Largier, J. L.

    2013-12-01

    Coastal fog reduces available light levels that in turn reduce rates of photosynthesis and oxygen production. This effect can be seen in perturbations of the day-night production-respiration cycle that leads to increase and decrease in dissolved oxygen in shallow-water habitats. In well stratified coastal lagoons, a lower layer may be isolated from the atmosphere so that small changes in photosynthetically active radiation (PAR) are evident in perturbations of the typical day-night cycle of oxygen concentration. This effect is observed in the summertime, mouth-closed Salmon Creek Estuary, located in Sonoma County (California). Sub-diurnal fluctuations in dissolved oxygen in Salmon Creek Estuary correlate with deviations from the clear-sky diurnal cycle in PAR. Similar effects are observed in other estuaries and the process by which fog controls photosynthesis can be expected to occur throughout coastal California, although the effect may not be easily observable in data collected from open waters where mixing and bloom dynamics are likely to dominate temporal variability in biogenic properties like dissolved oxygen.

  13. Effect of dissolved oxygen in alcoholic beverages and drinking water on alcohol elimination in humans.

    PubMed

    Rhee, Su-jin; Chae, Jung-woo; Song, Byung-jeong; Lee, Eun-sil; Kwon, Kwang-il

    2013-02-01

    Oxygen plays an important role in the metabolism of alcohol. An increased dissolved oxygen level in alcoholic beverages reportedly accelerates the elimination of alcohol. Therefore, we evaluated the effect of dissolved oxygen in alcohol and the supportive effect of oxygenated water on alcohol pharmacokinetics after the excessive consumption of alcohol, i.e., 540 ml of 19.5% alcohol (v/v). Fifteen healthy males were included in this randomized, 3 × 3 crossover study. Three combinations were tested: X, normal alcoholic beverage and normal water; Y, oxygenated alcoholic beverage and normal water; Z, oxygenated alcoholic beverage and oxygenated water. Blood alcohol concentrations (BACs) were determined by conversion of breath alcohol concentrations. Four pharmacokinetic parameters (C(max), T(max), K(el), and AUCall) were obtained using non-compartmental analysis and the times to reach 0.05% and 0.03% BAC (T(0.05%) and T(0.03%)) were compared using one-way analysis of variance (ANOVA) and Duncan's post hoc test. With combination Z, the BAC decreased to 0.05% significantly faster (p < 0.05) than with combination X. Analyzing the pharmacokinetic parameters, the mean K(el) was significantly higher for combination Z than for combinations X and Y (p < 0.05), whereas the mean values of C(max), T(max) and AUCall did not differ significantly among the combinations. Dissolved oxygen in drinks accelerates the decrease in BAC after consuming a large amount of alcohol. However, the oxygen dissolved in the alcoholic beverage alone did not have a sufficient effect in this case. We postulate that highly oxygenated water augments the effect of oxygen in the alcoholic beverage in alcohol elimination. Therefore, it is necessary to investigate the supportive effect of ingesting additional oxygenated water after heavy drinking of normal alcoholic beverages. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A multisyringe flow injection Winkler-based spectrophotometric analyzer for in-line monitoring of dissolved oxygen in seawater.

    PubMed

    Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor

    2010-01-15

    An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.

  15. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    PubMed Central

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-01-01

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:26066989

  16. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    PubMed

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-06-09

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  17. NMR of laser-polarized 129Xe in blood foam

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.

    1997-01-01

    Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.

  18. An Evaluation of Nitrate, fDOM, and Turbidity Sensors in New Hampshire Streams

    NASA Astrophysics Data System (ADS)

    Snyder, Lisle; Potter, Jody D.; McDowell, William H.

    2018-03-01

    A state-of-the-art network of water quality sensors was established in 2012 to gather year-round high temporal frequency hydrochemical data in streams and rivers throughout the state of New Hampshire. This spatially extensive network includes eight headwater stream and two main stem river monitoring sites, spanning a variety of stream orders and land uses. Here we evaluate the performance of nitrate, fluorescent dissolved organic matter (fDOM), and turbidity sensors included in the sensor network. Nitrate sensors were first evaluated in the laboratory for interference by different forms of dissolved organic carbon (DOC), and then for accuracy in the field across a range of hydrochemical conditions. Turbidity sensors were assessed for their effectiveness as a proxy for concentrations of total suspended solids (TSS) and total particulate C and N, and fDOM as a proxy for concentrations of dissolved organic matter. Overall sensor platform performance was also examined by estimating percentage of data loss due to sensor failures or related malfunctions. Although laboratory sensor trials show that DOC can affect optical nitrate measurements, our validations with grab samples showed that the optical nitrate sensors provide a reliable measurement of NO3 concentrations across a wide range of conditions. Results showed that fDOM is a good proxy for DOC concentration (r2 = 0.82) but is a less effective proxy for dissolved organic nitrogen (r2 = 0.41). Turbidity measurements from sensors correlated well with TSS (r2 = 0.78), PC (r2 = 0.53), and PN (r2 = 0.51).

  19. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE PAGES

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...

    2017-05-19

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  20. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  1. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    NASA Astrophysics Data System (ADS)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  2. Do it yourself remote sensing: Generating an inexpensive, high tech, real science lake mapping project for the classroom

    NASA Technical Reports Server (NTRS)

    Metzger, Stephen M.

    1993-01-01

    The utilization of modest equipment and software revealed bottom contours and water column conditions of a dynamic water body. Classroom discussions of field techniques and equipment capabilities followed by exercises with the data sets in cause-and-effect analysis all contributed to participatory education in the process of science. This project is presented as a case study of the value of engaging secondary and collegiate level students in planning, executing and appraising a real world investigation which they can directly relate to. A 1 km wide bay, experiencing marsh inflow, along an 8 km long lake situated 120 km north of Ottawa, Canada, on the glaciated Canadian Precambrian Shield was mapped in midsummer for submerged topography, bottom composition, temperature profile, turbudity, dissolved oxygen and biota distribution. Low level aerial photographs scanned into image processing software are permitting spatial classification of bottom variations in biology and geology. Instrumentation consisted of a portable sport fishing SONAR depth finder, an electronic lead line multiprobe with photocell, thermistor and dissolved oxygen sensors, a selective depth water sampler, portable pH meter, an underwater camera mounted on a home-made platform with a bottom-contact trigger and a disposable underwater camera for shallow survey work. Sampling transects were referenced using a Brunton hand transit triangulating several shore markers.

  3. Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system.

    PubMed

    Kong, Ping; Hong, Chuanxue

    2014-05-13

    The genus Phytophthora includes a group of agriculturally important pathogens and they are commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the aquatic biology of these pathogens in irrigation reservoirs. Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10% Hoagland's solution at a range of dissolved concentrations from 0.9 to 20.1 mg L(-1) for up to seven exposure times from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species survived the best in control Hoagland's solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L(-1). Zoospore survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and P. tropicalis to hyperoxia and hypoxia conditions. Zoospores in the control solution declined over time and this natural decline process was enhanced under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover time of runoff water in recycling irrigation systems via better system designs.

  4. Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system

    PubMed Central

    2014-01-01

    Background The genus Phytophthora includes a group of agriculturally important pathogens and they are commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the aquatic biology of these pathogens in irrigation reservoirs. Results Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10% Hoagland’s solution at a range of dissolved concentrations from 0.9 to 20.1 mg L-1 for up to seven exposure times from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species survived the best in control Hoagland’s solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L-1. Zoospore survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and P. tropicalis to hyperoxia and hypoxia conditions. Conclusion Zoospores in the control solution declined over time and this natural decline process was enhanced under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover time of runoff water in recycling irrigation systems via better system designs. PMID:24885900

  5. Simultaneous nitrification, denitrification, and phosphorus removal in single-tank low-dissolved-oxygen systems under cyclic aeration.

    PubMed

    Ju, Lu-Kwang; Huang, Lin; Trivedi, Hiren

    2007-08-01

    Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.

  6. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    USGS Publications Warehouse

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  8. Method of determining the extent to which a nickel structure has been attached by a fluorine-containing gas

    DOEpatents

    Brusie, James P.

    2004-07-13

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  9. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    PubMed

    Vitale, Sarah A; Robbins, Gary A

    2017-07-01

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.

  10. A Quantitative Evaluation of Dissolved Oxygen Instrumentation

    NASA Technical Reports Server (NTRS)

    Pijanowski, Barbara S.

    1971-01-01

    The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

  11. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    PubMed

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    USGS Publications Warehouse

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously-measuring temperature, salinity, depth, turbidity, and velocity sensors since 2010, and added a dissolved-oxygen sensor in 2012, at a near-bottom location in Alviso Slough (Alviso, California USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows correlated to episodic winter storms (~85 m3 s-1) and low base flow during the summer (~0.85 m3 s-1). Storms and associated runoff have the greatest influence on sediment flux. Strong spring tides promote upstream sediment flux and weak neap tides have only a small net flux. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides.

  13. Mechanisms Controlling Hypoxia Data Atlas: High-resolution hydrographic and chemical observations from 2003-2014

    NASA Astrophysics Data System (ADS)

    Zimmerle, H.; DiMarco, S. F.

    2016-02-01

    The Mechanisms Controlling Hypoxia (MCH) project consisted of 31 cruises from 2003-2014 with an objective to investigate the physical and biogeochemical processes that control the hypoxic zone on the Texas-Louisiana shelf in the northern Gulf of Mexico. The known seasonal low oxygen conditions in this region are the result of river-derived nutrients, freshwater input, and wind. The MCH Data Atlas showcases in situ data and subsequent products produced during the duration of the project, focusing on oceanographic observations from 2010-2014. The Atlas features 230 high-resolution vertical sections from nine cruises using the Acrobat undulating towed vehicle that contained a CTD along with sensors measuring oxygen, fluorescence, and turbidity. Vertical profiles along the 20-meter isobaths section feature temperature, salinity, chlorophyll, and dissolved oxygen from the Acrobat towfish and CTD rosette as well as separate selected profiles from the CTD. Surface planview maps show the horizontal distribution of temperature, salinity, chlorophyll, beam transmission, and CDOM observed by the shipboard flow-through system. Bottom planview maps present the horizontal distribution of dissolved oxygen as well as temperature and salinity from the CTD rosette and Acrobat towfish along the shelf's seafloor. Informational basemaps display the GPS cruise track as well as individual CTD stations for each cruise. The shelf concentrations of CTD rosette bottle nutrients, including nitrate, nitrite, phosphate, ammonia, and silicate are displayed in select plots. Shipboard ADCP current velocity fields are also represented. MCH datasets and additional products are featured as an electronic version to compliment the published atlas. The MCH Data Atlas provides a showcase for the spatial and temporal variability of the environmental parameters associated with the annual hypoxic event and will be a useful tool in the continued monitoring and assessment of Gulf coastal hypoxia.

  14. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of <0.5 milligram per liter (mg/L), <1.0 mg/L, and <2.0 mg/L were selected to apply broadly to regional groundwater-quality investigations. Although the presence of dissolved manganese in groundwater indicates strongly reducing (anoxic) groundwater conditions, it is also considered a “nuisance” constituent in drinking water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, <50 micrograms per liter (µg/L), <150 µg/L, and <300 µg/L, were selected to create predicted probabilities of exceedances in depth zones used by domestic and public-supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  15. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF TECHNIQUES

    EPA Science Inventory

    The measurement and interpretation of geochemical redox parameters are key components of ground water remedial investigations. Dissolved oxygen (DO) is perhaps the most robust geochemical parameter in redox characterization; however, recent work has indicated a need for proper da...

  16. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  17. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    PubMed

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  19. Using In-Situ Optical Sensors to Understand the Biogeochemistry of Dissolved Organic Matter Across a Stream Network

    NASA Astrophysics Data System (ADS)

    Wymore, Adam S.; Potter, Jody; Rodríguez-Cardona, Bianca; McDowell, William H.

    2018-04-01

    The advent of high-frequency in situ optical sensors provides new opportunities to study the biogeochemistry of dissolved organic matter (DOM) in aquatic ecosystems. We used fDOM (fluorescent dissolved organic matter) to examine the spatial and temporal variability in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) across a heterogeneous stream network that varies in NO3- concentration. Across the ten study streams fDOM explained twice the variability in the concentration of DOC (r2 = 0.82) compared to DON (r2 = 0.39), which suggests that the N-rich fraction of DOM is either more variable in its sources or more bioreactive than the more stable C-rich fraction. Among sites, DON molar fluorescence was approximately 3x more variable than DOC molar fluorescence and was correlated with changes in inorganic N, indicating that DON is both more variable in composition as well as highly responsive to changes in inorganic N. Laboratory results also indicate that the fDOM sensors we used perform as well as the excitation-emission wavelength pair generally referred to as the "tryptophan-like" peak when measured under laboratory conditions. However, since neither the field sensor not the laboratory measurements explained a large percentage of variation in DON concentrations, challenges still remain for monitoring the ambient pool of dissolved organic nitrogen. Sensor networks provide new insights into the potential reactivity of DOM and the variability in DOC and DON biogeochemistry across sites. These insights are needed to build spatially explicit models describing organic matter dynamics and water quality.

  20. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  1. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies.

    PubMed

    Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver

    2010-08-21

    A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.

  2. On-line estimation and detection of abnormal substrate concentrations in WWTPs using a software sensor: a benchmark study.

    PubMed

    Benazzi, F; Gernaey, K V; Jeppsson, U; Katebi, R

    2007-08-01

    In this paper, a new approach for on-line monitoring and detection of abnormal readily biodegradable substrate (S(s)) and slowly biodegradable substrate (X(s)) concentrations, for example due to input of toxic loads from the sewer, or due to influent substrate shock load, is proposed. Considering that measurements of S(s) and X(s) concentrations are not available in real wastewater treatment plants, the S(s) / X(s) software sensor can activate an alarm with a response time of about 60 and 90 minutes, respectively, based on the dissolved oxygen measurement. The software sensor implementation is based on an extended Kalman filter observer and disturbances are modelled using fast Fourier transform and spectrum analyses. Three case studies are described. The first one illustrates the fast and accurate convergence of the extended Kalman filter algorithm, which is achieved in less than 2 hours. Furthermore, the difficulties of estimating X(s) when off-line analysis is not available are depicted, and the S(s) / X(s) software sensor performances when no measurements of S(s) and X(s) are available are illustrated. Estimation problems related to the death-regeneration concept of the activated sludge model no.1 and possible application of the software sensor in wastewater monitoring are discussed.

  3. A mobile water analysis laboratory for the study of stream nutrient and DOC dynamics

    NASA Astrophysics Data System (ADS)

    Echevarria Roman, Y.; Pullin, M. J.; Schwingle, R.; Gabrielsen, P. J.

    2013-12-01

    The dynamics of nutrient and dissolved organic carbon (DOC) quantity and composition in streams vary with season and in response to hydrologic events. Periodic grab sampling can capture some of this variation, but has also been shown to miss high flow events. Sampling during winter, during thunderstorms, and at night is difficult and sometimes hazardous. For these reasons, we have developed a mobile laboratory that autonomously determines pH, Eh, conductivity, dissolved oxygen, turbidity, nitrate, phosphate, DOC, DIC, as well as DOC fluorescence and absorbance continuously on a minutes timescale. The laboratory includes a Labview operated computer system that allows remote control and interaction with pumps, pressure, temperature, and flow sensors as well as the analytical instruments. Climate control allows for operation in winter. The design and operation of this laboratory will be presented. We will also discuss example data showing diurnal changes and responses to hydrologic events in DOC quantity and quality in the East Fork of the Jemez River, New Mexico.

  4. Combined effects of acidification and hypoxia on the estuarine ctenophore, Mnemiopsis leidyi

    EPA Science Inventory

    Estuaries are transitive zones which experience large fluctuations in environmental parameters (temperature, dissolved oxygen, pH, etc.). The interactive effects of reduced dissolved oxygen (DO) and elevated pCO2 on estuarine organisms is not currently well understood. Ctenophore...

  5. RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...

  6. River Pollution: Part I.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1983-01-01

    Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)

  7. SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE

    EPA Science Inventory

    Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

  8. Hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-2008

    USGS Publications Warehouse

    De Lanois, Jeanne L.; Green, W. Reed

    2011-01-01

    Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report are consistent with earlier findings that oxygen deficit rates and flushing-rate adjusted areal hypolimnetic oxygen deficit in Beaver and Table Rock Lakes were decreasing between 1974 and 1994. The additional data (1995-2008) demonstrate that the decline in flushing-rate adjusted areal hypolimnetic oxygen deficit in Beaver Lake has continued, whereas that in Table Rock Lake has flattened out in recent years. The additional data demonstrate the flushing-rate adjusted areal hypolimnetic oxygen deficit in Bull Shoals and Norfork Lakes have declined since 1995 (improved water quality), which was not indicated in earlier studies, while Greers Ferry Lake showed little net change over the period of record. Given the amount of data (35 years) for these reservoirs, developing an equation or model to predict areal hypolimnetic oxygen deficit and, therefore, areal hypolimnetic oxygen content, on any given day during future stratification seasons may be useful for reservoir managers.

