Sample records for dissolved phosphorus dp

  1. [Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area].

    PubMed

    Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua

    2012-08-01

    Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.

  2. [Characteristics of soil phosphorus runoff under different rainfall intensities in the typical vegetable plot of Taihu Basin].

    PubMed

    Yang, Li-Xia; Yang, Gui-Shan; Yuan, Shao-Feng; Wu, Ye

    2007-08-01

    Experiments of field runoff plots, which were conducted at vegetable plots in Hongsheng town of Wuxi city--the typical region of Taihu Basin, were designed to assess the effects of different rainfall intensities on soil phosphorus runoff loss from vegetable plots by artificial rainfall simulations. Results showed that there was a relationship of power function between initial runoff-generation time and rainfall intensity. Runoff amount slowly increased under small rainfall intensity, but rapidly increased with rainfall intensity increase. The concentrations of total phosphorus (TP) and particulate phosphorus (PP) were higher at the early stage, then gradually decreased with time and finally reached a comparative steady stage under 0.83, 1.17 and 1.67 mm x min(-1). However they indicated no obvious trend except wavy undulation under 2.50 mm x min(-1). In the course of rainfall-runoff, dissolved phosphorus (DP) gently varied and accounted for 20% - 32% of TP. PP was 68% - 80% of TP and its change trend was consistent with TP. Therefore, PP was main loss form of soil phosphorus runoff. Comparison of different phosphorous loss rate under different rainfall intensities suggested that loss rate of TP and DP under 2.50 mm x min(-1) was 20 times and 33 times higher than that under 0.83 mm x min(-1), which showed that loss rate of PP and DP increased with the increase of rainfall intensities. Results indicated that lots of inorganic dissolved phosphorus (DIP) of phosphorous fertilizer was discharged into water environment by using fertilizer in soil surface before rainfall, which increased loss of DP and greatly aggravated degree of water eutrophication.

  3. Managing surface water inputs to reduce phosphorus loss from Cranberry farms

    USDA-ARS?s Scientific Manuscript database

    Calcium phosphate (Ca-P) precipitation holds great promise in the mitigation of dissolved phosphorus (DP) loss from cranberry bogs, with precipitated Ca-P potentially serving as a fertilizer source for the subsequent cranberry crop. We quantified Ca-P precipitation following calcite application to h...

  4. Hydrologic controls on the export dynamics of dissolved and particulate phosphorus in a lowland, headwater agricultural catchment

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Grimaldi, Catherine; Gruau, Gérard; Gascuel-Odoux, Chantal

    2014-05-01

    Phosphorus (P) availability controls eutrophication in freshwater ecosystems, since P is generally the limiting nutrient to algal development. The contribution of diffuse P emission to surface waters is significant in intensively livestock farmed catchments as a result of high application rates of P-rich animal waste and subsequent enrichment of soils. This study investigates the transport dynamics of particulate phosphorus (PP), suspended sediments (SS), and dissolved phosphorus (DP) with the aim of elucidating the relationship between PP and DP transport mechanisms and water dynamics in lowland, headwater catchments. The selected catchment (Kervidy-Naizin catchment, France) is particularly suitable for this purpose as it benefits of a 5 years, high-frequency monitoring of PP and DP concentrations at its outlet, including data recovered both during base flow and storm periods, with the monitoring of more than 50 storm flow events. The data analysis includes interpretation of concentration-discharge relationships at the annual time scale and on an event basis, seasonal analysis of flood characteristics and empirical modeling. Annual DP and PP concentration-discharge relationships of interflood samples display a hysteretic pattern, with higher concentrations during the autumn and spring periods, and progressive decrease during winter. No hysteretic pattern is visible for interflood SS concentration, which follows a classical C=a*Qb relationship. During floods, the dynamic of PP export is similar to that of SS during most of the events: the concentration peak occurs during the rising limb of the hydrogram (clockwise hysteresis), suggesting a source close to or within the stream. The amplitude and the hysteresis' loop size for SS and PP are a function of maximum discharge and rate of change in discharge. On the contrary, there is a strong decoupling between DP and SS (and thus PP) during most of the floods (no significant correlation), with DP concentration peaks occurring several hours after discharge (anticlockwise hysteresis). The dynamic of DP export appears in phase with the water table fluctuations measured at the bottom of the slope domains of the catchment. However, maximum DP concentrations during flood tend to be low during extended periods of soil water saturation, even though these periods corresponded to periods of high flow in the streams. These results show that the hydraulic energy of the stream controls SS and PP dynamics during floods, whilst DP dynamic is influenced by water table fluctuation. Empirical SS/PP/DP models were built considering these findings. Further investigation is currently being made to test how water table fluctuation and redox conditions could affect P availability in soils.

  5. [Pollution load and the first flush effect of phosphorus in urban runoff of Wenzhou City].

    PubMed

    Zhou, Dong; Chen, Zhen-lou; Bi, Chun-juan

    2012-08-01

    Five typical rainfalls were monitored in two different research areas of Wenzhou municipality. The pH and concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), total inorganic carbon (TIC), total organic carbon (TOC), total suspended substances (TSS), BOD5 and COD in six different kinds of urban runoff were measured. The results showed that, the concentrations of TP, DP and PP in different kinds of urban runoff of Wenzhou ranged from 0.01 to 4.32 mg x L(-1), ND to 0.88 mg x L(-1) and ND to 4.31 mg x L(-1), respectively. In the early stages of runoff process PP was dominated, while in the later, the proportion of DP in most of the runoff samples would show a rising trend, especially in roof and outlet runoff. Judged by the event mean concentration (EMC) of TP and DP in these five rainfalls, some kinds of urban runoff could cause environmental pressure to the next level receiving water bodies. Meanwhile, the differences among the TP and DP content (maximum, minimum and mean content) in various urban runoffs were significant, and so were the differences among various rainfall events. According to the M (V) curve, the first flush effect of TP in most kinds of urban runoff was common; while the first flush effect of DP was more difficult to occur comparing with TP. Not only the underlying surface types but also many physico-chemical properties of runoff could affect the concentration of TP in urban runoff. All the results also suggested that different best management plans (BMPs) should be selected for various urban runoff types for the treatment of phosphorus pollution, and reducing the concentration of TSS is considered as one of the effective ways to decrease the pollution load of phosphorus in urban runoff.

  6. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    PubMed

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. Copyright © 2015. Published by Elsevier B.V.

  7. Hot moments and hot spots of nutrient losses from a mixed land use watershed

    USDA-ARS?s Scientific Manuscript database

    Non-point nitrogen (N) and phosphorus (P) pollution from agriculture has increasingly received more public attention. However, when, where and how N and P export occurs from a watershed is not completely understood. In this study, nitrate-N, dissolved P (DP) and particulate P (PP) concentrations and...

  8. Determining storm sampling requirements for improving precision of annual load estimates of nutrients from a small forested watershed.

    PubMed

    Ide, Jun'ichiro; Chiwa, Masaaki; Higashi, Naoko; Maruno, Ryoko; Mori, Yasushi; Otsuki, Kyoichi

    2012-08-01

    This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.

  9. [Soil and water losses and phosphorus output at the places between ridges in sloping peanut land under different planting modes in Yimeng mountainous area of Shandong Province, East China].

    PubMed

    Li, Jian-Hua; Yu, Xing-Xiu; Liu, Qian-Jin; Wu, Yuan-Zhi

    2012-12-01

    Taking the typical land use type, sloping Arachis hypogaea land, in Yimeng mountainous area of Shandong as study object, an in-situ fixed-point field experiment was conducted to study the characteristics of soil and water losses and phosphorus output at the places between ridges in the sloping land under different planting modes (Arachis hypogaea + Cynodon dactylon, I; A. hypogae + Melilotus officinalis, II; A. hypogaea + Lolium multiflorum, III; A. hypogaea + Trifolium repens, IV; A. hypogaea + blank control, V). Planting grasses at the places between ridges could effectively decrease the soil and water losses. The runoff was 55.1%-61.3% of the control, and decreased in the order of II > I > IV> III. The sediment loss was 3.4% -32.3% of the control, and decreased in the order of IV > II > I > 11. A. hypogaea + L. multiflorum was effective in storing water and retaining sediment. During the early period of planting L. multiflorum, the sediment loss was more affected by rainfall and presented a fluctuated variation, but in late period, the sediment loss decreased continuously and performed more stable, and accordingly, the sediment retention increased continuously. Planting grasses effectively decreased the output of phosphorus, with the decrease of total phosphorus (TP) output being 52.8%-75.3% of the control, and was in the order of I > II > IV > III. As compared with the control, planting grasses decreased 27.5% -67.0% of the output of particle phosphorus (PP), but relatively increased the output of dissolvable phosphorus (DP). A. hypogaea + L. multiflorum had the best effect in decreasing the output of phosphorus, with the outputs of TP and PP being 58.4% and 27.5% of the control, respectively. In the growth period of the vegetations, the losses of different phosphorus forms differed, and the dissolvable inorganic phosphorus was the main form of the output of DP during whole rain season. After the peanut harvested, the output of different phosphorus forms in the first rainfall was much higher than that in the maximum intensity rainfall.

  10. [Comparative study of N, P output and eutrophication risk in runoff water in cross ridge and longitudinal ridge].

    PubMed

    Yu, Xing-Xiu; Ma, Qian; Liu, Qian-Jin; Lü, Guo-An

    2011-02-01

    Field in-situ rainfall simulation tests with two rainfall intensities (40 mm x h(-1) and 70 mm x h(-1)), which were conducted at typical sloping cropland in Yimeng mountainous area, were designed to analyze the output characteristics of dissolved inorganic nitrogen, Inorganic-N (NO3(-)-N, NH4(+) -N) and dissolved phosphorus (DP) in runoff water, as well as to compare the eutrophication risk in this water by calculating three ratios of Inorganic-N/DP, NO3(-) -N/DP, and NH4(+)-N/DP, respectively, in cross ridge and longitudinal ridge tillage methods. Results showed that, under the same rainfall intensity, the DP level in runoff water was higher in cross ridge than longitudinal ridge, while the change of different Inorganic-N level between the two tillage methods were not consistent. Cross ridge could effectively reduce runoff and the output rate of Inorganic-N and DP when compared to the longitudinal ridge tillage, which would be more outstanding with the increases of rainfall intensities. The losses of Inorganic-N and DP in runoff water were 43% and 5% less, respectively, in cross ridge than longitudinal ridge at the 40 mm x h(-1) rainfall intensity, and were 68% and 55%, respectively, at 70 mm x h(-1). The higher Inorganic-N/DP and NO3(-) -N/DP ratios suggest that runoff water from either cross ridge or longitudinal ridge tillage have a certain eutrophication risk, which present an increasing trend during the precipitation-runoff process. Compared with longitudinal ridge, cross ridge can not only hinder the increasing trend of eutrophication risk, but also can significantly lower it, and thus effectively reduce the effect of sloping cropland runoff on the eutrophication processes of receiving waters.

  11. Evaluation of quick tests for phosphorus determination in dairy manures.

    PubMed

    Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B

    2005-05-01

    Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.

  12. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    PubMed

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor relationship within the other five basins. In addition, the degree of correlation between the Fe and DP loads severely degraded in the basins that were mostly covered by construction land or those that underwent a rapid urbanization process. The findings indicate that land use/cover change (LUCC), especially the distribution of agricultural land and construction land, as well as the soil background information (TN, Fe and Soil organic matters, etc.) can be considered as factors that influence NPS P pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.

    PubMed

    Kynkäänniemi, Pia; Ulén, Barbro; Torstensson, Gunnar; Tonderski, Karin S

    2013-01-01

    One measure used in Sweden to mitigate eutrophication of waters is the construction of small wetlands (free water surface wetland for phosphorus retention [P wetlands]) to trap particulate phosphorus (PP) transported in ditches and streams. This study evaluated P retention dynamics in a newly constructed P wetland serving a 26-ha agricultural catchment with clay soil. Flow-proportional composite water samples were collected at the wetland inlet and outlet over 2 yr (2010-2011) and analyzed for total P (TP), dissolved P (DP), particulate P (PP), and total suspended solids (TSS). Both winters had unusually long periods of snow accumulation, and additional time-proportional water samples were frequently collected during snowmelt. Inflow TP and DP concentrations varied greatly (0.02-1.09 mg L) during the sampling period. During snowmelt in 2010, there was a daily oscillation in P concentration and water flow in line with air temperature variations. Outflow P concentrations were generally lower than inflow concentrations, with net P losses observed only in August and December 2010. On an annual basis, the wetland acted as a net P sink, with mean specific retention of 69 kg TP, 17 kg DP, and 30 t TSS ha yr, corresponding to a reduction in losses of 0.22 kg TP ha yr from the agricultural catchment. Relative retention was high (36% TP, 9% DP, and 36% TSS), indicating that small constructed wetlands (0.3% of catchment area) can substantially reduce P loads from agricultural clay soils with moderately undulating topography. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  15. Differences among total and in vitro digestible phosphorus content of meat and milk products.

    PubMed

    Karp, Heini; Ekholm, Päivi; Kemi, Virpi; Hirvonen, Tero; Lamberg-Allardt, Christel

    2012-05-01

    Meat and milk products are important sources of dietary phosphorus (P) and protein. The use of P additives is common both in processed cheese and meat products. Measurement of in vitro digestible phosphorus (DP) content of foods may reflect absorbability of P. The objective of this study was to measure both total phosphorus (TP) and DP contents of selected meat and milk products and to compare amounts of TP and DP and the proportion of DP to TP among different foods. TP and DP contents of 21 meat and milk products were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In DP analysis, samples were digested enzymatically, in principle, in the same way as in the alimentary canal before the analyses. The most popular national brands of meat and milk products were chosen for analysis. The highest TP and DP contents were found in processed and hard cheeses; the lowest, in milk and cottage cheese. TP and DP contents in sausages and cold cuts were lower than those in cheeses. Chicken, pork, beef, and rainbow trout contained similar amounts of TP, but slightly more variation was found in their DP contents. Foods containing P additives have a high content of DP. Our study confirms that cottage cheese and unenhanced meats are better choices than processed or hard cheeses, sausages, and cold cuts for chronic kidney disease patients, based on their lower P-to-protein ratios and sodium contents. The results support previous findings of better P absorbability in foods of animal origin than in, for example, legumes. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Factors effective on peritoneal phosphorus transport and clearance in peritoneal dialysis patients
.

    PubMed

    Cebeci, Egemen; Gursu, Meltem; Uzun, Sami; Karadag, Serhat; Kazancioglu, Rumeyza; Ozturk, Savas

    2017-02-01

    Transport characteristics of phosphorus are different from other small solutes that are evaluated in routine peritoneal equilibration test (PET) in peritoneal dialysis (PD) patients. We aimed to evaluate peritoneal phosphorus clearance and permeability, and their relationship with peritoneal membrane transport type and creatinine clearance as well as factors affecting peritoneal phosphorus clearance. 70 adult patients on a PD program were included in our study. Phosphorus transport status was classified according to dialysate/plasma (D/P) phosphorus at the 4th hour of PET as slow transporter (< 0.47), slow-average transporter (0.47 - 0.56), fast-average transporter (0.57 - 0.67), and fast transporter (> 0.67). We evaluated the relationship of peritoneal phosphorus clearance and transport type with PD regime, phosphorus level, and presence of residual renal function in addition to investigating factors that are effective on peritoneal phosphorus clearance. D/P phosphorus and peritoneal phosphorus clearance were positively correlated with D/P creatinine and peritoneal creatinine clearance, respectively. Automated PD and continuous ambulatory PD patients were similar regarding phosphorus and creatinine clearances and transport status based on D/P phosphorus. The major determinant of peritoneal phosphorus clearance was anuria status. Anuric patients had higher dialysate volume (11.6 ± 3.0 L vs. 8.4 ± 2.1 L, p < 0.001) and therefore higher peritoneal phosphorus clearance (61.7 ± 15.1 L/week/1.73 m2 vs. 48.4 ± 14.0 L/week/1.73 m2, p = 0.001). Hyperphosphatemia was present in 40% and 11% of anuric patients and those with residual renal function, respectively (p = 0.005). Peritoneal phosphorus transport characteristics are similar to that of creatinine. Although increased dialysis dose may increase peritoneal phosphorus clearance, it may be insufficient to prevent hyperphosphatemia in anuric patients.
.

  17. Phosphorus loss from an agricultural watershed as a function of storm size.

    PubMed

    Sharpley, Andrew N; Kleinman, Peter J A; Heathwaite, A Louise; Gburek, William J; Folmar, Gordon J; Schmidt, John P

    2008-01-01

    Phosphorus (P) loss from agricultural watersheds is generally greater in storm rather than base flow. Although fundamental to P-based risk assessment tools, few studies have quantified the effect of storm size on P loss. Thus, the loss of P as a function of flow type (base and storm flow) and size was quantified for a mixed-land use watershed (FD-36; 39.5 ha) from 1997 to 2006. Storm size was ranked by return period (<1, 1-3, 3-5, 5-10, and >10 yr), where increasing return period represents storms with greater peak and total flow. From 1997 to 2006, storm flow accounted for 32% of watershed discharge yet contributed 65% of dissolved reactive P (DP) (107 g ha(-1) yr(-1)) and 80% of total P (TP) exported (515 g ha(-1) yr(-1)). Of 248 storm flows during this period, 93% had a return period of <1 yr, contributing most of the 10-yr flow (6507 m(3) ha(-1); 63%) and export of DP (574 g ha(-1); 54%) and TP (2423 g ha(-1); 47%). Two 10-yr storms contributed 23% of P exported between 1997 and 2006. A significant increase in storm flow DP concentration with storm size (0.09-0.16 mg L(-1)) suggests that P release from soil and/or area of the watershed producing runoff increase with storm size. Thus, implementation of P-based Best Management Practice needs to consider what level of risk management is acceptable.

  18. Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Underwood, Kristen L.; Rizzo, Donna M.; Schroth, Andrew W.; Dewoolkar, Mandar M.

    2017-12-01

    Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge—which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export.

  19. Comparison of Measured to Predicted Estimations of Nonpoint Source Contaminants Using Conservation Practices in an Agriculturally-Dominated Watershed in Northeast Arkansas, USA.

    PubMed

    Frasher, Sarah K; Woodruff, Tracy M; Bouldin, Jennifer L

    2016-06-01

    In efforts to reduce nonpoint source runoff and improve water quality, Best Management Practices (BMPs) were implemented in the Outlet Larkin Creek Watershed. Farmers need to make scientifically informed decisions concerning BMPs addressing contaminants from agricultural fields. The BMP Tool was developed from previous studies to estimate BMP effectiveness at reducing nonpoint source contaminants. The purpose of this study was to compare the measured percent reduction of dissolved phosphorus (DP) and total suspended solids to the reported percent reductions from the BMP Tool for validation. Similarities were measured between the BMP Tool and the measured water quality parameters. Construction of a sedimentation pond resulted in 74 %-76 % reduction in DP as compared to 80 % as predicted with the BMP Tool. However, further research is needed to validate the tool for additional water quality parameters. The BMP Tool is recommended for future BMP implementation as a useful predictor for farmers.

  20. Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.

    PubMed

    Good, Laura W; Vadas, Peter; Panuska, John C; Bonilla, Carlos A; Jokela, William E

    2012-01-01

    The Wisconsin Phosphorus Index (WPI) is one of several P indices in the United States that use equations to describe actual P loss processes. Although for nutrient management planning the WPI is reported as a dimensionless whole number, it is calculated as average annual dissolved P (DP) and particulate P (PP) mass delivered per unit area. The WPI calculations use soil P concentration, applied manure and fertilizer P, and estimates of average annual erosion and average annual runoff. We compared WPI estimated P losses to annual P loads measured in surface runoff from 86 field-years on crop fields and pastures. As the erosion and runoff generated by the weather in the monitoring years varied substantially from the average annual estimates used in the WPI, the WPI and measured loads were not well correlated. However, when measured runoff and erosion were used in the WPI field loss calculations, the WPI accurately estimated annual total P loads with a Nash-Sutcliffe Model Efficiency (NSE) of 0.87. The DP loss estimates were not as close to measured values (NSE = 0.40) as the PP loss estimates (NSE = 0.89). Some errors in estimating DP losses may be unavoidable due to uncertainties in estimating on-farm manure P application rates. The WPI is sensitive to field management that affects its erosion and runoff estimates. Provided that the WPI methods for estimating average annual erosion and runoff are accurately reflecting the effects of management, the WPI is an accurate field-level assessment tool for managing runoff P losses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    The average annual TSS yields ranged from 111 tons/mi2 in Apple Creek to 45 tons/mi2 in Duck Creek. All five watersheds yielded more TSS than the median value (32.4 tons/mi2) from previous studies in the Southeastern Wisconsin Till Plains (SWTP) ecoregion. The average annual TP yields ranged from 663 lbs/mi2 in Baird Creek to 382 lbs/mi2 in Duck Creek. All five watersheds yielded more TP than the median value from previous studies in the SWTP ecoregion, and the Baird Creek watershed yielded more TP than the statewide median of 650 lbs/mi2 from previous studies.Overall, Duck Creek had the lowest median and volumetric weighted concentrations and mean yield of TSS and TP. The same pattern was true for dissolved phosphorus (DP), except the volumetrically weighted concentration was lowest in the East River. In contrast, Ashwaubenon, Baird, and Apple Creeks had greater median and volumetrically weighted concentrations and mean yields of TSS, TP, DP than Duck Creek and the East River. Water quality in Duck Creek and East River were distinctly different from Ashwaubenon, Baird, and Apple Creeks. Loads from individual runoff events for all of these streams were important to the total annual mass transport of the constituents. On average, about 20 percent of the annual TSS loads and about 17 percent of the TP loads were transported in 1-day events in each stream.

  2. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  3. Phosphorus losses from an irrigated watershed in the northwestern United States: case study of the upper snake rock watershed.

    PubMed

    Bjorneberg, David L; Leytem, April B; Ippolito, James A; Koehn, Anita C

    2015-03-01

    Watersheds using surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000-ha Upper Snake Rock (USR) watershed from 2005 to 2008 showed that, on average, water diverted from the Snake River annually supplied 547 kg ha of total suspended solids (TSS), 1.1 kg ha of total P (TP), and 0.50 kg ha of dissolved P (DP) to the irrigation tract. Irrigation return flow from the USR watershed contributed 414 kg ha of TSS, 0.71 kg ha of TP, and 0.32 kg ha of DP back to the Snake River. Significantly more TP flowed into the watershed than returned to the Snake River, whereas there was no significant difference between inflow and return flow loads for TSS and DP. Average TSS and TP concentrations in return flow were 71 and 0.12 mg L, respectively, which exceeded the TMDL limits of 52 mg L TSS and 0.075 mg L TP set for this section of the Snake River. Monitoring inflow and outflow for five water quality ponds constructed to reduce sediment and P losses from the watershed showed that TSS concentrations were reduced 36 to 75%, but DP concentrations were reduced only 7 to 16%. This research showed that continued implementation of conservation practices should result in irrigation return flow from the USR watershed meeting the total maximum daily load limits for the Snake River. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, D.A.; Rea, B.A.; Stollenwerk, K.G.; Savoie, Jennifer G.

    1995-01-01

    The disposal of secondarily treated sewage onto rapid infiltration sand beds at the Massachusetts Military Reservation, Cape Cod, Massachusetts, has created a sewage plume in the underlying sand and gravel aquifer; the part of the\\x11sewage plume that contains dissolved phosphorus extends about 2,500 feet downgradient of the sewage-disposal beds. A part of the plume that\\x11contains nearly 2 milligrams per liter of phosphorus currently (1993) discharges into Ashumet Pond along about 700 feet of shoreline. The sewage plume discharges from about 59 to about 76 kilograms of phosphorus per year into the pond. Hydraulic-head measurements indicate that the north end of Ashumet Pond is a ground-water sink and an increased component of ground-water discharge and phosphorus flux into\\x11the pond occurs at higher water levels. Phosphorus was mobile in ground water in two distinct geochemical environments-an anoxic zone that contains no dissolved oxygen and as much as 25\\x11milligrams per liter of dissolved iron, and a more areally extensive suboxic zone that contains little or no iron, low but detectable dissolved oxygen, and as much as 12 milligrams per liter of dissolved manganese. Dissolved phosphorus is mobile in the suboxic geochemical environment because continued phosphorus loading has filled available sorption sites in the aquifer. Continued disposal of sewage since 1936 has created a large reservoir of sorbed phosphorus that is much greater than the mass of dissolved phosphorus in the ground water; the average ratio of sorbed to dissolved phosphorus in the anoxic and suboxic parts of the sewage plume were 31:1 and 155:1, respectively. Column experiments indicate that phosphorus in the anoxic core of the plume containing dissolved iron may be immobilized within 17 years by sorption and coprecipitation with new iron oxyhydroxides following the cessation of sewage disposal and the introduction of uncontaminated oxygenated ground water into the aquifer in December 1995. Residual oxygen demand associated with sorbed organic compounds and ammonia could retard the movement of oxygenated water into the aquifer. Sorbed phosphorus in the suboxic zone of the aquifer will continue to desorb into the ground water and will remain mobile in the ground water for perhaps hundreds of years. Also, the introduction of uncontaminated water into the aquifer may cause dissolved-phosphorus concentrations in the suboxic zone of the aquifer to increase sharply and remain higher than precessation levels for many years due to the desorption of loosely bound phosphorus. Data from three sampling sites, located along the eastern and western boundaries of the sewage plume and downgradient of abandoned sewage-disposal beds, indicate that ground-water mixing and phosphorus desorption may already be occurring in the aquifer in response to the introduction of uncontaminated recharge water into previously contaminated parts of the aquifer.

  5. [Release and supplement of carbon, nitrogen and phosphorus from jellyfish (Nemopilema nomurai) decomposition in seawater].

    PubMed

    Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin

    2016-01-01

    Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.

  6. Factors affecting phosphorus transport at a conventionally-farmed site in Lancaster County, Pennsylvania, 1992-95

    USGS Publications Warehouse

    Galeone, Daniel G.

    1996-01-01

    The U.S. Geological Survey and the Bureau of Land and Water Conservation of the Pennsylvania Department of Environmental Protection conducted a cooperative study to determine the effects of manure application and antecedent soil-phosphorus concentrations on the transport of phosphorus from the soil of a typical farm site in Lancaster County, Pa., from September 1992 to March 1995. The relation between concentrations of soil phosphorus and phosphorus transport needs to be identified because excessive phosphorus concentrations in surface-water bodies promote eutrophication.The objective of the study was to quantify and determine the significance of chemical, physical, and hydrologic factors that affected phosphorus transport. Three study plots less than 1 acre in size were tilled and planted in silage corn. Phosphorus in the form of liquid swine and dairy manure was injected to a depth of 6-8 inches on two of the three study plots in May 1993 and May 1994. Plot 1 received no inputs of phosphorus from manure while plots 2 and 3 received an average of 56 and 126 kilograms of phosphorus per acre, respectively, from the two manure applications. No other fertilizer was applied to any of the study plots. From March 30, 1993, through December 31, 1993, and March 10, 1994, through August 31, 1994 (the study period), phosphorus and selected cations were measured in precipitation, manure, soil, surface runoff, subsurface flow (at 18 inches below land surface), and corn plants before harvest. All storm events that yielded surface runoff and subsurface flow were sampled. Surface runoff was analyzed for dissolved (filtered through a 0.45-micron filter) and total concentrations. Subsurface flow was only analyzed for dissolved constituents. Laboratory soil-flask experiments and geochemical modeling were conducted to determine the maximum phosphate retention capacity of sampled soils after manure applications and primary mineralogic controls in the soils that affect phosphate equilibrium processes.Physical characteristics, such as particle-size distributions in soil, the suspended sediment and particle-size distribution in surface runoff, and surface topography, were quantified. Hydrologic characteristics, such as precipitation intensity and duration, volumes of surface runoff, and infiltration rates of soil, were also monitored during the study period. Volumes of surface runoff differed by plot.Volumes of surface runoff measured during the study period from plots 1 (0.43 acres), 2 (0.23 acres), and 3 (0.28 acres) were 350,000, 350,000, and 750,000 liters per acre, respectively. About 90 percent of the volume of surface runoff occurred after October 1993 because of the lack of intense precipitation from March 30, 1993, through November 30, 1993. For any one precipitation amount, volumes of surface runoff increased with an increase in the maximum intensity of precipitation and decreased with an increase in storm duration. The significantly higher volume of surface runoff for plot 3 relative to plots 1 and 2 was probably caused by lower infiltration rates on plot 3.Soil concentrations of plant-available phosphorus (PAP) for each study plot were high (31-60 parts per million) to excessive (greater than 60 parts per million) for each depth interval (0-6, 6-12, and 12- 24 inches) and sampling period except for some samples collected at depths of 12-24 inches. The high levels of PAP before manure applications made it difficult to detect any changes in the concentration of soil PAP caused by manure applications. Manure applications to the study area prior to this study resulted in relatively high concentrations of soil PAP; however, the manure applications to plot 3 during the study period did cause an increase in the soil concentration of PAP after the second manure application. The percentages of total phosphorus in plant-available and inorganic forms were about 5 and 80 percent, respectively, in the 0-24--inch depth interval of soil on the study plots. Concentrations of total phosphorus on sand, silt, and clay particles from soil were 700, 1,000, and 3,400 parts per million, respectively. About 70 percent of the total mass of phosphorus in soil to a depth of 24 inches was associated with silt and clay particles.Soil-flask experiments indicated that soils from the study plots were not saturated with respect to phosphorus. Soils had the capacity to retain 694 to 1,160 milligrams of phosphorus per kilogram of soil. The measured retention capacity probably exceeded the actual retention capacity of soil because laboratory conditions optimized the contact time between soil and test solutions.Geochemical modeling indicated that the primary mineralogical controls on the concentration of dissolved phosphorus in surface runoff and subsurface flow were aluminum and iron oxides and strengite (if it exists). Aluminum and iron oxides bind phosphate in solution and strengite is an iron-phosphate mineral. The mineralization of organic phosphorus into dissolved inorganic forms could also supply phosphorus to surface runoff and subsurface flow.Phosphorus inputs to the plots during the study period were from precipitation and manure. Phosphorus inputs from precipitation were negligible. The loads of phosphorus to the plots from manure applications in May 1993 and May 1994 were 112 and 251 kilograms per acre for plots 2 and 3, respectively; about 60 percent of the load occurred in 1994.Phosphorus outputs in surface runoff differed between study plots. The cumulative yields of total phosphorus during the study period for plots 1, 2, and 3 were 1.12, 1.24, and 1.69 kilograms per acre, respectively. Differences between plots were primarily evident for dissolved yields of phosphorus. The percentage of the total phosphorus output in surface runoff that was in the dissolved phase varied from 6 percent for plot 1 to 26 percent for plot 3.The cumulative yields of dissolved phosphorus from plots 2 and 3 were 135 and 500 percent greater, respectively, than the dissolved yield from plot 1. Even though volumes of surface runoff were different on the plots, the primary cause of the difference between plots in the yield of dissolved phosphorus in surface runoff was differences in the concentration of dissolved phosphorus. After the second manure application, concentrations of dissolved phosphorus in surface runoff on plots 2 and 3 were significantly higher than the concentration for plot 1.An increase in the concentration of dissolved phosphorus in subsurface flow from plots 2 and 3 was measured after manure applications. The mean concentrations of dissolved phosphorus in subsurface flow after the first manure application were 0.29, 0.57, and 1.45 milligrams per liter of phosphorus for plots 1, 2, and 3, respectively.The loss of dissolved phosphorus in surface runoff was related to the soil concentration of PAP. The model relating dissolved phosphorus in surface runoff to soil PAP indicated that concentrations of dissolved phosphorus in surface runoff would exceed 0.1 milligram per liter if soil concentrations of PAP exceeded 9 parts per million; this PAP concentration was exceeded by each study plot. Over 50 percent of the variation of dissolved phosphorus in surface runoff was explained by soil concentrations of PAP in the 0-6-inch depth interval.The loss of suspended phosphorus in surface runoff was primarily affected by the particle-size distribution of suspended sediment in surface runoff. Surface runoff was enriched with fines relative to the soil matrix. Generally, over 90 percent of sediment in runoff was comprised of silt and clay particles; only 50-60 percent of particle sizes from the intact soil matrix were in the silt- to clay-size range. Concentrations of suspended phosphorus in surface runoff were not significantly related to soil concentrations of total phosphorus in the 0-6-inch depth interval.Concentrations of dissolved phosphorus in subsurface flow were also related to soil concentrations of PAP. The relation indicated that dissolved concentrations of phosphorus in subsurface flow would exceed 0.1 milligram per liter if soil concentrations of PAP in the 0-6-inch depth interval of soil were greater than 49 parts per million; this PAP concentration was exceeded by each study plot.The significant relation of high concentrations of dissolved phosphorus in water to soil concentrations of PAP indicated that soils with comparable concentrations of soil PAP would be potential sources of dissolved phosphorus to surface water and subsurface water tables. The percentage of the total phosphorus lost from a system in the dissolved form increased as soil concentrations of PAP increased. This indicates that best-management practices to reduce phosphorus losses from this system not only need to target suspended forms of phosphorus but also dissolved forms. Practices aimed at reducing the loss of dissolved phosphorus from the system increase in importance with an increase in soil concentrations of PAP.