  9. Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery.

    PubMed

    Lanzarini-Lopes, Mariana; Delgado, Anca G; Guo, Yuanming; Dahlen, Paul; Westerhoff, Paul

    2018-03-01

    Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source

    NASA Astrophysics Data System (ADS)

    Zhang, Xucai; Zhang, Jianmei

    2018-02-01

    Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.

  11. Operating manual for the U.S. Geological Survey minimonitor, 1988 revised edition; punched-paper-tape model

    USGS Publications Warehouse

    Ficken, James H.; Scott, Carl T.

    1988-01-01

    This manual describes the U.S. Geological Survey Minimonitor Water Quality Data Measuring and Recording System. Instructions for calibrating, servicing, maintaining, and operating the system are provided. The Survey Minimonitor is a battery-powered , multiparameter water quality monitoring instrument designed for field use. A watertight can containing signal conditioners is connected with cable and waterproof connectors to various water quality sensors. Data are recorded on a punched paper-tape recorder. An external battery is required. The operation and maintenance of various sensors and signal conditioners are discussed, for temperature, specific conductance, dissolved oxygen, and pH. Calibration instructions are provided for each parameter, along with maintenance instructions. Sections of the report explain how to connect the Minimonitor to measure direct-current voltages, such as signal outputs from other instruments. Instructions for connecting a satellite data-collection platform or a solid-state data recorder to the Minimonitor are given also. Basic information is given for servicing the Minimonitor and trouble-shooting some of its electronic components. The use of test boxes to test sensors, isolate component problems, and verify calibration values is discussed. (USGS)

  12. Guidelines and standard procedures for continuous water-quality monitors: Station operation, record computation, and data reporting

    USGS Publications Warehouse

    Wagner, Richard J.; Boulger, Robert W.; Oblinger, Carolyn J.; Smith, Brett A.

    2006-01-01

    The U.S. Geological Survey uses continuous water-quality monitors to assess the quality of the Nation's surface water. A common monitoring-system configuration for water-quality data collection is the four-parameter monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data. Such systems also can be configured to measure other properties, such as turbidity or fluorescence. Data from sensors can be used in conjunction with chemical analyses of samples to estimate chemical loads. The sensors that are used to measure water-quality field parameters require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. This report provides guidelines for site- and monitor-selection considerations; sensor inspection and calibration methods; field procedures; data evaluation, correction, and computation; and record-review and data-reporting processes, which supersede the guidelines presented previously in U.S. Geological Survey Water-Resources Investigations Report WRIR 00-4252. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.

  13. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.

    2016-10-01

    Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.

  14. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen.

    PubMed

    Luz, B; Barkan, E

    2000-06-16

    Plant production in the sea is a primary mechanism of global oxygen formation and carbon fixation. For this reason, and also because the ocean is a major sink for fossil fuel carbon dioxide, much attention has been given to estimating marine primary production. Here, we describe an approach for estimating production of photosynthetic oxygen, based on the isotopic composition of dissolved oxygen of seawater. This method allows the estimation of integrated oceanic productivity on a time scale of weeks.

  15. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  16. Modeling Fish Growth in Low Dissolved Oxygen

    ERIC Educational Resources Information Center

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  17. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS

    EPA Science Inventory

    The ability to confidently measure the concentration of dissolved oxygen (D.O.) in ground water is a key aspect of remedial selection and assessment. Presented here is a comparison of the commonly practiced methods for determining D.O. concentrations in ground water, including c...

  18. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA- 00160 Wilkin*, R.T., McNeil*, M.S., Adair*, C.J., and Wilson*, J.T. Field Measurement of Dissolved Oxygen: A Comparison of Methods. Ground Water Monitoring and Remediation (Fall):124-132 (2001). EPA/600/J-01/403. The abili...

  19. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    NASA Astrophysics Data System (ADS)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  20. Drought effects on water quality in the South Platte River Basin, Colorado

    USGS Publications Warehouse

    Sprague, Lori A.

    2005-01-01

    Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.

  1. Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed

    DTIC Science & Technology

    2016-04-08

    factors playing an augmenting role. The authors found a seasonal relationship with temperature , pH, and dissolved oxygen (DO). Additionally, they...2011 ), and nutrients (2013). In 1994, a Public Health Advisory ( fish consumption advisory) which is still in place today, was issued by the D.C...Dissolved Solids (TDS) Escherichia coli (E.coli) Temperature Dissolved Oxygen (DO) Total Colifonns - Electrical Conductivity (EC) Nitrate (N03-N

  2. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    PubMed Central

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  3. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    PubMed

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  4. Living with a large reduction in permited loading by using a hydrograph-controlled release scheme

    USGS Publications Warehouse

    Conrads, P.A.; Martello, W.P.; Sullins, N.R.

    2003-01-01

    The Total Maximum Daily Load (TMDL) for ammonia and biochemical oxygen demand for the Pee Dee, Waccamaw, and Atlantic Intracoastal Waterway system near Myrtle Beach, South Carolina, mandated a 60-percent reduction in point-source loading. For waters with a naturally low background dissolved-oxygen concentrations, South Carolina anti-degradation rules in the water-quality regulations allows a permitted discharger a reduction of dissolved oxygen of 0.1 milligrams per liter (mg/L). This is known as the "0.1 rule." Permitted dischargers within this region of the State operate under the "0.1 rule" and cannot cause a cumulative impact greater than 0.1 mg/L on dissolved-oxygen concentrations. For municipal water-reclamation facilities to serve the rapidly growing resort and retirement community near Myrtle Beach, a variable loading scheme was developed to allow dischargers to utilize increased assimilative capacity during higher streamflow conditions while still meeting the requirements of a recently established TMDL. As part of the TMDL development, an extensive real-time data-collection network was established in the lower Waccamaw and Pee Dee River watershed where continuous measurements of streamflow, water level, dissolved oxygen, temperature, and specific conductance are collected. In addition, the dynamic BRANCH/BLTM models were calibrated and validated to simulate the water quality and tidal dynamics of the system. The assimilative capacities for various streamflows were also analyzed. The variable-loading scheme established total loadings for three streamflow levels. Model simulations show the results from the additional loading to be less than a 0.1 mg/L reduction in dissolved oxygen. As part of the loading scheme, the real-time network was redesigned to monitor streamflow entering the study area and water-quality conditions in the location of dissolved-oxygen "sags." The study reveals how one group of permit holders used a variable-loading scheme to implement restrictive permit limits without experiencing prohibitive capital expenditures or initiating a lengthy appeals process.

  5. Long-Duration Carbon Dioxide Anesthesia of Fish Using Ultra Fine (Nano-Scale) Bubbles.

    PubMed

    Kugino, Kenji; Tamaru, Shizuka; Hisatomi, Yuko; Sakaguchi, Tadashi

    2016-01-01

    We investigated whether adding ultrafine (nano-scale) oxygen-carrying bubbles to water concurrently with dissolved carbon-dioxide (CO2) could result in safe, long-duration anesthesia for fish. To confirm the lethal effects of CO2 alone, fishes were anesthetized with dissolved CO2 in 20°C seawater. Within 30 minutes, all fishes, regardless of species, died suddenly due to CO2-induced narcosis, even when the water was saturated with oxygen. Death was attributed to respiration failure caused by hypoxemia. When ultrafine oxygen-carrying bubbles were supplied along with dissolved CO2, five chicken grunts were able to remain anesthetized for 22 hours and awoke normally within 2-3 hours after cessation of anesthesia. The high internal pressures and oxygen levels of the ultrafine bubbles enabled efficient oxygen diffusion across the branchia and permitted the organismal oxygen demands of individual anesthetized fish to be met. Thus, we demonstrated a method for safe, long-duration carbon dioxide anesthesia in living fish under normal water temperatures.

  6. Dissolved Oxygen Thresholds to Protect Designated Aquatic Life Uses in Estuaries

    EPA Science Inventory

    Most if not all coastal states in the US have established numeric thresholds for dissolved oxygen (DO) to protect aquatic life in estuaries. Some are in the process, or have recently completed, revisions of their criteria based on newer science. Often, a toxicological approach ...

  7. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  8. SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)

    EPA Science Inventory

    A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...

  9. USE OF SEDIMENT PROFILE IMAGERY TO ESTIMATE NEAR-BOTTOM DISSOLVED OXYGEN REGIMES

    EPA Science Inventory

    The U.S. EPA, Atlantic Ecology Division is developing empirical stressor-response models for nitrogen pollution in partially enclosed coastal systems using dissolved oxygen (DO) as one of the system responses. We are testing a sediment profile image camera as a surrogate indicat...

  10. DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE

    EPA Science Inventory

    An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. The method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. Other permanent gases such as...

  11. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  12. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    PubMed

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  13. Uncertainty analysis of the simulations of effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota

    USGS Publications Warehouse

    Wesolowski, Edwin A.

    1996-01-01

    Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.

  14. Decline in global oceanic oxygen content during the past five decades.

    PubMed

    Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin

    2017-02-15

    Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12  mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15  mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.

  15. Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river

    USGS Publications Warehouse

    McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.

    1995-01-01

    More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.

  16. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    PubMed

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bulk Dissolution Rates of Cadmium and Bismuth Tellurides As a Function of pH, Temperature and Dissolved Oxygen.

    PubMed

    Biver, Marc; Filella, Montserrat

    2016-05-03

    The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.

  18. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    NASA Astrophysics Data System (ADS)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  19. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).

    There is considerable concern that factors such as eutrophication, ...

  20. Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  1. Pilot Plant Demonstration of Stable and Efficient High Rate Biological Nutrient Removal with Low Dissolved Oxygen Conditions

    EPA Science Inventory

    Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, r...

  2. Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  3. A Simplified and Inexpensive Method for Measuring Dissolved Oxygen in Water.

    ERIC Educational Resources Information Center

    Austin, John

    1983-01-01

    A modified Winkler method for determining dissolved oxygen in water is described. The method does not require use of a burette or starch indicator, is simple and inexpensive and can be used in the field or laboratory. Reagents/apparatus needed and specific procedures are included. (JN)

  4. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    EPA Science Inventory

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  5. RESEARCH AT THE GULF ECOLOGY DIVISION ON THE EFFECTS OF LOW DISSOLVED OXYGEN ON ESTUARINE ANIMALS

    EPA Science Inventory

    Concerns about hypoxia and its effects on saltwater organisms are increasing as environmental conditions in the inshore and nearshore marine environments are better understood. Along the Gulf of Mexico coast, periods of very low dissolved oxygen (D.O.) concentrations have been re...

  6. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    NASA Astrophysics Data System (ADS)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  7. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    NASA Astrophysics Data System (ADS)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-07-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  8. Biodegradation of the surfactant linear alkylbenzenesulfonate in sewage- contaminated groundwater: A comparison of column experiments and field tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.

    1998-01-01

    Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.

  9. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments.

    PubMed

    Stach, Robert; Pejcic, Bobby; Crooke, Emma; Myers, Matthew; Mizaikoff, Boris

    2015-12-15

    The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels.

  10. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  11. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    PubMed

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  12. Attenuation of runoff and chemical loads in grass filter strips at two cattle feedlots, Minnesota, 1995-98

    USGS Publications Warehouse

    Komor, Stephen Charles; Hansen, Donald S.

    2003-01-01

    Attenuation of cattle feedlot runoff in two grass-covered filter strips in Minnesota was estimated by measuring chemical loads into and out of the strips. Filter strips of the Bock and Sanborn sites were 60-m long and 20-m wide and received runoff from cattle feedlots that supported 35 and 225 cattle, respectively. Feedlot and filter-strip runoff were measured using flumes with stage sensors. Water samples were collected using automated samplers. Attenuation values were calculated from four storm-runoff events. Ground water sampled beneath and outside the filter strips indicated some infiltration losses of sulfate, chloride, and nitrogen at the Bock site where soil permeability was greater than at the Sanborn site. Chemical constituents in filter-strip runoff, and their corresponding ranges of attenuation were as follows: chemical oxygen demand, 30–81 percent; dissolved chloride, 6–79 percent; dissolved sulfate, -3–82 percent; dissolved ammonia nitrogen, 33–80 percent; suspended ammonia plus organic nitrogen, 29–85 percent; dissolved organic nitrogen, 14–75 percent; suspended phosphorus, 24–82 percent; dissolved phosphorus, 14–72 percent; and fecal coliform bacteria, 18–79 percent. The ranges seem to be affected by barriers of direct contact of the runoff water with the soil. This varies seasonally by coverage of the soil by ice in winter and vegetation in summer months. Greater attenuation values occurred in October and May when mats of wilted, flat-lying grass covered the filter strips; attenuation values were less during the summer when tall growing grass covered the filter strips.

  13. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Silver Creek, Clark and Floyd counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)

  14. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Deep oxygenated ground water: Anomaly or common occurrence?

    USGS Publications Warehouse

    Winograd, I.J.; Robertson, F.N.

    1982-01-01

    Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge. Copyright ?? 1982 AAAS.

  16. Dissolvable tattoo sensors: from science fiction to a viable technology

    NASA Astrophysics Data System (ADS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  17. Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982

    USGS Publications Warehouse

    Clifton, Daphne G.

    1983-01-01

    Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)

  18. Effect of Dissolved Oxygen on the Filterability of Jet Fuels for Temperatures Between 300 Degrees and 400 Degrees F

    NASA Technical Reports Server (NTRS)

    Mckeown, Anderson B; Hibbard, Robert R

    1955-01-01

    The effect of dissolved oxygen in the filter-clogging characteristics of three JP-4 and two JP-5 fuels was studied at 300 degrees to 400 degrees F in a bench- scale rig, employing filter paper as the filter medium. The residence time of the fuel at the high temperature was approximately 6 seconds. For these conditions, the clogging characteristics of the fuels increased with both increasing temperature and increasing concentration of dissolved oxygen. The amount of insoluble material formed at high temperatures necessary to produce clogging of filters was very small, of the order of 1 milligram per gallon of fuel.

  19. Development of oxygen meters for the use in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.

    2001-07-01

    Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.

  20. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    PubMed

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series

    EPA Science Inventory

    In aquatic systems, time series of dissolved oxygen (DO) have been used to compute estimates of ecosystem metabolism. Central to this open-water method is the assumption that the DO time series is a Lagrangian specification of the flow field. However, most DO time series are coll...

  2. Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection - March 2011

    EPA Science Inventory

    We examined the role of the ocean–estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO w...

  3. Application of a one-dimensional model to explore the drivers and lability of carbon in the northern Gulf of Mexico

    EPA Science Inventory

    A one-dimensional water quality model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM-1D), was developed to simulate phytoplankton, carbon, nutrients, and dissolved oxygen in Gulf of Mexico. The model was calibrated and corroborated against a comprehensive set of field observation...

  4. Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection - May 16, 2011

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  5. DETERMINATION OF LETHAL DISSOLVED OXYGEN LEVELS FOR SELECTED MARINE AND ESTUARINE FISHES, CRUSTACEANS AND A BIVALVE

    EPA Science Inventory

    The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...

  6. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms

    PubMed Central

    Kiamco, Mia Mae; Atci, Erhan

    2017-01-01

    ABSTRACT Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively (P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin (P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments. IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. PMID:28062458

  7. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms.

    PubMed

    Kiamco, Mia Mae; Atci, Erhan; Mohamed, Abdelrhman; Call, Douglas R; Beyenal, Haluk

    2017-03-15

    Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively ( P < 0.001 and 0.01, respectively); the number of bacteria recovered from biofilms was significantly reduced (1.26 log) by treatment with cadexomer iodine and ciprofloxacin ( P = 0.002) compared to the untreated control. Combining cadexomer iodine and ciprofloxacin improved dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments. IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. Copyright © 2017 American Society for Microbiology.

  8. Relations among floodplain water levels, instream dissolved-oxygen conditions, and streamflow in the lower Roanoke River, North Carolina, 1997-2001

    USGS Publications Warehouse

    Bales, Jerad D.; Walters, Douglas A.

    2004-01-01

    The lower Roanoke River corridor in North Carolina contains a floodplain of national significance. Data from a network of 1 streamflow-measurement site, 13 river-stage sites, 13 floodplain water-level sites located along 4 transects, and 5 in situ water-quality monitoring sites were used to characterize temporal and spatial variations of floodplain and river water levels during 1997-2000 and to describe dissolved-oxygen conditions in the lower Roanoke River for the period 1998-2001. Major differences in the relation of floodplain inundation to flow occurred both among sites at a given transect and among transects. Several floodplain sites were inundated for the full range of flow conditions measured during the study. These included one site on the Big Swash transect (at about river kilometer 119); one site on the Broadneck Swamp transect (river kilometer 97), which was inundated 91 percent of the time during the study; one site on the Devils Gut transect (river kilometer 44), which was inundated throughout the study; and three sites on the Cow Swamp transect (near river kilometer 10). The relation of floodplain inundation depth to Roanoke River flow was highly variable among sites. There was no relation between flow and inundation depth at one of the Big Swash sites or at any of the four Cow Swamp sites. At two of the Big Swash transect sites, there was some relation between inundation depth and 10-day mean flow for flows greater than 700 cubic meters per second. A relatively strong relation between inundation depth and 10-day mean flow occurred at two of the Broadneck Swamp sites and, to a lesser degree, at two of the Devils Gut transect sites. There was much greater interannual variability in floodplain water levels, as represented by the difference between the maximum and minimum daily water level for a given calendar date during January-May and September-October than during the summer and late fall months. If data from this study are representative of long-term conditions, then this means that there is less uncertainty about what future floodplain water levels will be during June-August and November-December than during other months. Rates of ground-water decline, primarily due to evapotranspiration, were fairly similar at all sites, ranging from about 3 to 4 centimeters per day. For a 10-day mean flow of 300 cubic meters per second, an evaporative loss of 2 centimeters per day is equal to about 56 cubic meters per second. Evapotranspiration rates are much lower during the fall and winter months, so losses of river flow to floodplain processes likely are much lower during those months. The ground-water gradient at most sites was from the floodplain to the river, indicating a potential for ground-water movement into the river from the floodplain. At two of the Devils Gut sites, however, the water level often was higher in the river than in the floodplain when floodplain sites were not inundated. This indicates that there is a potential for river water to move as ground water from the river into the floodplain. It seems likely that this feature observed at the Devils Gut transect occurs elsewhere in the lower Roanoke River corridor. Dissolved-oxygen concentrations typically decrease with increasing distance from Roanoke Rapids Dam. During the 1998-2001 study period, the median dissolved-oxygen concentration at Halifax (river kilometer 187), the upstream-most station, was 8.4 milligrams per liter, and the median concentration at the downstream-most station (NC-45, bottom sensor; river kilometer 2.6) was 6.6 milligrams per liter. Several synoptic measurements of dissolved-oxygen concentration down the river identified the presence of a dissolved-oxygen sag in the vicinity of Halifax, with some recovery of concentrations between Halifax and about Scotland Neck at river kilometer 156. Data from the synoptic measurements also indicated that the greatest rate of dissolved-oxygen change with distance along the riv

  9. High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer.

    PubMed

    Greer, K D; Molson, J W; Barker, J F; Thomson, N R; Donaldson, C R

    2010-10-21

    A field experiment was completed at a fractured dolomite aquifer in southwestern Ontario, Canada, to assess the delivery of supersaturated dissolved oxygen (supersaturated with respect to ambient conditions) for enhanced bioremediation of petroleum hydrocarbons in groundwater. The injection lasted for 1.5h using iTi's gPro® oxygen injection technology at pressures of up to 450 kPa and at concentrations of up to 34 mg O₂/L. A three-dimensional numerical model for advective-dispersive transport of dissolved oxygen within a discretely-fractured porous medium was calibrated to the observed field conditions under a conservative (no-consumption) scenario. The simulation demonstrated that oxygen rapidly filled the local intersecting fractures as well as the porous matrix surrounding the injection well. Following injection, the local fractures were rapidly flushed by the natural groundwater flow system but slow back-diffusion ensured a relatively longer residence time in the matrix. A sensitivity analysis showed significant changes in behaviour with varying fracture apertures and hydraulic gradients. Applying the calibrated model to a 7-day continuous injection scenario showed oxygen residence times (at the 3mg/L limit), within a radius of 2-4m from the injection well, of up to 100 days. This study has demonstrated that supersaturated dissolved oxygen can be effectively delivered to this type of a fractured and porous bedrock system at concentrations and residence times potentially sufficient for enhanced aerobic biodegradation. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.

    2013-08-01

    Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.

  11. The Effects of Elevated pCO2, Hypoxia and Temperature on ...

    EPA Pesticide Factsheets

    Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adverse effects of low dissolved oxygen levels on estuarine fish has been well-documented, the interaction between low DO and elevated pCO2 is not well understood. There is some evidence that low DO and elevated pCO2 interact antagonistically, however little information exists on how projected changes of pCO2 levels in near-shore waters may affect estuarine species, and how these changes may specifically interact with dissolved oxygen and temperature. We explored the survivability of 7-day post fertilization sheepshead minnow, Cyprinodon variegatus, using short term exposure to the combined effects of elevated pCO2 (~1300 µatm; IPCC RCP 8.5) and low dissolved oxygen levels (~2 mg/L). Additionally, we determined if the susceptibility of these fish to elevated pCO2 and low DO was influenced by increases in temperature from 27.5°C to 35°C. Results from this study and future studies will be used to identify estuarine species and lifestages sensitive to the combined effects of elevated pCO2 and low dissolved oxygen. This project was created in order to better understand the interactive effects of projected pCO2 levels and hypoxia in estuarine organisms. This work is currently focused on the se

  12. Trophic conditions in Lake Winnisquam, New Hampshire

    USGS Publications Warehouse

    Frost, Leonard R.

    1977-01-01

    Lake Winnisquam has received treated domestic sewage for approximately 50 years and since June 1961 has been treated with copper sulfate to control the growth of nuisance algae. The Laconia City secondary sewage-treatment plant was upgraded in 1975 to include phosphorus removal. Phosphorus was not removed effectively until early 1976, and, therefore, the 1976 data are considered baseline or pre-phosphorus removal with respect to anticipated changes in the trophic condition of the lake. Effluent from the Laconia State School primary-treatment plant was diverted to the Laconia City plant in October 1976. Dissolved oxygen concentrations showed marked differences between the two basins comprising Lake Winnisquam. Phytoplankton samples showed similarities by algal group for all stations but algal genera varied between the upper and lower basins. Total phosphorus concentrations in the epilimnion ranged from 0.01 to 0.10 milligram per liter, and accumulation of total phosphorus in the hypolimnion resulted in concentrations up to 0.59 milligrams per liter. Chemical states of nutrients varied among the stations corresponding to the degree of depletion of hypolimnetic dissolved oxygen. Dissolved oxygen profiles were used to illustrate zones of algal production, respiration, and bacterial decomposition. The rate of depletion of dissolved oxygen in the hypolimnion was linearly related to time. Because change in the rate of hypolimnetic dissolved oxygen depletion is more easily measured than change of nutrient load in the lake, it is suggested it be used as an indicator of the response of the lake to change in trophic condition.

  13. δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China.

    PubMed

    Li, M D; Wang, Y X; Li, P; Deng, Y M; Xie, X J

    2014-12-01

    Environmental isotopology of sulfur and oxygen of dissolved sulfate in groundwater was conducted in the Hetao Plain, northwestern China, aiming to better understand the processes controlling arsenic mobilization in arsenic-rich aqueous systems. A total of 22 groundwater samples were collected from domestic wells in the Hetao Plain. Arsenic concentrations ranged from 11.0 to 388 μg/L. The δ(34)S-SO4 and δ(18)O-SO4 values of dissolved sulfate covered a range from +1.48 to +22.4‰ and +8.17‰ to +14.8‰ in groundwater, respectively. The wide range of δ(34)S-SO4 values reflected either an input of different sources of sulfate, such as gypsum dissolution and fertilizer application, or a modification from biogeochemical process of bacterial sulfate reduction. The positive correlation between δ(34)S-SO4 and arsenic concentrations suggested that bacteria mediated processes played an important role in the mobilization of arsenic. The δ(18)O-SO4 values correlated non-linearly with δ(34)S-SO4, but within a relatively narrow range (+8.17 to +14.8‰), implying that complexities inherent in the sulfate-oxygen (O-SO4(2-)) origins, for instance, water-derived oxygen (O-H2O), molecular oxygen (O-O2) and isotope exchanging with dissolved oxides, are accounted for oxygen isotope composition of dissolved sulfate in groundwater in the Hetao Plain.

  14. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  15. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    NASA Astrophysics Data System (ADS)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  16. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  17. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  18. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Little Laughery Creek, Ripley and Franklin counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)

  19. Consequences of land use cover change and precipitation regimes on water quality in a tropical landscape: the case of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.

    2017-12-01

    One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.

  20. The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt

    NASA Technical Reports Server (NTRS)

    Pawley, Alison R.; Holloway, John R.; Mcmillan, Paul F.

    1992-01-01

    The solubility of CO2-CO fluids in a midocean ridge basalt have been measured at 1200 C, 500-1500 bar, and oxygen fugacities between NNO and NNO-4. In agreement with results of previous studies, the results reported here imply that, at least at low pressures, CO2 dissolves in basaltic melt only in the form of carbonate groups. The dissolution reaction is heterogeneous, with CO2 molecules in the fluid reacting directly with reactive oxygens in the melt to produce CO3(2-). CO, on the other hand, is insoluble, dissolving neither as carbon, molecular CO, nor CO3(2-). It is shown that, for a given pressure and temperature, the concentration of dissolved carbon-bearing species in basaltic melt in equilibrium with a carbon-oxygen fluid is proportional to the mole fraction of CO2 in the fluid, which is a function of fO2. At low pressures CO2 solubility is a linear function of CO2 fugacity at constant temperatures.

  1. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone.

    PubMed

    Beman, J Michael; Carolan, Molly T

    2013-01-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  2. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  3. Water quality of Lake Whitney, north-central Texas

    USGS Publications Warehouse

    Strause, Jeffrey L.; Andrews, Freeman L.

    1983-01-01

    Seasonal temperature variations and variations in the concentration of dissolved oxygen result in dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus being recycled within the lake; however, no significant accumulations of these constituents were detected.

  4. Marine Primary Aerosol in the Mediterranean atmosphere: physical and chemical properties from a mesocosm study

    NASA Astrophysics Data System (ADS)

    D'anna, B.; Sellegri, K.; Charriere, B.; Sempere, R.; Mas, S.; George, C.; Meme, A.; R'Mili, B.; Schwier, A. N.; Rose, C.

    2013-12-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminated the contribution of Primary Sea Salt Aerosol (SSA) formed at the sea-air interface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. A mesocosms experiment was performed in May 2013 at the Oceanographic and Marine Station STARESO in Western Corsica. Three mesocosms were simultaneously filled with pooled and screened (<1000 μm) subsurface (1 m) seawater from the Bay. Each mesocosm had a maximum water column depth of 2 m and contained 2260 L of Bay water and covered with transparent (teflon film) dome to prevent atmospheric contamination. The three mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatements: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ration (N:P = 16). The evolution of the three systems was followed for 20 days. A set of sensors in each mesocosm were established at 0.5 m and allowed to monitor at high frequency (every 2 min): water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical (dissolved oxygen, colored dissolved organic matter, nitrates, phosphates, silicates, transparent polyssacharides, dicarboxylic acids and related polar compounds) and biological (chlorophyll a, virus, phytoplankton and zooplankton concentration) analyses. Finally, few liters of sea-water from each mesocosms were sampled daily and immediately transferred to a bubble-bursting apparatus to simulate SSA. Size distribution and particle number were followed by SMPS and APS in the range of 10nm to 10μm. The hygroscopic properties were investigated by a CCN device. On-line chemical analysis of the sub-micrometer fraction was performed by a c-TOF-AMS. Off-line analysis of the SSA generated included TEM-EDX , LC-MS and IC, Thermo-optical analysis of EC-OC. The objective of the present study is to investigate the influence of water chemical and biological composition and biological activity on physical and chemical properties of the primary generated aerosol.

  5. Enzymatic glucose sensor compensation for variations in ambient oxygen concentration

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; McShane, Michael J.

    2013-02-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.

  6. Effects of dissolved oxygen on dye removal by zero-valent iron.

    PubMed

    Wang, Kai-Sung; Lin, Chiou-Liang; Wei, Ming-Chi; Liang, Hsiu-Hao; Li, Heng-Ching; Chang, Chih-Hua; Fang, Yung-Tai; Chang, Shih-Hsien

    2010-10-15

    Effects of dissolved oxygen concentrations on dye removal by zero-valent iron (Fe(0)) were investigated. The Vibrio fischeri light inhibition test was employed to evaluate toxicity of decolorized solution. Three dyes, Acid Orange 7 (AO7, monoazo), Reactive Red 120 (RR120, diazo), and Acid Blue 9 (AB9, triphenylmethane), were selected as model dyes. The dye concentration and Fe(0) dose used were 100 mg L(-1) and 30 g L(-1), respectively. Under anoxic condition, the order for dye decolorization was AO7>RR120>AB9. An increase in the dissolved oxygen concentrations enhanced decolorization and chemical oxygen demand (COD) removal of the three dyes. An increase in gas flow rates also improved dye and COD removals by Fe(0). At dissolved oxygen of 6 mg L(-1), more than 99% of each dye was decolorized within 12 min and high COD removals were obtained (97% for AO7, 87% for RR120, and 93% for AB9). The toxicity of decolorized dye solutions was low (I(5)<40%). An increase in DO concentrations obviously reduced the toxicity. When DO above 2 mg L(-1) was applied, low iron ion concentration (13.6 mg L(-1)) was obtained in the decolorized AO7 solution. 2010 Elsevier B.V. All rights reserved.

  7. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    NASA Astrophysics Data System (ADS)

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-12-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  8. Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries

    USGS Publications Warehouse

    Batiuk, Richard A.; Breitburg, Denise L.; Diaz, Robert J.; Cronin, Thomas M.; Secor, David H.; Thursby, Glen

    2009-01-01

    The Chesapeake 2000 Agreement committed its state and federal signatories to “define the water quality conditions necessary to protect aquatic living resources” in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a result of the above Agreement. This paper summarizes the protection goals and specific criteria intended to achieve those goals for addressing hypoxia. The criteria take into account the variety of Bay habitats and the tendency towards low dissolved oxygen in some areas of the Bay. Stressful dissolved oxygen conditions were characterized for a diverse array of living resources of the Chesapeake Bay by different aquatic habitats: migratory fish spawning and nursery, shallow-water, open-water, deep-water, and deep-channel. The dissolved oxygen criteria derived for each of these habitats are intended to protect against adverse effects on survival, growth, reproduction and behavior. The criteria accommodate both spatial and temporal aspects of low oxygen events, and have been adopted into the Chesapeake Bay states – Maryland, Virginia, and Delaware – and the District of Columbia's water quality standards regulations. These criteria, now in the form of state regulatory standards, are driving an array of land-based and wastewater pollution reduction actions across the six-watershed.

  9. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1993-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  10. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1994-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  11. A BOD monitoring disposable reactor with alginate-entrapped bacteria.

    PubMed

    Villalobos, Patricio; Acevedo, Cristian A; Albornoz, Fernando; Sánchez, Elizabeth; Valdés, Erika; Galindo, Raúl; Young, Manuel E

    2010-10-01

    Biochemical oxygen demand (BOD) is a measure of the amount of dissolved oxygen that is required for the biochemical oxidation of the organic compounds in 5 days. New biosensor-based methods have been conducted for a faster determination of BOD. In this study, a mathematical model to evaluate the feasibility of using a BOD sensor, based on disposable alginate-entrapped bacteria, for monitoring BOD in situ was applied. The model considers the influences of alginate bead size and bacterial concentration. The disposable biosensor can be adapted according to specific requirements depending on the organic load contained in the wastewater. Using Klein and Washausen parameter in a Lineweaver-Burk plot, the glucose diffusivity was calculated in 6.4 × 10(-10) (m2/s) for beads of 1 mm in diameter and slight diffusion restrictions were observed (n = 0.85). Experimental results showed a correlation (p < 0.05) between the respirometric peak and the standard BOD test. The biosensor response was representative of BOD.

  12. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    USDA-ARS?s Scientific Manuscript database

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  13. Production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    USDA-ARS?s Scientific Manuscript database

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...

  14. Hypoxia affects performance traits and body composition of juvenile hybrid striped bass (Morone chrysops x M. saxatilis)

    USDA-ARS?s Scientific Manuscript database

    Performance traits and body composition of juvenile hybrid striped bass (Morone chrysops x M. saxatilis) in response to hypoxia were evaluated in replicate tanks maintained at constant dissolved oxygen concentrations that averaged 23.0 +/- 2.3%, 39.7 +/- 3.0%, and 105.5 +/- 9.5% dissolved oxygen sat...

  15. Historic and recent patterns in dissolved oxygen within the Yaquina Estuary (Oregon, USA): Importance of anthropogenic activities and oceanic conditions

    EPA Science Inventory

    Spatial and temporal patterns of dissolved oxygen (DO) in Yaquina Estuary, Oregon (USA) are examined using historic and recent data. There was a significant increasing trend in DO in the upstream portion of the estuary during the years 1960–1985. Historically, minimum dry season ...

  16. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series-Abstract

    EPA Science Inventory

    Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...

  17. Predator density and dissolved oxygen affect body condition of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) from intermittent streams

    Treesearch

    Joseph W. Love; Christopher M. Taylor; Melvin L. Warren

    2005-01-01

    The effects of population density, fish density, and dissolved oxygen on body condition of late-instar nymphs of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) were investigated using nymphs sampled from isolated, upland stream pools over summer in central Arkansas, USA. All three factors exhibited high variation among pools. Body condition...

  18. Improving the knowledge about dissolved oxygen and chlorophyll variability at ESTOC by using autonomous vehicles.

    NASA Astrophysics Data System (ADS)

    Cianca, A.; Caudet, E.; Vega, D.; Barrera, C.; Hernandez Brito, J.