  7. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  8. Agricultural conservation practices can help mitigate the impact of climate change.

    PubMed

    Wagena, Moges B; Easton, Zachary M

    2018-09-01

    Agricultural conservation practices (CPs) are commonly implemented to reduce diffuse nutrient pollution. Climate change can complicate the development, implementation, and efficiency of agricultural CPs by altering hydrology, nutrient cycling, and erosion. This research quantifies the impact of climate change on hydrology, nutrient cycling, erosion, and the effectiveness of agricultural CP in the Susquehanna River Basin in the Chesapeake Bay Watershed, USA. We develop, calibrate, and test the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model and select four CPs; buffer strips, strip-cropping, no-till, and tile drainage, to test their effectiveness in reducing climate change impacts on water quality. We force the model with six downscaled global climate models (GCMs) for a historic period (1990-2014) and two future scenario periods (2041-2065 and 2075-2099) and quantify the impact of climate change on hydrology, nitrate-N (NO 3 -N), total N (TN), dissolved phosphorus (DP), total phosphorus (TP), and sediment export with and without CPs. We also test prioritizing CP installation on the 30% of agricultural lands that generate the most runoff (e.g., critical source areas-CSAs). Compared against the historical baseline and with no CPs, the ensemble model predictions indicate that climate change results in annual increases in flow (4.5±7.3%), surface runoff (3.5±6.1%), sediment export (28.5±18.2%) and TN export (9.5±5.1%), but decreases in NO 3 -N (12±12.8%), DP (14±11.5), and TP (2.5±7.4%) export. When agricultural CPs are simulated most do not appreciably change the water balance, however, tile drainage and strip-cropping decrease surface runoff, sediment export, and DP/TP, while buffer strips reduce N export. Installing CPs on CSAs results in nearly the same level of performance for most practices and most pollutants. These results suggest that climate change will influence the performance of agricultural CPs and that targeting agricultural CPs to CSAs can provide nearly the same level of water quality effects as more widespread adoption. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Assessing the Role of Dissolved Organic Phosphate on Rates of Microbial Phosphorus Cycling

    NASA Astrophysics Data System (ADS)

    Gonzalez, A. C.; Popendorf, K. J.; Duhamel, S.

    2016-02-01

    Phosphorus (P) is an element crucial to life, and it is limiting in many parts of the ocean. In oligotrophic environments, the dissolved P pool is cycled rapidly through the activity of microbes, with turnover times of several hours or less. The overarching aim of this study was to assess the flux of P from picoplankton to the dissolved pool and the role this plays in fueling rapid P cycling. To determine if specific microbial groups are responsible for significant return of P to the dissolved pool during cell lifetime, we compared the rate of cellular P turnover (cell-Pτ, the rate of cellular P uptake divided by cellular P content) to the rate of cellular biomass turnover (cellτ). High rates of P return to the dissolved pool during cell lifetime (high cell-Pτ/cellτ) indicate significant P regeneration, fueling more rapid turnover of the dissolved P pool. We hypothesized that cell-Pτ/cellτ varies widely across picoplankton groups. One factor influencing this variation may be each microbial group's relative uptake of dissolved organic phosphorus (DOP) versus dissolved inorganic phosphorus (DIP). As extracellular hydrolysis is necessary for P incorporation from DOP, this process may return more P to the dissolved pool than DIP incorporation. This leads to the question: does a picoplankton's relative uptake of DOP (versus DIP) affect the rate at which it returns phosphorus to the dissolved pool? To address this question, we compared the rate of cellular P turnover based on uptake of DOP and uptake DIP using cultured representatives of three environmentally significant picoplankton groups: Prochlorococcus, Synechococcus, and heterotrophic bacteria. These different picoplankton groups are known to take up different ratios of DOP to DIP, and may in turn make significantly different contributions to the regeneration and cycling phosphorus. These findings have implications towards our understanding of the timeframes of biogeochemical cycling of phosphorus in the ocean.

  10. Using a Hydrodynamic and Biogeochemical Model to Investigate the Effects of Nutrient Loading from a Wastewater Treatment Plant into Lake Michigan

    NASA Astrophysics Data System (ADS)

    Khazaei, B.; Bravo, H.; Bootsma, H.

    2017-12-01

    There is clear evidence that excessive nutrient, in particular phosphorus (P), loading into Lake Michigan has produced significant problems, such as algal blooms, hypoxia, and reduced water quality. Addressing those problems requires understanding the transport and fate of P in the lake. The dominance of mixing and dispersion processes on the P transport has been demonstrated, yet recent research has shown the remarkable influence of dreissenid mussels and Cladophora on water clarity and the P budget. Since mussels and Cladophora tend to concentrate near the coastlines, nearshore-offshore P exchange is of a big importance. In this research, a computer model was developed to simulate the P cycle by incorporating the biogeochemical processes relevant to the transport of P into a 3D high-resolution hydrodynamic model. The near-bottom biogeochemical model consists of three linked modules: Cladophora, mussel, and sediment storage modules. The model was applied to the Milwaukee Metropolitan Sewerage District South Shore Wastewater Treatment Plant, between June and October of 2013 and 2015, as a case study. The plant outfall introduces a point source of P into the study domain—the nearshore zone of Lake Michigan adjacent to Milwaukee County. The model was validated against field observations of water temperature, dissolved phosphorus (DP), particulate phosphorus (PP), Cladophora biomass, and P content. The model simulations showed reasonably good agreement with field measurements. Model results showed a) different temporal patterns in 2013 and 2015, b) a larger range of fluctuations in DP than that in PP, and c) that the effects of mussels and Cladophora could explain the differences in patterns and ranges. PP concentrations showed more frequent spikes of concentration in 2013 due to resuspension events during that year because of stronger winds. The model is being applied as a management tool to test scenarios of nutrient loading to determine effluent P limits for the treatment plant. The alongshore lengths of the surface layer-footprints of total phosphorus (TP) that exceeded the target concentration of 7 μg L-1 during 25% of the summer season were approximately 30 and 24 Km in 2013 and 2015, respectively. That result indicates that the footprint was reduced by the application of a more efficient loading scenario in 2015.

  11. Spatial and temporal variations of loads and sources of total and dissolved Phosphorus in a set of rivers (Western France).

    NASA Astrophysics Data System (ADS)

    Legeay, Pierre-Louis; Moatar, Florentina; Gascuel-Odoux, Chantal; Gruau, Gérard

    2015-04-01

    In intensive agricultural regions with important livestock farming, long-term land application of Phosphorus (P) both as chemical fertilizer and animal wastes, have resulted in elevated P contents in soils. Since we know that high P concentrations in rivers is of major concern, few studies have been done at to assess the spatiotemporal variability of P loads in rivers and apportionment of point and nonpoint source in total loads. Here we focus on Brittany (Western France) where even though P is a great issue in terms of human and drinking water safety (cyano-toxins), environmental protection and economic costs for Brittany with regards to the periodic proliferations of cyanobacteria that occur every year in this region, no regional-scale systematic study has been carried out so far. We selected a set of small rivers (stream order 3-5) with homogeneous agriculture and granitic catchment. By gathering data from three water quality monitoring networks, covering more than 100 measurements stations, we provide a regional-scale quantification of the spatiotemporal variability of dissolved P (DP) and total P (TP) interannual loads from 1992 to 2012. Build on mean P load in low flows and statistical significance tests, we developed a new indicator, called 'low flow P load' (LFP-load), which allows us to determine the importance of domestic and industrial P sources in total P load and to assess their spatiotemporal variability compared to agricultural sources. The calculation and the map representation of DP and TP interannual load variations allow identification of the greatest and lowest P contributory catchments over the study period and the way P loads of Brittany rivers have evolved through time. Both mean DP and TP loads have been divided by more than two over the last 20 years. Mean LFDP-load decreased by more than 60% and mean LFTP-load by more than 45% on average over the same period showing that this marked temporal decrease in total load is largely due to the decrease of domestic and industrial P effluents. A global shift in P inputs apportionment to freshwaters thus occurred in Brittany since 20 years as agricultural nonpoint sources now contribute a greater portion of inputs showing the efficiency of the recent control of point sources by enhancement of water treatment plant and removal of phosphates in detergents. The spatialized P loads provided by this study could give a basis for a better understanding of the factors that drives the P transfers in Brittany soils and hotspots of P emissions while the LFP-load indicator can be a tool to assess effects of point-source P mitigation plans.

  12. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.

  13. Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment.

    PubMed

    Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan

    2009-01-01

    A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.

  14. Effects of flooding on phosphorus and iron mobilization in highly weathered soils: Short-term effects and mechanisms

    NASA Astrophysics Data System (ADS)

    Maranguit, Deejay

    2017-04-01

    The strong affinity of phosphorus (P) to iron (Fe) oxides and hydroxides in highly weathered tropical soils limits P availability and therefore plant productivity. In flooded soils, however, P fixed by Fe oxides and hydroxides can be released and transformed to a more available form because of Fe3+ reduction to Fe2+. These P dynamics in flooded soils are well documented for rice paddies. Such effects are much less studied in other land-use types under the influence of seasonal flooding, especially in the tropics during heavy monsoon rains. The aim of this study was to investigate the mobilization of P during flooding leading to anaerobic conditions in topsoil and subsoil horizons depending on land-use type. Samples were collected in highly weathered soils from four replicate sites under natural rainforest, jungle rubber, rubber and oil palm plantations in Sumatra, Indonesia. Topsoil and subsoil were taken to ensure a wide range of soil organic matter (SOM) and P contents. Soils were incubated under anaerobic, flooded conditions at 30 ± 1 oC for 60 days. Our results confirmed the hypothesis that soil flooding mobilizes P and increases P availability. Two distinct and opposite phases, however, were observed upon flooding. During the first three weeks of flooding, the dissolved P (DP) concentration peaked, simultaneously with a peak of dissolved Fe2+ (DFe2+) and dissolved organic carbon (DOC) in the soil solution. After three weeks, P availability in soils decreased, although Fe-P and available P did not reach initial, pre-flooding levels. Accordingly, Fe dissolution and P mobilization were reversible processes. Furthermore, land-use type influenced the impacts of flooding on P and Fe forms mainly in the topsoil, where P dissolution and availability were generally higher under forest and, to a lesser extent, under jungle rubber. A positive correlation between DOC and DFe2+ (R2 = 0.42) in topsoil indicates that the intensity of microbially-mediated Fe3+ reduction is limited by the amount of available carbon (C) as an energy source for microorganisms. Moreover, microbial mineralization of organic P from SOM also increases P availability, and this process requires available C. This interpretation was supported by the strong correlation (R2 = 0.58) between available P and DOC, as well as between DP and DOC (R2 = 0.56) in topsoil. The increasing soil solution pH in topsoil and subsoil after flooding of all land-use types may also influence the P release over time. In summary, the increase of available P and DP during flooding is due to three main mechanisms: (1) P release via the microbially-mediated reductive dissolution of Fe3+ oxides; (2) P release during SOM mineralization and (3) solubility of Fe phosphate due to increasing pH. These mechanisms are relevant not only in riparian areas, where flooding occurs, but also in well-drained soil that is partly waterlogged after regular heavy rainfalls during the wet season. Likewise, the P cycle turnover is faster in compacted, often anaerobic plantation soils. Here, more P is pumped by the vegetation and then removed from plantations due to yield export.

  15. Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Rea, Brigid A.; Stollenwerk, Kenneth G.; Savoie, Jennifer G.

    1996-01-01

    Currently (1993), about 170 kg/yr of phosphorus discharges into Ashumet Pond on Cape Cod from a plume of sewage-contaminated ground water. Phosphorus in the plume is mobile in two distinct geochemical environments--an anoxic zone containing dissolved iron and a suboxic zone containing dissolved oxygen. Phosphorus mobility in the suboxic zone is due to saturation of available sorption sites. Phosphorus loading to Ashumet Pond may increase significantly after sewage disposal is stopped due to phosphorus desorption from sediment surfaces.

  16. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  17. Highway-runoff quality, and treatment efficiencies of a hydrodynamic-settling device and a stormwater-filtration device in Milwaukee, Wisconsin

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert

    2011-01-01

    The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and PAH—are not included in the lists of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Similar to the HSD, the average efficiency ratios and SOLs for TDS and Cl were negative. Flow rates, high concentrations of SS, and particle-size distributions (PSD) can affect the treatment efficacies of the two devices. Flow rates equal to or greater than the design flow rate of the HSD had minimal or negative removal efficiencies for TSS and SS loads. Similar TSS removal efficiencies were observed at the SFD, but SS was consistently removed throughout the flow regime. Removal efficiencies were high for both devices when concentrations of SS and TSS approached 200 mg/L. A small number of runoff events were analyzed for PSD; the average sand content at the HSD was 33 percent and at the SFD was 71 percent. The 71-percent sand content may reflect the 90-percent removal efficiency of SS at the SFD. Particles retained at the bottom of both devices were largely sand-size or greater.

  18. Rheology of lyocell solutions from different cellulosic sources and development of regenerated cellulosic microfibers

    NASA Astrophysics Data System (ADS)

    Li, Zuopan

    2003-10-01

    The primary goals of the study were to develop manufactured cellulosic fibers and microfibers from wood pulps as well as from lignocellulosic agricultural by-products and to investigate alternative cellulosic sources as raw materials for lyocell solutions. A protocol was developed for the lyocell preparation from different cellulose sources. The cellulose sources included commercial dissolving pulps, commercial bleached hardwood, unbleached hardwood, bleached softwood, unbleached softwood, bleached thermomechanical pulp, unbleached thermomechanical pulp, bleached recycled newsprint, unbleached recycled newsprint, bagasse and kudzu. The rheological behavior of solutions was characterized. Complex viscosities and effective elongational viscosities were measured and the influences of parameters such as cellulose source, concentration, bleaching, and temperature were studied. One-way ANOVA post hoc tests were carried out to identify which cellulose sources have the potential to produce lyocell solutions having similar complex viscosities to those from commercial dissolving pulps. Lyocell solutions from both bleached and unbleached softwood and hardwood were classified as one homogenous subset that had the lowest complex viscosity. Kudzu solutions had the highest complex viscosity. The results showed the potential to substitute DP 1457 dissolving pulp with unbleached recycled newsprint pulps, to substitute DP 1195 dissolving pulp with bleached and unbleached thermomechanical pulps, to substitute DP 932 dissolving pulp with bleached thermomechanical pulps or bleached recycled newsprint pulps, to substitute DP 670 dissolving pulp with bagasse. Lyocell fibers were produced from selected solutions and were treated to produce microfibers. Water, sulfuric acid solutions and sodium hydroxide solutions were used. The treatment of lyocell fibers in 17.5% NaOH solutions for five minutes at 20°C successfully broke the fibers into fibrils along fiber axis. The diameters of the fibrils were generally in the range of 2 to 6 mum, and there were also finer fibrils with diameters less than 1 mum.

  19. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil.

    PubMed

    Yin, Chang; Fan, Fenliang; Song, Alin; Cui, Peiyuan; Li, Tingqiang; Liang, Yongchao

    2015-07-01

    Preferable inorganic fertilization over the last decades has led to fertility degradation of black soil in Northeast China. However, how fertilization regimes impact denitrification and its related bacterial community in this soil type is still unclear. Here, taking advantage of a suit of molecular ecological tools in combination of assaying the potential denitrification (DP), we explored the variation of activity, community structure, and abundance of nirS and nirK denitrifiers under four different fertilization regimes, namely no fertilization control (N0M0), organic pig manure (N0M1), inorganic fertilization (N1M0), and combination of inorganic fertilizer and pig manure (N1M1). The results indicated that organic fertilization increased DP, but inorganic fertilization had no impacts. The increase of DP was mirrored by the shift of nirS denitrifiers' community structure but not by that of nirK denitrifiers'. Furthermore, the change of DP coincided with the variation of abundances of both denitrifiers. Shifts of community structure and abundance of nirS and nirK denitrifiers were correlated with the change of soil pH, total nitrogen (TN), organic matter (OM), C:P, total phosphorus (TP), and available phosphorus (Olsen P). Our results suggest that the change of DP under these four fertilization regimes was closely related to the shift of denitrifying bacteria communities resulting from the variation of properties in the black soil tested.

  20. Spatial and Temporal Patterns of Dissolved Nitrogen and Phosphorus in Surface Waters of a Multi-Land Use Basin

    EPA Science Inventory

    Research on relationships between dissolved nutrients and land use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-bas...

  1. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system

    NASA Astrophysics Data System (ADS)

    Ruttenberg, Kathleen C.; Dyhrman, Sonya T.

    2005-10-01

    High-frequency temporal and spatial shifts in the various dissolved P pools (total, inorganic, and organic) are linked to upwelling/relaxation events and to phytoplankton bloom dynamics in the upwelling-dominated Oregon coastal system. The presence and regulation of alkaline phosphatase activity (APA) is apparent in the bulk phytoplankton population and in studies of cell-specific APA using Enzyme Labeled Fluorescence (ELF®). Spatial and temporal variability are also evident in phytoplankton community composition and in APA. The spatial pattern of dissolved phosphorus and APA variability can be explained by bottom-controlled patterns of upwelling, and flushing times of different regions within the study area. The presence of APA in eukaryotic taxa indicates that dissolved organic phosphorus (DOP) may contribute to phytoplankton P nutrition in this system, highlighting the need for a more complete understanding of P cycling and bioavailability in the coastal ocean.

  3. Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.

    PubMed

    Fowdar, Harsha S; Hatt, Belinda E; Cresswell, Tom; Harrison, Jennifer J; Cook, Perran L M; Deletic, Ana

    2017-02-21

    Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, 32 P (as H 3 PO 4 ), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The 32 P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.

  4. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin: Nitrogen and phosphorus in streams, streambed sediment, and ground water, 1971-94

    USGS Publications Warehouse

    Kroening, S.E.; Andrews, W.J.

    1997-01-01

    Dissolved phosphorus concentrations in ground water in the study area generally were near detection limits of 0.01 mg/L or lower, indicating that surface-water eutrophication from phosphorus may be more likely to occur from overland runoff of phosphorus compounds and from direct discharges of treated wastewater than from ground-water base flow. The greatest concentrations of dissolved phosphorus in ground water generally were detected in water samples from wells in urban portions of the study area.

  5. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb

    2010-09-01

    This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.

  6. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Sinah; Kang, Kyu-Young; Jeong, Myung-Joon; Potthast, Antje; Liebner, Falk

    2017-10-01

    Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

  7. Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England)

    NASA Astrophysics Data System (ADS)

    Monbet, Phil; McKelvie, Ian D.; Worsfold, Paul J.

    2009-02-01

    The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L -1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L -1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.

  8. Simultaneous nitrification, denitrification, and phosphorus removal in single-tank low-dissolved-oxygen systems under cyclic aeration.

    PubMed

    Ju, Lu-Kwang; Huang, Lin; Trivedi, Hiren

    2007-08-01

    Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.

  9. Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay

    NASA Astrophysics Data System (ADS)

    Koch, Marguerite S.; Kletou, Demetris C.; Tursi, Rosanna

    2009-08-01

    Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006-April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2-1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (˜2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic phosphorus and labile organic phosphorus and nitrogen may stimulate autotrophs, particularly cyanobacteria, which in turn promote biological activity that increase alkaline phosphatase activity of both autotrophs and heterotrophs in the bay.

  10. Parking lot runoff quality and treatment efficiencies of a hydrodynamic-settling device in Madison, Wisconsin, 2005-6

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.

    2012-01-01

    A hydrodynamic-settling device was installed in 2004 to treat stormwater runoff from a roof and parking lot located at the Water Utility Administration Building in Madison, Wis. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, the City of Madison, cities in the Waukesha Permit Group, Hydro International, Earth Tech, Inc., National Sanitation Foundation International, and the U.S. Environmental Protection Agency, monitored the device from November 2005 through September 2006 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Twenty-three runoff events monitored for flow volume and water quality at the device's inlet and outlet were used to calculate the percentage of pollutant reduction for the device. The geometric mean concentrations of suspended sediment (SS), "adjusted" total suspended solids (TSS), total phosphorus (TP), dissolved phosphorus (DP), total recoverable zinc (TZn), and total recoverable copper (TCu) measured at the inlet were 107 mg/L (milligrams per liter), 92 mg/L, 0.17 mg/L, 0.05 mg/L, 38 μg/L (micrograms per liter), and 12 μg/L, respectively, and these concentrations are in the range of values observed in stormwater runoff from other parking lots in Wisconsin and Michigan. Efficiency of the settling device was calculated using the efficiency ratio and summation of loads (SOL) methods. Using the efficiency ratio method, the device reduced concentrations of SS, and DP, by 19, and 15, percent, respectively. Using the efficiency ratio method, the device increased "adjusted" TSS and TZn concentrations by 5 and 19, respectively. Bypass occurred for 3 of the 23 runoff events used in this assessment, and the bypass flow and water-quality concentrations were used to determine the efficiency of the bypass system. Concentrations of SS, "adjusted" TSS, and DP were reduced for the system by 18, 5, and 18, respectively; however, TZn increased by 5 percent. Some of the TSS concentrations were "adjusted" to add the particles that remained on the sieves during sample processing. The loads of SS, "adjusted" TSS, and DP were reduced using the SOL method for the settling device by 38, 9, and 19 percent, respectively, and TZn increased by 13 percent. For the bypass system, the loads of SS, "adjusted" TSS, and DP had percentage reductions of 39, 12, 22, respectively, however TZn increased by 4 percent. The SOL method produced percentage reductions for SS and 'adjusted" TSS that were twice those for the efficiency ratio method. Removing the two large runoff events on August 23 and 24, 2006, from the SOL calculation brought the reduction for SS down to 16 and increased "adjusted" TSS by 4 percent. The two large runoff events were anomalies in that the runoff volumes and dissolved solids concentrations were greatly increased by overflow from an adjacent recycling facility. The SOL method was used to determine the percentage of SS load reduction for six different particle sizes for both the settling device and bypass system. Essentially no load reduction was observed for particles less than 125 micrometers (μm) in diameter, and about a 90-percent reduction occurred for particle sizes greater than 250 μm in diameter. The large removal efficiencies for particle sizes greater than 250 μm in diameter were further supported by the fact that more than 80 percent of the particle sizes trapped in the sump were greater than 250 μm in diameter. These results support the claim by the manufacturer of achieving a large percentage load reduction for particle sizes greater than 250 μm in diameter.

  11. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir

    PubMed Central

    Liu, Yan; Zhu, Yuanyuan; Qiao, Xiaocui; Chang, Sheng; Fu, Qing

    2018-01-01

    As part of the efforts to ensure adequate supply of quality water from Danjiangkou Reservoir to Beijing, surface water samples were taken from the tributaries of Danjiangkou Reservoir in the normal (May), flood (August) and dry (December) seasons of 2014, and characterized for nitrogen and phosphorus contents as specified in the applicable standards. Test results indicated that (i) the organic pollution in the Sihe and Shendinghe rivers was more serious than those in other tributaries, and the concentrations of nitrogen and phosphorus favoured the growth of most algae; (ii) total phosphorus (TP), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were in the forms of dissolved phosphorus (DTP), dissolved nitrogen (DTN) and nitrate nitrogen (NO3−-N), respectively, in these seasons; (iii) compared with nitrogen, phosphorus was more likely to block an overrun of phytoplankton; (iv) TN, TP, permanganate index (CODMn) and other ions were positively correlated. These findings are helpful for the government to develop effective measures to protect the source water in Danjingkou Reservoir from pollution. PMID:29410793

  12. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.

    PubMed

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-05-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.

  13. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    PubMed

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of the study as suspended solids discharge improved. Nitrogen fixation was demonstrated throughout the study using an acetylene reduction assay. Based on nitrogen balances around the plant, there was a 55, 354 and 98% increase in nitrogen during Phases 1, 2 and 3 respectively. There was a significant decrease in phosphorus between Phases 1 and 2, and Phase 3 of the study, as well as a significant increase in nitrogen between Phases 2 and 3 which masked the effect of changing the dissolved oxygen. Operation at low dissolved oxygen appeared to confer a competitive advantage to the nitrogen-fixing bacteria.

  14. Phosphorus Concentrations in Stream-Water and Reference Samples - An Assessment of Laboratory Comparability

    USGS Publications Warehouse

    McHale, Michael R.; McChesney, Dennis

    2007-01-01

    In 2003, a study was conducted to evaluate the accuracy and precision of 10 laboratories that analyze water-quality samples for phosphorus concentrations in the Catskill Mountain region of New York State. Many environmental studies in this region rely on data from these different laboratories for water-quality analyses, and the data may be used in watershed modeling and management decisions. Therefore, it is important to determine whether the data reported by these laboratories are of comparable accuracy and precision. Each laboratory was sent 12 samples for triplicate analysis for total phosphorus, total dissolved phosphorus, and soluble reactive phosphorus. Eight of these laboratories reported results that met comparability criteria for all samples; the remaining two laboratories met comparability criteria for only about half of the analyses. Neither the analytical method used nor the sample concentration ranges appeared to affect the comparability of results. The laboratories whose results were comparable gave consistently comparable results throughout the concentration range analyzed, and the differences among methods did not diminish comparability. All laboratories had high data precision as indicated by sample triplicate results. In addition, the laboratories consistently reported total phosphorus values greater than total dissolved phosphorus values, and total dissolved phosphorus values greater than soluble reactive phosphorus values, as would be expected. The results of this study emphasize the importance of regular laboratory participation in sample-exchange programs.

  15. A review of phosphorus removal structures: How to assess and compare their performance

    USDA-ARS?s Scientific Manuscript database

    Controlling dissolved phosphorus (P) losses to surface waters is challenging as most conservation practices are only effective at preventing particulate P losses. As a result, P removal structures were developed to filter dissolved P from drainage water before reaching a water body. While many P rem...

  16. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  17. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region--based on the improved export coefficient model.

    PubMed

    Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti

    2015-11-01

    Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.

  18. Promotion Effect of Asian Dust on Phytoplankton Growth and Potential Dissolved Organic Phosphorus Utilization in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chu, Qiang; Liu, Ying; Shi, Jie; Zhang, Chao; Gong, Xiang; Yao, Xiaohong; Guo, Xinyu; Gao, Huiwang

    2018-03-01

    Dust deposition is an important nutrient source to the South China Sea (SCS), but few in situ experiments were conducted on phytoplankton response to the deposition. We conducted onboard incubation experiments at three stations near Luzon Strait in the SCS, with addition of multiple dissolved inorganic nutrients, Asian dust, and rainwater. From our results, nitrogen and phosphorus were both urgently needed for phytoplankton growth in the SCS, indicated by the evident Chl a response to the addition of nitrogen and phosphorus together. Almost no evident response was observed by adding phosphorus or iron alone to incubation waters, although a delayed response of Chl a in mass concentration was observed by adding nitrogen alone. The latter implied a possible utilization of dissolved organic phosphorus because of insufficient dissolved inorganic phosphorus in incubation waters. Under such nutrient condition, Asian dust showed an apparent promotion effect on phytoplankton growth by providing sufficient amounts of nitrogen but low phosphorus. Meanwhile, it was found that large sized (> 5 μm) phytoplankton community showed different responses to dust addition at different stations. At stations A3 and A6, Chaetoceros spp. became the dominant species during the bloom period, while at station WG2, Nitzschia spp. became dominant. In combination with different initial nutrients and Chl a levels at the three stations, the different phytoplankton community evolution implied the response difference to external inputs between oligotrophic (stations A3 and A6) and ultraoligotrophic (station WG2) conditions in the SCS.

  19. Trophic conditions in Lake Winnisquam, New Hampshire

    USGS Publications Warehouse

    Frost, Leonard R.

    1977-01-01

    Lake Winnisquam has received treated domestic sewage for approximately 50 years and since June 1961 has been treated with copper sulfate to control the growth of nuisance algae. The Laconia City secondary sewage-treatment plant was upgraded in 1975 to include phosphorus removal. Phosphorus was not removed effectively until early 1976, and, therefore, the 1976 data are considered baseline or pre-phosphorus removal with respect to anticipated changes in the trophic condition of the lake. Effluent from the Laconia State School primary-treatment plant was diverted to the Laconia City plant in October 1976. Dissolved oxygen concentrations showed marked differences between the two basins comprising Lake Winnisquam. Phytoplankton samples showed similarities by algal group for all stations but algal genera varied between the upper and lower basins. Total phosphorus concentrations in the epilimnion ranged from 0.01 to 0.10 milligram per liter, and accumulation of total phosphorus in the hypolimnion resulted in concentrations up to 0.59 milligrams per liter. Chemical states of nutrients varied among the stations corresponding to the degree of depletion of hypolimnetic dissolved oxygen. Dissolved oxygen profiles were used to illustrate zones of algal production, respiration, and bacterial decomposition. The rate of depletion of dissolved oxygen in the hypolimnion was linearly related to time. Because change in the rate of hypolimnetic dissolved oxygen depletion is more easily measured than change of nutrient load in the lake, it is suggested it be used as an indicator of the response of the lake to change in trophic condition.

  20. Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries

    USDA-ARS?s Scientific Manuscript database

    Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...

  1. Cationized milled pine bark as an adsorbent for orthophosphate anions

    Treesearch

    Mandla A. Tshabalala; K.G. Karthikeyan; D. Wang

    2004-01-01

    More efficient adsorption media are needed for removing dissolved phosphorus in surface water runoff. We studied the use of cationized pine bark as a sorbent for dissolved phosphorus in water. Cationized pine bark was prepared by treating extracted milled pine bark with polyallylamine hydrochloride (PAA HCl) and epichlorohydrin (ECH) in aqueous medium. Attachment of...

  2. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, George F.; Steindler, Martin J.

    1989-01-01

    A method of removing organic phosphorus-based poisonous substances from water contaminated therewith and of subsequently destroying the toxicity of the substance is disclosed. Initially, a water-immiscible organic is immobilized on a supported liquid membrane. Thereafter, the contaminated water is contacted with one side of the supported liquid membrane to selectively dissolve the phosphorus-based substance in the organic extractant. At the same time, the other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react the phosphorus-based substance dissolved by the organic extractant with a hydroxy ion. This forms a non-toxic reaction product in the base. The organic extractant can be a water-insoluble trialkyl amine, such as trilauryl amine. The phosphorus-based substance can be phosphoryl or a thiophosphoryl.

  3. Atmospheric bulk deposition of dissolved nitrogen, phosphorus and silicate in the Gulf of Gabès (South Ionian Basin); implications for marine heterotrophic prokaryotes and ultraphytoplankton

    NASA Astrophysics Data System (ADS)

    Khammeri, Yosra; Hamza, Ismail Sabeur; Zouari, Amel Bellaaj; Hamza, Asma; Sahli, Emna; Akrout, Fourat; Ben Kacem, Mohamed Yassine; Messaoudi, Sabri; Hassen, Malika Bel

    2018-05-01

    Monthly variability of atmospheric deposition of dissolved nitrogen, phosphorus and silicate was assessed during the year period from June 2014 to May 2015 in the Gulf of Gabès, situated near the most active source of dust. Nutrient concentrations, ultraphytoplankton <10 μm and heterotrophic prokaryotes abundances were simultaneously investigated in the surface coastal water near the sampling site. Results showed that most of the bulk nutrient deposition (more than 66%) occurred during wet season, from October to February, characterized by air masses originating from the Tunisian desert. Dissolved Inorganic Nitrogen (DIN) deposition was very low, whereas Dissolved Inorganic Phosphorus (DIP) bulk deposition was within the range of that observed in the Eastern Mediterranean. High organic nitrogen (30.47%) and phosphorus (83,5%) content contributed to the bulk nitrogen and phosphorus deposition respectively. Months marked by high deposition were accompanied by an increase of carbon biomass from picophytoplankton, Synecococcus and heterotrophic prokaryotes while nanophytoplankton biomass decreased from 62.38% to 43.39% towards the wet season. During the wet season, heterotrophic prokaryotes become the first contributors to the carbon biomass in the surface water. This suggests a possible contribution of bacteria to the organic nutrient pool driven by atmospheric deposition or/and a reinforcement of the heterotrophic character of the system due to the organic content mineralization processes.

  4. Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition

    NASA Astrophysics Data System (ADS)

    Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus

    2016-04-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.

  5. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope.

    PubMed

    Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi

    2018-05-01

    Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.

  6. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.

  7. Nitrogen and Phosphorus Loads to Temperate Seepage Lakes Associated With Allochthonous Dissolved Organic Carbon Loads

    Treesearch

    J.R. Corman; B.L. Bertolet; N.J. Casson; S.D. Sebestyen; R.K. Kolka; E.H. Stanley

    2018-01-01

    Terrestrial loads of dissolved organic matter (DOM) have increased in recent years in many north temperate lakes. While much of the focus on the "browning" phenomena has been on its consequences for carbon cycling, much less is known about how it influences nutrient loading to lakes. We characterize potential loads of nitrogen and phosphorus to seepage lakes...