    2016-02-01

    The European Station for Time Series in the Ocean, Canary Islands "ESTOC" is located in the Eastern Subtropical North Atlantic Gyre (29'10ºN, 15'30ºW). ESTOC started operations in 1994 based on a monthly ship-based sampling, in addition to hydrographic and sediment trap moorings. Since 2002, ESTOC is part of the European network for deep sea ocean observatories through several projects, among others ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), EuroSITES (European Ocean Observatory Network) and Fixed point Open Ocean Observatory network (FixO3). The main purpose of these projects was to improve the time-resolution of the biogeochemical measurements through moored biogeochemical sensors. Additionally, ESTOC is included in the Marine-Maritime observational network of the Macaronesian region, which is supported by the European overseas territories programs since 2009. This network aims to increase the quantity and quality of marine environmental observations. The goal is to understand phenomena which impact in the environment, and consequently at the socio-economy of the region to attempt their prediction. With this purpose, ESTOC has included the use of autonomous vehicles "glider" in order to increase the observational resolution and, by comparison with the parallel observational programs, to study the biogeochemical processes at different time scale resolutions. This study investigates the time variability of the dissolved oxygen and chlorophyll distributions in the water column focusing on the diel cycle, looking at the relevance of this variability in the already known seasonal distributions. Our interest is assessing net community production and remineralization rates through the use of oxygen variations, establishing the relationship between the DO anomalies values and those from the chlorophyll distribution in the water column.

  19. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria.

    PubMed

    Lambooij, Joost M; Hoogenkamp, Michel A; Brandt, Bernd W; Janus, Marleen M; Krom, Bastiaan P

    2017-12-01

    Fungi are commonly encountered as part of a healthy oral ecosystem. Candida albicans is the most often observed and investigated fungal species in the oral cavity. The role of fungi in the oral ecosystem has remained enigmatic for decades. Recently, it was shown that C. albicans, in vitro, influences the bacterial composition of young oral biofilms, indicating it possibly plays a role in increasing diversity in the oral ecosystem. C. albicans favored growth of strictly anaerobic species under aerobic culture conditions. In the present study, the role of mitochondrial respiration, as mechanism by which C. albicans modifies its environment, was investigated. Using oxygen sensors, a rapid depletion of dissolved oxygen (dO 2 ) was observed. This decrease was not C. albicans specific as several non-albicans Candida species showed similar oxygen consumption. Heat inactivation as well as addition of the specific mitochondrial respiration inhibitor Antimycin A inhibited depletion of dO 2 . Using 16S rDNA sequencing, it is shown that mitochondrial activity, more than physical presence of C. albicans is responsible for inducing growth of strictly anaerobic oral bacteria in aerobic growth conditions. The described mechanism of dO 2 depletion may be a general mechanism by which fungi modulate their direct environment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    PubMed Central

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  1. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    PubMed

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  2. Electrochemical and Chemical Complications Resulting from Yeast Extract Addition to Stimulate Microbial Growth

    DTIC Science & Technology

    2016-09-22

    approxi- mately 21% dissolved oxygen ) and deoxygenated (ɘ.0001% dissolved oxygen ) natural seawater fixed the corrosion potential (Ecorr) of 316L (UNS...at 70°C for 2 h, and allowed to cool to room temperature (23±1°C) overnight. Electrochemical measurements were conducted in Model K0047† corrosion...Coy Laboratory Products). Palladium (Pd) catalyst stacks were placed within the chamber to maintain the atmospheric oxygen level to below 1 part-per

  3. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    PubMed

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  4. Work Plan for Three-Dimensional Time-Varying, Hydrodynamic and Water Quality Model of Chesapeake Bay

    DTIC Science & Technology

    1988-08-01

    successfully calibrated: a. Dissolved oxygen b. Anmonium c. Nitrate d . Dissolved inorganic phosphorus e. Silica f. Methane g. Sulfide Fluxes of dissolved...oxygen, amonium , nitrate , methane, and sulfide can be related to the rate of diagenesis. A less mechanistic, more empirical approach may be required...CLASSc;CA’ ON A ’I.ORITV 3 D.S1R RUT ON AVA LABMLTY OF REPORT ’b D LASPCTO1,DONGRANG C ED, kApproved for public rele~ise; distribution 2b DC~ASFAT.N

  5. Diode Laser Sensor for Scramjet Inlet

    DTIC Science & Technology

    2010-05-11

    This work presents the development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet engine inlet...ADFA Abstract This work presents development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet... sensor needs to use oxygen as the absorbing species, as this is the only option for absorption measurements in inlet air. Oxygen absorption lines

  6. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Treesearch

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  7. Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Treesearch

    Brian A. Pellerin; John Franco Saraceno; James B. Shanley; Stephen D. Sebestyen; George R. Aiken; Wilfred M. Wollheim; Brian A. Bergamaschi

    2012-01-01

    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3-) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water...

  8. A study on the applicability of the ecosystem model on water quality prediction in urban river outer moats of Yedo Castle, Nihonbashi River

    NASA Astrophysics Data System (ADS)

    Kakinuma, Daiki; Tsushima, Yuki; Ohdaira, Kazunori; Yamada, Tadashi

    2015-04-01

    The objective of the study is to elucidate the waterside environment in the outer moats of Yedo Castle and the downstream of Nihonbashi River in Tokyo. Scince integrated sewage system has been installed in the area around the outer moats of Yedo Castle and the Nihon River basin, when rainfall exceeds more than the sewage treatment capacity, overflowed untreated wastewater is released into the moats and the river. Because the moats is a closed water body, pollutants are deposited to the bottom without outflowing. While reeking offensive odors due to the decomposition, blue-green algae outbreaks affected by the residence time and eluted nutrient causes problems. Scince the Nihonbashi River is a typical tidal river in urban area, the water pollution problems in the river is complicated. This study clarified the characteristics of the water quality in terms of dissolved oxygen saturation through on-site observations. In particular, dissolved oxygen saturation in summer, it is clarified that variations from a supersaturated state due to the variations of horizontal insolation intensity and water temperature up to hypoxic water conditions in the moats. According to previous studies on the water quality of Nihonbashi River, it is clarified that there are three types of variations of dissolved oxygen which desided by rainfall scale. The mean value of dissolved oxygen saturation of all layers has decreased by about 20% at the spring tide after dredging, then it recoveres gradually and become the value before dredging during about a year. Further more, in places where sewage inflows, it is important to developed a ecosystem medel and the applicability of the model. 9 variables including cell quota (intracellular nutrients of phytoplankton) of phosphorus and nitrogen with considerring the nitrification of ammonia nitrogen are used in the model. This model can grasp the sections (such as oxygen production by photosynthesis of phytoplankton, oxygen consumption by respiration of plankton, and bottom mud) of dissolved oxygen concentration.

  9. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers.

    PubMed

    Ma, G M; Jiang, J; Li, C R; Song, H T; Luo, Y T; Wang, H B

    2015-04-01

    Compared with conventional DGA (dissolved gas analysis) method for on-line monitoring of power transformers, FBG (fiber Bragg grating) hydrogen sensor represents marked advantages over immunity to electromagnetic field, time-saving, and convenience to defect location. Thus, a novel FBG hydrogen sensor based on Pd/Ag (Palladium/Silver) along with polyimide composite film to measure dissolved hydrogen concentration in large power transformers is proposed in this article. With the help of Pd/Ag composite coating, the enhanced performance on mechanical strength and sensitivity is demonstrated, moreover, the response time and sensitivity influenced by oil temperature are solved by correction lines. Sensitivity measurement and temperature calibration of the specific hydrogen sensor have been done respectively in the lab. And experiment results show a high sensitivity of 0.055 pm/(μl/l) with instant response time about 0.4 h under the typical operating temperature of power transformers, which proves a potential utilization inside power transformers to monitor the health status by detecting the dissolved hydrogen concentration.

  10. The effect of dissolved oxygen on the susceptibility of blood.

    PubMed

    Berman, Avery J L; Ma, Yuhan; Hoge, Richard D; Pike, G Bruce

    2016-01-01

    It has been predicted that, during hyperoxia, excess O2 dissolved in arterial blood will significantly alter the blood's magnetic susceptibility. This would confound the interpretation of the hyperoxia-induced blood oxygenation level-dependent signal as arising solely from changes in deoxyhemoglobin. This study, therefore, aimed to determine how dissolved O2 affects the susceptibility of blood. We present a comprehensive model for the effect of dissolved O2 on the susceptibility of blood and compare it with another recently published model, referred to here as the ideal gas model (IGM). For validation, distilled water and samples of bovine plasma were oxygenated over a range of hyperoxic O2 concentrations and their susceptibilities were determined using multiecho gradient echo phase imaging. In distilled water and plasma, the measured changes in susceptibility were very linear, with identical slopes of 0.062 ppb/mm Hg of O2. This change was dramatically less than previously predicted using the IGM and was close to that predicted by our model. The primary source of error in the IGM is the overestimation of the volume fraction occupied by dissolved O2. Under most physiological conditions, the susceptibility of dissolved O2 can be disregarded in MRI studies employing hyperoxia. © 2015 Wiley Periodicals, Inc.

  11. Oxygen sensor signal validation for the safety of the rebreather diver.

    PubMed

    Sieber, Arne; L'abbate, Antonio; Bedini, Remo

    2009-03-01

    In electronically controlled, closed-circuit rebreather diving systems, the partial pressure of oxygen inside the breathing loop is controlled with three oxygen sensors, a microcontroller and a solenoid valve - critical components that may fail. State-of-the-art detection of sensor failure, based on a voting algorithm, may fail under circumstances where two or more sensors show the same but incorrect values. The present paper details a novel rebreather controller that offers true sensor-signal validation, thus allowing efficient and reliable detection of sensor failure. The core components of this validation system are two additional solenoids, which allow an injection of oxygen or diluent gas directly across the sensor membrane.

  12. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.

    PubMed

    Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R

    2017-07-15

    Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.

  13. Episodes of low dissolved oxygen indicated by ostracodes and sediment geochemistry at Crystal Lake, Illinois, USA

    USGS Publications Warehouse

    Curry, B. Brandon; Filippelli, G.M.

    2010-01-01

    Low dissolved oxygen during the summer and early fall controls profundal continental ostracode distribution in Crystal Lake (McHenry County), Illinois, favoring Cypria ophthalmica and Physocypria globula at water depths from 6 to 13 m. These species also thrived in the lake's profundal zone from 14,165 to 9600 calendar year before present (cal yr b.p.) during the late Boiling, Allerod, and Younger Dryas chronozones, and early Holocene. Characterized by sand, cemented tubules, large aquatic gastropod shells, and littoral ostracode valves, thin (1-6 cm) tempestite deposits punctuate thicker deposits of organic gyttja from 16,080 to 11,900 cal yr b.p. The succeeding 2300 yr (11,900-9600 cal yr b.p.) lack tempestites, and reconstructed water depths were at their maximum. Deposition of marl under relatively well-oxygenated conditions occurred during the remainder of the Holocene until the arrival of Europeans, when the lake returned to a pattern of seasonally low dissolved oxygen. Such conditions are also indicated in the lake sediment by the speciation of phosphorus, high concentrations of organic carbon, and abundant iron and manganese occluded to mineral grains. Initial low dissolved oxygen was probably caused by the delivery of dissolved P and Fe in shallow groundwater, the chemistry of which was influenced by Spodosol pedogenesis under a spruce forest. The triggering may have been regionally warm and wet conditions associated with retreat of the Lake Michigan lobe (south-central Laurentide Ice Sheet). ?? 2010, by the American Society of Limnology and Oceanography Inc.

  14. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Measurement of dissolved oxygen during red wines tank aging with chips and micro-oxygenation.

    PubMed

    Nevares, I; del Alamo, M

    2008-07-21

    Nowadays, micro-oxygenation is a very important technique used in aging wines in order to improve their characteristics. The techniques of wine tank aging imply the use of small doses of oxygen and the addition of wood pieces of oak to the wine. Considering the low dissolved oxygen (DO) levels used by micro-oxygenation technique it is necessary to choose the appropriate measurement principle to apply the precise oxygen dosage in wine at any time, in order to assure its correct assimilation. This knowledge will allow the oenologist to control and run the wine aging correctly. This work is a thorough revision of DO measurement main technologies applied to oenology. It describes the strengths and weaknesses of each of them, and draws a comparison of their workings in wine measurement. Both, the traditional systems by electrochemical probes, and the newest photoluminescence-based probes have been used. These probes adapted to red wines ageing study are then compared. This paper also details the first results of the dissolved oxygen content evolution in red wines during a traditional and alternative tank aging. Samples have been treated by three different ageing systems: oak barrels, stainless-steel tanks with small oak wood pieces (chips) and with bigger oak pieces (staves) with low micro-oxygenation levels. French and American oak barrels manufactured by the same cooperage have been used.

  16. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.

    PubMed

    Stolper, Daniel A; Keller, C Brenhin

    2018-01-18

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  17. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts

    NASA Astrophysics Data System (ADS)

    Stolper, Daniel A.; Keller, C. Brenhin

    2018-01-01

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  18. Limiting factors to encapsulation: the combined effects of dissolved protein and oxygen availability on embryonic growth and survival of species with contrasting feeding strategies.

    PubMed

    Brante, Antonio; Fernández, Miriam; Viard, Frédérique

    2009-07-01

    Encapsulation is a common strategy among marine invertebrate species. It has been shown that oxygen and food availability independently constrain embryo development during intracapsular development. However, it is unclear how embryos of species with different feeding strategies perceive these two constraints when operating jointly. In the present study, we examined the relative importance of dissolved albumen, as a food source, oxygen condition and their interaction on embryonic growth and the survival of two calyptraeid species, Crepidula coquimbensis and Crepidula fornicata, exhibiting different embryo feeding behaviours (i.e. presence vs absence of intracapsular cannibalism). Two oxygen condition treatments (normoxia and hypoxia) and three albumen concentrations (0, 1 and 2 mg l(-1)) were studied. In addition, albumen intake by embryos was observed using fluorescence microscopy. Our study shows that embryos of both species incorporated dissolved albumen but used a different set of embryonic organs. We observed that embryo growth rates in C. coquimbensis were negatively affected only by hypoxic conditions. Conversely, a combination of low albumen concentration and oxygen availability slowed embryo growth in C. fornicata. These findings suggest that oxygen availability is a limiting factor for the normal embryo development of encapsulated gastropod species, regardless of feeding behaviour or developmental mode. By contrast, the effect of dissolved albumen as an alternative food source on embryo performance may depend on the feeding strategy of the embryos.

  19. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools

    Treesearch

    K.R. Matthews; N.H. Berg

    1997-01-01

    Habitat use by rainbow trout Oncorhynchus mykiss is described for a southern California stream where the summer water temperatures typically exceed the lethal limits for trout (>25) C). During August 1994, water temperature, dissolved oxygen (DO), and trout distribution were monitored in two adjacent pools in Sespe Creek, Ventura County, where summer water...

  20. The Effect of Increased Temperatures and Ultraviolet Radiation on Dissolved Oxygen in Ecosystems Primarily Comprised of "Euglena"

    ERIC Educational Resources Information Center

    Carpenter, Matt

    2009-01-01

    The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…

  1. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Treesearch

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  2. Effects of the rate of releases from Sam Rayburn Reservoir on the Aeration Capacity of the Angelina River, eastern Texas

    USGS Publications Warehouse

    Rawson, Jack; Goss, Richard L.; Rathbun, Ira G.

    1980-01-01

    A three-phase study was conducted during July and August 1979 to determine the effects of varying release rates through the power-outlet works at Sam Rayburn Reservoir, eastern Texas, on aeration capacity of a 14-mile reach of the Angelina River below Sam Rayburn Dam. The dominant factors that affected the aeration capacity during the study time were time of travel and the dissolved-oxygen deficit of the releases. Aeration was low throughout the study but increased in response to increases in the dissolved-oxygen deficit and the duration of time that the releases were exposed to the atmosphere (time of travel). The average concentration of dissolved oxygen sustained by release of 8,800 cubic feet per second decreased from 5.0 milligrams per liter at a site near the power outlet to 4.8 milligrams per liter at a site about 14 miles downstream; the time of travel averaged about 8 hours. The average concentration of dissolved oxygen in flow sustained by releases of 2,200 cubic feet per second increased from 5.2 to 5.5 milligrams per liter; the time of travel averaged about 20 hours. (USGS)

  3. Water-quality reconnaissance of Laguna Tortuguero, Vega Baja, Puerto Rico, March 1999-May 2000

    USGS Publications Warehouse

    Soler-Lopez, Luis; Guzman-Rios, Senen; Conde-Costas, Carlos

    2006-01-01

    The Laguna Tortuguero, a slightly saline to freshwater lagoon in north-central Puerto Rico, has a surface area of about 220 hectares and a mean depth of about 1.2 meters. As part of a water-quality reconnaissance, water samples were collected at about monthly and near bi-monthly intervals from March 1999 to May 2000 at four sites: three stations inside the lagoon and one station at the artificial outlet channel dredged in 1940, which connects the lagoon with the Atlantic Ocean. Physical characteristics that were determined from these water samples were pH, temperature, specific conductance, dissolved oxygen, dissolved oxygen saturation, and discharge at the outlet canal. Other water-quality constituents also were determined, including nitrogen and phosphorus species, organic carbon, chlorophyll a and b, plankton biomass, hardness, alkalinity as calcium carbonate, and major ions. Additionally, a diel study was conducted at three stations in the lagoon to obtain data on the diurnal variation of temperature, specific conductance, dissolved oxygen, and dissolved oxygen saturation. The data analysis indicates the water quality of Laguna Tortuguero complies with the Puerto Rico Environmental Quality Board standards and regulations.