  8. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China.

    PubMed

    Jiang, Xia; Jin, Xiangcan; Yao, Yang; Li, Lihe; Wu, Fengchang

    2008-04-01

    Effects of biological activity, light, temperature and oxygen on the phosphorus (P) release processes at the sediment and water interface of a shallow lake, Taihu Lake, China, were investigated. The results show that organisms at the sediment and water interface can stimulate P release from sediments, and their metabolism can alter the surrounding micro-environmental conditions. The extent of P release and its effects on P concentration in the overlying water were affected by factors such as light, temperature and dissolved oxygen. The organism biomass increased as temperature increased, which was beneficial for P release. Dissolved total phosphorus (DTP) and dissolved inorganic phosphorus (DIP) concentrations in the corresponding overlying water were mainly controlled by light. P release occurred in both aerobic and anoxic conditions with the presence of organisms. However in the presence of light , P release in an anoxic environment was much greater than in an aerobic environment, which may stimulate alga bloom and result in an increase in total phosphorus (TP) in the overlying water. This information aids the understanding of P biogeochemical cycling at the interface and its relationship with eutrophication in shallow lakes.

  9. Wet and dry nitrogen deposition in the central Sichuan Basin of China

    NASA Astrophysics Data System (ADS)

    Kuang, Fuhong; Liu, Xuejun; Zhu, Bo; Shen, Jianlin; Pan, Yuepeng; Su, Minmin; Goulding, Keith

    2016-10-01

    Reactive nitrogen (Nr) plays a key role in the atmospheric environment and its deposition has induced large negative impacts on ecosystem health and services. Five-year continuous in-situ monitoring of N deposition, including wet (total nitrogen (WTN), total dissolved nitrogen (WTDN), dissolved organic nitrogen (WDON), ammonium nitrogen (WAN) and nitrate nitrogen (WNN)) and dry (DNH3, DHNO3, DpNH4+, DpNO3- and DNO2) deposition, had been conducted since August 2008 to December 2013 (wet) and May 2011 to December 2013 (dry) in Yan-ting, China, a typical agricultural area in the central Sichuan Basin. Mean annual total N deposition from 2011 to 2013 was 30.8 kg N ha-1 yr-1, and speculated that of 2009 and 2010 was averaged 28.2 kg N ha-1 yr-1, respectively. Wet and dry N deposition accounted for 76.3% and 23.7% of annual N deposition, respectively. Reduced N (WAN, DNH3 and DpNH4+) was 1.7 times of oxidized N (WNN, DHNO3, DNO2 and DpNO3-) which accounted for 50.9% and 30.3% of TN, respectively. Maximum loadings of all N forms of wet deposition, gaseous NH3, HNO3 and particulate NH4+ in dry deposition occurred in summer and minimum loadings in winter. Whether monthly, seasonal or annual averaged, dissolved N accounted for more than 70% of the total. N deposition in the central Sichuan Basin increased during the sampling period, especially that of ammonium compounds, and has become a serious threat to local aquatic ecosystems, the surrounding forest and other natural or semi-natural ecosystems in the upper reaches of the Yangtze River.

  10. [Influence of decomposition of Cladophora sp. on phosphorus concentrations and forms in the overlying water].

    PubMed

    Hou, Jin-Zhi; Wei, Quan; Gao, Li; Sun, Wei-Ming

    2013-06-01

    Sediments were sampled in the dominated zone of Cladophora sp. in Rongcheng Swan Lake, and cultivated with algae in the laboratory to reveal the influence of Cladophora decomposition on concentrations and forms of phosphorus in the overlying water. Concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), soluble reactive phosphorus (SRP), particulate phosphorus (PP) and dissolved organic phosphorus (DOP) in overlying water were investigated, and some physicochemical parameters, such as dissolved oxygen (DO), pH and conductivity were monitored during the experiment. In addition, the influence of algae decomposition on P release from sediments was analyzed. Due to the decomposition of Cladophora, DO concentration in the overlying water declined remarkably and reached the anoxic condition (0-0.17 mg x L(-1)). The pH value of different treatments also decreased, and treatments with algae reduced by about 1 unit. Concentrations of TP and different P forms all increased obviously, and the increasing extent was larger with the adding algae amount. TP concentrations of different treatments varied from 0.04 mg x L(-1) to 1.34 mg x L(-1). DOP and PP were the main P forms in the overlying water in algae without sediments treatments, but SRP concentrations became much higher in algae with sediments treatments. The result showed that P forms released from decomposing Cladophora were mainly DOP and PP, and the Cladophora decomposition could also promote the sediments to release P into the overlying water.

  11. Seagrass-Mediated Phosphorus and Iron Solubilization in Tropical Sediments

    PubMed Central

    2017-01-01

    Tropical seagrasses are nutrient-limited owing to the strong phosphorus fixation capacity of carbonate-rich sediments, yet they form densely vegetated, multispecies meadows in oligotrophic tropical waters. Using a novel combination of high-resolution, two-dimensional chemical imaging of O2, pH, iron, sulfide, calcium, and phosphorus, we found that tropical seagrasses are able to mobilize the essential nutrients iron and phosphorus in their rhizosphere via multiple biogeochemical pathways. We show that tropical seagrasses mobilize phosphorus and iron within their rhizosphere via plant-induced local acidification, leading to dissolution of carbonates and release of phosphate, and via local stimulation of microbial sulfide production, causing reduction of insoluble Fe(III) oxyhydroxides to dissolved Fe(II) with concomitant phosphate release into the rhizosphere porewater. These nutrient mobilization mechanisms have a direct link to seagrass-derived radial O2 loss and secretion of dissolved organic carbon from the below-ground tissue into the rhizosphere. Our demonstration of seagrass-derived rhizospheric phosphorus and iron mobilization explains why seagrasses are widely distributed in oligotrophic tropical waters. PMID:29149570

  12. Water quality of Lake Whitney, north-central Texas

    USGS Publications Warehouse

    Strause, Jeffrey L.; Andrews, Freeman L.

    1983-01-01

    Seasonal temperature variations and variations in the concentration of dissolved oxygen result in dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus being recycled within the lake; however, no significant accumulations of these constituents were detected.

  13. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  14. Soluble organic nutrient fluxes

    Treesearch

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  15. Managing phosphorus export from golf courses using industrial byproducts as filter materials

    USDA-ARS?s Scientific Manuscript database

    Golf courses, and in particular the tees, fairways, and putting greens, are vulnerable to loss of phosphorus (P) as dissolved reactive P (DRP) through sandy, porous grass rooting media and subsurface tile drainage. Excess levels of phosphorus (P) in surface waters promotes eutrophication, which in t...

  16. Spatial variation in basic chemistry of streams draining a volcanic landscape on Costa Rica's Caribbean slope

    USGS Publications Warehouse

    Pringle, C.M.; Triska, F.J.; Browder, G.

    1990-01-01

    Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24-25 ??C in streams draining lower elevations (35-250 m) in tropical wet forest, to 10 ??C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60-300 ??g SRP L-1; 66-405 ??g TP L-1) were high at sites within six pristine drainages at elevations between 35-350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 ??g SRP L-1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain. ?? 1990 Kluwer Academic Publishers.

  17. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-23

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  18. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  19. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  20. Linking soil phosphorus to dissolved phosphorus losses in the midwest

    USDA-ARS?s Scientific Manuscript database

    Harmful and nuisance algal blooms resulting from excess phosphorus (P) have placed agriculture in the spotlight of the water quality debate. Sixty-eight site years of P loading data from 36 fields in Ohio were used to see if a soil test P (STP) concentration could be identified that would permit P a...

  1. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  2. Phosphorus and groundwater: Establishing links between agricultural use and transport to streams

    USGS Publications Warehouse

    Domagalski, Joseph L.; Johnson, Henry

    2012-01-01

    Leaching of applied fertilizer and surface runoff of phosphorus from the soil can contribute to excess growth of algae in downstream water bodies, a condition known as eutrophication. Excessive amounts of algae in eutrophic water bodies can cause large daily changes in the amount of dissolved oxygen in the water because oxygen concentrations tend to be high during daylight hours as a result of photosynthetic activity but then decrease at night. Low concentrations of dissolved oxygen can stress or kill sensitive species living in the water. This study examined concentrations and movement of phosphorus in the soils and groundwater in five agricultural settings across the United States characterized by differences in soil geochemistry, climate, irrigation usage, and cropping systems to assess potential phosphorus movement in the soil and groundwater under common agricultural conditions. The study design included assessment of a variety of agricultural practices, especially cropping patterns and irrigation, so that the factors that contribute to phosphorus movement to groundwater, or sequestration of the phosphorus to soil could be compared and examined. This type of information could potentially be used to formulate best management practices to limit the transport of phosphorus from the agricultural fields.

  3. Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2010-10-15

    Dissolved organic phosphorus (DOP) has been recognized as dominant components in total dissolved phosphorus (TDP) pools in many coastal waters, and its exchange between sediment and water is an important process in biogeochemical cycle of phosphorus. Adenosine monophosphate (AMP) was employed as a model DOP compound to simulate phosphorus exchange across sediment-water interface in Florida Bay. The sorption data from 40 stations were fitted to a modified Freundlich equation and provided a detailed spatial distribution both of the sediment's zero equilibrium phosphorus concentration (EPC(0-T)) and of the distribution coefficient (K(d-T)) with respect to TDP. The K(d-T) was found to be a function of the index of phosphorus saturation (IPS), a molar ratio of the surface reactive phosphorus to the surface reactive iron oxide content in the sediment, across the entire bay. However, the EPC(0-T) was found to correlate to the contents of phosphorus in the eastern bay only. Sediment in the western bay might act as a source of the phosphorus in the exchange process due to their high EPC(0-T) and low K(d-T), whereas sediments in the eastern bay might act as a sink because of their low EPC(0-T) and high K(d-T). These results strongly support the hypothesis that both phosphorus and iron species in calcareous marine sediments play a critical role in governing the sediment-water exchange of both phosphate and DOP in the coastal and estuarine ecosystems.

  4. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  5. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  6. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    USGS Publications Warehouse

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l

  7. Elucidating the role of surface chemistry on cationic phosphorus dendrimer-siRNA complexation.

    PubMed

    Deriu, Marco A; Tsapis, Nicolas; Noiray, Magali; Grasso, Gianvito; El Brahmi, Nabil; Mignani, Serge; Majoral, Jean-Pierre; Fattal, Elias; Danani, Andrea

    2018-06-14

    In the field of dendrimers targeting small interfering RNA (siRNA) delivery, dendrimer structural properties, such as the flexibility/rigidity ratio, play a crucial role in the efficiency of complexation. However, advances in organic chemistry have enabled the development of dendrimers that differ only by a single atom on their surface terminals. This is the case for cationic phosphorus dendrimers functionalized with either pyrrolidinium (DP) or morpholinium (DM) terminal groups. This small change was shown to strongly affect the dendrimer-siRNA complexation, leading to more efficient anti-inflammatory effects in the case of DP. Reasons for this different behavior can hardly be inferred only by biological in vitro and in vivo experiments due to the high number of variables and complexity of the investigated biological system. However, an understanding of how small chemical surface changes may completely modify the overall dendrimer-siRNA complexation is a significant breakthrough towards the design of efficient dendrimers for nucleic acid delivery. Herein, we present experimental and computational approaches based on isothermal titration calorimetry and molecular dynamics simulations to elucidate the molecular reasons behind different efficiencies and activities of DP and DM. Results of the present research highlight how chemical surface modifications may drive the overall dendrimer-siRNA affinity by influencing enthalpic and entropic contributions of binding free energy. Moreover, this study elucidates molecular reasons related to complexation stoichiometry that may be crucial in determining the dendrimer complexation efficiency.

  8. Experimental investigation of the partitioning of phosphorus between metal and silicate phases - Implications for the earth, moon and eucrite parent body

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Drake, M. J.

    1983-01-01

    An experimental study is reported of the partitioning of Phosphorus between solid metal and basaltic silicate liquid as a function of temperature and oxygen fugacity and of the implications for the earth, moon and eucrite parent body (EPB). The relationship established between the partition coefficient and the fugacity is given at 1190 C by log D(P) = -1.12 log fO2 - 15.95 and by log D(P) = -1.53 log fO2 17.73 at 1300 C. The partition coefficient D(P) was determined, and it is found to be consistent with a valence state of 5 for P in the molten silicate. Using the determined coefficient the low P/La ratios of the earth, moon, and eucrites relative to C1 chondrites can be explained. The lowering of the P/La ratio in the eucrites relative to Cl chondrite by a factor of 40 can be explained by partitioning P into 20-25 wt% sulfur-bearing metallic liquid corresponding to 5-25% of the total metal plus silicate system. The low P/La and W/La ratios in the moon may be explained by the partitioning of P and W into metal during formation of a small core by separation of liquid metal from silicate at low degrees of partial melting of the silicates. These observations are consistent with independent formation of the moon and the earth.

  9. Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake.

    PubMed

    Batanero, Gema L; León-Palmero, Elizabeth; Li, Linlin; Green, Andy J; Rendón-Martos, Manuel; Suttle, Curtis A; Reche, Isabel

    2017-09-22

    Waterbird aggregations and droughts affect nutrient and microbial dynamics in wetlands. We analysed the effects of high densities of flamingos on nutrients and microbial dynamics in a saline lake during a wet and a dry hydrological year, and explored the effects of guano on prokaryotic growth. Concentrations of dissolved organic carbon, total phosphorus and total nitrogen in the surface waters were 2-3 fold higher during the drought and were correlated with salinity. Flamingos stimulated prokaryotic heterotrophic production and triggered cascading effects on prokaryotic abundance, viruses and dissolved nitrogen. This stimulus of heterotrophic prokaryotes was associated with soluble phosphorus inputs from guano, and also from sediments. In the experiments, the specific growth rate and the carrying capacity were almost twice as high after guano addition than in the control treatments, and were coupled with soluble phosphorus assimilation. Flamingo guano was also rich in nitrogen. Dissolved N in lake water lagged behind the abundance of flamingos, but the causes of this lag are unclear. This study demonstrates that intense droughts could lead to increases in total nutrients in wetlands; however, microbial activity is likely constrained by the availability of soluble phosphorus, which appears to be more dependent on the abundance of waterbirds.

  10. Assessment of Lung Function in Asthma and COPD using Hyperpolarized 129Xe Chemical Shift Saturation Recovery Spectroscopy and Dissolved-Phase MR Imaging

    PubMed Central

    Qing, Kun; Mugler, John P.; Altes, Talissa A.; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Ruset, Iulian C.; Hersman, F. William; Ruppert, Kai

    2014-01-01

    Magnetic-resonance spectroscopy and imaging using hyperpolarized xenon-129 show great potential for evaluation of the most important function of the human lung -- gas exchange. In particular, Chemical Shift Saturation Recovery (CSSR) xenon-129 spectroscopy provides important physiological information for the lung as a whole by characterizing the dynamic process of gas exchange, while dissolved-phase xenon-129 imaging captures the time-averaged regional distribution of gas uptake by lung tissue and blood. Herein, we present recent advances in assessing lung function using CSSR spectroscopy and dissolved-phase imaging in a total of 45 subjects (23 healthy, 13 chronic obstructive pulmonary disease (COPD) and 9 asthma). From CSSR acquisitions, the COPD subjects showed red blood cell to tissue/plasma (RBC-to-TP) ratios below the average for the healthy subjects (p<0.001), but significantly higher septal wall thicknesses, as compared with the healthy subjects (p<0.005); the RBC-to-TP ratios for the asthmatics fell outside 2 standard deviations (either higher or lower) from the mean of the healthy subjects although there was no statistically significant difference for the average ratio of the study group as a whole. Similarly, from the 3D DP imaging acquisitions, we found all the ratios (TP-to-GP, RBC-to-GP, RBC-to-TP) measured in the COPD subjects were lower than those from the healthy subjects (p<0.05 for all ratios), while these ratios in the asthmatics differed considerably between subjects. Despite having been performed at different lung inflation levels, the RBC-to-TP ratios measured by CSSR and 3D DP imaging were fairly consistent with each other, with a mean difference of 0.037 (ratios from 3D DP imaging larger). In ten subjects the RBC-to-GP ratios obtained from the 3D DP imaging acquisitions were also highly correlated with their DLCO/Va ratios measured by pulmonary function testing (R=0.91). PMID:25146558

  11. Estimation of phosphorus flux in rivers during flooding.

    PubMed

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in rivers during flooding should be monitored to evaluate the loading of phosphorus more precisely. The results show that monitoring and controlling phosphorus transport during flooding can help prevent the eutrophication of a reservoir.

  12. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process.

    PubMed

    Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji

    2016-04-01

    The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of gastric pH on the oral absorption of poorly water-soluble drugs were consistent with observations in humans. In conclusion, the D/P system with the gastric phase may be a useful tool for better predicting the oral absorption of poorly water-soluble basic drugs. In addition, the effects of gastric pH on the oral absorption of poorly water-soluble drugs may be evaluated by the D/P system with and without the gastric phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Phosphorus in a ground-water contaminant plume discharging to Ashumet Pond, Cape Cod, Massachusetts, 1999

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.; Walter, Donald A.; Hess, Kathryn M.; Kent, Douglas B.; Smith, Richard L.

    2003-01-01

    The discharge of a plume of sewagecontaminated ground water emanating from the Massachusetts Military Reservation to Ashumet Pond on Cape Cod, Massachusetts, has caused concern about excessive loading of nutrients, particularly phosphorus, to the pond. The U.S. Air Force is considering remedial actions to mitigate potentially adverse effects on the ecological characteristics of the pond from continued phosphorus loading. Concentrations as great as 3 milligrams per liter of dissolved phosphorus (as P) are in ground water near the pond's shoreline; concentrations greater than 5 milligrams per liter of phosphorus are in ground water farther upgradient. Temporary drive-point wells were used to collect water samples from 2 feet below the pond bottom to delineate concentration distributions in the pore waters of the pond-bottom sediments. Measurements in the field of specific conductance and colorimetrically determined orthophosphate concentrations provided real-time data to guide the sampling. The contaminant plume discharges to the Fishermans Cove area of Ashumet Pond as evidenced by elevated levels of specific conductance and boron, which are chemically conservative indicators of the sewage-contaminated ground water. Concentrations of nonconservative species, such as dissolved phosphorus, manganese, nitrate, and ammonium, also were elevated above background levels in ground water discharging to the pond, but in spatially complex distributions that reflect their distributions in ground water upgradient of the pond. Phosphorus concentrations exceeded background levels (greater than 0.10 milligram per liter) in the pond-bottom pore water along 875 feet of shoreline. Greatest concentrations (greater than 2 milligrams per liter) occurred within 30 feet of the shore in an area about 225 feet long. Calculations of phosphorus flux in the aquifer upgradient of Ashumet Pond, as determined from water-flux estimates from a steady-state ground-water-flow model and phosphorus concentrations (in 1999) from multilevel samplers about 75 feet upgradient of the pond, indicate that dissolved phosphorus moves towards the pond and discharges to it with the inflowing ground water at a rate as high as about 316 kilograms per year.

  14. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  15. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  16. Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device

    USGS Publications Warehouse

    Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.

    1999-01-01

    This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.

  17. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  18. Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons.

    PubMed

    Laque, Thaís; Farjalla, Vinicius F; Rosado, Alexandre S; Esteves, Francisco A

    2010-05-01

    Bacterial community composition (BCC) has been extensively related to specific environmental conditions. Tropical coastal lagoons present great temporal and spatial variation in their limnological conditions, which, in turn, should influence the BCC. Here, we sought for the limnological factors that influence, in space and time, the BCC in tropical coastal lagoons (Rio de Janeiro State, Brazil). The Visgueiro lagoon was sampled monthly for 1 year and eight lagoons were sampled once for temporal and spatial analysis, respectively. BCC was evaluated by bacteria-specific PCR-DGGE methods. Great variations were observed in limnological conditions and BCC on both temporal and spatial scales. Changes in the BCC of Visgueiro lagoon throughout the year were best related to salinity and concentrations of NO (3) (-) , dissolved phosphorus and chlorophyll-a, while changes in BCC between lagoons were best related to salinity and dissolved phosphorus concentration. Salinity has a direct impact on the integrity of the bacterial cell, and it was previously observed that phosphorus is the main limiting nutrient to bacterial growth in these lagoons. Therefore, we conclude that great variations in limnological conditions of coastal lagoons throughout time and space resulted in different BCCs and salinity and nutrient concentration, particularly dissolved phosphorus, are the main limnological factors influencing BCC in these tropical coastal lagoons.

  19. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    USGS Publications Warehouse

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen concentrations remained relatively high in the chambers and when the temperature was relatively low, the tendency was for phosphorus concentrations to decrease in the chambers, indicating sediment sequestration of phosphorus; when dissolved oxygen concentrations dropped to near zero and temperatures were warmest, phosphorus concentrations increased in the chambers, indicating phosphorus flux from the sediment. The rates of release and sequestration in the in situ studies were generally comparable with the rates determined in laboratory studies of Assabet River sediment cores for State and Federal agencies. Sediment-core and chamber studies produced substantial sediment fluxes to the water column only under extremely low-DO or anaerobic conditions rarely found in the Assabet River impoundments; thus, sediment is not likely to be a major phosphorus source, especially when compared to the wastewater effluent, which sustains higher ambient concentrations. The regulatory agencies now (2011) have substantial laboratory and field data with which to determine the required 90-percent reduction in phosphorus flux after the completion of upgrades to the wastewater-treatment plants that discharge to the Assabet River.

  20. Reducing sediment and phosphorus in tributary waters with alum and polyacrylamide.

    PubMed

    Mason, L B; Amrhein, C; Goodson, C C; Matsumoto, M R; Anderson, M A

    2005-01-01

    The Salton Sea is the largest inland water body in California, covering an area of 980 km(2). Inflow to the Salton Sea (1.6 km(3) yr(-1)) is predominately nutrient-rich agricultural wastewater, which has led to eutrophication. Because internal phosphorus release from the bottom sediments is comparatively low and external phosphorus loading to the Salton Sea is high, reduction of tributary phosphorus is expected to reduce algal blooms, increase dissolved oxygen, and reduce odors. Removing both dissolved phosphorus and phosphorus-laden sediment from agricultural drainage water (ADW) should decrease eutrophication. Both alum and polyacrylamide (PAM) are commonly used in wastewater treatment to remove phosphorus and sediment and were tested for use in tributary waters. Laboratory jar tests determined PAM effectiveness (2 mg L(-1)) for turbidity reduction as cationic > anionic = nonionic. Although cationic PAM was the most effective at reducing turbidity at higher speeds, there was no observed difference between the neutral and anionic PAMs at velocity gradients of 18 to 45 s(-1). Alum (4 mg L(-1) Al) reduced turbidity in low energy systems (velocity gradients < 10 s(-1)) by 95% and was necessary to reduce soluble phosphorus, which comprises 47 to 100% of the total P concentration in the tributaries. When PAM was added with alum, the anionic PAM became ineffective in aiding flocculation. The nonionic PAM (2 mg L(-1)) + alum (4 mg L(-1) Al) is recommended to reduce suspended solids in higher energy systems and reduce soluble P by 93%.

  1. Water-quality, phytoplankton, and trophic-status characteristics of Big Base and Little Base lakes, Little Rock Air Force Base, Arkansas, 2003-2004

    USGS Publications Warehouse

    Justus, B.G.

    2005-01-01

    Little Rock Air Force Base is the largest C-130 base in the Air Force and is the only C-130 training base in the Department of Defense. Little Rock Air Force Base is located in central Arkansas near the eastern edge of the Ouachita Mountains, near the Mississippi Alluvial Plain, and within the Arkansas Valley Ecoregion. Habitats include upland pine forests, upland deciduous forest, broad-leaved deciduous swamps, and two small freshwater lakes?Big Base Lake and Little Base Lake. Big Base and Little Base Lakes are used primarily for recreational fishing by base personnel and the civilian public. Under normal (rainfall) conditions, Big Base Lake has a surface area of approximately 39 acres while surface area of Little Base Lake is approximately 1 acre. Little Rock Air Force Base personnel are responsible for managing the fishery in these two lakes and since 1999 have started a nutrient enhancement program that involves sporadically adding fertilizer to Big Base Lake. As a means of determining the relations between water quality and primary production, Little Rock Air Force Base personnel have a need for biological (phytoplankton density), chemical (dissolved-oxygen and nutrient concentrations), and physical (water temperature and light transparency) data. To address these monitoring needs, the U.S. Geological Survey in cooperation with Little Rock Air Force Base, conducted a study to collect and analyze biological, chemical, and physical data. The U.S. Geological Survey sampled water quality in Big Base Lake and Little Base Lake on nine occasions from July 2003 through June 2004. Because of the difference in size, two sampling sites were established on Big Base Lake, while only one site was established on Little Base Lake. Lake profile data for Big Base Lake indicate that low dissolved- oxygen concentrations in the hypolimnion probably constrain most fish species to the upper 5-6 feet of depth during the summer stratification period. Dissolved-oxygen concentrations in Big Base Lake below a depth of 6 feet generally were less than 3 milligrams per liter for summer months that were sampled in 2003 and 2004. Some evidence indicates that phosphorus was limiting primary production during the sampling period. Dissolved nitrogen constituents frequently were detected in water samples (indicating availability) but dissolved phosphorus constituents-orthophosphorus and dissolved phosphorus-were not detected in any samples collected at the two lakes. The absence of dissolved phosphorus constituents and presence of total phosphorus indicates that all phosphorus was bound to suspended material (sediment particles and living organisms). Nitrogen:phosphorus ratios on most sampling occasions tended to be slightly higher than 16:1, which can be interpreted as further indication that phosphorus could be limiting primary production to some extent. An alkalinity of 20 milligrams per liter of calcium carbonate or higher is recommended to optimize nutrient availability and buffering capacity in recreational fishing lakes and ponds. Median values for water samples collected at the three sites ranged from 12-13 milligrams per liter of calcium carbonate. Alkalinities ranged from 9-60 milligrams per liter of calcium carbonate, but 13 of 17 samples collected at the deepest site had alkalinities less than 20 milligrams per liter of calcium carbonate. Results of three trophic-state indices, and a general trophic classification, as well as abundant green algae and large growths of blue-green algae indicate that Big Base Lake may be eutrophic. Trophic-state index values calculated using total phosphorus, chlorophyll a, and Secchi disc measurements from both lakes generally exceeded criteria at which lakes are considered to be eutrophic. A second method of determining lake trophic status-the general trophic classification-categorized the three sampling sites as mesotrophic or eutrophic. Green algae were found to be in abundance throughout mos

  2. Hydrology and water-quality characteristics of Muddy Creek and Wolford Mountain Reservoir near Kremmling, Colorado, 1990 through 2001

    USGS Publications Warehouse

    Stevens, Michael R.; Sprague, Lori A.

    2003-01-01

    A water-quality monitoring program was begun in March 1985 on Muddy Creek in anticipation of the construction of a reservoir water-storage project. Wolford Mountain Reservoir was constructed by the Colorado River Water Conservation District during 1992-94. The reservoir began to be filled in 1995. Water quality generally was good in Muddy Creek and Wolford Mountain Reservoir throughout the period of record (collectively, 1990 through 2001), with low concentrations of nutrients (median total nitrogen less than 0.6 and median total phosphorus less than 0.05 milligrams per liter) and trace elements (median dissolved copper less than 2, median dissolved lead less than 1, and median dissolved zinc less than 20 micrograms per liter). Specific conductance ranged from 99 to 1,720 microsiemens per centimeter. Cation compositions at Muddy Creek sites were mixed calcium-magnesium-sodium. Anion compositions were primarily bicarbonate and sulfate. Suspended-sediment concentrations ranged from less than 50 milligrams per liter during low-flow periods to hundreds of milligrams per liter during snowmelt. Turbidity in prereservoir Muddy Creek generally was measured at less than 10 nephelometric turbidity units during low-flow periods and ranged to more than 360 nephelometric turbidity units during snowmelt. Compared to prereservoir conditions, turbidity in Muddy Creek downstream from the reservoir was substantially reduced because the reservoir acted as a sediment trap. During most years, peak flows were slightly reduced by the reservoir or similar to peaks upstream from the reservoir. The upper first to fifteenth percentiles of flows were decreased by operation of the reservoir compared to prereservoir flows. Generally, the fifteenth to one-hundredth percentiles of flow were increased by operation of the reservoir outflow compared to prereservoir flows. Nutrient transport in the inflow is proportional to the amount of inflow-water discharge in a given year. Some nitrogen was stored in the water column and gain/loss patterns for total nitrogen were somewhat related to reservoir storage. Nitrogen tended to move through the reservoir, whereas phosphorus was mostly trapped within the reservoir in bottom sediments. The reservoir gained phosphorus every year (1996- 2001) and, as a percentage, more phosphorus was retained than nitrogen in years when both were retained in the reservoir due to stronger phosphorus tendencies for adsorption, coprecipitation, and settling. Only small amounts of phosphorus were available in the water column at the outflow, and reservoir water-column storage did not influence phosphorus outflowloading patterns as much as settling further upstream in the reservoir. From 1990 to 2001, upstream from the reservoir, concentrations and values of dissolved solids, turbidity, some major ions, and dissolved iron increased (p-value less than 0.10), and acid-neutralizing capacity decreased. From 1990 to 2001, there were no significant (p-value less than 0.10) trends in nutrient concentrations upstream from the reservoir. From 1990 to 2001, downstream from the reservoir, trends in concentrations and values of dissolved solids, turbidity, major ions, total ammonia plus organic nitrogen, dissolved and total-recoverable iron, and total-recoverable manganese were downward. Upstream and downstream water-quality constituents for the prereservoir (1990 to 1995) period were compared. Concentrations and values of dissolved solids, major ions, turbidity, and manganese were greater (p-value less than 0.10) at the downstream site. From 1995 to 2001 (postconstruction), upstream and downstream water-quality constituents also were compared. Concentrations of specific conductance and major ions increased at the downstream site when compared to the upstream site (p-value less than 0.10), except for acid-neutralizing capacity and silica, which decreased. Turbidity, concentrations of total-recoverable and dissolved manganese, and

  3. Hydrological Variables and Dissolved Phosphorus in the Runoff from No-tilled Soil after Application of Swine Liquid

    NASA Astrophysics Data System (ADS)

    Barbosa, F. T.; Bertol, I.; de Amaral, A. J.; Grahl dos Santos, P.; Ramos, R. R.; Werner, R. S.; Miras Avalos, J. M.

    2012-04-01

    Swine manure is used as a soil fertilizer in South Brazil. Commonly, it is applied continuously and in great amounts over surfaces with an important relief and without facilities that avoid water erosion. Thus, this manure is a potential risk of environmental pollution, mainly for the eutrophication of water bodies due to a runoff rich in nutrients. The aim of this work was to assess some soil hydrological parameters and to quantify the dissolved phosphorus losses in the runoff from no-tilled soils after the application of swine liquid manure. The experiment was carried out in the Highlands of Santa Catarina State, Brazil, in June 2009, over a Nitisol. On field plots, a 90-minute simulated rainfall test was performed with a rotating boom rainfall simulator and rainfall intensity of 70 mm h-1. Prior to the rainfall simulation, sowing was performed using a disk planter either with or without tines. Spacing between lines was 0.5 m. Swine liquid manure was applied at rates of 0.0, 30 and 60 m3ha-1 to the plots planted using tines; whereas it was applied at 15, 45 e 75 m3ha-1 to the plots were no tines were used for planting. During rainfall simulation, readings of runoff rate were taken each five minutes; total water loss was calculated by integrating all the 5-minute readings. Runoff samples were collected at 10 minutes intervals, and they were filtered through a 0.45 μm filter to determine dissolved phosphorus. Hydrological variables were significantly affected by the use of tines, which favoured infiltration and reduced runoff as compared to the non-use of tines. Runoff started at 28 and 11 minutes, water losses were 252 and 467 m3 ha-1, maximum runoff rate were 29 and 42 mm h-1 and constant rates of infiltration were 41 and 28 mm h-1, for treatments with and without tines, respectively. Dissolved phosphorus increased with the rate of swine liquid manure applied, with a trend to decrease from the beginning to the end of rainfall. The highest concentration was 0.19 mg L-1 and 0.85 mg L-1, for treatments with and without tines, respectively. Dissolved phosphorus losses (g ha-1) increased linearly with swine liquid manure (m3 ha-1). The angular coefficient of the equation, which relates the increase in phosphorus loss with the applied manure, was lower when using tines, indicating that their use may reduce eutrophication risks from areas where swine manure is used. Equations for phosphorus losses were y = 4.3 + 0.5x and y = 28.1 + 1.9x, for treatments with and without tines, respectively.

  4. Physiological modifications of seston in response to physicochemical gradients within Lake Superior (presentation)

    EPA Science Inventory

    We show for the first time the importance of plankton producing non-phosphorus lipids as a strategy for reducing cellular P inventories in Lake Superior. In September 2011, we investigated the distribution of dissolved and particulate phosphorus (PP) pools throughout the lake. Av...

  5. Fertilizer placement and tillage effects on phosphorus leaching in fine-textured soils

    USDA-ARS?s Scientific Manuscript database

    Adoption of no-tillage in agricultural watersheds has resulted in substantial reductions in sediment and particulate phosphorus (P) delivery to surface waters. No-tillage, however, may result in increased losses of dissolved P in tile-drained landscapes due to the accumulation of P in surface soil l...

  6. Carbon, nitrogen, and phosphorus transport by world rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meybeck, M.

    1982-04-01

    The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolvedmore » organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.« less

  7. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  8. Ecology of duckweed ponds used for nutrient recovery from wastewater.

    PubMed

    Teles, C C; Mohedano, R A; Tonon, G; Filho, P Belli; Costa, R H R

    2017-06-01

    The microorganism community that grows under duckweed shelter can play an important role on treatment processes. Therefore, the present study aimed to assess the zooplankton dynamic and microbial community in duckweed ponds (DPs) applied for domestic wastewater treatment under open field conditions. A pilot system comprised of two DPs in series (DP1 and DP2), with 10 m 2 each, received domestic wastewater through a flow rate of 200 L·day -1 . Thus, the system was monitored during 314 days through samples collected and analysed weekly. Also, the zooplankton organisms were identified and quantified. DNA sequencing was performed in order to identify the bacterial populations. The findings showed a high efficiency of nutrient removal with 93% and 91% of total phosphorus and total nitrogen, respectively. A high density of microcrustaceans was observed in DP1 reaching 4,700 org.100 mL -1 and rotifers (over than 32,000 org.100 mL -1 ) in DP2, that could be related to the low suspended solids concentration (<30 mg·L -1 ) and turbidity (<10 NTU). The bacterial community showed a strong heterogeneity between samples collected along the seasons. Through these findings, it is possible to realise that the understanding of ecology could help to enhance the operation and designs of DPs.

  9. Free zinc ion and dissolved orthophosphate effects on phytoplankton from Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Woods, P.F.; Carter, J.L.

    2007-01-01

    Coeur d'Alene Lake in northern Idaho is fed by two major rivers: the Coeur d'Alene River from the east and the St. Joe River from the south, with the Spokane River as its outlet to the north. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and other anthropogenic inputs. A 32 full-factorial experimental design was used to examine the interactive effects of free (uncomplexed) zinc ion and dissolved-orthophosphate concentrations on phytoplankton that were isolated from two sites along a longitudinal zinc-concentration gradient in Coeur d'Alene Lake. The two sites displayed different dominant taxa. Chlorella minutissima, a dominant species near the southern St. Joe River inlet, exhibited greater sensitivity to free Zn ions than Asterionella formosa, collected nearer the Coeur d'Alene River mouth with elevated dissolved-zinc concentrations. Empirical phytoplankton-response models were generated to describe phytoplankton growth in response to remediation strategies in the surrounding watershed. If dissolved Zn can be reduced in the water column from >500 nM (i.e., current concentrations near and down stream of the Coeur d'Alene River plume) to <3 nM (i.e., concentrations near the southern St. Joe River inlet) such that the lake is truly phosphorus limited, management of phosphorus inputs by surrounding communities will ultimately determine the limnologic state of the lake.

  10. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.

    1978-01-01

    On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)

  11. Water quality study of the Riley Creek (Blanchard River, Ottawa, Ohio)

    NASA Astrophysics Data System (ADS)

    Spiese, C. E.; Berry, J. M.

    2012-12-01

    Riley Creek in northwest central Ohio is one of the most heavily impacted tributaries in the Blanchard River watershed. Anthropogenic inputs of phosphorus and nitrogen from agriculture have led to heavy eutrophication over the past decades. Because the Blanchard River is part of the Lake Erie basin, controls on phosphorus and nitrogen, among other inputs, are critical for restoration of ecosystem health in Lake Erie. A previous study in the Riley Creek watershed has shown high historical loadings of both nitrogen and phosphorus. Additionally, bacterial impairment has been noted in the watershed, from both municipal sources and failing septic tanks. This study is the most recent data detailing water quality parameters both chemical and microbiological in Riley Creek. This is also the first data set in Riley Creek examining the spectral characteristics of dissolved organic matter (DOM). From May to August, 2012, dissolved oxygen concentrations at six sites in the watershed declined from a maximum of 13.2 mg/L (154% O2 saturation) to 1.1 mg/L (12.9%). Median dissolved oxygen during the same period was 5.96 mg/L. Water pH was relatively steady, ranging from 8.6 to 7.9, with values generally declining with time. All six sites were found to have nitrate concentrations above the enforcement target (1 mg/L NO3--N) at various times, with four out of 73 samples falling below this value. Dissolved reactive phosphorus was generally low, with concentrations ranging from 0.074 mg P/L to below detection limits (<0.005 mg P/L). Dissolved organic matter concentrations (measured as mg C/L, potassium hydrogen phthalate equivalent) ranged from 24.1 to 3.5 mg C/L (mean = 9.8 ± 3.8 mg C/L), with no apparent temporal trends. Spectral slope ratios, a proxy for molecular mass, were relatively constant at 0.9 ± 0.2, with only intermittent excursions. No correlation to either flow or time was observed. Tests for fecal coliform bacteria were almost universally positive at all sites, with 10 of 69 samples showing a presumptive positive with presence-absence broth. Overall, the health of the Riley Creek watershed appears to be either stable or declining. Phosphorus and nitrogen loadings have not shown any appreciable change over approximately the past decade. Declines in dissolved oxygen were not noted in previous studies, and may signal an emerging problem in the watershed.

  12. Forest disturbances trigger erosion controlled fluxes of nitrogen, phosphorus and dissolved carbon

    Treesearch

    Marek Matyjasik; Gretchen Moisen; Todd A. Schroeder; Tracy Frescino; Michael Hernandez

    2015-01-01

    The initial phase of the research that addressed correlation between annual forest disturbance maps produced from LANDSAT images and water quality and flow data indicate that forest disturbances in conjunction with intense atmospheric precipitation commonly trigger fluxes of several chemical constituents, such as nitrogen, phosphorus carbon. These fluxes appear to be...

  13. A new tool for estimating phosphorus loss from cattle barnyards and outdoor lots

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) loss from agriculture can compromise quality of receiving water bodies. For cattle farms, P can be lost from cropland, pastures, and outdoor animal lots. We developed a new model that predicts annual runoff, total solids loss, and total and dissolved P loss from cattle lots. The model...

  14. The persistent environmental relevance of soil phosphorus sorption saturation

    USDA-ARS?s Scientific Manuscript database

    Controlling phosphorus (P) loss from agricultural soils remains a priority pollution concern in much of the world. Dissolved forms of P loss are amongst the most difficult to manage. The concept of soil P sorption saturation emerged from the Netherlands in the 1990s and has broad appeal as an enviro...

  15. Consequences of land use cover change and precipitation regimes on water quality in a tropical landscape: the case of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.

    2017-12-01

    One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.

  16. An in-depth assessment into simultaneous monitoring of dissolved reactive phosphorus (DRP) and low-molecular-weight organic phosphorus (LMWOP) in aquatic environments using diffusive gradients in thin films (DGT).

    PubMed

    Mohr, Christian Wilhelm; Vogt, Rolf David; Røyset, Oddvar; Andersen, Tom; Parekh, Neha Amit

    2015-04-01

    Long-term laborious and thus costly monitoring of phosphorus (P) fractions is required in order to provide reasonable estimates of the levels of bioavailable phosphorus for eutrophication studies. A practical solution to this problem is the application of passive samplers, known as Diffusive Gradient in Thin films (DGTs), providing time-average concentrations. DGT, with the phosphate adsorbent Fe-oxide based binding gel, is capable of collecting both orthophosphate and low molecular weight organic phosphorus (LMWOP) compounds, such as adenosine monophosphate (AMP) and myo-inositol hexakisphosphate (IP6). The diffusion coefficient (D) is a key parameter relating the amount of analyte determined from the DGT to a time averaged ambient concentration. D at 20 °C for AMP and IP6 were experimentally determined to be 2.9 × 10(-6) cm(2) s(-1) and 1.0 × 10(-6) cm(2) s(-1), respectively. Estimations by conceptual models of LMWOP uptake by DGTs indicated that this fraction constituted more than 75% of the dissolved organic phosphorus (DOP) accumulated. Since there is no one D for LMWOP, a D range was estimated through assessment of D models. The models tested for estimating D for a variety of common LMWOP molecules proved to be still too uncertain for practical use. The experimentally determined D for AMP and IP6 were therefore used as upper and lower D, respectively, in order to estimate minimum and maximum ambient concentrations of LMWOP. Validation of the DGT data was performed by comparing concentrations of P fractions determined in natural water samples with concentration of P fractions determined using DGT. Stream water draining three catchments with different land-use (forest, mixed and agriculture) showed clear differences in relative and absolute concentrations of dissolved reactive phosphorus (DRP) and dissolved organic P (DOP). There was no significant difference between water sample and DGT DRP (p > 0.05). Moreover, the upper and lower limit D for LMWOP proved reasonable as water sample determined DOP was found to lie in-between the limits of DGT LMWOP concentrations, indicating that on average DOP consists mainly of LMWOP. "Best fit" D was determined for each stream in order to practically use the DGTs for estimating time average DOP. Applying DGT in a eutrophic lake provided insight into P cycling in the water column.

  17. Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle.

    PubMed

    Van Mooy, B A S; Krupke, A; Dyhrman, S T; Fredricks, H F; Frischkorn, K R; Ossolinski, J E; Repeta, D J; Rouco, M; Seewald, J D; Sylva, S P

    2015-05-15

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle. Copyright © 2015, American Association for the Advancement of Science.

  18. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; nutrients, bacteria, organic carbon, and suspended sediment in surface water, 1993-95

    USGS Publications Warehouse

    Davis, Jerri V.; Bell, Richard W.

    1998-01-01

    Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.

  19. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    PubMed

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  20. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  1. Redox chemistry in the phosphorus biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-10-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine-PH3-a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10-20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.

  2. Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil.

    PubMed

    Brennan, R B; Fenton, O; Grant, J; Healy, M G

    2011-11-01

    Emerging remediation technologies such as chemical amendment of dairy cattle slurry have the potential to reduce phosphorus (P) solubility and consequently reduce P losses arising from land application of dairy cattle slurry. The aim of this study was to determine the effectiveness of chemical amendment of slurry to reduce incidental losses of P and suspended sediment (SS) from grassland following application of dairy cattle slurry and to examine the effect of amendments on metal concentrations in runoff water. Intact grassed-soil samples were placed in two laboratory runoff boxes, each 200-cm-long by 22.5-cm-wide by 5-cm-deep, before being amended with dairy cattle slurry (the study control) and slurry amended with either: (i) alum, comprising 8% aluminium oxide (Al(2)O(3)) (1.11:1 aluminium (Al):total phosphorus (TP) of slurry) (ii) poly-aluminium chloride hydroxide (PAC) comprising 10% Al(2)O(3) (0.93:1 Al:TP) (iii) analytical grade ferric chloride (FeCl(2)) (2:1 Fe:TP), (iv) and lime (Ca(OH)(2)) (10:1 Ca:TP). When compared with the study control, PAC was the most effective amendment, reducing dissolved reactive phosphorus (DRP) by up to 86% while alum was most effective in reducing SS (88%), TP (94%), particulate phosphorus (PP) (95%), total dissolved phosphorus (TDP) (81%), and dissolved unreactive phosphorus (DUP) (86%). Chemical amendment of slurry did not appear to significantly increase losses of Al and Fe compared to the study control, while all amendments increased Ca loss compared to control and grass-only treatment. While chemical amendments were effective, the reductions in incidental P losses observed in this study were similar to those observed in other studies where the time from slurry application to the first rainfall event was increased. Timing of slurry application may therefore be a much more feasible way to reduce incidental P losses. Future work must examine the long-term effects of amendments on P loss to runoff and not only incidental losses. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Associations between benthic flora and diel changes in dissolved arsenic, phosphorus, and related physico-chemical parameters

    USGS Publications Warehouse

    Kuwabara, James S.

    1992-01-01

    Diel relationships between physical and chemical parameters and biomass were examined along a 57-km reach of Whitewood Creek, South Dakota, between 29 August and 2 September 1988. A time lag of ∼3-6 h for fluctuations in soluble reactive phosphorus (SRP) concentrations (ranging from 0.1 to 0.5 μM at the downstream sites) relative to dissolved arsenic (ranging from 0.3 to 1.2 μM as arsenate (pentavalent arsenic)) was consistent with our laboratory studies (reported elsewhere) showing preferential cell sorption of orthophosphate over arsenate by creek periphyton. The potential biological effects on SRP diel fluctuations contrasts with abiotic sorption controls for dissolved arsenate (a chemically similar anion). Cycles for pH, like water temperature cycles, lagged irradiance cycles by 1-3 h. Like pH, the amplitude of dissolved arsenic diel cycles was greatest at the site with most abundant biomass. Diel fluctuations in specific conductance (an indicator of groundwater inputs at elevated conductivity relative to the water column) were out of phase with both SRP and dissolved arsenic concentrations suggesting that groundwater was not the direct source of these solutes.

  4. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle

    NASA Astrophysics Data System (ADS)

    Van Mooy, B. A. S.; Krupke, A.; Dyhrman, S. T.; Fredricks, H. F.; Frischkorn, K. R.; Ossolinski, J. E.; Repeta, D. J.; Rouco, M.; Seewald, J. D.; Sylva, S. P.

    2015-05-01

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle.

  5. Phosphate adsorption on aluminum-impregnated mesoporous silicates : surface structure and behavior of adsorbents

    Treesearch

    Eun Woo Shin; James S. Han; Min Jang; Soo-Hong Min; Jae Kwang Park; Roger M. Rowell

    2004-01-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface...

  6. Vertical distribution of sediment phosphorus in Lake Hachirogata related to the effect of land reclamation on phosphorus accumulation.

    PubMed

    Jin, G; Onodera, S; Saito, M; Maruyama, Y; Hayakawa, A; Sato, T; Ota, Y; Aritomi, D

    2016-01-13

    The focus of this work is the change in sediment properties and chemical characteristics that occur after land reclamation projects. The results indicate a higher sedimentation rate in Lake Hachirogata after reclamation, with the rate increasing with proximity to the agricultural zone. In the west-side water samples, higher levels of dissolved total nitrogen and dissolved total phosphorus (DTP) were found in both surface and bottom waters. The increase in P (39-80%) was generally greater than that for N (12-16%), regarding the nutrient supply from reclaimed farmland in the western part of the lake. In the eastern part of the lake, the pore-water Cl - profile showed a decreasing vertical gradient in the sediment core. This indicates desalination of the lake water after construction of a sluice gate in 1961. In the western sediment-core sample, a uniform Cl - profile indicates the mixing of lake water and pore water after reclamation. Considering the sedimentation of P in the last 100 years, there is a trend of increasing accumulation of P and P-activities after the reclamation project. This appears to be an impact from change in the lake environment as a result of increased agricultural nutrients, desalination, and residence. A large amount of mobile phosphorus (42-72% of TP in the western core sample) trapped in sediment increases the risk of phosphorus release and intensification of algal blooms. High sediment phosphorus and phosphorus mobility should be considered a source of pollution in the coastal environment.

  7. Data on surface-water quality and quantity, lower Edgewood Creek basin, Douglas County, Nevada, 1984-85

    USGS Publications Warehouse

    La Camera, R. J.; Browning, S.B.

    1988-01-01

    Selected hydrologic data were collected from August 1984 through July 1985 at three sites on the lower part of Edgewood Creek, and at a recently constructed sediment-catchment basin that captures and retains runoff from developed areas in the lower Edgewood Creek drainage. The data were collected to quantify the discharge of selected constituents downstream from recent and planned watershed restoration projects, and to Lake Tahoe. Contained in this report are the results of quantitative analyses of 39 water samples for: total and dissolved ammonium, organic nitrogen, nitrite, nitrate, phosphorus, and orthophosphorus; suspended sediment; total iron, manganese, and zinc; and dissolved temperature, specific conductance, pH, and dissolved oxygen; summary statistics (means and standard deviations), and computations of instantaneous loads. On the basis of mean values, about 80% of the total nitrogen load at each of the three Edgewood Creek sites is in the form of organic nitrogen, 12% is in the form of nitrate nitrogen, 7% is in the form of ammonium nitrogen, and 1% is in the form of nitrite nitrogen. The percentage of total phosphorus load in the form of orthophosphorus at the three stream sites varies somewhat with time, but is generally greater at the two downstream sites than at the upstream site. In addition, the percentage of the total phosphorus load that is present in the dissolved state generally is greater at the two downstream sites than at the upstream site. (Lantz-PTT)

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly suggests, however, that this apparent low bias resulted from nitrate interference in the Kjeldahl digestion method rather than low nitrogen recovery by the alkaline persulfate digestion method. Typically, differences between means of Kjeldahl nitrogen and nitrate-corrected alkaline persulfate nitrogen in low-nitrate concentration (< 0.1 milligram nitrate nitrogen per liter) subsets of filtered surface- and ground-water samples were statistically equivalent to zero at the p =level.Paired analytical results for dissolved and total phosphorus in Kjeldahl and alkaline persulfate digests were directly comparable because both digestion methods convert all forms of phosphorus in water samples to orthophosphate. On the basis of two-population paired t-test statistics, the means of all Kjeldahl phosphorus and alkaline persulfate phosphorus concentrations (2,093 paired results) were not significantly different from zero at the p = 0.05 level. For some subsets of these data, which were grouped according to water type and flow conditions at the time of sample collection, differences between means of Kjeldahl phosphorus and alkaline persulfate phosphorus concentrations were not equivalent to zero at the p = 0.05 level. Differences between means of these subsets, however, were less than the method detection limit for phosphorus (0.007 milligram phosphorus per liter) by the alkaline persulfate digestion method, and were therefore analytically insignificant.This report provides details of the alkaline persulfate digestion procedure, interference studies, recovery of various nitrogen- and phosphorus-containing compounds, and other analytical figures of merit. The automated air-segmented continuous flow methods developed to determine nitrate and orthophosphate in the alkaline persulfate digests also are described. About 125 microliters of digested sample are required to determine nitrogen and phosphorus in parallel at a rate of about 100 samples per hour with less than 1-percent sample in

  9. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    PubMed

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could significantly reduce nutrient losses and soil erosion of substrate material. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Trends in Water Quality in the Southeastern United States, 1973-2005

    USGS Publications Warehouse

    Harned, Douglas A.; Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten M.; Terziotti, Silvia

    2009-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, water-quality data for 334 streams in eight States of the Southeastern United States were assessed for trends from 1973 to 2005. Forty-four U.S. Geological Survey sites were examined for trends in pH, specific conductance, and dissolved oxygen, and in concentrations of dissolved solids, suspended sediment, chloride, sodium, sulfate, silica, potassium, dissolved organic carbon, total nitrogen, total ammonia, total ammonia plus organic nitrogen, dissolved nitrite plus nitrate, and total phosphorus. An additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval database were tested for trends in total nitrogen and phosphorus concentrations for the 1975-2004 and 1993-2004 periods. The seasonal Kendall test or Tobit regression was used to detect trends. Concentrations of dissolved constituents have increased in the Southeast during the last 30 years. Specific conductance increased at 62 percent and decreased at 3 percent of the sites, and pH increased at 31 percent and decreased at 11 percent of the sites. Decreasing trends in total nitrogen were detected at 49 percent of the sites, and increasing trends were detected at 10 percent of the sites. Ammonia concentrations decreased at 27 percent of the sites and increased at 6 percent of the sites. Nitrite plus nitrate concentrations increased at 29 percent of the sites and decreased at 10 percent of the sites. These results indicate that the changes in stream nitrogen concentrations generally coincided with improved municipal wastewater-treatment methods. Long-term decreasing trends in total phosphorus were detected at 56 percent of the sites, and increasing trends were detected at 8 percent of the sites. Concentrations of phosphorus have decreased over the last 35 years, which coincided with phosphate-detergent bans and improvements in wastewater treatment that were implemented beginning in 1972. Multiple regression analysis indicated a relation between changes in atmospheric inputs and agricultural practices, and changes in water quality. A long-term water-quality and landscape trends-assessment network for the Southeast is needed to assess changes in water quality over time in response to variations in population, agricultural, wastewater, and landscape variables.

  11. Response curves for phosphorus plume lengths from reactive-solute-transport simulations of onland disposal of wastewater in noncarbonate sand and gravel aquifers

    USGS Publications Warehouse

    Colman, John A.

    2005-01-01

    Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap

  12. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes

    PubMed Central

    Telling, Jon; Anesio, Alexandre M.; Tranter, Martyn; Fountain, Andrew G.; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B.; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L.

    2014-01-01

    The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones. PMID:25566210

  13. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes.

    PubMed

    Telling, Jon; Anesio, Alexandre M; Tranter, Martyn; Fountain, Andrew G; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L

    2014-01-01

    The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones.

  14. Runoff phosphorus in a small rotationally-grazed pasture in Georgia with no history of broiler litter application

    USDA-ARS?s Scientific Manuscript database

    Pastures are sources of phosphorus (P) into water sources and can contribute to eutrophication and impairment. Close to 4 million ha of land in the Southern Coastal Plain and the Southern Piedmont in eastern USA is used for pasture and hay production. We present an 11-yr (1999 to 2009) of dissolved ...

  15. Response of Periphyton to Seasonal Changes in Nutrient Concentrations in Central Illinois Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Kirkham, K. G.; Perry, W. L.

    2005-05-01

    Headwater streams in central Illinois have been dredged and channelized to drain surrounding agricultural fields and has led to extensive erosion and eutrophication. Restoration of these systems through farmer implementation of Best Management Practices (BMPs) may be one solution. Examination of algal population dynamics may be useful in assessment of BMP effectiveness. We have monitored two small headwater streams, Bray Creek and Frog Alley, for a suite of physicochemical parameters focusing on dissolved oxygen, nitrogen, and phosphorus for three years. Nutrient concentrations suggested potential nutrient limitation by nitrates during late summer and phosphorus limitation in early summer. To determine seasonal algal dynamics with seasonally varying nutrient limitation in agricultural headwater streams, we used nutrient diffusing substrata (NDS). NDS with agar (controls) or amended with either nitrogen, phosphorus, or both were deployed for 21-24 days in both streams each month for a year. Slight nutrient limitation was observed in Bray Creek during August and November while phosphorus was limiting in September (P<0.05). We suggest agricultural streams are more dynamic than previously thought and algal populations may be seasonally nutrient limited and with consequent effects on dissolved oxygen concentrations.

  16. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study

    NASA Astrophysics Data System (ADS)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2016-02-01

    We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.

  17. Concentration, flux, and trend estimates with uncertainty for nutrients, chloride, and total suspended solids in tributaries of Lake Champlain, 1990–2014

    USGS Publications Warehouse

    Medalie, Laura

    2016-12-20

    The U.S. Geological Survey, in cooperation with the New England Interstate Water Pollution Control Commission and the Vermont Department of Environmental Conservation, estimated daily and 9-month concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids from 1990 (or first available date) through 2014 for 18 tributaries of Lake Champlain. Estimates of concentration and flux, provided separately in Medalie (2016), were made by using the Weighted Regressions on Time, Discharge, and Season (WRTDS) regression model and update previously published WRTDS model results with recent data. Assessment of progress towards meeting phosphorus-reduction goals outlined in the Lake Champlain management plan relies on annual estimates of phosphorus flux. The percent change in annual concentration and flux is provided for two time periods. The R package EGRETci was used to estimate the uncertainty of the trend estimate. Differences in model specification and function between this study and previous studies that used WRTDS to estimate concentration and flux using data from Lake Champlain tributaries are described. Winter data were too sparse and nonrepresentative to use for estimates of concentration and flux but were sufficient for estimating the percentage of total annual flux over the period of record. Median winter-to-annual fractions ranged between 21 percent for total suspended solids and 27 percent for dissolved phosphorus. The winter contribution was largest for all constituents from the Mettawee River and smallest from the Ausable River. For the full record (1991 through 2014 for total and dissolved phosphorus and chloride and 1993 through 2014 for nitrogen and total suspended solids), 6 tributaries had decreasing trends in concentrations of total phosphorus, and 12 had increasing trends; concentrations of dissolved phosphorus decreased in 6 and increased in 8 tributaries; fluxes of total phosphorus decreased in 5 and increased in 10 tributaries; and fluxes of dissolved phosphorus decreased in 4 and increased in 10 tributaries (where the number of increasing and decreasing trends does not add up to 18, the remainder of tributaries had no trends). Concentrations and fluxes of nitrogen decreased in 10 and increased in 4 tributaries and of chloride decreased in 2 and increased in 15 tributaries. Concentrations of total suspended solids decreased in 4 and increased in 8 tributaries, and fluxes of total suspended solids decreased in 3 and increased in 11 tributaries. Although time intervals for the percent changes from this report are not completely synchronous with those from previous studies, the numbers of and specific tributaries with overall negative percent changes in concentration and flux are similar. Concentration estimates of total phosphorus in the Winooski River were used to trace whether changes in trends between a previous study and the current study were due generally to differences in model specifications or differences from 4 years of additional data. The Winooski River analysis illustrates several things: that keeping all model specifications equal, concentration estimates increased from 2010 to 2014; the effects of a smoothing algorithm used in the current study that was not available previously; that narrowing model half-window widths increased year-to-year variations; and that the change from an annual to a 9-month basis by omitting winter estimates changed a few individual points but not the overall shape of the flow-normalized curve. Similar tests for other tributaries showed that the primary effect of differences in model specifications between the previous and current studies was perhaps to increase scatter over time but that changes in trends generally were the result of 4 years of additional data rather than artifacts of model differences.

  18. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China.

    PubMed

    Sun, Qiyao; Sheng, Yanqing; Yang, Jian; Di Bonito, Marcello; Mortimer, Robert J G

    2016-12-01

    The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe 2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Alkaline Phosphatase Paradox in a Shelf Sea

    NASA Astrophysics Data System (ADS)

    Davis, C. E.; Mahaffey, C.

    2016-02-01

    Alkaline phosphatase (AP) is an ubiquitous hydrolytic phosphoenzyme that hydrolyses phosphomonester bonds. In the open ocean, the generally accepted paradigm is that when phosphate concentrations are sufficiently depleted (less than 50 nM), AP is produced by organisms to enable utilisation of dissolved organic phosphorus to meet the phosphorus demands of biological processes such as growth and carbon fixation. At higher phosphate concentrations (greater than 100 nM), AP is repressed implying that the excess product competes for active sites at enzyme surfaces. However, our ongoing work on phosphorus cycling in the Celtic Sea, a temperate shelf sea, has challenged this paradigm. We find elevated rates of AP below the thermocline where phosphate concentrations are greater than 700 nM, and a significant correlation between AP and total dissolved phosphorus. Using enzyme labelled fluorescence (ELF) and particle concentrate bioassays, we show that the AP is associated with large detrital and sinking particulate matter, suggesting that rather than AP being induced by the lack of phosphate, it plays an important role in organic matter cycling in this nitrogen limited environment. At the shelf edge, AP was found to be associated with diatoms, which have been found in culture studies to express AP under silica limitation. Our study highlights the need to consider the environmental conditions under which AP is induced or repressed and presents an opportunity to use AP as an indicator of organic phosphorus recycling in high phosphate environments.

  20. Spatial distribution of dissolved constituents in Icelandic river waters

    NASA Astrophysics Data System (ADS)

    Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún

    2011-02-01

    SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

  1. Contributions of Phosphorus from Groundwater to Streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, Eastern United States

    USGS Publications Warehouse

    Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.

    2011-01-01

    Phosphorus from natural and human sources is likely to be discharged from groundwater to streams in certain geochemical environments. Water-quality data collected from 1991 through 2007 in paired networks of groundwater and streams in different hydrogeologic and land-use settings of the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces in the eastern United States were compiled and analyzed to evaluate the sources, fate, and transport of phosphorus. The median concentrations of phosphate in groundwater from the crystalline and siliciclastic bedrock settings (0.017 and 0.020 milligrams per liter, respectively) generally were greater than the median for the carbonate setting (less than 0.01 milligrams per liter). In contrast, the median concentrations of dissolved phosphate in stream base flow from the crystalline and siliciclastic bedrock settings (0.010 and 0.014 milligrams per liter, respectively) were less than the median concentration for base-flow samples from the carbonate setting (0.020 milligrams per liter). Concentrations of phosphorus in many of the stream base-flow and groundwater samples exceeded ecological criteria for streams in the region. Mineral dissolution was identified as the dominant source of phosphorus in the groundwater and stream base flow draining crystalline or siliciclastic bedrock in the study area. Low concentrations of dissolved phosphorus in groundwater from carbonate bedrock result from the precipitation of minerals and (or) from sorption to mineral surfaces along groundwater flow paths. Phosphorus concentrations are commonly elevated in stream base flow in areas underlain by carbonate bedrock, however, presumably derived from in-stream sources or from upland anthropogenic sources and transported along short, shallow groundwater flow paths. Dissolved phosphate concentrations in groundwater were correlated positively with concentrations of silica and sodium, and negatively with alkalinity and concentrations of calcium, magnesium, chloride, nitrate, sulfate, iron, and aluminum. These associations can result from the dissolution of alkali feldspars containing phosphorus; the precipitation of apatite; the precipitation of calcite, iron hydroxide, and aluminum hydroxide with associated sorption of phosphate ions; and the potential for release of phosphate from iron-hydroxide and other iron minerals under reducing conditions. Anthropogenic sources of phosphate such as fertilizer and manure and processes such as biological uptake, evapotranspiration, and dilution also affect phosphorus concentrations. The phosphate concentrations in surface water were not correlated with the silica concentration, but were positively correlated with concentrations of major cations and anions, including chloride and nitrate, which could indicate anthropogenic sources and effects of evapotranspiration on surface-water quality. Mixing of older, mineralized groundwater with younger, less mineralized, but contaminated groundwater was identified as a critical factor affecting the quality of stream base flow. In-stream processing of nutrients by biological processes also likely increases the phosphorus concentration in surface waters. Potential geologic contributions of phosphorus to groundwater and streams may be an important watershed-management consideration in certain hydrogeologic and geochemical environments. Geochemical controls effectively limit phosphorus transport through groundwater to streams in areas underlain by carbonate rocks; however, in crystalline and siliciclastic settings, phosphorus from mineral or human sources may be effectively transported by groundwater and contribute a substantial fraction to base-flow stream loads.

  2. Processes Affecting Phosphorus and Copper Concentrations and Their Relation to Algal Growth in Two Supply Reservoirs in the Lower Coastal Plain of Virginia, 2002-2003, and Implications for Alternative Management Strategies

    USGS Publications Warehouse

    Speiran, Gary K.; Simon, Nancy S.; Mood-Brown, Maria L.

    2007-01-01

    Elevated phosphorus concentrations commonly promote excessive growth of algae in waters nationwide. When such waters are used for public supply, the algae can plug filters during treatment and impart tastes and odors to the finished water. This increases treatment costs and results in finished water that may not be of the quality desired for public supply. Consequently, copper sulfate is routinely applied to many reservoirs to control algal growth but only is a 'temporary fix' and must be reapplied at intervals that can range from more than 30 days in the winter to less than 7 days in the summer. Because copper has a maximum allowable concentration in public drinking water and can be toxic to aquatic life, water suppliers commonly seek to develop alternative, long-term strategies for managing reservoirs. Because these are nationwide issues and part of the mission of the U.S. Geological Survey (USGS) is to define and protect the quality of the Nation's water resources and better understand the physical, chemical, and biological processes in wetlands, lakes, reservoirs, and estuaries, investigations into these issues are important to the fulfillment of the mission of the USGS. The City of Newport News, Virginia, provides 50 million gallons per day of treated water for public supply from Lee Hall and Harwoods Mill Reservoirs (terminal reservoirs) to communities on the lower York-James Peninsula. About 3,500 pounds of copper sulfate are applied to each reservoir at 3- to 99-day intervals to control algal growth. Consequently, the USGS, in cooperation with the City of Newport News, investigated the effects of management practices and natural processes on phosphorus (the apparent growth-limiting nutrient), copper, and algal concentrations in the terminal reservoirs to provide information that can be used to develop alternative management strategies for the terminal reservoirs. Initial parts of the research evaluated circulation and stratification in the reservoirs because these factors affect phosphorus availability to algae. Results indicate that (1) water flows through both reservoirs in a 'plug-flow' manner; (2) little water in the lower part of Lee Hall Reservoir, into which pumped water enters, flows into the upper part of the reservoir and mixes with that water; (3) Lee Hall Reservoir generally does not stratify; and (4) Harwoods Mill Reservoir stratifies from April to June through September or October into an upper epilimnion that does not mix with water in the lower hypolimnion. The ratio of dissolved nitrogen to phosphorus concentrations (N:P) for sites in both reservoirs generally was greater than 20:1, indicating that phosphorus likely is the growth-limiting nutrient in both reservoirs. Phosphorus was present predominantly as suspended, rather than dissolved, species except in the hypolimnion of Harwoods Mill Reservoir and the natural inflow represented by Baptist Run. Because Harwoods Mill Reservoir stratified, field-measured physical and chemical characteristics and concentrations of nitrogen and phosphorus species changed sharply over short depth intervals in this reservoir. Dissolved phosphorus concentration increased from 0.015 to 0.057 milligrams per liter between a depth of 15 feet (ft) and the bottom (depth of 18 ft), indicating the release of phosphorus by the decomposition of organic material and(or) the reduction of iron oxides in bed sediment and the lower water column. Because the mixing boundary between the epilimnion and the hypolimnion likely was between depths of 6 and 10 ft, such sources in the hypolimnion would not contribute phosphorus to the growth of algae in the epilimnion from which water is withdrawn for supply until the breakdown of stratification in the fall. Furthermore, laboratory studies of samples from both reservoirs indicated that dissolved phosphorus was released from suspended particles at rates of 0.0007 to 0.0019 milligrams per liter per day. At these rates of release, particl

  3. Salmon influences on dissolved organic matter in a coastal temperate brown-water stream: an application of fluorescence spectroscopy.