  4. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  5. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  6. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  7. Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring

    EPA Science Inventory

    A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...

  8. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review.

    PubMed

    Liu, Huaqing; Hu, Zhen; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Fan, Jinlin; Lu, Shaoyong; Wu, Haiming

    2016-08-01

    Dissolved oxygen (DO) is one of the most important factors that can influence pollutants removal in constructed wetlands (CWs). However, problems of insufficient oxygen supply and inappropriate oxygen distribution commonly exist in traditional CWs. Detailed analyses of DO supply and distribution characteristics in different types of CWs were introduced. It can be concluded that atmospheric reaeration (AR) served as the promising point on oxygen intensification. The paper summarized possible optimizations of DO in CWs to improve its decontamination performance. Process (tidal flow, drop aeration, artificial aeration, hybrid systems) and parameter (plant, substrate and operating) optimizations are particularly discussed in detail. Since economic and technical defects are still being cited in current studies, future prospects of oxygen research in CWs terminate this review. Copyright © 2016. Published by Elsevier Ltd.

  9. Shallow Remineralization in the Sargasso Sea Estimated from Seasonal Variations in Oxygen and Dissolved Inorganic Carbon

    NASA Technical Reports Server (NTRS)

    Ono, S.; Ennyu, A.; Najjar, R. G.; Bates, N.

    1998-01-01

    A diagnostic model of the mean annual cycles of dissolved inorganic carbon (DIC) and oxygen below the mixed layer at the Bermuda Atlantic Time-series Study (BATS) site is presented and used to estimate organic carbon remineralization in the seasonal thermocline. The model includes lateral and vertical advection as well as vertical, diffusion. Very good agreement is found for the remineralization estimates based on oxygen and DIC. Net remineralization averaged from mid-spring to early fall is found to be a maximum between 120 and 140 in. Remineralization integrated between 100 (the compensation depth) and 250 m during this period is estimated to be about 1 mol C/sq m. This flux is consistent with independent estimates of the loss of particulate and dissolved organic carbon.

  10. Linear air-fuel sensor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less

  11. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom sediments had accumulated and lower dissolved oxygen concentration conditions existed in the water column. Dissolved oxygen concentrations in the center channel test chamber showed a constant slow decrease over the entire test period. Oxygen consumption in the test chamber at the near-shore location began rapidly and then slowed over time as oxygen became depleted in the chamber. Depending on the portion of the near-shore dissolved oxygen depletion curve used, calculated sediment oxygen demand rates ranged from as low as -0.03 g/m2/d to as high as -10 g/m2/d. The wide range of sediment oxygen demand rates indicates that care must be taken when extrapolating sediment oxygen demand rates between stream sites that have different bottom sediment types and different flow regimes.

  12. Estimating flow rates to optimize winter habitat for centrarchid fish in Mississippi River (USA) backwaters

    USGS Publications Warehouse

    Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.

    1998-01-01

    The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.

  13. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  14. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; Prince, Eric D.; Schmidtko, Sunke; Luo, Jiangang; Hoolihan, John P.; Visbeck, Martin; Wallace, Douglas W. R.; Brandt, Peter; Körtzinger, Arne

    2012-01-01

    Climate model predictions and observations reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer. We report a decrease in the upper ocean layer exceeding 3.5mll-1 dissolved oxygen at a rate of <=1myr-1 in the tropical northeast Atlantic (0-25°N, 12-30°W), amounting to an annual habitat loss of ~5.95×1013m3, or 15% for the period 1960-2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas, and may be associated with a 10-50% worldwide decline of pelagic predator diversity. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems.

  15. Identification of an Archean marine oxygen oasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insolublemore » Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.« less

  16. Triple oxygen isotope composition of photosynthetic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meer, Anne; Kaiser, Jan

    2013-04-01

    The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.

  17. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wildcat Creek, Howard County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)

  18. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide.

  19. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    USGS Publications Warehouse

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-01-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  20. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  1. Ice Harbor Spillway Dissolved Gas Field Studies: Before and After Spillway Deflectors

    DTIC Science & Technology

    2016-07-01

    Executive Summary The operation of spillways on the Columbia and Snake Rivers causes the absorption of atmospheric gases (chiefly nitrogen and oxygen) to...chiefly nitrogen and oxygen) to super- saturated levels. For many operations, the total dissolved gas (TDG) levels exceed state and National...powerhouse releases. However, these mass- balance calculations conclusively show that a substantial portion of the powerhouse discharge becomes entrained

  2. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  3. Water-quality conditions in Upper Klamath Lake, Oregon, 2002-04

    USGS Publications Warehouse

    Wood, Tamara M.; Hoilman, Gene R.; Lindenberg, Mary K.

    2006-01-01

    Eleven (2002) to 14 (2003 and 2004) continuous water-quality monitors that measured pH, dissolved oxygen, temperature, and specific conductance, were placed in Upper Klamath Lake to support a telemetry tracking study of endangered adult shortnose and Lost River suckers. Samples for the analysis of chlorophyll a and nutrients were collected at a subset of the water-quality monitor sites in each year. The seasonal pattern in the occurrence of supersaturated dissolved oxygen concentrations and high pH associated with photosynthetic activity, as well as the undersaturated dissolved oxygen concentrations associated with oxygen demand through respiration and decay in excess of photosynthetic production, were well described by the dynamics of the massive blooms of Aphanizomenon flos aquae (AFA) that occur each year. Data from the continuous monitors provided a means to quantify the occurrence, duration, and spatial extent of water-quality conditions potentially harmful to fish (dissolved- oxygen concentration less than 4 milligrams per liter, pH greater than 9.7, and temperature greater than 28 degrees Celsius) in the northern part of the lake, where the preferred adult sucker habitat is found. There were few observations of temperature greater than 28 degrees Celsius, suggesting that temperature is not a significant source of chronic stress to fish, although its role in the spread of disease is harder to define. Observations of pH greater than 9.7 were common during times when the AFA bloom was growing rapidly, so pH may be a source of chronic stress to fish. Dissolved oxygen concentrations less than 4 milligrams per liter were common in all 3 years at the deeper sites, in the lower part of the water column and for short periods during the day. Less common were instances of widespread low dissolved oxygen, throughout the water column and persisting through the entire day, but this was the character of a severe low dissolved oxygen event (LDOE) that culminated in the start of a fish die-off in 2003. Documented evidence indicates that LDOEs played a role in three fish die-offs in the mid-1990s as well. In the historical context of 15 years of climate and water-quality data, 3 out of 4 of the recent fish die-off years, 1996, 1997, and 2003, were characterized by low winds and high temperatures in July or August coincident with the start of the die-off. High temperatures accelerate the oxygen demanding processes that lead to a LDOE. The role of low winds remains inconclusive, but it could include the development of stratification in the water column and/or the alteration of the wind-driven circulation pattern. At a site centrally located in the study area, die-off years could be successfully identified in the historical data by screening for water characterized by exceptionally low chlorophyll a concentration, exceptionally low dissolved oxygen concentration throughout the water column (not just near the bottom), and exceptionally high ammonia concentration and water temperature, just prior to or coincident with the start of a fish die-off. These conditions indicate that a severe decline in the AFA bloom and conversion of most of the organic matter into inorganic form had taken place.

  4. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    PubMed Central

    Biskupski, Diana; Geupel, Andrea; Wiesner, Kerstin; Fleischer, Maximilian; Moos, Ralf

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well. PMID:22423212

  5. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.« less

  6. Responses of bluegills and black crappies to dissolved oxygen, temperature, and current in backwater lakes of the upper Mississippi River during winter

    USGS Publications Warehouse

    Knights, B.C.; Johnson, B.L.; Sandheinrich, M.B.

    1995-01-01

    We conducted a radiotelemetry study to examine the effects of dissolved oxygen (DO), water temperature, and current velocity on winter habitat selection by bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus in the Finger Lakes backwater complex, Pool 5, on the upper Mississippi River. When DO was above 2 mg/L, both species selected areas with water temperature greater than 1 degree C and undetectable current. As dissolved oxygen concentrations fell below 2 mg/L, fish moved to areas with higher DO, despite water temperatures of 1 degree C and lower and current velocities of 1 cm/s. Areas with water temperature less than 1 degree C and current velocity greater than 1 cm/s were avoided. To incorporate the winter habitat requirements of bluegills and black crappies into habitat restoration projects, we recommend designs that allow the inflow of oxygenated water to maintain adequate DO without substantially decreasing temperature and increasing current velocity.

  7. Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coutant, C.C.

    1985-01-01

    Striped bass Morone saxatilis has a paradoxical record of distribution and abundance, including population declines in coastal waters and variable success of freshwater introductions. This record is analyzed for consistency with a hypothesis that striped bass are squeezed between their thermal and dissolved oxygen preferences or requirements. A commonality among diverse field and laboratory observations supports an inherent thermal niche for the species that changes to lower temperatures as fish age. This shift can cause local conditions, especially warm surface strata and deoxygenated deep water, to be incompatible with the success of large fish. Crowding due to temperature preferences alonemore » or coupled with avoidance of low oxygen concentrations can lead to pathology and overfishing, which may contribute to population declines. Through a mixture of evidence and conjecture, the thermal niche-dissolved oxygen hypothesis is proposed as a unified perspective of the habitat requirements of the species that can aid in its study and management. 139 references, 12 figures.« less

  8. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25-95 °C

    NASA Astrophysics Data System (ADS)

    Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan

    2016-11-01

    The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.

  9. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  10. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  11. Comparative analysis of the Corynebacterium glutamicum transcriptome in response to changes in dissolved oxygen levels.

    PubMed

    Liu, Xiuxia; Yang, Sun; Wang, Fen; Dai, Xiaofeng; Yang, Yankun; Bai, Zhonghu

    2017-02-01

    The dissolved oxygen (DO) level of a culture of Corynebacterium glutamicum (C. glutamicum) in a bioreactor has a significant impact on the cellular redox potential and the distribution of energy and metabolites. In this study, to gain a deeper understanding of the effects of DO on the metabolism of C. glutamicum, we sought to systematically explore the influence of different DO concentrations on genetic regulation and metabolism through transcriptomic analysis. The results revealed that after 20 h of fermentation, oxygen limitation enhanced the glucose metabolism, pyruvate metabolism and carbon overflow, and restricted NAD + availability. A high oxygen supply enhanced the TCA cycle and reduced glyoxylate metabolism. Several key genes involved in response of C. glutamicum to different oxygen concentrations were examined, which provided suggestions for target site modifications in developing optimized oxygen supply strategies. These data provided new insights into the relationship between oxygen supply and metabolism of C. glutamicum.

  12. Selected papers in the hydrologic sciences 1984; July 1984

    USGS Publications Warehouse

    Meyer, Eric L.

    1984-01-01

    The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.

  13. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors.

    PubMed

    Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E

    2013-09-01

    In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.

  14. Headwater Nutrient Concentration Patterns in Response to Storm Events Across Land Use Types using In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Price, A.; Wollheim, W. M.; Mulukutla, G. K.; Carey, R. O.; McDowell, W. H.

    2012-12-01

    Understanding the aquatic biogeochemical impacts of land use change and climate variability will require improved understanding of nutrient variability over temporal scales ranging from storms to seasons. New in situ sensor technology offers the prospect of efficient nutrient measurements over multiple time scales. We quantified nutrient flux patterns in response to storm events across seasons using in situ nutrient sensors deployed in headwater streams draining three land use types (forest, suburban, and agriculture) within the Lamprey River watershed, New Hampshire, between April-December 2012. We utilized two sensor suites, each consisting of a Satlantic Submersible Ultraviolet Nitrate Analyzer (NO3-N), Turner Designs C6 Multi-Sensor Platform (CDOM, Turbidity, Chl), Hydrolab MS5 (Dissolved Oxygen, pH), WET Labs Cycle P (PO4-P), and Hobo Water Level & Conductivity meters. Preliminary spring/summer comparisons at the suburban site suggest increased baseflow nitrate concentrations and decreased diurnal nitrate variability (~0.05 vs. 0.035 mg/L daily fluctuation) following leaf emergence in spring. Nitrate concentrations were diluted during storms. Hysteresis was evident, suggesting groundwater nitrate sources attributable to septic systems were diluted by surface runoff during spring storms. The agricultural stream showed similar but more extreme patterns of increasing baseflow nitrate during the summer (~2.4 to 4.1 mg/L) and dilution during storms. The compilation of a high-frequency dataset for headwater streams across seasons and land-use types will provide valuable insight into complex land use/water quality relationships in urbanizing watersheds.

  15. Ancient Oceans Had Less Oxygen

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.

  16. Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.

    PubMed

    Ortega-Calvo, José-Julio; Gschwend, Philip M

    2010-07-01

    Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.

  17. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  18. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  19. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  20. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  1. The effects of particles and dissolved materials on in situ algal pigment fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Saraceno, J.; Bergamaschi, B. A.; Downing, B. D.

    2013-12-01

    Field deployable sensors that measure algal pigment fluorescence (APF), such as chlorophyll-a (excitation/emission ca. 470/685 nm), and phycocyanin (ca. 590/685 nm), have been used to estimate algal biomass and study food-web dynamics in coastal and oceanic waters for many years. There is also widespread use of these sensors in real time river-observing networks. However, freshwater systems often possess elevated levels of suspended solids and dissolved organic material that can interfere with optical measurements. Data collected under conditions that result in interferences may not be comparable across time and between sites unless the data are appropriately corrected. Using standard reference materials and a surrogate for algal fluorescence (Rhodamine WT), lab experiments were conducted on several commercially available sensors to quantify sensitivity to interferences over a range of naturally occurring surface water conditions (DOC : 0-30 mg/L and turbidity: 0- 1000 FNU ). Chlorophyll-a sensors exhibited a slight but significant positive bias (<1%) at DOC concentrations < 2 mg/L, and a negative, non-linear bias at DOC concentrations >2 mg/L, with signal quenching reaching a maximum of 15% at 30 mg/L DOC. All phycocyanin sensors displayed a positive non-linear bias with DOC concentration, reaching a maximum of 40% difference at 30 mg/L DOC. Both chlorophyll-a and phycocyanin sensors showed a positive linear relationship with suspended solids concentration (as indicated by turbidity).The effect of suspended solids on APF output can be explained by the detection of scattered excitation light (leaking through emission filters). Similar qualitative effects were observed for the sensors tested, though the magnitude of the effect varied among sensor type. This indicates that differences in sensor designs such as geometry, wavelength and signal post processing techniques is related to its sensitivity to interferences. Although sensors exhibited significant cross sensitivity to interferences, our results indicate that simple corrections can largely remove sensor bias. To remove bias due to optical interferences and generate high quality, repeatable APF data, knowledge of the optical properties of the matrix and/or coincident measures of the concentration of suspended solids and dissolved organics (through surrogates such as turbidity and colored dissolved organic matter (cDOM) fluorescence, respectively), are typically needed.

  2. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.

  3. Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...

  4. Demonstration and Commercialization of the Sediment Ecosystem Assessment Protocol: Project ER-201130 Environmental Restoration Project

    DTIC Science & Technology

    2017-01-01

    65 5-15. Dissolved oxygen and temperature data from T = 34 month (2015) post-remedy...Continuous measurements of dissolved oxygen and temperature in SEA Ring chambers placed at 3-meter depth at Chollas Creek mouth (CC1-B) and adjacent to...which the organisms would be exposed, such as salinity and temperature . This action provided valuable data to determine if any effects observed were

  5. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  6. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2 O value was then used to estimate the oxygen isotope fractionation effects (??18 OSO42 - s(-) O2) between sulfate and dissolved oxygen in the aerobic experiments which were -10.0???, -10.8???, and -9.8??? for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between ??18OSO4 values in the biological and abiotic experiments, it is suggested that ??18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Understanding microbial/DOM interactions using fluorescence and flow cytometry

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren

    2015-04-01

    The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial processing and subsequent production of DOM, will inform the development of a new generation of in situ fluorescence sensors. Ultimately, our aim is develop a novel technology that enables the monitoring of ecosystem health in freshwater aquatic systems.

  8. [Distribution characteristics of dissolved oxygen and its affecting factors in the Pearl River Estuary during the summer of the extremely drought hydrological year 2011].

    PubMed

    Ye, Feng; Huang, Xiao-ping; Shi, Zhen; Liu, Qing-xi

    2013-05-01

    More and more attention has focused on assessing impacts of extreme hydrologic events on estuarine ecosystem under the background of climate change. Based on a summer cruise conducted in the Pearl River Estuary in 2011 (extreme drought event), we have investigated the spatial distribution of dissolved oxygen (DO) and its relationships to water column stability, nutrient concentrations, and organic matter; besides, the major reason which caused the oxygen depletion was discussed. Under the influence of the extreme drought event, low bottom water dissolved oxygen was apparent in regions characterized by great depths, with an oxygen minimum value of 1.38 mg x L(-1). Statistical analysis shows significant correlations among deltaDO, deltaT, deltaS and deltaPOC. A comparison was conducted to show the mechanisms of oxygen depletion during the summers of 1999, 2009 and 2011, respectively. The result indicates that prolonged residence time of water due to the extremely low discharge and the subsequently decomposition of organic substance are major factors causing the formation of hypoxia during the summer drought in 2011. Despite the changing nutrient and organic matter regime in the Pearl River Estuary, there was no apparent trend in the minimum values of DO over the past 2 decades.

  9. Cavitating Jet Method and System for Oxygenation of Liquids

    NASA Technical Reports Server (NTRS)

    Chahine, Georges L.

    2012-01-01

    Reclamation and re-use of water is critical for space-based life support systems. A number of functions must be performed by any such system including removal of various contaminants and oxygenation. For long-duration space missions, this must be done with a compact, reliable system that requires little or no use of expendables and minimal power. DynaJets cavitating jets can oxidize selected organic compounds with much greater energy efficiency than ultrasonic devices typically used in sonochemistry. The focus of this work was to develop cavitating jets to simultaneously accomplish the functions of oxygenation and removal of contaminants of importance to space-structured water reclamation systems. The innovation is a method to increase the concentration of dissolved oxygen or other gasses in a liquid. It utilizes a particular form of novel cavitating jet operating at low to moderate pressures to achieve a high-efficiency means of transporting and mixing the gas into the liquid. When such a jet is utilized to simultaneously oxygenate the liquid and to oxidize organic compounds within the liquid, such as those in waste water, the rates of contaminant removal are increased. The invention is directed toward an increase in the dissolved gas content of a liquid, in general, and the dissolved oxygen content of a liquid in particular.

  10. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    NASA Astrophysics Data System (ADS)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  11. Dissolved oxygen and its response to eutrophication in a tropical black water river.

    PubMed

    Rixen, Tim; Baum, Antje; Sepryani, Harni; Pohlmann, Thomas; Jose, Christine; Samiaji, Joko

    2010-08-01

    The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between approximately 100 and 140 micromol l(-1). Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by approximately 20 micromol l(-1) during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 micromol l(-1), which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 micromol l(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Dissolved oxygen: Chapter 6

    USGS Publications Warehouse

    Senn, David; Downing-Kunz, Maureen; Novick, Emily

    2016-01-01

    Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic

  13. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.

  14. In situ fluorescence measurements of protein-, humic- and HAP-like materials in the Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Tedetti, Marc; Bachet, Caroline; Germain, Chloé; Ferretto, Nicolas; Bhairy, Nagib; Guigue, Catherine; Besson, Florent; Beguery, Laurent; Goutx, Madeleine

    2015-04-01

    Understanding the biogeochemical functioning of the ocean requires high frequency measurements of dissolved organic matter (DOM) descriptors. For 10 years, the technological developments of fluorescence sensors try to cover this need. In this context, our laboratory developed the MiniFluo-UV sensor, a prototype of miniaturized submersible fluorometer for the detection of aromatic compounds that fluoresce in the UV spectral domain. The qualification of the sensor consisted in measurements of drift, linearity, repeatability, sensitivity to light, temperature and pressure, and detection limits of phenanthrene (HAP) and tryptophan (aromatic amino acid) in standard solutions. Measurements were also conducted in crude oil water soluble fractions (WSFs). The MiniFluo-UV sensor was then deployed in two distinct areas of the Northwestern Mediterranean Sea: 1) in the Gulf of Lion during the continuous monitoring of the surface water layer (DEWEX cruise, winter and spring 2013) and 2) in the Bay of Marseilles, heavily impacted by urban activities, where the sensor was mounted onto the SeaExplorer underwater glider and onto a CTD vertical profiler (July-December 2014). These platforms were also equipped with a humic-like fluorescence sensor and other sensors for hydrological and biogeochemical parameters (T, S, Chla, oxygen, turbidity). The patterns of fluorescence signatures enabled to distinguish interesting distributions of DOM in relation with hydrological features and spring biological production in the Gulf of Lion, and showed the accumulation of contaminants in marine areas under anthropogenic pressure. This work was conducted within the framework of the ANR-09-ECOT-009-01 "IBISCUS" in collaboration with ALSEAMAR-ALCEN (Aix-en-Provence) and MicroModule (Brest) companies. It is relevant to WP5 NEXOS objectives. The SACEUP team of the DEWEX-MERMEX experiment is warmly acknowledged.

  15. Microfluidic device coupled with a microfabricated oxygen electrode for the measurement of bactericidal activity of neutrophil-like cells.

    PubMed

    Yamagishi, Anna; Tanabe, Koji; Yokokawa, Masatoshi; Morimoto, Yuji; Kinoshita, Manabu; Suzuki, Hiroaki

    2017-09-08

    A microfluidic device coupled with a microfabricated Clark-type oxygen electrode was used to measure the bactericidal activity of neutrophil-like cells differentiated from HL-60 cells. The neutrophil-like cells and Escherichia coli (E. coli) cells were cultured in the same medium, which was introduced into the flow channel of the device. Changes in the respiratory activity of E. coli were measured as changes in the consumption of dissolved oxygen. As the activity of the neutrophil-like cells increased, the rate of elimination of E. coli increased. The accompanying decrease in the number of E. coli reduced the consumption of dissolved oxygen. The changes were actually observed as changes in generated current. A distinct difference in changes in dissolved oxygen concentrations was observed between E. coli cells co-incubated with IFN-γ-activated or non-activated neutrophil-like cells. The required sample volume was less than 10 μL, and results could be obtained within 1-2 h. The device may be useful for the assessment of psychological stresses that affect the activity of neutrophils. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The metabolic regimes of flowing waters

    USGS Publications Warehouse

    Bernhardt, Emily S.; Heffernan, Jim B.; Grimm, Nancy B.; Stanley, Emily H.; Harvey, Judson; Arroita, M.; Appling, Alison; Cohen, M.J.; McDowell, William H.; Hall, R.O.; Read, Jordan S.; Roberts, B.J.; Stets, Edward; Yackulic, Charles B.

    2018-01-01

    The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classifying and modeling the current and future metabolic regimes of flowing waters.

  17. Development and Performance of the Oxygen Sensor in the CSA-CP Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Beck, Steve; James, John T.

    2004-01-01

    A combustion products analyzer (CPA) was built for use on Shuttle in response to several thermodegradation incidents that had occurred during early flights. The CPA contained sensors that measured carbon monoxide, hydrogen chloride, hydrogen cyanide, and hydrogen fluoride. These marker compounds, monitored by the CPA, were selected based upon the likely products to be released in a spacecraft fire. When the Toxicology Laboratory group at Johnson Space Center (JSC) began to assess the air quality monitoring needs for the International Space Station (ISS), the CPA was the starting point for design of an instrument to monitor the atmosphere following a thermodegradation event. The final product was significantly different from the CPA and was named the compound specific analyzer-combustion products (CSA-CP). The major change from the CPA that will be the focus of this paper was the replacement of an unreliable hydrogen fluoride (HF) sensor with an oxygen sensor. A reliable HF sensor was not commercially available, but as the toxicology group reviewed the overall monitoring strategy for ISS, it appeared that a portable oxygen sensor to backup the major constituent analyzer was needed. Therefore, an oxygen sensor replaced the HF sensor in the new instrument. This paper will describe the development, deployment, and performance of the CSA-CP oxygen sensor on both Shuttle and ISS. Also, data for CSA-CP oxygen sensor accuracy at nominal and reduced pressures will be presented.

  18. Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging

    PubMed Central

    Kinoshita, Y; Kohshi, K; Kunugita, N; Tosaki, T; Yokota, A

    1999-01-01

    Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the dissolved molecular oxygen in tissue. Using a non-invasive magnetic resonance imaging (MRI) technique, we monitored the changes in MRI signal intensity after HBO exposure because dissolved paramagnetic molecular oxygen itself shortens the T1 relation time. SCCVII tumour cells transplanted in mice were used. The molecular oxygen-enhanced MR images were acquired using an inversion recovery-preparation fast low angle shot (IR-FLASH) sequence sensitizing the paramagnetic effects of molecular oxygen using a 4.7 tesla MR system. MR signal of muscles decreased rapidly and returned to the control level within 40 min after decompression, whereas that of tumours decreased gradually and remained at a high level 60 min after HBO exposure. In contrast, the signal from the tumours in the normobaric oxygen group showed no significant change. Our data suggested that MR signal changes of tumours and muscles represent an alternation of extravascular oxygenation. The preserving tumour oxygen concentration after HBO exposure may be important regarding adjuvant therapy for cancer patients. © 2000 Cancer Research Campaign PMID:10638972

  19. Resistive Oxygen Gas Sensors for Harsh Environments

    PubMed Central

    Moos, Ralf; Izu, Noriya; Rettig, Frank; Reiß, Sebastian; Shin, Woosuck; Matsubara, Ichiro

    2011-01-01

    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations. PMID:22163805

  20. Measurements needed for on-line control of retention and drainage

    Treesearch

    Allan M. Springer; Jeffrey S. Noe; T. H. Wegner

    1987-01-01

    In a retention and drainage control strategy, it is necessary to monitor the concentration of dissolved inorganic material and the concentration of dissolved and colloidal organic material. Conductivity is successful as a sensor to monitor inorganic material. We studied TOC as a means to monitor dissolved and colloidal organic material and found it to work well. Both...

  1. Bioelectronic sniffer for nicotine using enzyme inhibition.

    PubMed

    Mitsubayashi, Kohji; Nakayama, Kazumi; Taniguchi, Midori; Saito, Hirokazu; Otsuka, Kimio; Kudo, Hiroyuki

    2006-07-28

    A novel bioelectronic sniffer for nicotine in the gas phase was developed with enzyme inhibition principle to butyrylcholinesterase activity. The bioelectronic devices for nicotine in the gas and liquid phases were constructed using a Clark-type dissolved oxygen electrode and a membrane immobilized butyrylcholinesterase and choline oxidase. After the assessment of the sensor performances to choline and butyrylcholine as pre-examinations, the characteristics of the biosensor and bio-sniffer for nicotine were evaluated in the liquid and gas phases, respectively. The sensor signal of the bio-devices with 300 micromol l(-1) of butyrylcholine decreased quickly following application of nicotine and reached to the steady-state current, thus relating the concentration of nicotine in the liquid and gas phases. The biosensor was used to measure nicotine solution from 10 to 300 micromol l(-1). In the gas-phase experiment, the current signal of the bio-sniffer was also found to be linearly to the nicotine concentration over the range of 10.0-1000 ppb including 75.0 ppb as threshold limit value (TLV) by American Conference of Governmental Industrial Hygienists (ACGIH).

  2. Feasibility Study and Environmental Impact Statement, Oakland Inner Harbor, California, Deep-Draft Navigation.

    DTIC Science & Technology

    1983-06-01

    cl~. 0 I ~Ix *~ S I F (V () m C Y wI 0 C. -d concentrations of dissolved oxygen, heavy metals , petrolum hydrocarbons, pesticides, and turbidity...effects at the dredged and disposal sites under consideration. Water quality parameters of concern include: concentrations of dissolved oxygen, heavy ... metals , petroleum hydrocarbons and pesticides. Some groundwater has been pumped from wells penetrating the Meritt Sand. Brackish water of limited use

  3. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    USDA-ARS?s Scientific Manuscript database

    Atlantic salmon fry were stocked into twelve circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5-2 body-lengths per second, or BL/s) or low (less than 0.5 BL/s) swimming speeding and high (100% saturation) or low (70% saturation) dissolved oxygen (DO) while being raised fr...

  4. Oxygen Sensing Based on the Yellowing of Newspaper.

    PubMed

    Yu, Jingjing; Qin, Xingcai; Xian, Xiaojun; Tao, Nongjian

    2018-01-26

    Newspaper is known to turn yellow over time. We show here that this yellowing process is sensitive to oxygen when exposed to UV light, leading to oxygen sensing. Oxygen sensing is critical to many applications, including industrial process control and breath analysis, but the existing oxygen sensors have limitations, especially for breath analysis that operates at 100% humidity. The UV irradiation also triggers fluorescence emission from newspaper, and the fluorescence intensity depends on oxygen concentration, providing an additional oxygen sensing method. Newspaper is stable in ambient air, and reactive to oxygen only with UV activation, which overcomes the instability issue of a typical colorimetric sensor in ambient air. The newspaper oxygen sensor works in 100% relative humidity air, containing various interferents. These unique properties of newspaper promise low cost and reliable oxygen sensing applications.

  5. Iron and sulfur in the pre-biologic ocean

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Brimblecombe, P.

    1985-01-01

    Tentative geochemical cycles for the pre-biologic Earth are developed by comparing the relative fluxes of oxygen, dissolved iron, and sulfide to the atmosphere and ocean. The flux of iron is found to exceed both the oxygen and the sulfide fluxes. Because of the insolubility of iron oxides and sulfides the implication is that dissolved iron was fairly abundant and that oxygen and sulfide were rare in the atmosphere and ocean. Sulfate, produced by the oxidation of volcanogenic sulfur gases, was the most abundant sulfur species in the ocean, but its concentration was low by modern standards because of the absence of the river-borne flux of dissolved sulfate produced by oxidative weathering of the continents. These findings are consistent with the geologic record of the isotopic composition of sedimentary sulfates and sulfides. Except in restricted environments, the sulfur metabolism of the earliest organisms probably involved oxidized sulfur species not sulfide.

  6. Enhanced bioremediation of BTEX using immobilized nutrients: Field demonstration and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1996-12-01

    A permeable barrier system was developed for controlling the migration of dissolved contaminant plumes in ground water. The barrier system consisted of a line of closely spaced wells installed perpendicular to the contaminant plume. Each well contained concrete briquets that released oxygen and nitrate at a controlled rate, enhancing the aerobic biodegradation of dissolved hydrocarbons in the downgradient aquifer. A full scale permeable barrier system was constructed at a gasoline-spill site near Leland, NC. Initially, increased dissolved oxygen and decreased benzene, toluene, ethylbenzene, and xylene isomer (BTEX) concentrations in the downgradient aquifer indicated that oxygen released from the remediation wellsmore » was enhancing biodegradation. Field tracer tests and soil analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells was being clogged by precipitation from iron minerals.« less

  7. Baseline assessment of physical characteristics, aquatic biota, and selected water-quality properties at the reach and mesohabitat scale for reaches of Big Cypress, Black Cypress, and Little Cypress Bayous, Big Cypress Basin, northeastern Texas, 2010–11

    USGS Publications Warehouse

    Braun, Christopher L.; Moring, James B.

    2013-01-01

    In the absence of flow during fall 2011, the reach at Black Cypress was reduced to four isolated pools, and the reach at Little Cypress was reduced to three isolated pools. Dissolved oxygen, temperature, pH, and specific conductance data were collected from the pools because it was hypothesized that these conditions would be the most limiting with respect to aquatic life. Dissolved oxygen concentrations ranged from 0.58 milligrams per liter (mg/L) to 4.79 mg/L at Black Cypress and from 0.24 mg/L to 5.33 mg/L at Little Cypress; both sites exhibited a stratified pattern in dissolved oxygen concentrations along transect lines, but the pattern was less pronounced at Black Cypress.

  8. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony

    2015-11-27

    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Some factors influencing susceptibility of rainbow trout to the acute toxicity of an ethyl mercury phosphate formulation (Timsan)

    USGS Publications Warehouse

    Amend, Donald F.; Yasutake, William T.; Morgan, Reginald

    1969-01-01

    This study determined the influence of water temperature (55–68° F), dissolved oxygen (4–12 ppm), water hardness as CaCO3 (20–256 ppm), and chloride ions (to 2 mM) on the susceptibility of rainbow trout (Salmo gairdneri) to the acute toxicity of ethyl mercury phosphate (EMP). The fish were exposed for one hour to 0.125 ppm EMP, the active ingredient of Timsan, a commercial EMP formulation. The death rate because of the exposure to EMP increased with an increase in water temperature, a decrease in dissolved oxygen, and an increase in chloride ions; calcium appeared to have no effect. The effect of water temperature and dissolved oxygen was ascribed to changes in the respiration rate of the fish, and a chemical explanation is presented for the effect of chloride ions.