    Treesearch

    E. Hood; J. Fellman; R.T. Edwards

    2007-01-01

    The annual return of spawning Pacific salmon (genus Oncorhynchus) can have a dramatic effect on the nutrient budgets of recipient freshwater ecosystems. We examined how spawning salmon affect streamwater concentrations of inorganic nitrogen and phosphorus and dissolved organic carbon (DOC) in Peterson Creek, a salmon stream in southeast Alaska. In...

  4. Long-term agroecosystem research in the Central Mississippi River Basin: dissolved nitrogen and phosphorus transport in a high-runoff-potential watershed

    USDA-ARS?s Scientific Manuscript database

    Long-term nutrient monitoring data from agricultural watersheds are needed to determine if efforts to reduce nutrient transport from crop and pasture land have been effective. The objectives of this study were to: 1) summarize dissolved ammonium-N (NH4-N), nitrate-N (NO3-N), and orthophosphate-P (PO...

  5. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters.

    PubMed

    Güngör, Kerem; Karthikeyan, K G

    2008-01-01

    The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.

  6. Chemistry of runoff and shallow ground water at the Cattlemans Detention basin site, South Lake Tahoe, California, August 2000-November 2001

    USGS Publications Warehouse

    Prudic, David E.; Sager, Sienna J.; Wood, James L.; Henkelman, Katherine K.; Caskey, Rachel M.

    2005-01-01

    A study at the Cattlemans detention basin site began in November 2000. The site is adjacent to Cold Creek in South Lake Tahoe, California. The purpose of the study is to evaluate the effects of the detention basin on ground-water discharge and changes in nutrient loads to Cold Creek, a tributary to Trout Creek and Lake Tahoe. The study is being done in cooperation with the Tahoe Engineering Division of the El Dorado County Department of Transportation. This report summarizes data collected prior to and during construction of the detention basin and includes: (1) nutrient and total suspended solid concentrations of urban runoff; (2) distribution of unconsolidated deposits; (3) direction of ground-water flow; and (4) chemistry of shallow ground water and Cold Creek. Unconsolidated deposits in the area of the detention basin were categorized into three classes: fill material consisting of a red-brown loamy sand with some gravel and an occasional cobble that was placed on top of the meadow; meadow deposits consisting of gray silt and sand with stringers of coarse sand and fine gravel; and a deeper brown to yellow-brown sand and gravel with lenses of silt and sand. Prior to construction of the detention basin, ground water flowed west-northwest across the area of the detention basin toward Cold Creek. The direction of ground-water flow did not change during construction of the detention basin. Median concentrations of dissolved iron and chloride were 500 and 30 times higher, respectively, in ground water from the meadow deposits than dissolved concentrations in Cold Creek. Median concentration of sulfate in ground water from the meadow deposits was 0.4 milligrams per liter and dissolved oxygen was below the detection level of 0.3 milligrams per liter. The relatively high concentrations of iron and the lack of sulfate in the shallow ground water likely are caused by chemical reactions and biological microbial oxidation of organic matter in the unconsolidated deposits that result in little to no dissolved oxygen in the ground water. The higher chloride concentrations in ground water compared with Cold Creek likely are caused from the application of salt on Pioneer Trail and streets in Montgomery Estates subdivision during the winter. Runoff from these roads contributes to the recharge of the shallow ground water. The range of dissolved constituents generally was greater in the meadow deposits than in the deeper sand and gravel. Ammonia plus organic nitrogen were the dominant forms of dissolved nitrogen and concentrations ranged from 0.04 to 18 milligrams per liter as nitrogen. Highest concentration was beneath the middle of the detention basin. Nitrate plus nitrite concentrations were low (<0.33 milligrams per liter as nitrogen) throughout the area and dissolved phosphorus concentrations ranged from 0.001 to 0.34 milligrams per liter. Nitrogen and dissolved organic carbon showed no consistent pattern in the direction of ground-water flow, which suggests that, similar to iron and sulfate, local variations in the chemical and biological reactions within the meadow deposits controlled the variation in nitrogen concentrations. The gradual increase in dissolved phosphorus along the direction of ground-water flow suggest that phosphorus may be slowly dissolving into ground water. Dissolved phosphorus was consistently low in July, which may be the result of greater microbial activity in the unconsolidated deposits or from uptake by roots during the summer.

  7. Trends in selected water-quality characteristics, Flathead River at Flathead, British Columbia, and at Columbia Falls, Montana, water years, 1975-86

    USGS Publications Warehouse

    Cary, L.E.

    1989-01-01

    Data for selected water quality variables were evaluated for trends at two sampling stations--Flathead River at Flathead, British Columbia (Flathead station) and Flathead River at Columbia Falls, Montana (Columbia Falls station). The results were compared between stations. The analyses included data from water years 1975-86 at the Flathead station and water years 1979-86 at the Columbia Falls station. The seasonal Kendall test was applied to adjusted concentrations for variables related to discharge and to unadjusted concentrations for the remaining variables. Slope estimates were made for variables with significant trends unless data were reported as less than the detection limit. At the Flathead station, concentrations of dissolved solids, calcium, magnesium, sodium, dissolved nitrite plus nitrate nitrogen, ammonia nitrogen (total and dissolved), total organic nitrogen, and total phosphorus increased during the study period. Concentrations of total nitrite plus nitrate nitrogen and dissolved iron decreased during the same period. At the Columbia Falls station, concentrations increased for calcium and magnesium and decreased for sulfate and dissolved phosphorus. No trends were detected for 10 other variables tested at each station. Data for the Flathead station were reanalyzed for water years 1979-86. Trends in the data increased for magnesium and dissolved nitrite plus nitrate nitrogen and decreased for dissolved iron. Magnesium was the only variable that displayed a trend (increasing) at both stations. The increasing trends that were detected probably will not adversely affect the water quality of the Flathead River in the near future. (USGS)

  8. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    USGS Publications Warehouse

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  9. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Souza, Marcelo F. L.; Kjerfve, Björn; Knoppers, Bastiaan; Landim de Souza, Weber F.; Damasceno, Raimundo N.

    2003-08-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m -2 yr -1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.

  10. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  11. Environmental setting of benchmark streams in agricultural areas of eastern Wisconsin

    USGS Publications Warehouse

    Rheaume, S.J.; Stewart, J.S.; Lenz, B.N.

    1996-01-01

    Differences in land use/land cover, and riparian vegetation and instream habitat characteristics are presented. Summaries of field measurements of water temperature, pH, specific conductance and concentrations of dissolved oxygen, total organic plus ammonia nitrogen, dissolved ammonium, nitrate plus nitrte as nitrogen, total phosphorus, dissolved orthophosphate, and atrazine are listed. Concentrations of dissolved oxygen for the sampled streams ranged from 6 A to 14.3 and met the standards set by the Wisconsin Department of Natural Resources (WDNR) for supporting fish and aquatic life. Specific conductance ranged from 98 to 753 u,Scm with values highest in RHU's 1 and 3, where streams are underlain by carbonate bedrock. Median pH did not vary greatly among the four RHU's and ranged from 6.7 to 8.8 also meeting the WDNR standards. Concentrations of total organic plus ammonia nitrogen, dissolved ammonium, total phosphorus, and dissolved orthophosphate show little variation between streams and are generally low, compared to concentrations measured in agriculturally-affected streams in the same RHU's during the same sampling period. Concentrations of the most commonly used pesticide in the study unit, atrazine, were low in all streams, and most concentrations were below trn 0.1 u,g/L detection limit. Riparian vegetation for the benchmark streams were characterized by lowland species of the native plant communities described by John T. Curtis in the "Vegetation of Wisconsin." Based on the environmental setting and water-quality information collected to date, these streams appear to show minimal adverse effects from human activity.

  12. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  13. The impact of an underground cut-off wall on nutrient dynamics in groundwater in the lower Wang River watershed, China.

    PubMed

    Kang, Pingping; Xu, Shiguo

    2017-03-01

    Underground cut-off walls in coastal regions are mainly used to prevent saltwater intrusion, but their impact on nutrient dynamics in groundwater is not clear. In this study, a combined analysis of multiple isotopes ([Formula: see text]) and nitrogen and phosphorus concentrations is used in order to assess the impact of the underground cut-off walls on the nutrient dynamics in groundwater in the lower Wang River watershed, China. Compared with the nitrogen and phosphorus concentrations in groundwater downstream of the underground cut-off walls, high [Formula: see text] and total dissolved nitrogen concentrations and similar concentration levels of [Formula: see text] and total dissolved phosphorus are found in groundwater upstream of the underground cut-off walls. The isotopic data indicated the probable occurrence of denitrification and nitrification processes in groundwater upstream, whereas the fingerprint of these processes was not shown in groundwater downstream. The management of fertilizer application is critical to control nitrogen concentrations in groundwater restricted by the underground cut-off walls.

  14. How phosphorus limitation can control climate-active gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-06-01

    Since the 1950's, anthropogenic activities have increased nutrient river loads to European coastal areas. Subsequent implementation of nutrient reduction policies have led to considerably reduction of phosphorus (P) loads from the mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorus (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 30% due to DOP uptake under limiting DIP conditions. Consequently, simulated DMS emissions also increase proportionally while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake.

  15. Lake Roosevelt Fisheries Evaluation Program; Limnological and Fisheries Monitoring, Annual Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    2003-03-01

    A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less

  16. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers

    PubMed Central

    Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian

    2015-01-01

    Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (<4 mg L-1) within mats. Water trapped within the mucilaginous Phormidium mat matrix had on average 320-fold higher DRP concentrations than bulk river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (<63 μm) was significantly higher at the site with the most extensive proliferations and concentrations of biological available phosphorus were two- to four- fold higher. Collectively these results provide evidence that fine sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491

  17. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    USGS Publications Warehouse

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in Lake St. Croix during the model simulation.

  18. Peer reviewed: Characterizing aquatic dissolved organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.; Croué, Jean-Philippe

    2003-01-01

    Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.

  19. Work Plan for Three-Dimensional Time-Varying, Hydrodynamic and Water Quality Model of Chesapeake Bay

    DTIC Science & Technology

    1988-08-01

    successfully calibrated: a. Dissolved oxygen b. Anmonium c. Nitrate d . Dissolved inorganic phosphorus e. Silica f. Methane g. Sulfide Fluxes of dissolved...oxygen, amonium , nitrate , methane, and sulfide can be related to the rate of diagenesis. A less mechanistic, more empirical approach may be required...CLASSc;CA’ ON A ’I.ORITV 3 D.S1R RUT ON AVA LABMLTY OF REPORT ’b D LASPCTO1,DONGRANG C ED, kApproved for public rele~ise; distribution 2b DC~ASFAT.N

  20. Spatial and temporal distribution of specific conductance, boron, and phosphorus in a sewage-contaminated aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Bussey, K.W.; Walter, D.A.

    1996-01-01

    Spatial and temporal distributions of specific conductance, boron, and phosphorus were determined in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts. The source of contamination is secondarily treated sewage that has been discharged onto rapid- infiltration sand beds at the Massachusetts Military Reservation since 1936. Contaminated ground water containing as much as 2 milligrams per liter of dissolved phosphorus is discharging into Ashumet Pond, and there is concern that the continued discharge of phosphorus into the pond will accelerate eutrophication of the pond. Water-quality data collected from observation wells and multilevel samplers from June through July 1995 were used to delineate the spatial distributions of specific conductance, boron, and phosphorus. Temporal distributions were determined using sample-interval-weighted average concen- trations calculated from data collected in 1993, 1994, and 1995. Specific conductances were greater than 400 microsiemens per centimeter at 25C as far as 1,200 feet downgradient from the infiltration beds. Boron concentrations were greater than 400 micrograms per liter as far as 1,800 feet down- gradient from the beds and phosphorus concen- trations were greater than 3.0 milligrams per liter as far as 1,200 feet from the beds. Variability in distributions of specific conductance and boron concentrations is attributed to the history and distribution of sewage disposal onto the infiltration beds. The distribution of phosphorus concentrations also is related to the history and distribution of sewage disposal onto the beds but additional variability is caused by chemical interactions with the aquifer materials. Temporal changes in specific conductance and boron from 1993 to 1995 were negligible, except in the lower part of the plume (below an altitude of about 5 feet above sea level), where changes in weighted-average specific conductance were greater than 100 microsiemens per centimeter at 25C. Temporal changes in phosphorus generally were small except in the lower part of the plume, where weighted-average phosphorus concentrations decreased more than 1.3 milligrams per liter from 1993 to 1994. This decrease was accompanied by an increase in specific conductance. High concen- trations of phosphorus associated with low and moderate specific conductances possibly are the result of rapid phosphorus desorption in response to an influx of uncontaminated ground water. As a result of the cessation of sewage disposal in December 1995, clean, oxygenated water moving into contaminated parts of the aquifer may cause rapid desorption of sorbed phosphorus and temporarily result in high dissolved phosphorus concentrations in the aquifer.

  1. Cycling of Dissolved Organic Phosphorus and Alkaline Phosphatase Activity in Euphotic Zone of the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Suzumura, M.

    2010-12-01

    Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP under phosphate-depleted conditions and that there is still room in the in situ APA activity. Utilization of DOP, however, is likely regulated by the ambient concentrations of hydrolyzable ester-P lower than the apparent Km.

  2. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  3. Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique.

    PubMed

    Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun

    2018-03-03

    Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.

  4. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic

    PubMed Central

    Browning, T. J.; Achterberg, E. P.; Yong, J. C.; Rapp, I.; Utermann, C.; Engel, A.; Moore, C. M.

    2017-01-01

    In certain regions of the predominantly nitrogen limited ocean, microbes can become co-limited by phosphorus. Within such regions, a proportion of the dissolved organic phosphorus pool can be accessed by microbes employing a variety of alkaline phosphatase (APase) enzymes. In contrast to the PhoA family of APases that utilize zinc as a cofactor, the recent discovery of iron as a cofactor in the more widespread PhoX and PhoD implies the potential for a biochemically dependant interplay between oceanic zinc, iron and phosphorus cycles. Here we demonstrate enhanced natural community APase activity following iron amendment within the low zinc and moderately low iron Western North Atlantic. In contrast we find no evidence for trace metal limitation of APase activity beneath the Saharan dust plume in the Eastern Atlantic. Such intermittent iron limitation of microbial phosphorus acquisition provides an additional facet in the argument for iron controlling the coupling between oceanic nitrogen and phosphorus cycles. PMID:28524880

  5. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    PubMed

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  6. Physical and chemical properties of San Francisco Bay, California, 1980

    USGS Publications Warehouse

    Ota, Allan Y.; Schemel, L.E.; Hager, S.W.

    1989-01-01

    The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)

  7. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Streamflow and estimated loads of phosphorus and dissolved and suspended solids from selected tributaries to Lake Ontario, New York, water years 2012–14

    USGS Publications Warehouse

    Hayhurst, Brett A.; Fisher, Benjamin N.; Reddy, James E.

    2016-07-20

    This report presents results of the evaluation and interpretation of hydrologic and water-quality data collected as part of a cooperative program between the U.S. Geological Survey and the U.S. Environmental Protection Agency. Streamflow, phosphorus, and solids dissolved and suspended in stream water were the focus of monitoring by the U.S. Geological Survey at 10 sites on 9 selected tributaries to Lake Ontario during the period from October 2011 through September 2014. Streamflow yields (flow per unit area) were the highest from the Salmon River Basin due to sustained yields from the Tug Hill aquifer. The Eighteenmile Creek streamflow yields also were high as a result of sustained base flow contributions from a dam just upstream of the U.S. Geological Survey monitoring station at Burt. The lowest streamflow yields were measured in the Honeoye Creek Basin, which reflects a decrease in flow because of withdrawals from Canadice and Hemlock Lakes for the water supply of the City of Rochester. The Eighteenmile Creek and Oak Orchard Creek Basins had relatively high yields due in part to groundwater contributions from the Niagara Escarpment and seasonal releases from the New York State Barge Canal.Annual constituent yields (load per unit area) of suspended solids, phosphorus, orthophosphate, and dissolved solids were computed to assess the relative contributions and allow direct comparison of loads among the monitored basins. High yields of total suspended solids were attributed to agricultural land use in highly erodible soils at all sites. The Genesee River, Irondequoit Creek, and Honeoye Creek had the highest concentrations and largest mean yields of total suspended solids (165 short tons per square mile [t/mi2], 184 t/mi2, and 89.7 t/mi2, respectively) of the study sites.Samples from Eighteenmile Creek, Oak Orchard Creek at Kenyonville, and Irondequoit Creek had the highest concentrations and largest mean yields of phosphorus (0.27 t/mi2, 0.26 t/mi2, and 0.20 t/mi2, respectively) and orthophosphate (0.17 t/mi2, 0.13 t/mi2, and 0.04 t/mi2, respectively) of the study sites. These results were attributed to a combination of sources, including discharges from wastewater treatment plants, diversions from the New York State Barge Canal, and manure and fertilizers applied to agricultural land. Yields of phosphorus also were high in the Genesee River Basin (0.17 t/mi2) and were presumably associated with nutrient and sediment transport from agricultural land and from streambank erosion. The Salmon and Black Rivers, which drain a substantial amount of forested land and are influenced by large groundwater discharges, had the lowest concentrations and yields of phosphorus and orthophosphate of the study sites.Mean annual yields of dissolved solids were the highest in Irondequoit Creek due to a high percentage of urbanized area in the basin and in Oak Orchard Creek at Kenyonville and in Eighteenmile Creek due to groundwater contributions from the Niagara Escarpment. High yields of dissolved solids of 840 t/mi2, 829 t/mi2, and 715 t/mi2, respectively, from these basins can be attributed to seasonal chloride yields associated with use of road deicing salts. The Niagara Escarpment can produce large amounts of dissolved solids from the dissolution of minerals (a continual process reflected in base flow samples). Groundwater inflows in the Salmon River have very low concentrations of dissolved solids due to minimal bedrock interaction along the Tug Hill Plateau and discharge from the Tug Hill sand and gravel aquifer, which has minimal mineralization.

  9. Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack basin, northeastern Pennsylvania

    USGS Publications Warehouse

    Sams, James I.; Day, Rick L.; Stiteler, John M.

    1999-01-01

    The recreational value of Lake Wallenpaupack, along with its proximity to the New York and New Jersey metropolitan areas, has resulted in residential development in parts of the watershed. Some of these developments encroach on existing ponds, lakes, and wetlands and result in the conversion of forest land to residential areas. Sediment and nutrients in runoff from these residential areas, and inputs from agricultural areas, sewage treatment plants, and atmospheric deposition, have had a significant effect on water quality in Lake Wallenpaupack.Water-quality data collected in the Lake Wallenpaupack watershed from 1991 through 1994 indicate the influence of land use on water resources. Water samples collected from a forested undeveloped basin contained lower concentrations of suspended sediment, nitrogen, and total phosphorus than samples collected from the basins of Ariel Creek and Purdy Creek that drain areas having mixed land use with residential developments. Sediment yields were three to four times higher in the developed basins of Purdy and Ariel Creeks compared to the forested undeveloped basin. Annual yields for total nitrogen for Ariel Creek and Purdy Creek were between three to five times greater than yields from the forested basin. For the 1993 water year, the annual yield for dissolved nitrate plus nitrite (as nitrogen) from Ariel Creek Basin was 1,410 pounds per square mile, or about 60 times greater than the 24 pounds per square mile from the undeveloped basin. The total-phosphorus yield from the Ariel Creek Basin was 216 pounds per square mile for the 1994 water year. This was about three times greater than the 74 pounds per square mile from the forested basin. The total-phosphorus yield for the Purdy Creek Basin was 188 pounds per square mile for the 1994 water year, or 2.5 times greater than the yield from the undeveloped forested basin. Only slight differences were observed in dissolved orthophosphate phosphorus loadings between the basins. All three basins displayed seasonal differences in water quality. Most of the annual yield occurred during early spring as a result of snowmelt runoff.Data collected from the Stevens Creek sites showed that an open-water wetland was very effective in removing sediment and total phosphorus but was not as effective in removing dissolved orthophosphate phosphorus and nitrogen. The wetland removed more than 96 percent of the sediment.

  10. Reconnaissance of water-quality characteristics of streams in the City of Charlotte and Mecklenburg County, North Carolina

    USGS Publications Warehouse

    Eddins, W.H.; Crawford, J.K.

    1984-01-01

    In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.

  11. Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties.

    PubMed

    Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice

    2017-11-15

    In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from <0.10 to 0.40mgl -1 ; percentage of MRDP in TDP from 25-70%). These differences propagated to stream water, suggesting that the two RWs investigated were the main sources of dissolved P to streams. RWs can be critical areas due to their ability to biogeochemically transform the accumulated P in these zones into highly mobile and highly bioavailable dissolved P forms. Hydroclimate variability, local topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effectiveness of timber harvesting BMPs: monitoring spatial and temporal dynamics of dissolved oxygen, nitrogen, and phosphorus in a low-gradient watershed, Louisiana

    Treesearch

    Abram DaSilva; Y. Jun Xu; George Ice; John Beebe; Richard Stich

    2012-01-01

    To test effectiveness of Louisiana’s voluntary best management practices (BMPs) at preventing water quality degradation from timber harvesting activities, a study with BACI design was conducted from 2006 through 2010 in the Flat Creek Watershed, north-central Louisiana. Water samples for nutrient analyses and measurements of stream flow and of in-stream dissolved...

  13. Sediment and Phosphorus losses by Surface Runoff from a Catchment in the Humid Pampa Landscape, Argentina Republic

    NASA Astrophysics Data System (ADS)

    Méndez M., A.; Díaz E., L.; Lenzi M., L.; Lado, M.; Vidal-Vázquez, E.

    2015-04-01

    The estimation of sediment and phosphorus transfers from soil into watersheds as a result of agricultural activity is a key aspect for characterizing the sustainability of current land use systems. The objective of the present study was to quantify the temporal evolution of suspended sediment and dissolved phosphorus losses from the upper basin of the Gualeguaychú River. The studied catchment has an area of 483 Km2 and is located in the Entre Ríos province, Argentina Republic. The climate is subtropical humid with average annual rainfall of 1200 mm. Soils are characterized by very low infiltration rates. Land use was assessed by remote sensing and GIS tools, and consists of: 31% abandoned rice fields, 20% naturalized fields, 20% soybean (second cycle), 10% soybean (first cycle), 7% rice, 4% Pasture, and the remaining 7% is devoted to civil and road works, native forests and other crops. Low soil infiltration capacity, together with landscape geomorphological traits of the studied landscape and zonal rainfall regime, typically originates periods with high surface runoff volumes, mainly in autumn, spring and summer months. The study was conducted during a period of eight years. Instantaneous water flow measurements (discharge) were estimated in a control section of Gualeguaychú River from hydrometer reading and the rating curve of height-flow. In addition, 134 water samples of 2000 cm3 were collected during the study period to analyze the concentration of suspended sediments and dissolved phosphorus. The instantaneous flow was estimated with the hydrometer reading and the application of curve of height - flow. The discharge range was from 0.14 to 128 m3/sec, indicating a high variability in the response of the catchment to seasonal rainfall. On average suspended sediment and dissolved phosphorus losses of the experimental catchment were 1.42 Mg and 0.335 Kg per hectare/year, respectively. It was also shown that few events of high rainfall that generate excess runoff were responsible for the most of recorded losses of sediment and phosphorus. Moreover, the highest exportation of sediments and phosphorus from soil to streamflow occurred in the spring and summer period. The daily losses of phosphorus or sediments were mainly explained by the amount of precipitation accumulated during the five days prior to sampling, as shown by regression analysis, and a higher coefficient of determination was obtained for samples extracted during the summer season. This response mainly has been demonstrated to be produced in periods with higher amounts of precipitation equal or greater than 35 mm arising in this season, which are characteristic for summer storms with high rain intensities, and therefore greater erosive power.

  14. A water-quality reconnaissance of Big Bear Lake, San Bernardino County, California, 1972-1973

    USGS Publications Warehouse

    Irwin, George A.; Lemons, Michael

    1974-01-01

    A water-quality reconnaissance study of the Big Bear Lake area in southern California was made by the U.S. Geological Survey from April 1972 through April 1973. The primary purpose of the study was to measure the concentration and distribution of selected primary nutrients, organic carbon, dissolved oxygen, phytoplankton, and water temperature in the lake. Estimates of the nitrogen, phosphorus, and silica loading to the lake from surface-water tributaries and precipitation were also made.Results of the study indicate that Big Bear Lake is moderately eutrophic, at least in regard to nitrogen, phosphorus, and organic content. Nitrate was found in either trace concentrations or below detectable limits; however, ammonia nitrogen was usually detected in concentrations greater than 0.05 milligrams per liter. Orthophosphate phosphorus was detected in mean concentrations ranging from 0.01 to 0.05 milligrams per liter. Organic nitrogen and phosphorus were also detected in measurable concentrations.Seasonal levels of dissolved oxygen indicated that the nutrients and other controlling factors were optimum for relatively high primary productivity. However, production varied both seasonally and areally in the lake. Primary productivity seemed highest in the eastern and middle parts of the lake. The middle and western parts of the lake exhibited severe oxygen deficits in the deeper water during the warmer summer months of June and July 1972.

  15. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    USGS Publications Warehouse

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the Pleistocene terrace deposits in Memphis, Tennessee, were oxic, and the maximum nitrate concentration measured was 6.2 milligrams per liter. Additionally, soils overlying the Holocene alluvium and Pleistocene valley trains, generally in areas near the wells, had lower infiltration rates and higher percentages of clay than soils overlying the shallow Tertiary and Pleistocene terrace deposits wells. Differences in these soil properties were associated with differences in the occurrence of pesticides. Pesticides were most commonly detected in samples from wells in the Pleistocene terrace deposits, which generally had the highest infiltration rates and lowest clay content. Median dissolved phosphorus concentrations were 0.07, 0.11, and 0.65 milligram per liter in samples from the shallow Tertiary, Pleistocene valley trains, and Holocene alluvium, respectively. The widespread occurrence of dissolved phosphorus at concentrations greater than 0.02 milligram per liter suggests either a natural source in the soils or aquifer sediments, or nonpoint sources such as fertilizer and animal waste or a combination of natural and human sources. Although phosphorus concentrations in samples from the Holocene alluvium were weakly correlated to concentrations of several inorganic constituents, elevated concentrations of phosphorus could not be attributed to a specific source. Phosphorus concentrations generally were highest where samples indicated anoxic and reducing conditions in the aquifers. Elevated dissolved phosphorus concentrations in base-flow samples from two streams in the study area suggest that transport of phosphorus with groundwater is a potential source contributing to high yields of phosphorus in the lower Mississippi River basin. Water from 55 deep wells (greater than 200 feet deep) completed in regional aquifers of Tertiary age represent a sample of the principal aquifers used for drinking-water supply in the study area. The wells were screened in both confined and

  16. Chemical and physical characteristics of water and sediment in Scofield Reservoir, Carbon County, Utah

    USGS Publications Warehouse

    Waddell, Kidd M.; Darby, D.W.; Theobald, S.M.

    1985-01-01

    Evaluations based on the nutrient content of the inflow, outflow, water in storage, and the dissolved-oxygen depletion during the summer indicate that the trophic state of Scofield Reservoir is borderline between mesotrophic and eutrophic and may become highly eutrophic unless corrective measures are taken to limit nutrient inflow.Sediment deposition in Scofield Reservoir during 1943-79 is estimated to be 3,000 acre-feet, and has decreased the original storage capacity of the reservoir by 4 percent. The sediment contains some coal, and age dating of those sediments (based on the radioisotope lead-210) indicates that most of the coal was deposited prior to about 1950.Scofield Reservoir is dimictic, with turnovers occurring in the spring and autumn. Water in the reservoir circulates completely to the bottom during turnovers. The concentration of dissolved oxygen decreases with depth except during parts of the turnover periods. Below an altitude of about 7,590 feet, where 20 percent of the water is stored, the concentration of dissolved oxygen was less than 2 milligrams per liter during most of the year. During the summer stratification period, the depletion of dissolved oxygen in the deeper layers is coincident with supersaturated conditions in the shallow layers; this is attributed to plant photosynthesis and bacterial respiration in the reservoir.During October 1,1979-August 31,1980, thedischargeweighted average concentrations of dissolved solids was 195 milligrams per liter in the combined inflow from Fish, Pondtown, and Mud Creeks, and was 175 milligrams per liter in the outflow (and to the Price River). The smaller concentration in the outflow was due primarily to precipitation of calcium carbonate in the reservoir about 80 percent of the decrease can be accounted for through loss as calcium carbonate.The estimated discharge-weighted average concentration of total nitrogen (dissolved plus suspended) in the combined inflow of Fish, Pondtown, and Mud Creeks was 1.1 milligrams per liter as nitrogen. The load of total nitrogen contributed by each stream was about proportional to the quantity of water contributed by the respective stream.For the combined inflow of Fish, Pondtown, and Mud Creeks, the discharge-weighted average concentration of total phosphorus was 0.06 milligram per liter as phosphorus. Percentages of the total phosphorus load contributed by Mud and Pondtown Creeks were significantly larger than their percentages of the total inflow. During October 1, 1979-August 31, 1980, Fish Creek contributed 72 percent of the inflowing water but only 60 percent of the total phosphorus load, Mud Creek contributed 16 percent of the total inflow but 24 percent of the total phosphorus load, and Pondtown Creek contributed 6 percent of the total inflow and 16 percent of the load of total phosphorus.Eccles Canyon is a major contributor of nutrients to Mud Creek, and most of the nutrient load occurs in the form of suspended organic material. During the snowmelt period, concentrations of total nitrogen and phosphorus were as much as 21 and 4.3 milligrams per liter at the gaging station in Eccles Canyon. The unusually large concentrations of nitrogen and phosphorus probably have resulted from flushing of residual debris from the canyon about 27.3 acres of forested land were cleared during 1979 for fire protection around new mine portals and for road rights-of-way.The concentrations of trace metals in the sediments near the inflow of Mud Creek are not greatly different from those in the middle of the reservoir, which suggests that sediments related to coal mining either have not affected the trace-metal concentrations in the sediments or, particularly for the fine-grained sediments, have been uniformly distributed over the reservoir bottom. The concentration of total extractable mercury in the sediments ranged from 0.08 to 0.20 part per million near the inflow of Mud Creek and from 0.08 to 0.46 part per million at a site near the middle of the reservoir. Virtually all the mercury is silica bound, which is the least soluble fraction. The maximum concentration of mercury in the nondetrital and easily soluble fraction was 0.02 part per million at both sites.

  17. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    PubMed

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.

  18. Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010

    USGS Publications Warehouse

    Stevens, Michael R.; Slaughter, Cecil B.