  10. An alternative cost-effective image processing based sensor for continuous turbidity monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Matthew Min Enn; Ng, Sing Muk; Chua, Hong Siang

    2017-03-01

    Turbidity is the degree to which the optical clarity of water is reduced by impurities in the water. High turbidity values in rivers and lakes promote the growth of pathogen, reduce dissolved oxygen levels and reduce light penetration. The conventional ways of on-site turbidity measurements involve the use of optical sensors similar to those used in commercial turbidimeters. However, these instruments require frequent maintenance due to biological fouling on the sensors. Thus, image processing was proposed as an alternative technique for continuous turbidity measurement to reduce frequency of maintenance. The camera was kept out of water to avoid biofouling while other parts of the system submerged in water can be coated with anti-fouling surface. The setup developed consisting of a webcam, a light source, a microprocessor and a motor used to control the depth of a reference object. The image processing algorithm quantifies the relationship between the number of circles detected on the reference object and the depth of the reference object. By relating the quantified data to turbidity, the setup was able to detect turbidity levels from 20 NTU to 380 NTU with measurement error of 15.7 percent. The repeatability and sensitivity of the turbidity measurement was found to be satisfactory.

  11. Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors.

    PubMed

    Gondosiswanto, Richard; Hibbert, D Brynn; Fang, Yu; Zhao, Chuan

    2017-12-13

    Ionic liquids (IL) have been regarded as promising electrolytes as substitutes for volatile aqueous or organic solvents for electrochemical gas sensors. However, ILs are viscous, and the slow diffusion of gas molecules leads to poor sensitivity and sluggish response times. Herein, we describe a strategy using an array of microstrips of IL containing magnetic nanoparticles as nanostirrers for enhanced mass transport and gas sensing. Magnetic CoFe 2 O 4 nanoparticles are synthesized and dispersed in a hydrophobic IL [BMP][Ntf 2 ]. First, the convection effect of the IL dispersion was studied using the reversible redox couple ferrocene/ferrocenium ion. In a rotating magnetic field, steady-state currents for oxidation of dissolved ferrocene are three to five times greater than that in an unstirred solution. Then, the IL dispersion is micropatterned onto a gold electrode using microcontact printing. A self-assembled monolayer was printed onto a gold surface creating 70 μm wide hydrophobic lines with a 30 μm gap between them. Upon applying the IL dispersion into the gap, a 30 μm wide array of microstrips was successfully fabricated. The system is demonstrated as an oxygen sensor in the range of volume fraction of O 2 of 50-500 ppm giving a linear calibration with a sensitivity of 1.94 nA cm -2 ppm -1 .

  12. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.

    PubMed

    Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna

    2016-09-01

    Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis.

  13. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River Basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, Rodney N.; Faye, R.E.; Kleckner, R.L.

    1979-01-01

    During the period April 1975 to June 1978, the U.S. Geological Survey conducted a river-quality assessment of the Upper Chattahoochee River basin in Georgia. One objective of the study was to assess the magnitudes, nature, and effects of point and non-point discharges in the Chattahoochee River basin from Atlanta to the West Point Dam. On an average annual basis and during the storm period of March 1215, 1976, non-point-source loads for most constituents analyzed were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 river miles downstream of Atlanta. Most of the non-point-source constituent loads in the Atlanta-to-Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads, and about 70 percent of the dissolved phosphorus loads at Whitesburg. During weekends, power generation at the upstream Buford Dam hydroelectric facility is minimal. Streamflow at the Atlanta station during dry-weather weekends is estimated to be about 1,200 ft3/s (cubic feet per second). Average daily dissolved-oxygen concentrations of less than 5.0 mg/L (milligrams per liter) occurred often in the river, about 20 river miles downstream from Atlanta during these periods from May to November. During a low-flow period, June 1-2, 1977, five municipal point sources contributed 63 percent of the ultimate biochemical oxygen demand, 97 percent of the ammonium nitrogen, 78 percent of the total nitrogen, and 90 percent of the total phosphorus loads at the Franklin station, at the upstream end of West Point Lake. Average daily concentrations of 13 mg/L of ultimate biochemical oxygen demand and 1.8 mg/L of ammonium nitrogen were observed about 2 river miles downstream from two of the municipal point sources. Carbonaceous and nitrogenous oxygen demands caused dissolved-oxygen concentrations between 4.1 and 5.0 mg/L to occur in a 22-mile reach of the river downstream from Atlanta. Nitrogenous oxygen demands were greater than carbonaceous oxygen demands in the reach from river mile 303 to 271, and carbonaceous demands were greater from river mile 271 to 235. The heat load from the Atkinson-McDonough thermoelectric power-plants caused a decrease in the dissolved-oxygen concentrations of about 0.2 mg/L. During a critical low-flow period, a streamflow at Atlanta of about 1,800 ft3/s, with present (1977) point-source flows of 185 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 15 mg/L of ammonium nitrogen, results in a computed minimum dissolved-oxygen concentration of 4.7 mg/L in the river downstream from Atlanta. In the year 2000, a streamflow at Atlanta of about 1,800 ft3/s with point-source flows of 373 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen, will result in a computed minimum dissolved-oxygen concentration of 5.0 mg/L. A streamflow of about 1,050 ft3/s at Atlanta in the year 2000 will result in a dissolved-oxygen concentration of 5.0 mg/L if point-source flows contain concentrations of 15 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen. Phytoplankton concentrations in West Point Lake, about 70 river miles downstream from Atlanta, could exceed 3 million cells per milliliter during extended low-flow periods in the summer with present point- and non-point-source nitrogen and phosphorus loads. In the year 2000, phytoplankton concentrations in West Point Lake are not likely to exceed 700,000 cells per milliliter during extended low-flow periods in the summer, if phosphorus concentrations do not exceed 1.0 mg/L in point-source discharges.

  14. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe2* lamp, 172 nm) containing an axially centered ceramic oxygenator.

    PubMed

    Oppenländer, Thomas; Walddörfer, Carsten; Burgbacher, Jens; Kiermeier, Martin; Lachner, Klaus; Weinschrott, Helga

    2005-07-01

    Xenon excimer (Xe2*) lamps can be used for the oxidation and mineralization of organic compounds in aqueous solution. This vacuum-ultraviolet (VUV) photochemical method is mainly based on the photochemically initiated homolysis of water that produces hydrogen atoms and hydroxyl radicals. The efficiency of substrate oxidation and mineralization is limited markedly due to the high absorbance of water at the emission maximum of the Xe2* lamp (lambda(max)=172 nm). This photochemical condition generates an extreme heterogeneity between the irradiated volume V(irr) and the non-irradiated ("dark") bulk solution. During VUV-initiated photomineralization of organic substrates, the fast scavenging of hydrogen atoms and of carbon-centered radicals by dissolved molecular oxygen produces a permanent oxygen deficit within V(irr) and adjacent compartments. Hence, at a constant photon flux the concentration of dissolved molecular oxygen within the zones of photo and thermal radical reactions limits the rate of mineralization, i.e. the rate of TOC diminution. Thus, a simple and convenient technique is presented that overcomes this limitation by injection of molecular oxygen (or air) into the irradiated volume by use of a ceramic oxygenator (aerator). The tube oxygenator was centered axially within the xenon excimer flow-through lamp. Consequently, the oxygen or air bubbles enhanced the transfer of dissolved molecular oxygen into the VUV-irradiated volume leading to an increased rate of mineralization of organic model compounds, e.g. 1-heptanol, benzoic acid and potassium hydrogen phthalate.

  15. Mineralisation assays of some organic resources of aquatic systems.

    PubMed

    Bitar, A L; Bianchini, Júnior I

    2002-11-01

    Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.

  16. Topically delivered dissolved oxygen reduces inflammation and positively influences structural proteins in healthy intact human skin.

    PubMed

    Kellar, Robert S; Audet, Robert G; Roe, David F; Rheins, Lawrence A; Draelos, Zoe Diana

    2013-06-01

    As oxygen is essential for wound healing and there is limited diffusion across the stratum corneum into the epidermis, we wanted to evaluate whether the topical delivery of a total dissolved oxygen in dressing form on intact human subject skin would improve clinical and histologic skin functioning. Fifty normal, healthy subjects completed a pilot clinical evaluation to assess the efficacy and tolerability of a dissolved oxygen dressing (OxygeneSys™-Continuous) to improve the health and appearance of intact skin. Clinical analysis was performed on 50 subjects; histological and gene expression analysis was performed on 12 of the 50 subjects to assess the effect of the dissolved oxygen dressing. Clinical data demonstrate that the dressing is well tolerated, and several measures of skin health and integrity showed improvements compared with a control dressing site. Skin hydration measurements showed a statistically significant increase in skin hydration at 0-4, 4-8, and 0-8 weeks (P < 0.05 at each time point). The blinded clinical investigator's grading of desquamation, roughness, and skin texture show significant decreases from baseline to the 8-week time point (P < 0.05). The dressings were removed prior to the blinded clinical investigator's grading. These data were supported by the histological and gene expression studies, which showed a general reduction in inflammatory response markers and transcription products (IL-6, IL-8, TNF-alpha, MMP-1, and MMP-12), while facilitating a general increase in structural skin proteins (collagen I, elastin, and filaggrin). Additionally, p53 signals from biopsy samples support the clinical investigator's observations of no safety concerns. The data from this study demonstrate that the dressing has no deleterious effects and stimulates beneficial effects on intact, nonwounded skin. © 2013 Wiley Periodicals, Inc.

  17. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Differences between vacuum degassing and ultrasound degassing.

    PubMed

    Yanagida, Hirotaka

    2008-04-01

    The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.

  18. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    PubMed

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  19. A dual sensor for real-time monitoring of glucose and oxygen

    PubMed Central

    Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Lu, Hongguang; Gao, Weimin; Tian, Yanqing; Meldrum, Deirdre

    2013-01-01

    A dual glucose and oxygen sensor in a polymer format was developed. The dual sensor composed of a blue emitter as the glucose probe, a red emitter as an oxygen probe, and a yellow emitter as a built-in reference probe which does not respond to either glucose or oxygen. All the three probes were chemically immobilized in a polyacrylamide-based matrix. Therefore, the dual sensor possesses three well separated emission colors and ratiometric approach is applicable for analysis of the glucose and oxygen concentration at biological conditions. The sensor was applied for real-time monitoring of glucose and oxygen consumption of bacterial cells, Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), and mammalian cells of mouse macrophage J774 and human cervical cancer HeLa cell lines. On the other hand, in order to achieve satisfactory sensing performance for glucose, compositions of the matrices among poly(2-hydroxyethyl methacrylate), polyacrylamide, and poly(6-aminohexyl methacrylamide) which is a linker polymer for grafting the glucose probe, were optimized. PMID:24090834

  20. Novel ammonia sensor based on polyaniline/polylactic acid composite films

    NASA Astrophysics Data System (ADS)

    Sotirov, S.; Bodurov, I.; Marudova, M.

    2017-01-01

    We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al2O3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected.

  1. Proposal of a Method to Determine the Correlation between Total Suspended Solids and Dissolved Organic Matter in Water Bodies from Spectral Imaging and Artificial Neural Networks

    PubMed Central

    Kupssinskü, Lucas S.; T. Guimarães, Tainá; Koste, Emilie C.; da Silva, Juarez M.; de Souza, Laís V.; Oliverio, William F. M.; Jardim, Rogélio S.; Koch, Ismael É.; de Souza, Jonas G.; Mauad, Frederico F.

    2018-01-01

    Water quality monitoring through remote sensing with UAVs is best conducted using multispectral sensors; however, these sensors are expensive. We aimed to predict multispectral bands from a low-cost sensor (R, G, B bands) using artificial neural networks (ANN). We studied a lake located on the campus of Unisinos University, Brazil, using a low-cost sensor mounted on a UAV. Simultaneously, we collected water samples during the UAV flight to determine total suspended solids (TSS) and dissolved organic matter (DOM). We correlated the three bands predicted with TSS and DOM. The results show that the ANN validation process predicted the three bands of the multispectral sensor using the three bands of the low-cost sensor with a low average error of 19%. The correlations with TSS and DOM resulted in R2 values of greater than 0.60, consistent with literature values. PMID:29315219

  2. Low head oxygenator performance characterization for marine recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effect of temperature (20 and 25 ºC), salinity (10, 15, and 20 ppt), and dissolved oxygen levels within low head oxygenator (LHO) outlet water on oxygen transfer efficiency (OTE) of LHOs for a planned marine recirculating aquaculture system (RAS). Test results indicated tha...

  3. Oxygen requirement of separated hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  4. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  5. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast

    PubMed Central

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at −150, −100 and −50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  6. Estimation of both optical and nonoptical surface water quality parameters using Landsat 8 OLI imagery and statistical techniques

    NASA Astrophysics Data System (ADS)

    Sharaf El Din, Essam; Zhang, Yun

    2017-10-01

    Traditional surface water quality assessment is costly, labor intensive, and time consuming; however, remote sensing has the potential to assess surface water quality because of its spatiotemporal consistency. Therefore, estimating concentrations of surface water quality parameters (SWQPs) from satellite imagery is essential. Remote sensing estimation of nonoptical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen (DO), has not yet been performed because they are less likely to affect signals measured by satellite sensors. However, concentrations of nonoptical variables may be correlated with optical variables, such as turbidity and total suspended sediments, which do affect the reflected radiation. In this context, an indirect relationship between satellite multispectral data and COD, BOD, and DO can be assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios and stepwise regression to estimate concentrations of both optical and nonoptical SWQPs. Compared with previous studies, a significant correlation between Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the obtained coefficient of determination (R2)>0.85. These findings demonstrated the possibility of using our technique to develop models to estimate concentrations of SWQPs and to generate spatiotemporal maps of SWQPs from Landsat 8 imagery.

  7. High spatial resolution mapping of water quality and bathymetry with an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Pampalone, Vincenzo; Milici, Barbara

    2015-12-01

    The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.

  8. Chromophoric and fluorescent dissolved organic matter in and above the oxygen minimum zone off Peru

    NASA Astrophysics Data System (ADS)

    Loginova, A. N.; Thomsen, S.; Engel, A.

    2016-11-01

    As a result of nutrient upwelling, the Peruvian coastal system is one of the most productive regions in the ocean. Sluggish ventilation of intermediate waters, characteristic for the Eastern Tropical South Pacific (ETSP) and microbial degradation of a high organic matter load promotes deoxygenation at depth. Dissolved organic matter (DOM) plays a key role in microbial respiration and carbon cycling, but little is known on DOM distribution and cycling in the ETSP. DOM optical properties give important insights on DOM sources, structure and biogeochemical reactivity. Here, we present data and a conceptual view on distribution and cycling of chromophoric (CDOM) and fluorescent (FDOM) DOM in and above the oxygen minimum zone (OMZ) off Peru. Five fluorescent components were identified during PARAFAC analysis. Highest intensities of CDOM and of the amino acid-like fluorescent component (C3) occurred above the OMZ and coincided with maximum chl a concentrations, suggesting phytoplankton productivity as major source. High intensities of a marine humic-like fluorescent component (C1), observed in subsurface waters, indicated in situ microbial reworking of DOM. FDOM release from inner shelf sediment was determined by seawater analysis and continuous glider sensor measurement and included a humic-like component (C2) with a signature typical for terrestrially derived humic acids. Upwelling supplied humic-like substances to the euphotic zone. Photo-reactions were likely involved in the production of a humic-like fluorescent component (C5). Our data show that variable biological and physical processes need to be considered for understanding DOM cycling in a highly dynamic coastal upwelling system like the ETSP off Peru.

  9. Capturing Hot Moments of Carbon Cycling in the Hyporheic Zone of an Intermittent Stream

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Harjung, A.; Vieweg, M.; Butturini, A.; Schmidt, C.; Fleckenstein, J. H.; Sabater, F.

    2016-12-01

    Intermittent streams are increasingly recognized as a factor for underestimating potential CO2 emissions of aquatic ecosystems, because they are neglected during their dry phase. This can be partly attributed to poor understanding of dissolved organic matter (DOM) processing at highly reactive interfaces such as the hyporheic zone (HZ). Here, hydrological transitions drive rapid changes in the spatiotemporal distribution of dissolved oxygen (DO), thus creating hot moments of increased biogeochemical cycling. However, capturing these process-dynamics requires a continuous monitoring of hyporheic pore water at a sufficient temporal and spatial resolution. In order to investigate the transitions between the wet and dry phase, we used a combination of automated pore water sampling and in situ measurements. By combining conventional pumping approaches with recently developed technology we achieved a high resolution multi-scale, quasi continuous monitoring of relevant parameters of the carbon cycle. Our novel approach coupled continuous fluorescence DOM and infrared CO2 sensor measurements with spatially continuous vertical oxygen profiling in situ. A proof-of-concept application was established in a semi-pristine Mediterranean stream during the drying period in summer 2015. Previous sampling campaigns already identified the water level as a driver of DOM composition in the HZ. Once the surface flow switches to subsurface flow, the HZ becomes a sink for aromatic, high molecular weight compounds, while protein-like, autochthonous DOM gets released. Generally, we observed exponential increases in hyporheic CO2 from this point on, co-occurring with a sharp vertical DO gradient as a function of changing hydrological conditions.