    2012-01-01

    Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast, samples collected at Toll Gate Creek above 6th Avenue at Aurora station, Sand Creek at mouth near Commerce City station, and the South Platte River at Henderson station, each had about 30 to 50 percent exceedances of both acute and chronic dissolved manganese standards. Of the samples collected at Sand Creek at mouth near Commerce City, 1 sample exceeded the acute standard and 4 samples exceeded the chronic standard for dissolved zinc, but no samples collected from the other sites exceeded either standard for zinc. Almost all samples of stormwater analyzed for Escherichia coli exceeded Colorado numeric standards. A numerical standard for fecal coliform is no longer applicable as of 2004. Results from the 2002-2005 study indicated that the general quality of stormwater had improved during 2002-2005 compared to 1998-2001, having fewer exceedances of Colorado standards, and showing downward trends for many water-quality values and concentrations. These trends coincided with general downward or relatively similar mean streamflows for the 2002-2005 compared to 1998-2001, which indicates that dilution may be a smaller influence on values and concentrations than other factors. For this report, downward trends were indicated for many constituents at each station during 2006-2010 compared to 2002-2005. The trends for mean streamflow for 2006-2010 compared to 2002-2005 are upward at all sites except for the South Platte River at Henderson, indicating that dilution by larger flows could be a factor in the downward concentration trends. At the South Platte River below Union Avenue station, downward trends were indicated for hardness, dissolved ammonia, dissolved orthophosphate, and dissolved copper. Upward trends at South Platte River below Union Avenue were indicated for pH. At the South Platte River at Denver station, downward trends were indicated for total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved organic carbon, and dissolved lead, manganese, and zinc, and total recoverable zinc. An upward trend in properties and constituents at South Platte River at Denver was indicated for pH. At Toll Gate Creek above 6th Avenue at Aurora, downward trends were indicated for residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved orthophosphate, total phosphorus, and total recoverable copper, lead, manganese, and zinc. Upward trends in properties and constituents at Toll Gate Creek above 6th Avenue at Aurora were indicated for pH, specific conductance, and dissolved nitrite plus nitrate. At Sand Creek at mouth near Commerce City, downward trends were indicated for hardness, dissolved calcium, total ammonia plus organic nitrogen, and dissolved ammonia, orthophosphate, manganese, and zinc. An upward trend in properties and constituents at Sand Creek at mouth near Commerce City was indicated for pH. Downward trends at South Platte River at Henderson were indicated for specific conductance, hardness, dissolved magnesium, residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved lead and manganese, and total recoverable copper, lead, manganese, and zinc.

  19. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski Rivers that largely were offset by increases in the Missisquoi and Saranac Rivers in the second decade (between 2000 and 2010). The number of tributaries that had increases in dissolved phosphorus concentrations stayed constant at 13 or 14 during the period of analysis. Total nitrogen concentration and flux for most of the monitored tributaries in the Lake Champlain Basin have decreased since 1990. Between 1990 and 2010, flow-normalized total nitrogen flux decreased by 386 t/yr, which reflects an increase of 440 t/yr between 1990 and 2000 and a decrease of 826 t/yr between 2000 and 2010. All individual tributaries except the Winooski River had decreases in total nitrogen concentration and flux between 2000 and 2010. The decrease in total nitrogen flux over the period of record could be related to the decrease in nitrogen from atmospheric deposition observed in Vermont or to concurrent benefits realized from the implementation of agricultural best-management practices in the Lake Champlain Basin that were designed primarily to reduce phosphorus runoff. For chloride, large increases in flow-normalized concentrations and flux between 1990 and 2000 for 17 of the 18 tributaries diminished to small increases or decreases between 2000 and 2010. Between 1990 and 2010, flow-normalized flux increased by 32,225 t/yr, 78 percent of which (25,163 t) was realized during the first decade, from 1990 through 2000. The five tributaries that had decreasing concentration and flux of chloride between 2000 and 2010 were all on the eastern side of Lake Champlain, possibly related to reductions since 1999 in winter road salt application in Vermont. Positive correlations of phosphorus flux and changes in phosphorus concentration and flux in tributaries with phosphorus inputs to basins from point sources, suggest that point sources have an effect on stream phosphorus chemistry. Several measures of changes in agricultural statistics, such as agricultural land use, acres of land in farms, acres of cropland, and acres of corn for grain or seed, are positively correlated with changes in phosphorus concentration or flux in the tributaries. Negative correlations of the amount of money spent on agricultural best-management practices with changes in phosphorus concentration or flux in the tributaries, suggest that best-management practices may be an effective tool, along with point-source reductions, in making progress towards management goals for phosphorus reductions in Lake Champlain.

  20. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis.

    PubMed

    Kim, Ji-Hye; Kim, Ae Ri; Choi, Yun Hui; Jang, Sungil; Woo, Gye-Hyeong; Cha, Jeong-Heon; Bak, Eun-Jung; Yoo, Yun-Jung

    2017-01-01

    Type 1 diabetes with periodontitis shows elevated TNF-α expression. Tumor necrosis factor (TNF)-α stimulates the expression of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin. The objective of this study was to determine the effect of TNF-α expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis using infliximab (IFX), a TNF-α antagonist. Rats were divided into two timepoint groups: day 3 and day 20. Each timepoint group was then divided into four subgroups: 1) control (C, n = 6 for each time point); 2) periodontitis (P, n = 6 for each time point); 3) diabetes with periodontitis (DP, n = 8 for each time point); and 4) diabetes with periodontitis treated with IFX (DP+IFX, n = 8 for each time point). To induce type 1 diabetes, rats were injected with streptozotocin (50 mg/kg dissolved in 0.1 M citrate buffer). Periodontitis was then induced by ligature of the mandibular first molars at day 7 after STZ injection (day 0). IFX was administered once for the 3 day group (on day 0) and twice for the 20 day group (on days 7 and 14). The DP group showed greater alveolar bone loss than the P group on day 20 (P = 0.020). On day 3, higher osteoclast formation and RANKL-positive osteocytes in P group (P = 0.000 and P = 0.011, respectively) and DP group (P = 0.006 and P = 0.017, respectively) than those in C group were observed. However, there was no significant difference in osteoclast formation or RANKL-positive osteocytes between P and DP groups. The DP+IFX group exhibited lower alveolar bone loss (P = 0.041), osteoclast formation (P = 0.019), and RANKL-positive osteocytes (P = 0.009) than that of the DP group. On day 20, DP group showed a lower osteoid area (P = 0.001) and more sclerostin-positive osteocytes (P = 0.000) than P group. On days 3 and 20, the DP+IFX group showed more osteoid area (P = 0.048 and 0.040, respectively) but lower sclerostin-positive osteocytes (both P = 0.000) than DP group. Taken together, these results suggest that TNF-α antagonist can diminish osteocytic RANKL/sclerostin expression and osteoclast formation, eventually recovering osteoid formation. Therefore, TNF-α might mediate alveolar bone loss via inducing expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis.

  1. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    PubMed Central

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-01-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3−), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43−), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3− and NH4+) and phosphorus (PO43−). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea. PMID:27199215

  2. Selected nutrients and pesticides in streams of the eastern Iowa basins, 1970-95

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Becher, Kent D.; Bobier, Matthew W.; Wilton, Thomas

    1999-01-01

     The statistical analysis of the nutrient data typically indicated a strong positive correlation of nitrate with streamflow. Total phosphorus concentrations with streamflow showed greater variability than nitrate, perhaps reflecting the greater potential of transport of phosphorus on sediment rather than in the dissolved phase as with nitrate. Ammonia and ammonia plus organic nitrogen showed no correlation with streamflow or a weak positive correlation. Seasonal variations and the relations of nutrients and pesticides to streamflow generally corresponded with nonpoint‑source loadings, although possible point sources for nutrients were indicated by the data at selected monitoring sites. Statistical trend tests for concentrations and loads were computed for nitrate, ammonia, and total phosphorus. Trend analysis indicated decreases for ammonia and total phosphorus concentrations at several sites and increases for nitrate concentrations at other sites in the study unit.

  3. Water Quality of a Drained Wetland, Caledonia Marsh on Upper Klamath Lake, Oregon, after Flooding in 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Wood, Tamara M.

    2009-01-01

    The unexpected inundation of Caledonia Marsh, a previously drained wetland adjacent to Upper Klamath Lake, Oregon, provided an opportunity to observe nutrient release from sediments into the water column of the flooded area and the resulting algal growth. Three sites, with differing proximity to the levee breach that reconnected the area to Upper Klamath Lake, were selected for water sample collection in the marsh. Chlorophyll a concentrations (an indicator of algal biomass) were lowest and dissolved nutrient concentrations were highest at the site farthest from the breach. At the site where chlorophyll a concentrations were lowest, dissolved organic carbon concentrations were highest, and the presence of tannic compounds was indicated by the dark brown color of the water. Both DOC and specific conductance was higher at the site farthest from the breach, which indicated less mixing with Upper Klamath Lake water at that site. Dissolved oxygen concentrations and pH were lowest at the beginning of the sampling period at the site farthest from the levee breach, coincident with the lowest algal growth. Phosphorus concentrations measured in the flooded Caledonia Marsh were greater than median concentrations in Upper Klamath Lake, indicating that phosphorus likely was released from the previously drained wetland soils of the marsh when they were flooded. However, a proportional increase in algal biomass was not measured either in the marsh or in the adjacent bay of the lake. Nitrogen to phosphorus ratios indicated that phosphorus was not limiting to algal growth at the marsh sites, and possibly was not limiting in the adjacent bay either. In terms of nutrient dynamics, wetlands normally function as nutrient sinks. In contrast, the drained wetlands around Upper Klamath Lake cannot be expected to provide that function in the short term after being flooded and may, in fact, be a source of nutrients to the lake instead. The consequences for algal growth in the lake, however, seem to be small.

  4. Phosphorus and nitrogen in runoff after phosphorus- or nitrogen-based manure applications.

    PubMed

    Miller, Jim J; Chanasyk, David S; Curtis, Tony W; Olson, Barry M

    2011-01-01

    Application of beef cattle () manure based on nitrogen (N) requirements of crops has resulted in elevated concentrations of soil test phosphorus (P) in surface soils, and runoff from this cropland can contribute to eutrophication of surface waters. We conducted a 3-yr field study (2005-2007) on a Lethbridge loam soil cropped to dryland barley () in southern Alberta, Canada to evaluate the effect of annual and triennial P-based and annual N-based feedlot manure on P and N in runoff. The manure was spring applied and incorporated. There was one unamended control plot. A portable rainfall simulator was used to generate runoff in the spring of each year after recent manure incorporation, and the runoff was analyzed for total P, total dissolved P, total particulate P, dissolved reactive P, total N, total dissolved N, total particulate N, NO-N, and NH-N. Annual or triennial P-based application resulted in significantly ( ≤ 0.05) lower (by 50 to 94%) concentrations or loads of mainly dissolved P fractions in runoff for some years compared with annual N-based application, and this was related to lower rates of annual manure P applied. For example, mean dissolved reactive P concentrations in 2006 and 2007 were significantly lower for the annual P-based (0.12-0.20 mg L) than for the annual N-based application (0.24-0.48 mg L), and mean values were significantly lower for the triennial P-based (0.06-0.13 mg L) than for the annual N-based application. In contrast, other P fractions in runoff were unaffected by annual P-based application. Our findings suggested no environmental benefit of annual P-based application over triennial P-based application with respect to P and N in runoff. Similar concentrations and loads of N fractions in runoff for the P- and N-based applications indicated that shifting to a P-based application would not significantly influence N in runoff. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  5. An evaluation of the phosphorus storage capacity of an anaerobic/aerobic sequential batch biofilm reactor.

    PubMed

    Chiou, Ren-Jie; Yang, Yi-Rong

    2008-07-01

    The aim of this work was to assess the phosphorus storage capability of the polyphosphate (poly-P) accumulating organisms (PAO) in the biofilm using a sequential batch biofilm reactor (SBBR). In the anaerobic phase, the specific COD uptake rates increases from 0.05 to 0.22 (mg-COD/mg-biomass/h) as the initial COD increases and the main COD uptake activity occurs in the initial 30 min. The polyhydroxyalkanoates (PHAs) accumulation from 18 to 38 (mg-PHA/g-biomass) and phosphorus release from 20 to 60 (mg-P/L) share a similar trend. The adsorbed COD cannot be immediately transformed to PHAs. Since the PHAs' demand per released phosphorus is independent of the initial COD, the enhancement of the PHA accumulation would be of benefit to phosphorus release. The only requirement is to have an initial amount of substrate that will result in sufficient PHA accumulation (approximately 20 mg-PHA/g-biomass) for phosphorus release. During the aerobic phase, the aeration should not only provide sufficient dissolved oxygen, but should also enhance the mass transfer and the diffusion. In other words, the limitation to the phosphorus storage capability always occurs during the anaerobic phase, not the aerobic phase.

  6. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.

    2014-08-01

    The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.

  7. Biogeochemical cycling and phyto- and bacterioplankton communities in a large and shallow tropical lagoon (Términos Lagoon, Mexico) under 2009-2010 El Niño Modoki drought conditions

    NASA Astrophysics Data System (ADS)

    Conan, Pascal; Pujo-Pay, Mireille; Agab, Marina; Calva-Benítez, Laura; Chifflet, Sandrine; Douillet, Pascal; Dussud, Claire; Fichez, Renaud; Grenz, Christian; Gutierrez Mendieta, Francisco; Origel-Moreno, Montserrat; Rodríguez-Blanco, Arturo; Sauret, Caroline; Severin, Tatiana; Tedetti, Marc; Torres Alvarado, Rocío; Ghiglione, Jean-François

    2017-03-01

    The 2009-2010 period was marked by an episode of intense drought known as the El Niño Modoki event. Sampling of the Términos Lagoon (Mexico) was carried out in November 2009 in order to understand the influence of these particular environmental conditions on organic matter fluxes within the lagoon's pelagic ecosystem and, more specifically, on the relationship between phyto- and bacterioplankton communities. The measurements presented here concern biogeochemical parameters (nutrients, dissolved and particulate organic matter [POM], and dissolved polycyclic aromatic hydrocarbons [PAHs]), phytoplankton (biomass and photosynthesis), and bacteria (diversity and abundance, including PAH degradation bacteria and ectoenzymatic activities). During the studied period, the water column of the Términos Lagoon functioned globally as a sink and, more precisely, as a nitrogen assimilator. This was due to the high production of particulate and dissolved organic matter (DOM), even though exportation of autochthonous matter to the Gulf of Mexico was weak. We found that bottom-up control accounted for a large portion of the variability of phytoplankton productivity. Nitrogen and phosphorus stoichiometry mostly accounted for the heterogeneity in phytoplankton and free-living prokaryote distribution in the lagoon. In the eastern part, we found a clear decoupling between areas enriched in dissolved inorganic nitrogen near the Puerto Real coastal inlet and areas enriched in phosphate (PO4) near the Candelaria estuary. Such a decoupling limited the potential for primary production, resulting in an accumulation of dissolved organic carbon and nitrogen (DOC and DON, respectively) near the river mouths. In the western part of the lagoon, maximal phytoplankton development resulted from bacterial activity transforming particulate organic phosphorus (PP) and dissolved organic phosphorus (DOP) to available PO4 and the coupling between Palizada River inputs of nitrate (NO3) and PP. The Chumpan River contributed only marginally to PO4 inputs due to its very low contribution to overall river inputs. The highest dissolved total PAH concentrations were measured in the El Carmen Inlet, suggesting that the anthropogenic pollution of the zone is probably related to the oil-platform exploitation activities in the shallow waters of the southern of the Gulf of Mexico. We also found that a complex array of biogeochemical and phytoplanktonic parameters were the driving force behind the geographical distribution of bacterial community structure and activities. Finally, we showed that nutrients brought by the Palizada River supported an abundant bacterial community of PAH degraders, which are of significance in this important oil-production zone.

  8. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  9. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.

    PubMed

    Habibiandehkordi, Reza; Quinton, John N; Surridge, Ben W J

    2015-04-01

    The export of dissolved phosphorus (P) in surface runoff from agricultural land can lead to water quality degradation. Surface application of aluminium (Al)-based water treatment residuals (Al-WTRs) to vegetated buffer strip (VBS) soils can enhance P removal from surface runoff during single runoff events. However, the longer-term effects on P removal in VBSs following application of products such as Al-WTR remain uncertain. We used field experimental plots to examine the long-term effects of applying a freshly generated Al-WTR to VBSs on dissolved P export during multiple runoff events, occurring between 1 day and 42 weeks after the application of Al-WTR. Vegetated buffer strip plots amended with Al-WTR significantly reduced soluble reactive P and total dissolved P concentrations in surface runoff compared to both unamended VBS plots and control plots. However, the effectiveness of Al-WTR decreased over time, by approximately 70% after 42 weeks compared to a day following Al-WTR application. Reduced performance did not appear to be due to drying of Al-WTR in the field. Instead, the development of preferential flow paths as well as burying of Al-WTR with freshly deposited sediments may explain these observations. Better understanding of the processes controlling long-term P removal by Al-WTR is required for effective management of VBSs.

  10. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Jingfeng; Chung, Shi-Wei; Wen, Liang-Saw; Liu, Kon-Kee; Chen, Yuh-Ling Lee; Chen, Houng-Yung; Karl, David M.

    2003-03-01

    Dissolved inorganic phosphorus (DIP) concentrations in the oligotrophic surface waters of the South China Sea decrease from ˜20 nM in March 2000 to ˜5 nM in July 2000, in response to seasonal water column stratification. These minimum DIP concentrations are one order of magnitude higher than those in the P-limited, iron-replete stratified surface waters of the western North Atlantic, suggesting that the ecosystem in the South China Sea may be limited by bioavailable nitrogen or some trace nutrient rather than DIP. Nutrient enrichment experiments using either nitrate, phosphate or both indicate that nitrogen limits the net growth of phytoplankton in the South China Sea, at least during March and July 2000. The fixed nitrogen limitation may result from the excess phosphate (N:P<16) transported into the South China Sea from the North Pacific relative to microbial population needs, or from iron control of nitrogen fixation. The iron-limited nitrogen fixation hypothesis is supported by the observation of low population densities of Trichodesmium spp. (<48 × 103 trichomes/m3), the putative N2 fixing cyanobacterium, and with low concentrations of dissolved iron (˜0.2-0.3 nM) in the South China Sea surface water. Our results suggest that nitrogen fixation can be limited by available iron even in regions with a high rate of atmospheric dust deposition such as in the South China Sea.

  11. Water quality characterization and mathematical modeling of dissolved oxygen in the East and West Ponds, Jamaica Bay Wildlife Refuge.

    PubMed

    Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J

    2003-09-01

    The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.

  12. [Startup, stable operation and process failure of EBPR system under the low temperature and low dissolved oxygen condition].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-Jun; Wei, Xue-Fen; Liu, Juan-Li

    2015-02-01

    A sequencing batch reactor (SBR) was started up and operated with alternating anaerobic/oxic (An/O) to perform enhanced biological phosphorus removal (EBPR) under the condition of 13-16 degrees C. The results showed that under the condition of low temperature, the EBPR system was successfully started up in a short time (<6 d). The reactor achieved a high and stable phosphorus removal performance with an influent phosphate concentration of 20 mg x L(-1) and the dissolved oxygen (DO) concentration of 2 mg x L(-1). The effluent phosphate concentration was lower than 0.5 mg x L(-1). It was found that decreasing DO had an influence on the steady operation of EBPR system. As DO concentration of aerobic phase decreased from 2 mg x L(-1) to 1 mg x L(-1), the system could still perform EBPR and the phosphorus removal efficiency was greater than 97.4%. However, the amount of phosphate released during anaerobic phase was observed to decrease slightly compared with that of 2 mg x L(-1) DO condition. Moreover, the phosphorus removal performance of the system deteriorated immediately and the effluent phosphate concentration couldn't meet the national integrated wastewater discharge standard when DO concentration was further lowered to 0.5 mg x L(-1). The experiments of increasing DO to recover phosphorus removal performance of the EBPR suggested the process failure resulted from low DO was not reversible in the short-term. It was also found that the batch tests of anoxic phosphorus uptake using nitrite and nitrate as electron acceptors had an impact on the stable operation of EBPR system, whereas the resulting negative influence could be recovered within 6 cycles. In addition, the mixed liquid suspended solids (MLSS) of the EBPR system remained stable and the sludge volume index (SVI) decreased to a certain extend in a long run, implying long-term low temperature and low DO condition favored the sludge sedimentation.

  13. Influences of climate and land use on contemporary ...

    EPA Pesticide Factsheets

    Human beings have greatly accelerated nitrogen and phosphorus flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia in lakes and coastal waters. Although differences in nitrogen export from watersheds have been clearly linked to a combination of human nitrogen sources and climate in the U.S., relatively less is known about how natural and anthropogenic landscape characteristics mediate losses of phosphorus from watersheds. We quantified major phosphorus inputs (fertilizer, manure, and human waste) and outputs (riverine export, crop harvest and sewage treatment) for 94 watersheds in 2012 across the continental U.S. and examined how climate, hydrology, soil characteristics, and land use influenced phosphorus exports from watersheds to rivers as total phosphorus and dissolved inorganic phosphorus concentrations and yields. We identified regional differences in major input sources as well as the importance of landscape mediating factors, highlighting the importance of both the biophysical and anthropogenic contexts on the relationship between major phosphorus sources and water quality. This study represents the most up-to-date spatially explicit inventory of anthropogenic P inputs and outputs for the conterminous United States. Linking this inventory with losses of phosphorus to waterways is an important step in understanding what policies and practices may be most effective in mitigating water quality problems.

  14. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  15. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    USGS Publications Warehouse

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  16. Investigating the composition characteristics of dissolved and particulate/colloidal organic matter in effluent-dominated stream using fluorescence spectroscopy combined with multivariable analysis.

    PubMed

    Yu, Min-Da; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhao, Xian-Wei; Zhang, Hui; Huang, Cai-Hong; Tan, Wenbing

    2018-03-01

    Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.

  17. Coeur d'Alene Lake, Idaho: Insights Gained From Limnological Studies of 1991-92 and 2004-06

    USGS Publications Warehouse

    Wood, Molly S.; Beckwith, Michael A.

    2008-01-01

    More than 100 years of mining and processing of metal-rich ores in northern Idaho's Coeur d'Alene River basin have resulted in widespread metal contamination of the basin's soil, sediment, water, and biota, including Coeur d'Alene Lake. Previous studies reported that about 85 percent of the bottom of Coeur d'Alene Lake is substantially enriched in antimony, arsenic, cadmium, copper, lead, mercury, silver, and zinc. Nutrients in the lake also are a major concern because they can change the lake's trophic status - or level of biological productivity - which could result in secondary releases of metals from contaminated lakebed sediments. This report presents insights into the limnological functioning of Coeur d'Alene Lake based on information gathered during two large-scale limnological studies conducted during calendar years 1991-92 and water years 2004-06. Both limnological studies reported that longitudinal gradients exist from north to south for decreasing water column transparency, loss of dissolved oxygen, and increasing total phosphorus concentrations. Gradients also exist for total lead, total zinc, and hypolimnetic dissolved oxygen concentrations, ranging from high concentrations in the central part of the lake to lower concentrations at the northern and southern ends of the lake. In the southern end of the lake, seasonal anoxia serves as a mechanism to release dissolved constituents such as phosphorus, nitrogen, iron, and manganese from lakebed sediments and from detrital material within the water column. Nonparametric statistical hypothesis tests at a significance level of a=0.05 were used to compare analyte concentrations among stations, between lake zones, and between study periods. The highest dissolved oxygen concentrations were measured in winter in association with minimum water temperatures, and the lowest concentrations were measured in the Coeur d'Alene Lake hypolimnion during late summer or autumn as prolonged thermal stratification restricted mixing of the oxygenated upper water column and the hypolimnion, where oxygen was consumed. Large differences in median concentrations of dissolved inorganic nitrogen were measured between the euphotic zone and hypolimnion in the deep areas of the lake. These differences in nitrogen concentrations were attributable to several limnological processes, including seasonal inflow plume routing, isolation from wind-driven circulation and associated hypolimnetic enrichment, phytoplanktonic assimilation during summer months, and benthic flux. Increased chlorophyll-a and total phosphorus concentrations were measured throughout the lake in the 2004-06 study compared with results from the 1991-92 study. No significant change in hypolimnetic dissolved inorganic nitrogen concentration throughout the lake was noted even though total nitrogen loads into the lake decreased between study periods. Total zinc and total lead decreased throughout the lake from the 1991-92 study to the 2004-06 study except in the southern part of the lake, where concentrations were typically low. Median detected nitrogen-to-phosphorus ratios decreased from the 1991-92 study to the 2004-06 study. Whereas the lake was clearly phosphorus-limited in 1991-92, in 2004-06 the lake may have been much closer to the boundary value of 7.2 that separates nitrogen from phosphorus limitation. However, due to changes in analytical reporting limits in the period between the two studies, the data are insufficiently certain to draw reliable conclusions with regard to limiting nutrients. For both studies, the trophic state of the lake was classified as oligotrophic (less productive) or mesotrophic (moderately productive), depending on the constituent used for classification. Internal circulation from wind-generated waves and changes in the lake's thermocline are important processes for distribution of water-quality constituents throughout Coeur d'Alene Lake. Surficial distribution of trace metals throughout most o

  18. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans.

    PubMed

    Stockdale, Anthony; Krom, Michael D; Mortimer, Robert J G; Benning, Liane G; Carslaw, Kenneth S; Herbert, Ross J; Shi, Zongbo; Myriokefalitakis, Stelios; Kanakidou, Maria; Nenes, Athanasios

    2016-12-20

    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behavior of P compounds in dust and dust precursor soils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H + ions present. For H + < 10 -4 mol/g of dust, 1-10% of the total P is dissolved, largely as a result of dissolution of surface-bound forms. At H + > 10 -4 mol/g of dust, the amount of P (and calcium) released has a direct proportionality to the amount of H + consumed until all inorganic P minerals are exhausted and the final pH remains acidic. Once dissolved, P will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P (Ap-P), the major mineral phase in dust (79-96%), occurs whether calcium carbonate (calcite) is present or not, although the increase in dissolved P is greater if calcite is absent or if the particles are externally mixed. The system was modeled adequately as a simple mixture of Ap-P and calcite. P dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves more slowly and is subject to reprecipitation at cloud water pH. We show that acidification can increase bioavailable P deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable P in oceanic areas where primary productivity is limited by this nutrient (e.g., Mediterranean).

  19. Attenuation of runoff and chemical loads in grass filter strips at two cattle feedlots, Minnesota, 1995-98

    USGS Publications Warehouse

    Komor, Stephen Charles; Hansen, Donald S.

    2003-01-01

    Attenuation of cattle feedlot runoff in two grass-covered filter strips in Minnesota was estimated by measuring chemical loads into and out of the strips. Filter strips of the Bock and Sanborn sites were 60-m long and 20-m wide and received runoff from cattle feedlots that supported 35 and 225 cattle, respectively. Feedlot and filter-strip runoff were measured using flumes with stage sensors. Water samples were collected using automated samplers. Attenuation values were calculated from four storm-runoff events. Ground water sampled beneath and outside the filter strips indicated some infiltration losses of sulfate, chloride, and nitrogen at the Bock site where soil permeability was greater than at the Sanborn site. Chemical constituents in filter-strip runoff, and their corresponding ranges of attenuation were as follows: chemical oxygen demand, 30–81 percent; dissolved chloride, 6–79 percent; dissolved sulfate, -3–82 percent; dissolved ammonia nitrogen, 33–80 percent; suspended ammonia plus organic nitrogen, 29–85 percent; dissolved organic nitrogen, 14–75 percent; suspended phosphorus, 24–82 percent; dissolved phosphorus, 14–72 percent; and fecal coliform bacteria, 18–79 percent. The ranges seem to be affected by barriers of direct contact of the runoff water with the soil. This varies seasonally by coverage of the soil by ice in winter and vegetation in summer months. Greater attenuation values occurred in October and May when mats of wilted, flat-lying grass covered the filter strips; attenuation values were less during the summer when tall growing grass covered the filter strips.

  20. Salivary pH while dissolving vitamin C-containing tablets.

    PubMed

    Hays, G L; Bullock, Q; Lazzari, E P; Puente, E S

    1992-10-01

    Vitamin C is packaged in numerous forms which allow protracted exposure of the teeth to ascorbic acid. The repeated use of chewable mega dose tablets of vitamin C as a mint can damage the teeth by dissolving the enamel. In the time it takes to dissolve a chewable vitamin C tablet, a salivary pH drop takes place; salivary calcium and phosphorus ion concentration drops, and enamel dissolution may begin. Although sodium ascorbate, a buffering agent, is present in many vitamin C products, it may be added in insufficient quantity to be effective. With no apparent therapeutic value from topical vitamin C, vitamin C-containing products should be swallowed.

  1. Trends in the quality of water in New Jersey streams, water years 1998-2007

    USGS Publications Warehouse

    Hickman, R. Edward; Gray, Bonnie J.

    2010-01-01

    Trends were determined in flow-adjusted values of selected water-quality characteristics measured year-round during water years 1998-2007 (October 1, 1997, through September 30, 2007) at 70 stations on New Jersey streams. Water-quality characteristics included in the analysis are dissolved oxygen, pH, total dissolved solids, total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite. In addition, trend tests also were conducted on measurements of dissolved oxygen made only during the growing season, April to September. Nearly all the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the New Jersey Department of Environmental Protection Ambient Surface-Water Quality Monitoring Network. Monotonic trends in flow-adjusted values of water quality were determined by use of procedures in the ESTREND computer program. A 0.05 level of significance was selected to indicate a trend. Results of tests were not reported if there were an insufficient number of measurements or insufficient number of detected concentrations, or if the results of the tests were affected by a change in data-collection methods. Trends in values of dissolved oxygen, pH, and total dissolved solids were identified using the Seasonal Kendall test. Trends or no trends in year-round concentrations of dissolved oxygen were determined for 66 stations; decreases at 4 stations and increases at 0 stations were identified. Trends or no trends in growing-season concentrations of dissolved oxygen were determined for 65 stations; decreases at 4 stations and increases at 4 stations were identified. Tests of pH values determined trends or no trends at 26 stations; decreases at 2 stations and increases at 3 stations were identified. Trends or no trends in total dissolved solids were reported for all 70 stations; decreases at 0 stations and increases at 24 stations were identified. Trends in total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite were identified by use of Tobit regression. Two sets of trend tests were conducted-one set with all measurements and a second set with all measurements except the most extreme outlier if one could be identified. The result of the test with all measurements is reported if the results of the two tests are equivalent. The result of the test without the outlier is reported if the results of the two tests are not equivalent. Trends or no trends in total phosphorus were determined for 69 stations. Decreases at 12 stations and increases at 5 stations were identified. Of the five stations on the Delaware River included in this study, decreases in concentration were identified at four. Trends or no trends in total organic nitrogen plus ammonia were determined for 69 stations. Decreases and increases in concentrations were identified at six and nine stations, respectively. Trends or no trends in dissolved nitrate plus nitrite were determined for 66 stations. Decreases and increases in concentration were identified at 4 and 19 stations, respectively.

  2. Water-Quality Data Collected from Vallecito Reservoir, Its Inflows and Outflow, Southwestern Colorado, 1999-2002

    USGS Publications Warehouse

    Ranalli, Anthony J.

    2008-01-01

    The Pine River Watershed Stakeholders Group was created in December 1997 to allow local participation in addressing water-quality issues in Los Pi?os River watershed, including Vallecito Reservoir in southwestern Colorado. One water-quality issue identified by the stakeholder group is to increase the understanding of the current water quality of Vallecito Reservoir, its two major inflows, and its outflow. The U.S. Geological Survey (USGS), in cooperation with volunteers from the Pine River Watershed Stakeholders Group and the U.S. Environmental Protection Agency (USEPA), U.S. Bureau of Reclamation (BOR), Colorado Department of Public Health and Environment (CDPHE), Pine River Irrigation District, Southern Ute Tribe, San Juan Basin Health Department, and San Juan Resource Conservation and Development, collected water-quality samples from Vallecito Reservoir, its two major inflows, and its outflow between August 1999 and November 2002 at about monthly intervals from April through November. The water-quality samples were analyzed for total and dissolved metals (aluminum, arsenic, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, silver, and zinc), dissolved major ions (calcium, magnesium, sodium, potassium, chloride, bicarbonate, and sulfate), dissolved silica, dissolved organic carbon (DOC), ultraviolet (UV) absorbance at 254 and 280 nanometers, nutrients (total organic nitrogen, dissolved organic nitrogen, dissolved ammonia, dissolved nitrate, total phosphorus, dissolved phosphorus, and orthophosphate), chlorophyll-a (reservoir only), and suspended sediment (inlets to the reservoir only). Measurements of field properties (pH, specific conductance, water temperature, and dissolved oxygen) were also made at each sampling site each time a water-quality sample was collected. This report documents (1) sampling sites and times of sample collection, (2) sample-collection methods, (3) laboratory analytical methods, and (4) responsibilities of each agency/group involved in the project. The report also provides the environmental and quality-control data collected during the project and provides an interpretation of the quality-control data (field blanks and field duplicates) to assess the quality of the environmental data. This report provides a baseline data set against which future changes in water quality can be assessed.

  3. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants.