  10. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    PubMed Central

    Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527

  11. BENCAL Cruise Report

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barlow, Ray; Sessions, Heather; Silulwane, Nonkqubela; Engel, Hermann; Aiken, James; Fishwick, James; Martinez-Vicente, Victor; Morel, Andre

    2003-01-01

    This report documents the scientific activities on board the South African Fisheries Research Ship (FRS) Africana during an ocean color calibration and validation cruise in the Benguela upwelling ecosystem (BEN-CAL), 4-17 October 2002. The cruise, denoted Afncana voyage 170, was staged in the southern Benguela between Cape Town and the Orange River within the region 14-18.5 deg E,29-34 deg S, with 15 scientists participat- ing from seven different international organizations. Uniquely in October 2002, four high-precision ocean color sensors were operational, and these included the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Aqua and Terra spacecraft, the Medium Resolution Imaging Spectrometer (MERIS), and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). SeaWiFS imagery was transmitted daily to the ship to assist in choosing the vessel's course and selecting stations for bio-optical deployments. There were four primary objectives of the cruise. The first was to conduct bio-optical measurements with above- and in-water optical instruments to vicariously calibrate the satellite sensors. The second was to interrelate diverse measurements of the apparent optical properties (AOPs) at satellite sensor wavelengths with inherent optical properties (IOPs) and bio-optically active constituents of seawater such as particles, pigments, and dissolved compounds. The third was to determine the interrelationships between optical properties, phytoplankton pigment composition, photosynthetic rates, and primary production, while the fourth objective was to collect samples for a second pigment round-robin intercalibration experiment. Weather conditions were generally very favorable, and a range of hyperspectral and fixed wavelength AOP instruments were deployed during daylight hours. Various IOP instruments were used to determine the absorption, attenuation, scattering, and backscattering properties of particulate matter and dissolved substances, while a Fast Repetition Rate Fluorometer (FRRF) was deployed to acquire data on phytoplankton photosynthetic activity. Hydrographic profiling was conducted routinely during the cruise, and seawater samples were collected for measurements of salinity, oxygen, inorganic nutrients, pigments, particulate organic carbon, suspended particulate material, and primary production. Location of stations and times of optical deployments were selected to coincide with satellite overpasses whenever possible, and to cover a large range in trophic conditions.

  12. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOEpatents

    Carpenter, Clay E.; Morrison, Stanley J.

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  13. The water quality of Sam Rayburn Reservoir, eastern Texas

    USGS Publications Warehouse

    Rawson, Jack; Lansford, Myra W.

    1971-01-01

    Results of periodic surveys indicate that dissolved-oxygen concentrations at three sites in the 19-mile reach of the Angelina River downstream from Sam Rayburn Dam were low in late summer and early fall after periods of summer stagnation in the reservoir. Moreover, the amount of reaeration that occurred in the reach was insignificant. During periods when the dissolved-oxygen deficiency was large, the concentrations of iron and manganese at each of the three sites increased greatly.

  14. Dissolving Bubbles in Glass

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Oronato, P. I.; Uhlmann, D. R.

    1984-01-01

    Analytical expression used to calculate time it takes for stationary bubbles of oxygen and carbon dioxide to dissolve from glass melt. Technique based on analytical expression for bubble radius as function time, with consequences of surface tension included.

  15. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach.

    PubMed

    Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat

    2009-01-01

    Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.

  16. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.

    1978-01-01

    On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)

  17. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    PubMed

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  18. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil

    PubMed Central

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-01-01

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis. PMID:27782034

  19. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    PubMed

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  20. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    PubMed

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Investigating Stream Metabolism and Nutrient Dynamics in Contrasting Ecosystems: The Role of Hydrologic Compartments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Riveros-Iregui, D. A.; Covino, T. P.

    2015-12-01

    The interactions between mobile and less mobile hydrologic compartments affect the quality and quantity of water in streams and aquifers, and the cycling of dissolved carbon and nutrients. As new laboratory and field techniques become available, new questions and challenges emerge, including: What do we measure, where, and for how long to fully characterize a system? and, What is the ideal cost-maintenance-benefit relationship that we should strive for to maximize knowledge gained in different field settings? We recently performed a series of field experiments to measure aquatic metabolism and nutrient dynamics in two highly contrasting hydrologic systems, i.e., 1) a wetland-stream alpine, tropical system in Colombia (South America) and 2) a dryland river continuum (1st - 5th stream orders) in New Mexico. In this presentation we discuss how multiple lines of evidence can support the analysis of key aquatic processes and how co-interpretation provides a more complete picture of stream complexity. For this analysis, we deployed YSI EXO2 and 6920 sondes, Turner Designs C-sense and C6 sensors, and Onset HOBO water quality data loggers. Parameters measured by these instruments include conductivity, temperature, dissolved oxygen, pH, turbidity, pCO2, chlorophyll-a, phycocyanin, fluorescein, CDOM, brighteners and water depth. We also injected conservative tracers (i.e., NaCl and NaBr) and the bioreactive tracer resazurin in both experimental sites, and NO3 in the dryland river continuum. NO3 was measured in-situ with Satlantic Submersible Ultraviolet Nitrate Analyzers (SUNA) sensors and in the laboratory using Ion Chromatograph techniques using stream grab samples. Our results highlight the role of both residence times and chemical fluxes in regulating the effective processing of carbon and nutrients. Our results also demonstrate that stream stimuli from controlled experiments are ideal for maximizing the information content derived from short (hours to days) and mid-term (weeks) sensor deployment campaigns.

  2. Combined Effects of Dissolved Nutrients and Oxygen on Plant Litter Decomposition and Associated Fungal Communities.

    PubMed

    Gomes, Patrícia Pereira; Ferreira, Verónica; Tonin, Alan M; Medeiros, Adriana Oliveira; Júnior, José Francisco Gonçalves

    2018-05-01

    Aquatic ecosystems worldwide have been substantially altered by human activities, which often induce changes in multiple factors that can interact to produce complex effects. Here, we evaluated the combined effects of dissolved nutrients (nitrogen [N] and phosphorus [P]; three levels: concentration found in oligotrophic streams in the Cerrado biome, 10× and 100× enriched) and oxygen (O 2 ; three levels: hypoxic [4% O 2 ], depleted [55% O 2 ], and saturated [96% O 2 ]) on plant litter decomposition and associated fungal decomposers in laboratory microcosms simulating stream conditions under distinct scenarios of water quality deterioration. Senescent leaves of Maprounea guianensis were incubated for 10 days in an oligotrophic Cerrado stream to allow microbial colonization and subsequently incubated in microcosms for 21 days. Leaves lost 1.1-3.0% of their initial mass after 21 days, and this was not affected either by nutrients or oxygen levels. When considering simultaneous changes in nutrients and oxygen concentrations, simulating increased human pressure, fungal biomass accumulation, and sporulation rates were generally inhibited. Aquatic hyphomycete community structure was also affected by changes in nutrients and oxygen availability, with stronger effects found in hypoxic treatments than in depleted or saturated oxygen treatments. This study showed that the effects of simultaneous changes in the availability of dissolved nutrients and oxygen in aquatic environments can influence the activity and composition of fungal communities, although these effects were not translated into changes in litter decomposition rates.

  3. New electrolyte may increase life of polarographic oxygen sensors

    NASA Technical Reports Server (NTRS)

    Albright, C. F.

    1967-01-01

    Electrolyte increases life on oxygen sensors in a polarograph used for measuring the partial pressure of oxygen in a gas mixture. It consists of a solution of lithium chloride, dimethyl acetamide and water.

  4. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2012-03-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  5. Water quality of Tampa Bay, Florida, June 1972-May 1976

    USGS Publications Warehouse

    Goetz, Carole L.; Goodwin, Carl R.

    1980-01-01

    A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)

  6. Measures of net oxidant concentration in seawater

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Williams, Peter M.

    1988-02-01

    Dissolved oxygen deficits in the ocean have been used as a measure of the organic matter oxidized in a volume of water. Such organic matter is usually assumed to be predominantly settled particles. Using dissolved oxygen concentration in this way has two problems: first, it does not differentiate between oxidant consumed by the pool of dissolved organic matter present near the ocean surface and oxidant consumed by organic matter contained by falling particles; second, it does not account for other oxidant sources, such as nitrate, which can be as important to organic matter decay as oxygen in low-oxygen water, such as off Peru or in the Southern California submarine basins. New parameters provide better measures of the net oxidant concentration in a water parcel. One such, NetOx, is changed only by gaseous exchange with the atmosphere, exchange with the benthos, or the production or consumption of sinking particles. A simplified version of NetOx, NetOx = [O2] + 1.25[NO3-] - [TOC], where TOC (total organic carbon), the dissolved organic carbon (DOC) plus the suspended particulate organic carbon (POC), provides an index based on the usually dominant variables. Calculation of NetOx and a second property, NetOC ([O2] - [TOC]), for data from GEOSECS and ourselves in the Atlantic and Pacific oceans using property-property graphs show differences from those from oxygen deficits alone. Comparison of NetOx and NetOC concentrations at high and low latitudes of the Pacific Ocean shows the difference in surface water oxidant concentrations is even larger than the difference in oxygen concentration. Vertical particle fluxes off Peru calculated from NetOx gradients are much greater than those calculated from oxygen gradients. The potential value of NetOx and NetOC as parameters to understand particle fluxes implies that determination of TOC should be a routine part of hydrographic measurements.

  7. Organic carbon accumulation and preservation in surface sediments on the Peru margin

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Laarkamp, K.

    1998-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.

  8. Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, D.A.; Rea, B.A.; Stollenwerk, K.G.; Savoie, Jennifer G.

    1995-01-01

    The disposal of secondarily treated sewage onto rapid infiltration sand beds at the Massachusetts Military Reservation, Cape Cod, Massachusetts, has created a sewage plume in the underlying sand and gravel aquifer; the part of the\\x11sewage plume that contains dissolved phosphorus extends about 2,500 feet downgradient of the sewage-disposal beds. A part of the plume that\\x11contains nearly 2 milligrams per liter of phosphorus currently (1993) discharges into Ashumet Pond along about 700 feet of shoreline. The sewage plume discharges from about 59 to about 76 kilograms of phosphorus per year into the pond. Hydraulic-head measurements indicate that the north end of Ashumet Pond is a ground-water sink and an increased component of ground-water discharge and phosphorus flux into\\x11the pond occurs at higher water levels. Phosphorus was mobile in ground water in two distinct geochemical environments-an anoxic zone that contains no dissolved oxygen and as much as 25\\x11milligrams per liter of dissolved iron, and a more areally extensive suboxic zone that contains little or no iron, low but detectable dissolved oxygen, and as much as 12 milligrams per liter of dissolved manganese. Dissolved phosphorus is mobile in the suboxic geochemical environment because continued phosphorus loading has filled available sorption sites in the aquifer. Continued disposal of sewage since 1936 has created a large reservoir of sorbed phosphorus that is much greater than the mass of dissolved phosphorus in the ground water; the average ratio of sorbed to dissolved phosphorus in the anoxic and suboxic parts of the sewage plume were 31:1 and 155:1, respectively. Column experiments indicate that phosphorus in the anoxic core of the plume containing dissolved iron may be immobilized within 17 years by sorption and coprecipitation with new iron oxyhydroxides following the cessation of sewage disposal and the introduction of uncontaminated oxygenated ground water into the aquifer in December 1995. Residual oxygen demand associated with sorbed organic compounds and ammonia could retard the movement of oxygenated water into the aquifer. Sorbed phosphorus in the suboxic zone of the aquifer will continue to desorb into the ground water and will remain mobile in the ground water for perhaps hundreds of years. Also, the introduction of uncontaminated water into the aquifer may cause dissolved-phosphorus concentrations in the suboxic zone of the aquifer to increase sharply and remain higher than precessation levels for many years due to the desorption of loosely bound phosphorus. Data from three sampling sites, located along the eastern and western boundaries of the sewage plume and downgradient of abandoned sewage-disposal beds, indicate that ground-water mixing and phosphorus desorption may already be occurring in the aquifer in response to the introduction of uncontaminated recharge water into previously contaminated parts of the aquifer.

  9. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart at the same site locations resulted in similar values.

  10. Determining Performance Acceptability of Electrochemical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Gonzales, Daniel

    2012-01-01

    A method has been developed to screen commercial electrochemical oxygen sensors to reduce the failure rate. There are three aspects to the method: First, the sensitivity over time (several days) can be measured and the rate of change of the sensitivity can be used to predict sensor failure. Second, an improvement to this method would be to store the sensors in an oxygen-free (e.g., nitrogen) environment and intermittently measure the sensitivity over time (several days) to accomplish the same result while preserving the sensor lifetime by limiting consumption of the electrode. Third, the second time derivative of the sensor response over time can be used to determine the point in time at which the sensors are sufficiently stable for use.

  11. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae

    PubMed Central

    Smith, Jennifer E.; Thompson, Melissa

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2–4 mg L−1) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes. PMID:24482757

  12. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae.

    PubMed

    Haas, Andreas F; Smith, Jennifer E; Thompson, Melissa; Deheyn, Dimitri D

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2-4 mg L(-1)) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes.

  13. Impact of oxygen dissolved at bottling and transmitted through closures on the composition and sensory properties of a Sauvignon Blanc wine during bottle storage.

    PubMed

    Lopes, Paulo; Silva, Maria A; Pons, Alexandre; Tominaga, Takatoshi; Lavigne, Valérie; Saucier, Cédric; Darriet, Philippe; Teissedre, Pierre-Louis; Dubourdieu, Denis

    2009-11-11

    This work outlines the results from an investigation to determine the effect of the oxygen dissolved at bottling and the specific oxygen barrier properties of commercially available closures on the composition, color and sensory properties of a Bordeaux Sauvignon Blanc wine during two years of storage. The importance of oxygen for wine development after bottling was also assessed using an airtight bottle ampule. Wines were assessed for the antioxidants (SO(2) and ascorbic acid), varietal thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol), hydrogen sulfide and sotolon content, and color throughout 24 months of storage. In addition, the aroma and palate properties of wines were also assessed. The combination of oxygen dissolved at bottling and the oxygen transferred through closures has a significant effect on Sauvignon Blanc development after bottling. Wines highly exposed to oxygen at bottling and those sealed with a synthetic, Nomacorc classic closure, highly permeable to oxygen, were relatively oxidized in aroma, brown in color, and low in antioxidants and volatile compounds compared to wines sealed with other closures. Conversely, wines sealed under more airtight conditions, bottle ampule and screw cap Saran-tin, have the slowest rate of browning, and displayed the greatest contents of antioxidants and varietal thiols, but also high levels of H(2)S, which were responsible for the reduced dominating character found in these wines, while wines sealed with cork stoppers and screw cap Saranex presented negligible reduced and oxidized characters.

  14. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics.more » Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.« less

  15. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    PubMed Central

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  16. Marine methane paradox explained by bacterial degradation of dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.

    2016-12-01

    Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.

  17. Statistical Exposé of a Multiple-Compartment Anaerobic Reactor Treating Domestic Wastewater.

    PubMed

    Pfluger, Andrew R; Hahn, Martha J; Hering, Amanda S; Munakata-Marr, Junko; Figueroa, Linda

    2018-06-01

      Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.

  18. Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year

    USGS Publications Warehouse

    Blanchard, Stephen F.; Hahl, D.C.

    1981-01-01

    This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)

  19. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    EPA Science Inventory

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  20. Determining Oxygen Isotopic Fractionation between the ferrous sulfate, melanterite, and aqueous sulfate

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Kohl, I.; Coleman, M. L.

    2011-12-01

    Studying regions on Earth that are analogous to Mars serve as case studies for studying astrobiology and planetary surface rock formation processes. Rio Tinto, Spain is very rich in iron sulfates, and has an environment that is possibly very similar to the former environment on Mars. Certain bacteria play significant roles in accelerating pyrite oxidation rates, the products of which contribute to the formation of ferrous sulfates, such as melanterite. During mineral crystallization in an aqueous solution, there are systematic isotopic differences between dissolved species and solid phases. Quantifying this fractionation enables isotopic analysis to be used to trace the original isotopic signature of the dissolved species. Isotope fractionation has been determined for minerals such as gypsum and epsomite, and from these results and theoretical predictions, it is expected that melanterite, a mineral potentially found on Mars, would be more enriched in oxygen-18 relative to the aqueous solution from which it crystallized.Thus, determining the oxygen-18 isotopic fractionation between melanterite and dissolved sulfate has many potential benefits for understanding surface processes on Mars and its past environment. To investigate the oxygen isotope fractionation for melanterite, acidic aqueous solutions saturated with dissolved hydrated ferrous sulfate were evaporated at 25 deg C and 40 deg C and under different conditions to induce different evaporation rates. During evaporation, the aqueous solution and crystallized melanterite were sampled at different stages. Oxygen-18 isotopic compositions were then measured. However, the fractionations observed in the experiments were opposite from predictions. At 25 deg C without enhanced evaporation, the dissolved sulfate was +5.5 per mil relative to the solid, while at 40 deg C it was +4.3 per mil. With enhanced evaporation, fractionation was +2.1 per mil, while at 40 deg C it was +3.6 per mil. In addition, at 40 deg C, evaporation rates and fractionation were larger than at 25 deg C. Because no Rayleigh fractionation was observed, this system was not in equilibrium, and was most likely dominated by kinetics. Because of the unexpected results, further research will be conducted on the oxygen isotope fractionation of melanterite.

Top