    PubMed

    Pintado-Herrera, Marina G; Lara-Martín, Pablo A; González-Mazo, Eduardo; Allan, Ian J

    2016-09-01

    There is a growing interest in assessing the concentration and distribution of new nonregulated organic compounds (emerging contaminants) in the environment. The measurement of freely dissolved concentrations using conventional approaches is challenging because of the low concentrations that may be encountered and their temporally variable emissions. Absorption-based passive sampling enables the estimation of freely dissolved concentrations of hydrophobic contaminants of emerging concern in water. In the present study, calibration was undertaken for 2 polymers, low-density polyethylene (LDPE) and silicone rubber for 11 fragrances, 5 endocrine-disrupting compounds, 7 ultraviolet (UV) filters, and 8 organophosphate flame retardant compounds. Batch experiments were performed to estimate contaminant diffusion coefficients in the polymers (Dp ), which in general decreased with increasing molecular weight. The values for fragrances, endocrine-disrupting compounds, and UV filters were in ranges similar to those previously reported for polycyclic aromatic hydrocarbons, but were 1 order of magnitude lower for organophosphate flame retardant compounds. Silicone rubber had higher Dp values than LDPE and was therefore selected for further experiments to calculate polymer/water partition coefficients (KPW ). The authors observed a positive correlation between log KPW and log octanol/water partition coefficient values. Field testing of silicone rubber passive samplers was undertaken though exposure in the River Alna (Norway) for an exposure time of 21 d to estimate freely dissolved concentration. Some fragrances and UV filters were predominant over other emerging and regulated contaminants, at levels up to 1600 ng L(-1) for galaxolide and 448 ng L(-1) for octocrylene. Environ Toxicol Chem 2016;35:2162-2172. © 2016 SETAC. © 2016 SETAC.

  4. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement.

    PubMed

    Wang, Yongkui; Liu, Xianli; Huang, Jiexun; Xiao, Wensheng; Zhang, Jiaquan; Yin, Chunqin

    2017-10-01

    The transformation of phosphorus added to the soil environment has been proven to be influenced by the Fe biochemical process, which thereby may affect the transformation of organic chlorinated contaminants. However, the amount of related literatures regarding this topic is limited. This study aimed to determine the effects of phosphorus addition on pentachlorophenol (PCP) anaerobic transformation, iron reduction, and paddy soil microbial community structure. Results showed that the transformation of phosphorus, iron, and PCP were closely related to the microorganisms. Moreover, phosphorus addition significantly influenced PCP transformation and iron reduction, which promoted and inhibited these processes at low and high concentrations, respectively. Both the maximum reaction rate of PCP transformation and the maximum Fe(II) amount produced were obtained at 1 mmol/L phosphorus concentration. Among the various phosphorus species, dissolved P and NaOH-P considerably changed, whereas only slight changes were observed for the remaining phosphorus species. Microbial community structure analysis demonstrated that adding low concentration of phosphorus promoted the growth of Clostridium bowmanii, Clostridium hungatei, and Clostridium intestinale and Pseudomonas veronii. By contrast, high-concentration phosphorus inhibited growth of these microorganisms, similar to the curves of PCP transformation and iron reduction. These observations indicated that Clostridium and P. veronii, especially Clostridium, played a vital role in the transformation of related substances in the system. All these findings may serve as a reference for the complicated reactions among the multiple components of soils.

  5. Simulated effects of proposed Arkansas Valley Conduit on hydrodynamics and water quality for projected demands through 2070, Pueblo Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2013-01-01

    The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry annual hydrologic cycle. Each selected simulation scenario also was evaluated for differences in direct/indirect effects and cumulative effects on a particular scenario. Analysis of the results for the direct/indirect- and cumulative-effects analyses indicated that, in general, the results were similar for most of the scenarios and comparisons in this report focused on results from the direct/indirect-effects analyses. Scenario simulations that represented existing conditions in Pueblo Reservoir were compared to the No Action scenario to assess changes in water quality from current demands (2006) to projected demands in 2070. Overall, comparisons of the results between the Existing Conditions and the No Action scenarios for water-surface elevations, water temperature, and dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, and total iron concentrations indicated that the annual median values generally were similar for all three simulated years. Additionally, algal groups and chlorophyll-a concentrations (algal biomass) were similar for the Existing Conditions and the No Action scenarios at site 7B in the epilimnion for the simulated period (Water Year 2000 through 2002). The No Action scenario also was compared individually to the Comanche South, Joint Use Pipeline North, and Master Contract Only scenarios. These comparisons were made to describe changes in the annual median, 85th percentile, or 15th percentile concentration between the No Action scenario and each of the other three simulation scenarios. Simulated water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, algal groups, and chlorophyll-a concentrations in Pueblo Reservoir generally were similar between the No Action scenario and each of the other three simulation scenarios.

  6. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.

  7. Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs.

    PubMed

    Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg

    2016-04-01

    Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of pH, Temperature, Dissolved Oxygen, and Flow Rate on Phosphorus Release Processes at the Sediment and Water Interface in Storm Sewer

    PubMed Central

    Li, Haiyan; Li, Mingyi; Zhang, Xiaoran

    2013-01-01

    The effects of pH, temperature, dissolved oxygen (DO), and flow rate on the phosphorus (P) release processes at the sediment and water interface in rainwater pipes were investigated. The sampling was conducted in a residential storm sewer of North Li Shi Road in Xi Cheng District of Beijing on August 3, 2011. The release rate of P increased with the increase of pH from 8 to 10. High temperature is favorable for the release of P. The concentration of total phosphorus (TP) in the overlying water increased as the concentration of DO decreased. With the increase of flow rate from 0.7 m s−1 to 1.1 m s−1, the concentration of TP in the overlying water increased and then tends to be stable. Among all the factors examined in the present study, the flow rate is the primary influence factor on P release. The cumulative amount of P release increased with the process of pipeline runoff in the rainfall events with high intensities and shorter durations. Feasible measures such as best management practices and low-impact development can be conducted to control the P release on urban sediments by slowing down the flow rate. PMID:24349823

  9. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.

    PubMed

    Popendorf, Kimberly J; Duhamel, Solange

    2015-10-01

    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Nutrient and metal loads estimated by using discrete, automated, and continuous water-quality monitoring techniques for the Blackstone River at the Massachusetts-Rhode Island State line, water years 2013–14

    USGS Publications Warehouse

    Sorenson, Jason R.; Granato, Gregory E.; Smith, Kirk P.

    2018-01-10

    Flow-proportional composite water samples were collected in water years 2013 and 2014 by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, from the Blackstone River at Millville, Massachusetts (U.S. Geological Survey station 01111230), about 0.5 mile from the border with Rhode Island. Samples were collected in order to better understand the dynamics of selected nutrient and metal constituents, assist with planning, guide activities to meet water-quality goals, and provide real-time water-quality information to the public. An automated system collected the samples at 14-day intervals to determine total and dissolved nitrogen and phosphorus concentrations, to provide accurate monthly nutrient concentration data, and to calculate monthly load estimates. Concentrations of dissolved trace metals and total aluminum were determined from 4-day composite water samples that were collected twice monthly by the automated system. Results from 4-day composites provide stakeholders with information to evaluate trace metals on the basis of chronic 4-day exposure criteria for aquatic life, and the potential to use the biotic ligand model to evaluate copper concentrations. Nutrient, trace metal, suspended sediment, dissolved organic carbon, and chlorophyll a concentrations were determined from discrete samples collected at the Millville station and from across the stream transect at the upstream railroad bridge, and these concentrations served as a means to evaluate the representativeness of the Millville point location.Analytical results from samples collected with the automated flow-proportional sampling system provided the means to calculate monthly and annual loading data. Total nitrogen and total phosphorus loads in water year (WY) 2013 were about 447,000 and 36,000 kilograms (kg), respectively. In WY 2014, annual loads of total nitrogen and total phosphorus were about 342,000 and 21,000 kg, respectively. Total nitrogen and total phosphorus loads from WYs 2013 and 2014 were about 56 and 65 percent lower than those reported for WYs 2008 and 2009. The higher loads in 2008 and 2009 may be explained by the higher than average flows in WY 2009 and by facility upgrades made by wastewater treatment facilities in the basin.Median loads were determined from composite samples collected with the automated system between October 2012 and October 2014. Median dissolved cadmium and chromium 4-day loads were 0.55 and 0.84 kg, respectively. Dissolved copper and total lead median 4-day loads were 8.02 and 1.42 kg, respectively. The dissolved nickel median 4-day load was 5.45 kg, and the dissolved zinc median 4-day load was 36 kg. Median total aluminum 4-day loads were about 197 kg.Spearman’s rank correlation analyses were used with discrete sample concentrations and continuous records of temperature, specific conductance, turbidity, and chlorophyll a to identify correlations between variables that could be used to develop regression equations for estimating real-time concentrations of constituents. Correlation coefficients were generated for flow, precipitation, antecedent precipitation, physical parameters, and chemical constituents. A 95-percent confidence limit for each value of Spearman’s rho was calculated, and multiple linear regression analysis using ordinary least squares regression techniques was used to develop regression equations for concentrations of total phosphorus, total nitrogen, suspended sediment concentration, total copper, and total aluminum. Although the correlations are based on the limited amount of data collected as part of this study, the potential to monitor water-quality changes in real time may be of value to resource managers and decision makers.

  11. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal.

    PubMed

    Zheng, Xiong; Wu, Rui; Chen, Yinguang

    2011-04-01

    With the increasing utilization of nanomaterials, zinc oxide nanoparticles (ZnO NPs) have been reported to induce adverse effects on human health and aquatic organisms. However, the potential impacts of ZnO NPs on wastewater nitrogen and phosphorus removal with an activated sludge process are unknown. In this paper, short-term exposure experiments were conducted to determine whether ZnO NPs caused adverse impacts on biological nitrogen and phosphorus removal in the unacclimated anaerobic-low dissolved oxygen sequencing batch reactor. Compared with the absence of ZnO NPs, the presence of 10 and 50 mg/L of ZnO NPs decreased total nitrogen removal efficiencies from 81.5% to 75.6% and 70.8%, respectively. The corresponding effluent phosphorus concentrations increased from nondetectable to 10.3 and 16.5 mg/L, respectively, which were higher than the influent phosphorus (9.8 mg/L), suggesting that higher concentration of ZnO NPs induced the loss of normal phosphorus removal. It was found that the inhibition of nitrogen and phosphorus removal induced by higher concentrations of ZnO NPs was due to the release of zinc ions from ZnO NPs dissolution and increase of reactive oxygen species (ROS) production, which caused inhibitory effect on polyphosphate-accumulating organisms and decreased nitrate reductase, exopolyphosphatase, and polyphosphate kinase activities.

  12. Distribution of Dissolved Zinc in the Western and Central Subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Taejin; Obata, Hajime; Nishioka, Jun; Gamo, Toshitaka

    2017-09-01

    We investigated the biogeochemical cycling of dissolved zinc (Zn) in the western and central subarctic North Pacific during the GEOTRACES GP 02 cruise. The relationship between dissolved Zn and silicate in the subarctic North Pacific plotted as a concave curve. Values of Zn* were strongly positive in the intermediate waters (26.6-27.5 σθ) of both the western and the central subarctic North Pacific. There was a distinct kink in the relationship between dissolved Zn and soluble reactive phosphorus (SRP) at the transition from shallow to intermediate water, which is similar to what has been reported for other open oceans. The high Zn:SRP ratio and high Zn* in the intermediate water suggest that intermediate water masses play an important role in the decoupling of dissolved Zn and silicate in the subarctic North Pacific, which implies that the biogeochemical processes that control dissolved Zn and silicate in the intermediate water are different from those in other oceanic regions.

  13. Effects of nitrogen and phosphorus on the growth of Levanderina fissa: How it blooms in Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Guo, Xin; Qu, Linjian; Lin, Langcong

    2017-02-01

    Effects of nitrogen (N) and phosphorus (P) from different sources and at different concentrations on the growth of Levanderina fissa (= Gyrodinium instriatum) were studied in laboratory conditions. The findings might explain the recurrent blooms of this species in Pearl River Estuary, China. Results showed that nutrient limitation significantly inhibited the growth of L. fissa. The values of specific growth rate ( μ max) and half-saturation nutrient concentration ( K S) were 0.37 divisions/d and 8.49 μmol L-1 for N, and 0.39 divisions/d and 1.99 μmol L-1 for P, respectively. Based on K S values, dissolved inorganic N level in PRE was sufficient to support the high proliferation of L. fissa, while dissolved inorganic P concentration was far lower than the minimum requirement for its effective growth. L. fissa was not able to utilize dissolved organic N (DON) compounds such as urea, amino acids, and uric acid. However, it grew well by using a wide variety of dissolved organic P (DOP) sources like nucleotides, glycerophosphate, and 4-nitrophenylphosphate. The results from this study suggested that the ability in DOP utilization of L. fissa offers this species a competitive advantage in phytoplankton communities. The high level and continuous supply of DIN, enrichment of DOP, together with warm climate and low salinity in the Pearl River Estuary provided a suitable nutrient niche for the growth of L. fissa, and resulted in the recurrent blooms in the estuary.

  14. Evaluation of a novel oxidation ditch system for biological nitrogen and phosphorus removal from domestic sewage.

    PubMed

    Chen, X; Fujiwara, T; Ohtoshi, K; Inamori, S; Nakamachi, K; Tsuno, H

    2010-01-01

    A novel oxidation ditch system using anaerobic tanks and innovative dual dissolved oxygen (DO) control technology is proposed for biological nitrogen and phosphorus removal from domestic sewage. A continuous bench-scale experiment running for more than 300 days was performed to evaluate the system. Monitoring and controlling the airflow and recirculation flow rate independently using DO values at two points along the ditch permitted maintenance of aerobic and anoxic zone ratios of around 0.30 and 0.50, respectively. The ability to optimize aerobic and anoxic zone ratios using the dual DO control technology meant that a total nitrogen removal efficiency of 83.2-92.9% could be maintained. This remarkable nitrogen removal performance minimized the nitrate recycle to anaerobic tanks inhibiting the phosphorus release. Hence, the total phosphorus removal efficiency was also improved and ranged within 72.6-88.0%. These results demonstrated that stabilization of the aerobic and anoxic zone ratio by dual DO control technology not only resulted in a marked improvement of nitrogen removal, but it also enhanced phosphorus removal.

  15. [Study on transformation of P-dissolving Penicillium oxalicum P8 with double-marker vector expressing green fluorescent protein and hygromycin B resistance].

    PubMed

    Zhang, Lei; Fan, Bing-Quan; Huang, Wei-Yi

    2005-12-01

    P-dissolving Penicillium oxalicum P8 was isolated previously in this lab which has a considerable ability to dissolve many kinds of inorganic phosphorus and improve crop growth. In order to study rhizosphere colonization of plants by Penicillium oxalicum P8, protoplasts were transformed with a double-marker expression vector of green fluorescent protein and hygromycin B resistance. Some transformants were selected which expressed both the GFP and hygromycin B phosphotransferase and did not show significant morphological or physiological differences as compared to wild-type strain. Southern blot analysis confirmed the heterogeneous genomic integration of the vector DNA into the transformants.

  16. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans

    PubMed Central

    Krom, Michael D.; Mortimer, Robert J. G.; Benning, Liane G.; Herbert, Ross J.; Shi, Zongbo; Kanakidou, Maria; Nenes, Athanasios

    2016-01-01

    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behavior of P compounds in dust and dust precursor soils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H+ ions present. For H+ < 10−4 mol/g of dust, 1–10% of the total P is dissolved, largely as a result of dissolution of surface-bound forms. At H+ > 10−4 mol/g of dust, the amount of P (and calcium) released has a direct proportionality to the amount of H+ consumed until all inorganic P minerals are exhausted and the final pH remains acidic. Once dissolved, P will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P (Ap-P), the major mineral phase in dust (79–96%), occurs whether calcium carbonate (calcite) is present or not, although the increase in dissolved P is greater if calcite is absent or if the particles are externally mixed. The system was modeled adequately as a simple mixture of Ap-P and calcite. P dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves more slowly and is subject to reprecipitation at cloud water pH. We show that acidification can increase bioavailable P deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable P in oceanic areas where primary productivity is limited by this nutrient (e.g., Mediterranean). PMID:27930294

  17. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    USGS Publications Warehouse

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.

  18. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.

  19. Phosphorus component in AnnAGNPS

    USGS Publications Warehouse

    Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.

    2005-01-01

    The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.

  20. Controls on the dynamics of dissolved organic matter in soils: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalbitz, K.; Solinger, S.; Park, J.H.

    Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soils. The authors focus on comparing results between laboratory and field investigations and on the differences between the dynamics of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP). Both laboratory and field studies show that litter and humus are the most important DOM sources in soils. However, it is impossible to quantifymore » the individual contributions of each of these sources to DOM release. In addition, it is not clear how changes in the pool sizes of litter or humus may affect DOM release. High microbial activity, high fungal abundance, and any conditions that enhance mineralization all promote high DOM concentrations. However, under field conditions, hydrologic variability in soil horizons with high carbon contents may be more important than biotic controls. In subsoil horizons with low carbon contents, DOM may be adsorbed strongly to mineral surfaces, resulting in low DOM concentrations in the soil solution. There are strong indications that microbial degradation of DOM also controls the fate of DOM in the soil.« less

  1. Characterization of urban runoff pollution between dissolved and particulate phases.

    PubMed

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  2. Benthic Fluxes of Dissolved Macro- and Micronutrients to the Water Column of Upper Klamath Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Kuwabara, J. S.; Topping, B. R.; Lynch, D. D.; Murphy, F.; Carter, J. L.; Lindenberg, M.

    2007-12-01

    Hypoxic, environmentally stressful conditions for endangered fish populations have been generated over the past century by an annual phytoplankton bloom in Upper Klamath Lake, OR. The bloom is consistently dominated by the nitrogen-fixing cyanophyte Aphanizomenon flos-aquae (AFA), thus a quantitative understanding of processes affecting the transport of biologically available phosphorus (P), presumably the limiting nutrient, is critical for resource management in the lake. This work was undertaken to help develop sound remediation or restoration strategies, and to set realistic expectations for water-quality improvements. Particle-reactive phosphate can adsorb or complex onto particles that settle and accumulate in the lake bed. Biogeochemical processes near the sediment-water interface can remobilize particle-bound P and generate a benthic flux of bioavailable P. This study provides estimates of the benthic flux of dissolved macronutrients (i.e., phosphorus and nitrogen species) before, during and after the period of: (1) increased water-column nutrient concentrations that cannot be accounted for by riverine inputs, and (2) the annual bloom of AFA. Benthic flux of dissolved orthophosphate was consistently positive (i.e., out of the sediment into the overlying water column) and ranged between 0.5 and 6.1 mg m-2 d-1. Assuming a lake area of 200 km2, this converts to a mass flux to the entire lake of 8,000 to 100,000 kg over a 3-month AFA bloom season which is comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was that dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 100 mg m-2 d-1; also comparable to riverine inputs. In contrast, dissolved nitrate exhibited a consistently negative flux (consumed by the sediment) with values ranging between -20 to -0.1 mg m-2 d-1. Macroinvertebrate densities of the order of 105 individuals-m-2 suggest that the diffusive-flux estimates may be significantly lower than actual values due to bioturbation. Although phosphorus is a logical choice for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-metal results in the form of coordinated benthic flux, water-column and tributary-inlet data suggest that iron availability to primary producers in the lake is possibly a limiting factor.

  3. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    USGS Publications Warehouse

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were

  4. Water quality in the southern Everglades and Big Cypress Swamp in the vicinity of the Tamiami Trail, 1996-97

    USGS Publications Warehouse

    Miller, Ronald L.; McPherson, Benjamin F.; Haag, Kim H.

    1999-01-01

    The quality of water flowing southward in the Everglades and Big Cypress Swamp was characterized by three synoptic surveys along an 80-mile section of the Tamiami Trail and along a 24-mile transect down the Shark River Slough, by monthly sampling of a background reference site in the central Big Cypress Swamp, and by sampling of fish tissue for contaminants at several sites near the Trail. The quality of water along the Trail is spatially variable due to natural and human influences. Concentrations of dissolved solids and common ions such as chloride and sulfate were lowest in the central and eastern Big Cypress Swamp and were higher to the west due to the effects of seawater, especially during the dry season, and to the east due to canal drainage from the northern Everglades. Concentrations of total phosphorus tended to decrease from west to east along the 80-mile section of the Trail, and were usually about 0.01 milligram per liter or less in the Everglades. Short-term loads (based on average discharge for 4 days) of total phosphorus and total Kjeldahl nitrogen (ammonia plus organic nitrogen) across four gaged sections of the Tamiami Trail were highest in the Everglades near the S-12 structures primarily due to the relatively greater discharges in that section. Concentrations of dissolved solids and total phosphorus at the central Big Cypress Swamp site increased significantly during the dry season as waters ponded. Effects of nearby, upstream agricultural activities were evident at a site in the western Big Cypress Swamp where relatively high concentrations of total phosphorus, total mercury, and dissolved organic carbon and high periphyton biomass accumulation rates were measured and where several pesticides were detected. The most frequently detected pesticides along the Trail were atrazine (14 detections), tebuthiuron (11 detections), and metolachlor (5 detections), and most concentrations were less than 0.1 microgram per liter. DDT compounds were the only pesticides detected in fish from five sites. Total DDT ranged from 5 to 6 micrograms per kilogram in largemouth bass and from 11 to 17 micrograms per kilogram in Florida gar.

  5. An evaluation of nitrogen and phosphorus responses to rain events in a forested watershed

    NASA Astrophysics Data System (ADS)

    Steadman, C.; Argerich, A.; Bladon, K. D.; Johnson, S. L.

    2017-12-01

    Nitrogen (N) and phosphorus (P) exhibit differential responses to storm events which reflect complex, hydrologically-driven biogeochemical activity in a watershed. However, the magnitude of the responses change throughout the year indicating that they may be strongly influenced by antecedent precipitation conditions. To evaluate N and P responses to storms, we collected storm samples from four subwatersheds in a small forested watershed over a 12-month period as well as climate and hydrologic data. We quantified dissolved nitrate (NO3-), ammonium (NH4+), total dissolved nitrogen (TDN), soluble reactive phosphorus (SRP), and total dissolved phosphorus (TDP) concentrations and exports in 300 samples and examined responses across subwatersheds and storms. To assess the influence of potential drivers, we generated a series of models with discharge, instantaneous rain, and cumulative rain as explanatory variables for analyte concentrations. We also constructed models with cumulative rain as the explanatory variable for analyte exports. There was strong evidence (p < .05) that cumulative rain or the cumulative rain-subwatershed interaction were important for all analyte exports and concentrations. In contrast, evidence was weak for the significance of instantaneous rain for any analyte concentrations while discharge or the discharge-subwatershed interaction was significant for NO3- and NH4+, respectively. Of all factors, cumulative rain was the most relevant to explain analyte concentrations (i.e., showed the highest pseudo-R2), except for NH4+, for which discharge was more relevant. There was significant spatial and temporal variability for all analyte concentrations with the exception of NH4+, which showed little variability storm-to-storm. Maximum NO3- concentration occurred at the onset of the wet season while SRP had the lowest concentration during the same time period. Differential responses of analytes evidence distinct influences of hydrologically-driven biogeochemical activity on individual analytes. However, strong correlations with cumulative rain suggest that insight may be gained through consideration of coarser factors such as antecedent precipitation conditions which may serve to integrate complexities of the hillslope, improving understanding of N and P variability.

  6. Physiological modifications by seston in response to physicochemical gradients within Lake Superior

    EPA Science Inventory

    Lake Superior is a non-steady state and phosphorus (P) depleted ecosystem. In September 2011, the vertical distribution and composition of dissolved and particulate P-pools throughout the Lake were examined. Differences in seston P content were evident with depth, as average sest...

  7. PHOSPHORUS-RICH WATERS AT GLOVERS REEF, BELIZE? (R830414)

    EPA Science Inventory

    Table 1. Concentrations (small mu, GreekM) of ammonium, nitrate, dissolved inorganic nitrogen (DIN=ammonium + nitrate + nitrite), PO43−–P (...

  8. COMPUTER PROGRAM DOCUMENTATION FOR THE ENHANCED STREAM WATER QUALITY MODEL QUAL2E

    EPA Science Inventory

    Presented in the manual are recent modifications and improvements to the widely used stream water quality model QUAL-II. Called QUAL2E, the enhanced model incorporates improvements in eight areas: (1) algal, nitrogen, phosphorus, and dissolved oxygen interactions; (2) algal growt...

  9. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River Basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, Rodney N.; Faye, R.E.; Kleckner, R.L.

    1979-01-01

    During the period April 1975 to June 1978, the U.S. Geological Survey conducted a river-quality assessment of the Upper Chattahoochee River basin in Georgia. One objective of the study was to assess the magnitudes, nature, and effects of point and non-point discharges in the Chattahoochee River basin from Atlanta to the West Point Dam. On an average annual basis and during the storm period of March 1215, 1976, non-point-source loads for most constituents analyzed were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 river miles downstream of Atlanta. Most of the non-point-source constituent loads in the Atlanta-to-Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads, and about 70 percent of the dissolved phosphorus loads at Whitesburg. During weekends, power generation at the upstream Buford Dam hydroelectric facility is minimal. Streamflow at the Atlanta station during dry-weather weekends is estimated to be about 1,200 ft3/s (cubic feet per second). Average daily dissolved-oxygen concentrations of less than 5.0 mg/L (milligrams per liter) occurred often in the river, about 20 river miles downstream from Atlanta during these periods from May to November. During a low-flow period, June 1-2, 1977, five municipal point sources contributed 63 percent of the ultimate biochemical oxygen demand, 97 percent of the ammonium nitrogen, 78 percent of the total nitrogen, and 90 percent of the total phosphorus loads at the Franklin station, at the upstream end of West Point Lake. Average daily concentrations of 13 mg/L of ultimate biochemical oxygen demand and 1.8 mg/L of ammonium nitrogen were observed about 2 river miles downstream from two of the municipal point sources. Carbonaceous and nitrogenous oxygen demands caused dissolved-oxygen concentrations between 4.1 and 5.0 mg/L to occur in a 22-mile reach of the river downstream from Atlanta. Nitrogenous oxygen demands were greater than carbonaceous oxygen demands in the reach from river mile 303 to 271, and carbonaceous demands were greater from river mile 271 to 235. The heat load from the Atkinson-McDonough thermoelectric power-plants caused a decrease in the dissolved-oxygen concentrations of about 0.2 mg/L. During a critical low-flow period, a streamflow at Atlanta of about 1,800 ft3/s, with present (1977) point-source flows of 185 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 15 mg/L of ammonium nitrogen, results in a computed minimum dissolved-oxygen concentration of 4.7 mg/L in the river downstream from Atlanta. In the year 2000, a streamflow at Atlanta of about 1,800 ft3/s with point-source flows of 373 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen, will result in a computed minimum dissolved-oxygen concentration of 5.0 mg/L. A streamflow of about 1,050 ft3/s at Atlanta in the year 2000 will result in a dissolved-oxygen concentration of 5.0 mg/L if point-source flows contain concentrations of 15 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen. Phytoplankton concentrations in West Point Lake, about 70 river miles downstream from Atlanta, could exceed 3 million cells per milliliter during extended low-flow periods in the summer with present point- and non-point-source nitrogen and phosphorus loads. In the year 2000, phytoplankton concentrations in West Point Lake are not likely to exceed 700,000 cells per milliliter during extended low-flow periods in the summer, if phosphorus concentrations do not exceed 1.0 mg/L in point-source discharges.

  10. Preliminary characterization of nitrogen and phosphorus in groundwater discharging to Lake Spokane, northeastern Washington, using stable nitrogen isotopes

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Cox, Stephen E.; Spanjer, Andrew R.

    2016-02-29

    Lake Spokane, locally referred to as Long Lake, is a 24-mile-long section of the Spokane River impounded by Long Lake Dam that has, in recent decades, experienced water-quality problems associated with eutrophication. Consumption of oxygen by the decomposition of aquatic plants that have proliferated because of high nutrient concentrations has led to seasonally low dissolved oxygen concentrations in the lake. Of nitrogen and phosphorus, the two primary nutrients necessary for aquatic vegetation growth, phosphorus was previously identified as the limiting nutrient that regulates the growth of aquatic plants and, thus, dissolved oxygen concentrations in Lake Spokane. Phosphorus is delivered to Lake Spokane from municipal and industrial point-source inputs to the Spokane River upstream of Lake Spokane, but is also conveyed by groundwater and surface water from nonpoint-sources including septic tanks, agricultural fields, and wildlife. In response, the Washington State Department of Ecology listed Lake Spokane on the 303(d) list of impaired water bodies for low dissolved oxygen concentrations and developed a Total Maximum Daily Load for phosphorus in 1992, which was revised in 2010 because of continuing algal blooms and water-quality concerns.This report evaluates the concentrations of phosphorus and nitrogen in shallow groundwater discharging to Lake Spokane to determine if a difference exists between nutrient concentrations in groundwater discharging to the lake downgradient of residential development with on-site septic systems and downgradient of undeveloped land without on-site septic systems. Elevated nitrogen isotope values (δ15N) within the roots of aquatic vegetation were used as an indicator of septic-system derived nitrogen. δ15N values were measured in August and September 2014 downgradient of residential development near the lakeshore, of residential development on 300-ft-high terraces above the lake, and of undeveloped land in the eastern (upper) and central (lower) parts of Lake Spokane. Significantly lower δ15N values were measured within aquatic vegetation downgradient of undeveloped land in eastern Lake Spokane relative to both near-shore and terrace residential development land uses. Conversely, significantly higher δ15N values were measured downgradient of undeveloped land in central Lake Spokane relative to the two developed land uses. These results guided the location of subsequent groundwater sampling in March and April 2015 from 30 shallow piezometers driven into the near-shore area of Lake Spokane. Nitrate plus nitrite concentrations in groundwater discharging to Lake Spokane downgradient of undeveloped areas were significantly lower than those measured downgradient of both near-shore and terrace residential development. Orthophosphate concentrations in groundwater were not significantly different with respect to upgradient land use.

  11. Application of a fast Newton-Krylov solver for equilibrium simulations of phosphorus and oxygen

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Primeau, François

    2017-11-01

    Model drift due to inadequate spinup is a serious problem that complicates the interpretation of climate change simulations. Even after a 300 year spinup we show that solutions are not only still drifting but often drifting away from their eventual equilibrium over large parts of the ocean. Here we present a Newton-Krylov solver for computing cyclostationary equilibrium solutions of a biogeochemical model for the cycling of phosphorus and oxygen. In addition to using previously developed preconditioning strategies - time-averaging and coarse-graining the Jacobian matrix - we also introduce a new strategy: the adiabatic elimination of a fast variable (particulate organic phosphorus) by slaving it to a slow variable (dissolved inorganic phosphorus). We use transport matrices derived from the Community Earth System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels to implement and test the solver. We find that the new solver obtains seasonally-varying equilibrium solutions with no visible drift using no more than 80 simulation years.

  12. A bench-scale assessment for phosphorus release control of sediment by an oxygen-releasing compound (ORC).

    PubMed

    Yang, Jie; Lin, Feng K; Yang, Lei; Hua, Dan Y

    2015-01-01

    The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.

  13. Export of dissolved organic carbon and nitrogen from drained and re-wetted bog sites in Lower Saxony (Germany)

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Bärbel; Freibauer, Annette

    2014-05-01

    Today, nearly all peatlands in Germany are drained for agriculture, forestry and peat cutting. The export of dissolved organic carbon (C) and nitrogen (N) may be important for the overall C and N balances and affects downstream ecosystems. While drainage generally increases solute losses, there is nearly no C and N export data of raised bogs in Germany which can be used to evaluate both the impact of drainage associated with intensive land use and the re-wetting of peat cutting sites. In the "Ahlenmoor" (North-Western Germany), four sampling points were chosen. Three sampling points represent a deeply drained intensively used grassland at various scales ranging from a drainage pipe (DP, 0.08 ha) and a drainage ditch (DD, 6.8 ha) to a collector ditch (CD, 20 ha). The fourth sampling point (RW) is a former peat cutting site (23 ha) re-wetted 10 years ago. At this site, polder technique was used to establish water tables at the soil surface. Sampling and discharge measurements were conducted bi-weekly from June 2011 to June 2013. Water table levels were recorded with automatic pressure sensors, and rating curves between discharge and water levels were used to calculate continuous discharge values. Samples were analyzed for dissolved organic carbon (DOC), particulate organic carbon (POC), dissolved organic nitrogen (DON), ammonium (NH4+), nitrate (NO3-), sulphate (SO42-), pH, electric conductivity (EC) and specific UV absorbance (SUVA). The discharge did not vary strongly between the sampling points and was slightly lower in the second year. Concentrations of all measured solutes were higher at the intensive grassland (DP, DD and CD) than at the re-wetted site. Surprisingly, SUVA showed no difference between all sites, while the DOC to DON ratio was narrower at DP, DD and CD than at RW. This indicates an export of more degraded dissolved organic matter (DOM) from the drained area. At the grassland sites, no statistical differences were found between the three scales except for SO42-, NO3- and pH. Thus, the grassland shows rather homogenous export patterns over various spatial scales, and there seem to be no fast mineralization or degradation of the exported DOM during the initial stage of export. In total, average losses of DOC (457 kg ha-1 a-1) and POC (40 kg ha-1 a-1) from the drained area were nearly thrice as high as from the re-wetted site (124 and 73 kg ha-1 a-1). The total nitrogen losses were even more reduced by re-wetting and dominated at all sites by DON (19.1 kg ha-1 a-1 at the grassland sites, 3.9 kg ha-1 a-1 at the re-wetted site). NH4+ (drained: 5.2 kg ha-1 a-1, re-wetted: 0.8 kg ha-1 a-1) and NO3- (drained: 1.6 kg ha-1 a-1, re-wetted: not detectable) played a minor role. Overall, differences in the export could rather be explained by differences in solute concentration than in discharge.

  14. Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldys, S.

    1990-01-01

    Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less

  15. Evaluation of a Leaf Collection and Street Cleaning Program as a Way to Reduce Nutrients and Organic Carbon in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Selbig, W.

    2016-12-01

    Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.

  16. Influence of domestic pets on soil concentrations of dissolved organic carbon, nitrogen, and phosphorus under turfgrass in apartment complexes of Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2009-12-01

    High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4: 582-602.

  17. A sediment resuspension and water quality model of Lake Okeechobee

    USGS Publications Warehouse

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  18. Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach.

    PubMed

    Mörth, Carl-Magnus; Humborg, Christoph; Eriksson, Hanna; Danielsson, Asa; Medina, Miguel Rodriguez; Löfgren, Stefan; Swaney, Dennis P; Rahm, Lars

    2007-04-01

    We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.

  19. Hydrology and the hypothetical effects of reducing nutrient applications of water quality in the Bald Eagle Creek Headwaters, southeastern Pennsylvania prior to implementation of agricultural best-management practices

    USGS Publications Warehouse

    Fishel, D.K.; Langland, M.J.; Truhlar, M.V.

    1991-01-01

    The report characterizes a 0.43-square-mile agricultural watershed in York County, underlain by albite-chlorite and oligoclase-mica schist in the Lower Susquehanna River basin, that is being studied as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. The water quality of Bald Eagle Creek was studied from October 1985 through September 1987 prior to the implementation of Best-Management Practices to reduce nutrient and sediment discharge into Muddy Creek, a tributary to the Chesapeake Bay. About 88 percent of the watershed is cropland and pasture, and nearly 33 percent of the cropland is used for corn. The animal population is entirely dairy cattle. About 85,640 pounds of nitrogen (460 pounds per acre) and 21,800 pounds of phosphorus (117 pounds per acre) were applied to fields; 52 percent of the nitrogen and 69 percent of the phosphorus was from commercial fertilizer. Prior to fertilization, nitrate nitrogen in the soil ranged from 36 to 136 pounds per acre and phosphorus ranged from 0.89 to 5.7 pounds per acre in the top 4 feet of soil. Precipitation was about 18 percent below normal and streamflow about 35 percent below normal during the 2-year study. Eighty-four percent of the 20.44 inches of runoff was base flow. Median concentrations of total nitrogen and dissolved phosphorous in base flow were 0.05 and 0.04 milligrams per liter as phosphorus, respectively. Concentrations of dissolved nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations decreased similarly to those observed in carbonate-rock areas as nutrient uptake and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment, 5,250 pounds of nitrogen, and 66.6 pounds of phosphorus discharged in base flow during the 2-year period. The suspended sediment load was about 232,000 pounds in stormflow from 26 storms that contributed 51 percent of the total stormflow. The nitrogen load was about 651 pounds and the phosphorus load was about 74 pounds in stormflow from 16 storms that contributed 28 percent of the total stormflow. It is estimated that concentrations of total nitrogen and phosphorus in base flow need to be reduced by 12 and 48 percent, respectively, to detect changes during the nutrient-management phase. Likewise, loads to total nitrogen and phosphorus in base flow need to be reduced by 62 and 57 percent.

  20. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  1. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments.

    PubMed

    Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret

    2010-03-01

    The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.

  2. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

    PubMed

    Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P

    2017-11-01

    During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (<5 cm). Stratification often accompanies no-till and mulch-till practices that reduce erosion and PP loading, practices that have been widely implemented throughout the Lake Erie Basin. To evaluate the extent of P stratification in the Sandusky Watershed, certified crop advisors were enlisted to collect stratified soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.

  4. Effect of Polyphosphate-accumulating Organisms on Phosphorus Mobility in Variably Saturated Sand Columns

    NASA Astrophysics Data System (ADS)

    Stockton, M.; Rojas, C.; Regan, J. M.; Saia, S. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Excessive application of phosphorus-containing fertilizer along with incomplete knowledge about the factors affecting phosphorus transport and mobility has allowed for a growing number of cases of eutrophication in water bodies. Previous research on enhanced biological phosphorus removal (EBPR) systems used in wastewater treatment plants (WWTPs) has identified polyphosphate-accumulating organisms (PAOs) that are known to accumulate and release phosphorus depending on aerobic/anaerobic conditions. Under anaerobic conditions, intracellular polyphosphate (poly-P) bodies are hydrolyzed releasing phosphate, while under aerobic conditions phosphate is taken up and poly-P inclusions are reformed. The presence of PAOs outside of WWTPs has been shown, but their potential impact on phosphorus mobility in other contexts is not as well known. To study that potential impact, sand columns were subjected to alternating cycles of saturation and unsaturation to mimic variably saturated soils and the resultant anaerobic and aerobic conditions that select for PAOs in a WWTP. Pore water samples collected from sterile control columns and columns inoculated with PAOs from a WWTP were compared during each cycle to monitor changes in dissolved inorganic phosphate and total phosphorus concentrations. In addition, continuous redox data were collected to confirm reducing conditions developed during periods of saturation. Sand particles will be subjected to FISH and DAPI staining to visualize PAOs using probes developed for PAOs in EBPR processes and to determine if changes in intracellular poly-P are detectable between the two cycles in the inoculated columns. Studying the effects of PAOs on phosphorus mobility in these controlled column experiments can contribute to understanding phosphorus retention and release by naturally occurring PAOs in terrestrial system, which ultimately can improve the development of management practices that mitigate phosphorus pollution of water bodies.

  5. Drought effects on water quality in the South Platte River Basin, Colorado

    USGS Publications Warehouse

    Sprague, Lori A.

    2005-01-01

    Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.

  6. Water quality and phytoplankton of the tidal Potomac River, August-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.C.; Manning, P.D.; Shultz, D.J.

    1984-01-01

    In the summer of 1983, a prolonged blue-green algal bloom, consisting predominantly of Microcystis, occurred in the Potomac River downstream of Washington, DC. Ten longitudinal sampling trips were made between August 3 and November 9, 1983, primarily in the freshwater tidal Potomac River between Memorial Bridge and Quantico, Va. Samples were depth-integrated and composited across the river at each major station and analyzed for dissolved and total nitrogen species, dissolved and total phosphorus species, dissolved silica, chlorophyll-a, pheophytin, and suspended sediment. In addition, phytoplankton were enumerated and identified. Point samples were taken for chlorophyll-a and pheophytin, and measurements were mademore » of dissolved oxygen, pH, conductance, temperature, and Secchi disc transparency. Some supplementary data are presented from points between major stations and in tributaries to the tidal Potomac River. 14 refs., 3 figs., 8 tabs.« less

  7. Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year

    USGS Publications Warehouse

    Blanchard, Stephen F.; Hahl, D.C.

    1981-01-01

    This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)

  8. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter.

    PubMed

    Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura

    2016-04-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.

  9. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    NASA Astrophysics Data System (ADS)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  10. [Effects of the frequency and intensity of nitrogen addition on soil pH, the contents of carbon, nitrogen and phosphorus in temperate steppe in Inner Mongolia, China.

    PubMed

    Zhou, Ji Dong; Shi, Rong Jiu; Zhao, Feng; Han, Si Qin; Zhang, Ying

    2016-08-01

    A four-year simulated nitrogen (N) deposition experiment involving nine N gradients and two N deposition frequencies (N was added either twice yearly or monthly) was conducted in Inner Mongolian grassland, to examine the effects of frequency and intensity of N addition on pH and the contents of carbon, nitrogen and phosphorus in soil. The results indicated that the soil pH and total phosphorus content, regardless of the N addition frequency, gradually decreased with the increase of N addition intensity. By contrast, the contents of soil available nitrogen and available phosphorus showed an increasing trend, while no significant variation in dissolved organic carbon (DOC) content was observed, and the contents of soil total carbon and total nitrogen had no change. Compared with the monthly N addition, the twice-a-year N addition substantially overestimated the effects of N deposition on decreasing the soil pH and increasing the available phosphorus content, but underestimated the effects of N deposition on increasing the soil available nitrogen content, and the significant difference was found in 0-5 cm soil layer.

  11. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  12. Linking Stream Dissolved Oxygen with the Dynamic Environmental Drivers across the Pacific Coast of U.S.A.

    NASA Astrophysics Data System (ADS)

    Araya, F. Z.; Abdul-Aziz, O. I.

    2017-12-01

    This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.

  13. Estimation of the degree of soil P saturation from Brazilian Mehlich-1 P data and field investigations on P losses from agricultural sites in Minas Gerais.

    PubMed

    Fischer, P; Pöthig, R; Gücker, B; Venohr, M

    The degree of phosphorus saturation (DPS) of agricultural soils is studied worldwide for risk assessment of phosphorus (P) losses. In previous studies, DPS could be reliably estimated from water-soluble P (WSP) for European and Brazilian soils. In the present study, we correlated measured WSP and Mehlich-1 P (M1P) from soils of Minas Gerais (MG) and Pernambuco (PE) (R(2) = 0.94, n = 59) to create a DPS map from monitoring data. The resulting DPS map showed high spatial variability and low values of DPS (54 ± 22%, mean and standard deviation; n = 1,827). Measured soil DPS values amounted to 63 ± 14% and resulted in relatively low dissolved P concentrations measured in a surface runoff study in MG. However, fertilizer grains on the soil surface led to high WSP values (>30 mg/kg) indicating high risks of dissolved P losses. We suppose that small Oxisol particles with Fe and Al hydroxides sorbed most of the dissolved fertilizer P in runoff so that P was mainly exported in particulate form. In soils with lower contents of P sorption and binding partners, e.g. Entisols in PE, this effect may be less dominant. Consequently, superficial fertilizer effects have to be considered in addition to DPS in risk assessment of P losses from agricultural areas in Brazil.

  14. A modeling study examining the impact of nutrient boundaries on primary production on the Louisiana Continental Shelf

    EPA Science Inventory

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchan...

  15. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams

    Treesearch

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski; John C. Maerz

    2016-01-01

    Nutrient enrichment of detritus-based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial- vs. detritivore-mediated detrital breakdown are poorly understood....

  16. Hot moments and hot spots of nutrient losses from a mixed land use watershed

    USDA-ARS?s Scientific Manuscript database

    Non-point nitrogen (N) and phosphorus (P) pollution from agriculture has increasingly received more public attention. However, when, where and how N and P export occurs from a watershed is not completely understood. In this study, nitrate-N, dissolved P and particulate P concentrations and loads wer...

  17. Runoff amount and quality as influenced by tillage and fertilizer management choices in a Cecil soil

    USDA-ARS?s Scientific Manuscript database

    Tillage and fertilizer choices and their interactions have varying impacts on levels and qualities of runoff from agricultural fields. We quantified runoff, sediment loss, concentrations and loads of ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (PO4-P) and total...

  18. U.S. Geological Survey nutrient preservation experiment; nutrient concentration data for surface-, ground-, and municipal-supply water samples and quality-assurance samples

    USGS Publications Warehouse

    Patton, Charles J.; Truitt, Earl P.

    1995-01-01

    This report is a compilation of analytical results from a study conducted at the U.S. Geological Survey, National Water Quality Laboratory (NWQL) in 1992 to assess the effectiveness of three field treatment protocols to stabilize nutrient concentra- tions in water samples stored for about 1 month at 4C. Field treatments tested were chilling, adjusting sample pH to less than 2 with sulfuric acid and chilling, and adding 52 milligrams of mercury (II) chloride per liter of sample and chilling. Field treatments of samples collected for determination of ammonium, nitrate plus nitrite, nitrite, dissolved Kjeldahl nitrogen, orthophosphate, and dissolved phosphorus included 0.45-micrometer membrane filtration. Only total Kjeldahl nitrogen and total phosphorus were determined in unfiltered samples. Data reported here pertain to water samples collected in April and May 1992 from 15 sites within the continental United States. Also included in this report are analytical results for nutrient concentrations in synthetic reference samples that were analyzed concurrently with real samples.

  19. Quality of storm-water runoff, Mililani Town, Oahu, Hawaii, 1980-84

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, C.M.; Lum, M.G.

    1985-01-01

    The data included results from analyses of 300 samples of storm water runoff. Turbidity, suspended solids, Kjeldahl nitrogen, and phosphorus concentrations exceeded the State of Hawaii Department of Health's streamwater standards in more than 50% of the samples. Mercury, lead, and fecal coliform bacteria levels exceeded the US EPAs recommended criteria for either freshwater aquatic life or shellfish harvesting waters in more than half the samples. Other constituents exceeding State or federal standards in at least one sample included pH, cadmium, nitrate plus nitrite, iron, alkalinity, manganese, chromium, copper, zinc, and the pesticides. No statistically significant relationships were found betweenmore » quantity of runoff and concentration of water quality constituents. A first flush effect was observed for chemical oxygen demand, suspended solids, lead, nitrate plus nitrite, fecal coliform bacteria, dissolved solids, and mercury. There were significant differences between the two basins for values of discharge, turbidity, specific conductance, chemical oxygen demand, suspended solids, nitrate plus nitrite, phosphorus, lead, dissolved solids, and mercury. The larger basin had higher median and maximum values, and wider ranges of values. 28 refs., 10 figs., 7 tabs.« less

  20. Water-quality trend analysis and sampling design for the Souris River, Saskatchewan, North Dakota, and Manitoba

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2000-01-01

    The Souris River Basin is a 24,600-square-mile basin located in southeast Saskatchewan, north-central North Dakota, and southwest Manitoba.  The Souris River Bilateral Water Quality Monitoring Group, formed in 1989 by the governments of Canada and the United States, is responsible for documenting trends in water quality in the Souris River and making recommendations for monitoring future water-quality conditions.  This report presents results of a study conducted for the Bilateral Water Quality Monitoring Group by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historic trends in water quality in the Souris River and to determine efficient sampling designs for monitoring future trends.  U.S. Geological Survey and Environment Canada water-quality data collected during 1977-96 from four sites near the boundary crossings between Canada and the United States were included in the trend analysis. A parametric time-series model was developed for detecting trends in historic constituent concentration data.  The model can be applied to constituents that have at least 90 percent of observations above detection limits of the analyses, which, for the Souris River, includes most major ions and nutrients and many trace elements.  The model can detect complex nonmonotonic trends in concentration in the presence of complex interannual and seasonal variability in daily discharge.  A key feature of the model is its ability to handle highly irregular sampling intervals.  For example, the intervals between concentration measurements may be be as short as 10 days to as long as several months, and the number of samples in any given year can range from zero to 36. Results from the trend analysis for the Souris River indicated numerous trends in constituent concentration.  The most significant trends at the two sites located near the upstream boundary crossing between Saskatchewan and North Dakota consisted of increases in concentrations of most major ions, dissolved boron, and dissolved arsenic during 1987-91 and decreases in concentrations of the same constituents during 1992-96.  Significant trends at the two sites located near the downstream boundary crossing between North Dakota and Manitoba included increases in dissolved sodium, dissolved chloride, and total phosphorus during 1977-86, decreases in dissolved oxygen and dissolved boron and increases in total phosphorus and dissolved iron during 1987-91, and a decrease in total phosphorus during 1992-96. The time-series model also was used to determine the sensitivity of various sampling designs for monitoring future water-quality trends in the Souris River.  It was determined that at least two samples per year are required in each of three seasons--March through June, July through October, and November through February--to obtain reasonable sensitivity for detecting trends in each season.  In addition, substantial improvements occurred in sensitivity for detecting trends by adding a third sample for major ions and trace elements in March through June, adding a third sample for nutrients in July through October, and adding a third sample for nutrients, trace elements, and dissolved oxygen in November through February.

  1. Monitoring to assess progress toward meeting the total maximum daily load for phosphorus in the Assabet River, Massachusetts: phosphorus loads, 2008 through 2010

    USGS Publications Warehouse

    Zimmerman, Marc J.; Savoie, Jennifer G.

    2013-01-01

    Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the growing season, median weekly total phosphorus loads ranged from 110 to 190 kilograms (kg) and median weekly orthophosphorus loads ranged from 17 to 41 kg. During the nongrowing season, median weekly total phosphorus loads ranged from 240 to 280 kg and median weekly orthophosphorus loads ranged from 56 to 66 kg. During periods of low and moderate streamflow, estimated loads of total phosphorus upstream from the Hudson impoundment generally exceeded those downstream during the same sampling periods throughout the study; orthophosphorus loads downstream from the impoundment were typically larger than those upstream. When storm runoff substantially increased the streamflow, loads of total phosphorus and orthophosphorus both tended to be larger downstream than upstream. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads were generally larger downstream than upstream during low and moderate streamflow, but the differences were not as pronounced as they were at the Hudson impoundment. High flows were also associated with substantially larger total phosphorus and orthophosphorus loads downstream than those entering the impoundment from upstream. In comparing periods of growing- and nongrowing-season loads, the same patterns of loads entering and leaving were observed at both impoundments. That is, at the Hudson impoundment, total phosphorus loads entering the impoundment were greater than those leaving it, and orthophosphorus loads leaving the impoundment were greater than those entering it. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads leaving the impoundment were greater than those entering it. However, the loads were greater during the nongrowing seasons than during the growing seasons, and the net differences between upstream and downstream loads were about the same. The results indicate that some of the particulate fraction of the total phosphorus loads is sequestered in the Hudson impoundment, where particulate phosphorus probably undergoes some physical and biogeochemical transformations to the dissolved form orthophosphorus. The orthophosphorus may be taken up by aquatic plants or transported out of the impoundments. The results for the Ben Smith impoundment are less clear and suggest net export of total phosphorus and orthophosphorus. Differences between results from the two impoundments may be attributable in part to differences in their sizes, morphology, unmonitored tributaries, riparian land use, and processes within the impoundments that have not been quantified for this study.

  2. Impact assessment of projected climate change on diffuse phosphorous loss in Xin'anjiang catchment, China.

    PubMed

    Zhai, Xiaoyan; Zhang, Yongyong

    2018-02-01

    Diffuse nutrient loss is a serious threat to water security and has severely deteriorated water quality throughout the world. Xin'anjiang catchment, as a main drinking water source for Hangzhou City, has been a national concern for water environment protection with payment for watershed services construction. Detection of diffuse phosphorous (DP) pollution dynamics under climate change is significant for sustainable water quality management. In this study, the impact of projected climate change on DP load was analyzed using SWAT to simulate the future changes of diffuse components (carriers: water discharge and sediment; nutrient: DP) at both station and sub-catchment scales under three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5). Results showed that wetting and warming years were expected with increasing tendencies of both precipitation and temperature in the two future periods (2020s: 2021~2030, 2030s: 2031~2040) except in the 2020s in the RCP2.6 scenario, and the annual average increasing ratios of precipitation and temperature reached - 1.79~3.79% and 0.48~1.27 °C, respectively, comparing with those in the baseline (2000s: 2001~2010). Climate change evidently altered annual and monthly average water discharge and sediment load, while it has a remarkable impact on the timing and monthly value of DP load at station scale. DP load tended to increase in the non-flood season at Yuliang due to strengthened nutrient flushing from rice land into rivers with increasing precipitation and enhanced phosphorous cycle in soil layers with increasing temperature, while it tended to decrease in the flood season at Yuliang and in most months at Tunxi due to restricted phosphorous reaction with reduced dissolved oxygen content and enhanced dilution effect. Spatial variability existed in the changes of sediment load and DP load at sub-catchment scale due to climate change. DP load tended to decrease in most sub-catchments and was the most remarkable in the RCP8.5 scenario (2020s, - 9.00~2.63%; 2030s, - 11.16~7.89%), followed by RCP2.6 (2020s, - 10.00~2.90%; 2030s, - 9.00~6.63%) and RCP4.5 (2020s, - 6.81~5.49%, 2030s, - 10.00~9.09%) scenarios. Decreasing of DP load mainly aggregated in the western and eastern mountainous regions, while it tended to increase in the northern and middle regions. This study was expected to provide insights into diffuse nutrient loss control and management in Xin'anjiang catchment, and scientific references for the implementation of water environmental protection in China.

  3. Nutrient concentrations in Upper and Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and associated outlet streams, California and Nevada, 2002-03

    USGS Publications Warehouse

    Lico, Michael S.

    2004-01-01

    Five lakes and their outlet streams in the Lake Tahoe Basin were sampled for nutrients during 2002-03. The lakes and streams sampled included Upper Echo, Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and Echo, Taylor, and Marlette Creeks. Water samples were collected to determine seasonal and spatial concentrations of dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen, dissolved orthophosphate, total phosphorus, and total bioreactive iron. These data will be used by Tahoe Regional Planning Agency in revising threshold values for waters within the Lake Tahoe Basin. Standard U.S. Geological Survey methods of sample collection and analysis were used and are detailed herein. Data collected during this study and summary statistics are presented in graphical and tabular form.

  4. Phosphorus geochemistry of recent sediments in the South Basin of Lake Winnipeg

    USGS Publications Warehouse

    Mayer, T.; Simpson, S.L.; Thorleifson, L.H.; Lockhart, W.L.; Wilkinson, Philip M.

    2006-01-01

    Lake Winnipeg supports the largest commercial fishery on Canadian Prairies. It has been influenced by a variety of environmental forces and anthropogenic activities. To gain a better understanding of recent changes in nutrient status of the lake, it is important to reconstruct its previous history from sedimentary records. Lacustrine sediments are known to be an important sink of many dissolved and suspended substances, including phosphorus, hence, they provide a permanent historical record of changes occurring in the lake. These changes may be induced by natural factors or by anthropogenic activities in the watershed. Phosphorus profiles from dated sediment cores collected in 1999 and 1994 from the South Basin of Lake Winnipeg were investigated to determine phosphorus enrichment in recent sediments. To interpret the nutrient status and depositional conditions responsible for the trends in total phosphorus, three operationally defined forms of phosphorus (P) were determined: non-apatite inorganic P, apatite P, and organic P. Significant increases in sediment phosphorus concentrations were observed in the uppermost 20 cm of the cores and several anomalies were observed at depth. A doubling in total phosphorus relative to aluminum over the last fifty years is largely due to increases in the non-apatite inorganic fraction, suggesting that much of sedimentary phosphorus increase is attributable to changes in the nutrient status of the water column related to anthropogenic inputs. Organic phosphorus exhibits a subtle increase in the upper 20 cm of the gravity cores, likely due to increases in the primary productivity of the lake. Except for the slight increase in deeper sediments, apatite phosphorus, which is thought to be of detrital origin, remained fairly constant over the length of the cores. Anomalous spikes in phosphorus concentrations deeper in the cores, comprised mainly of the non-apatite inorganic phosphorus fraction, likely resulted from natural variation in local oxidizing conditions, possibly induced by changes in water circulation and/or changes in sediment deposition rates due to climatic variation. The results of this investigation contribute to increased understanding of the depositional history of phosphorus in the lake over the last millennium.

  5. [Nitrogen and phosphorus composition in urban runoff from the new development area in Beijing].

    PubMed

    Li, Li-Qing; Lü, Shu-Cong; Zhu, Ren-Xiao; Liu, Ze-Quan; Shan, Bao-Qing

    2012-11-01

    Stormwater runoff samples were collected from two impervious roof and road of the new development area in Beijing, during three rainfall events in an attempt to characterize the urban runoff and determine nitrogen and phosphorus composition. The outcomes are expected to offer the practical guidance in sources control of urban runoff pollution. The results indicated that the stormwater runoff from the studied area presented a strong first flush for all monitored events and constituents. Eighty percent of the total pollutant loads were transported by the first 10 mm flow volume for roof runoff, whereas 80% of the total pollutant loads were discharged by the first 15 mm flow volume for road runoff. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-) -N and TP for roof runoff were 50.2 mg x L(-1), 81.7 mg x L(-1), 6.07 mg x L(-1), 2.94 mg x L(-1), 1.05 mg x L(-1), and 0.11 mg x L(-1), respectively. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-)-N and TP for road runoff were 539.0 mg x L(-1), 276.4 mg x L(-1), 7.00 mg x L(-1), 1.71 mg x L(-1), 1.51 mg x L(-1), and 0.61 mg x L(-1), respectively. Moreover, for the roof runoff, the particle-bound fraction was 20.8% for COD, 12.3% for TN, and 49.7% for TP. For road runoff, the particle-bound fraction was 68.6% for COD, 20.0% for TN, and 73.6% for TP. Nitrogen in roof runoff was predominantly dissolved (87.7%), with ammonia (57.6%) and nitrate (22.5%). Nitrogen in road runoff was also predominantly dissolved (80.0%), with ammonia (42.1%) and nitrate (35.0%). These findings can assist the development of effective source control strategies to immobilize dissolved and particulate-bound nitrogen/phosphorus in urban stormwater.

  6. Potential export of soluble reactive phosphorus from a coastal wetland in a cold-temperate lagoon system: Buffer capacities of macrophytes and impact on phytoplankton.

    PubMed

    Berthold, M; Karstens, S; Buczko, U; Schumann, R

    2018-03-01

    The main pathways for phosphorus flux from land to sea are particle-associated (erosion) and dissolved runoff (rivers, groundwater, and agricultural drainage systems). These pathways can act as diffused sources for aquatic systems and support primary production, therefore, counteracting the efforts aimed at reducing phosphorus input from point sources such as sewage treatment plants. Phosphorus supports primary production in the water column and can elevate phytoplankton and macrophyte growth. Coastal wetlands with emerged (Phragmites australis) and submerged (Stuckenia pectinata and Chara sp.) macrophytes can affect phosphorus fluxes in the land-water transitional zone. The macrophytes have the potential to act as a buffer for phosphorus run-off. The aim of this study was to determine the phosphorus stocks in the transitional land-sea zone of a cold temperate lagoon at the southern Baltic Sea. Phosphorus in macrophytes, water samples, and phytoplankton growth were analyzed along a gradient moving away from the wetland. The phosphorus stocks in the above ground biomass of the Phragmites plants were the highest at the end of August and with more than 8000mgPm -2 in the interior zone of the wetland, threefold the amount of P in Phragmites plant tissue at the wetland fringe. The submerged macrophytes stored only 300mgPm -2 , close to the wetland. Concentrations of soluble reactive phosphorus in the water column were higher in the zones of emerged macrophytes than in the zones of submerged macrophytes and decreased along the land-sea transect. Phytoplankton could grow proximal to the wetland during all seasons, but not further away. This study indicates that macrophytes can act as phosphorus sinks. However, short-term releases of phosphate within the Phragmites wetland have the potential to lead to phytoplankton growth. Phytoplankton can use these nutrient pulses either immediately or later, and support high biomass and turbidity within the system. Copyright © 2017. Published by Elsevier B.V.

  7. Trends in phosphorus loading to the western basin of Lake ...

    EPA Pesticide Factsheets

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable

  8. Scientifically Derived Phosphorus Loading Objective and Adaptive Watershed Management for Lake Simcoe, Canada

    NASA Astrophysics Data System (ADS)

    Winter, J. G.; Walters, M.; Willox, C.

    2005-05-01

    The recruitment failure of native cold-water fish in Lake Simcoe, Canada, has been attributed to a three-fold increase in phosphorus (P) loading from pre-settlement rates and consequent oxygen depletion in the hypolimnion and spawning shoal degradation. These water quality concerns led to a multi-agency partnership, the Lake Simcoe Environmental Management Strategy, whose goals include reducing phosphorus loading to the lake and restoring a self-sustaining cold-water fishery. A targeted end-of-summer hypolimnetic dissolved oxygen concentration (DO) was related to phosphorus loading rate through a series of intermediary relationships among trophic state variables using an empirical modeling approach to derive a phosphorus loading objective. The proposed P loading target of 75 metric tons/year is predicted to generate a P concentration of 0.01 mg/L and an end-of-summer hypolimnetic DO of 5 mg/L. The 5mg/L target is considered a significant interim step towards the goal of 7mg/L, a threshold above which cold-water fish recruitment should no longer be impaired. This model is presently being evaluated using data collected from 1980 to 2004 and will be compared to a three-dimensional mechanistic lake model. An adaptive watershed management approach is employed to meet the phosphorus loading target, linking scientific assessments to implementation activities and incorporating community education.

  9. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns

    USGS Publications Warehouse

    Zhang, Qian; Ball, William P.; Moyer, Douglas

    2016-01-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring.

  10. Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta

    NASA Astrophysics Data System (ADS)

    Masamba, Wellington R. L.; Mazvimavi, Dominic

    Botswana is a semiarid country and yet has one of the world’s famous wetlands: the Okavango Delta. The Thamalakane-Boteti River is one of the Delta’s outlets. The water quality of the Thamalakane-Boteti River was determined and related to its utilisation. The major land uses along the Thamalakane River within Maun are residential areas, lodges, hotels, and grazing by cattle and donkeys. The water is used as a source of water for livestock, wildlife in a game park, horticulture and domestic applications including drinking. The river is also used for fishing. To check whether these activities negatively impact on the water quality, pH, electrical conductivity, dissolved oxygen, temperature, total dissolved nitrogen and phosphorus, Faecal coliforms and Faecal streptococci and selected metals were determined from July 2005 to January 2006. The pH was near neutral except for the southern most sampling sites where values of up to 10.3 were determined. Dissolved oxygen varied from 2 mg/l to 8 mg/l. Sodium (range 0.6-3.2 mg/l), K (0.3-3.6 mg/l), Fe (1.6-6.9 mg/l) conductivity (56-430 μS/cm) and Mg (0.2-6.7 mg/l) increased with increased distance from the Delta, whereas lead showed a slight decline. Total dissolved phosphorus was low (up to 0.02 mg/l) whereas total dissolved nitrogen was in the range 0.08-1.5 mg/l. Faecal coliform (range 0-48 CFU/100 ml) and Faecal streptococci (40-260 CFU/100 ml) were low for open waters with multiple uses. The results indicate that there is possibility of pollution with organic matter and nitrogen. It is recommended that more monitoring of water quality needs to be done and the sources of pollution identified.

  11. Dissolved Phosphorus Pools and Alkaline Phosphatase Activity in the Euphotic Zone of the Western North Pacific Ocean

    PubMed Central

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L-1, chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62–92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22–39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean. PMID:22457661

  12. Decreasing phosphorus runoff losses from land-applied poultry litter with dietary modifications and alum addition.

    PubMed

    Smith, Douglas R; Moore, P A; Miles, D M; Haggard, B E; Daniel, T C

    2004-01-01

    Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.

  13. Application of ceramic membranes for microalgal biomass accumulation and recovery of the permeate to be reused in algae cultivation.

    PubMed

    Nędzarek, Arkadiusz; Drost, Arkadiusz; Harasimiuk, Filip; Tórz, Agnieszka; Bonisławska, Małgorzata

    2015-12-01

    The present study was carried out to investigate the possibility of using ceramic membranes for microalgal biomass densification and to evaluate the qualitative composition of the permeate as a source of nitrogen and phosphorus for microalgae cultivated in a closed system. The studies were conducted on the microalga Monoraphidium contortum. The microfiltration process was carried out on a quarter-technical scale using ceramic membranes with 1.4 μm, 300 and 150 kDa cut-offs. Permeate flux and respective hydraulic resistances were calculated. Dissolved inorganic nitrogen and phosphorus fractions were measured in the feed and the permeate. It was noted that the permeate flux in the MF process was decreasing while the values of reversible and irreversible resistances were increasing as the cut-off of the studied membranes was diminishing. An analysis of the hydraulic series resistance showed that using a 300 kDa membrane would be the most beneficial, as it was characterized by a comparatively high permeate flux (Jv=1.68 10(-2)m(3)/m(2)s), a comparatively low susceptibility to irreversible fouling (1.72·10(9) 1/m) and a high biomass retention coefficient (91%). The obtained permeate was characterized by high concentrations of dissolved nitrogen and phosphorus forms, which indicated that it could be reused in the process of microalgal biomass production. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents.

    PubMed

    Nóbrega, G N; Otero, X L; Macías, F; Ferreira, T O

    2014-09-01

    Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity.

  15. New applications of laser-induced breakdown and stand-off Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Snyder, Marion Lawrence

    Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE detection. A small, transportable, telescope-based standoff Raman system is demonstrated for detection of HE materials, including RDX, TNT, and PETN, and simulants at distances up to 50 meters in ambient light conditions. Possible detection limits on the hundreds of parts-per-million level and detection ranges of hundreds of meters are suggested. Merits of pulsed laser excitation sources and intensified charge-coupled devices (ICCD) for detection are discussed.

  16. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    PubMed

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  17. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    PubMed

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH 3 -N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCOD Cr /g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCOD Cr ; specific growth rate (µ), 0.06 d -1 ; specific nitrification rate (SNR), 0.49 mg NH 3 -N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase chain reaction; RE: removal efficiency; SBR: sequencing batch reactor; SD: standard deviation; SDNR: specific denitrification rate; SNR: specific nitrification rate; SPUR: specific phosphate uptake rate; SRT: solids retention time; T-N: total nitrogen; T-P: total phosphorus; (V)SS: (volatile) suspended solids; w.w.: wet weight.

  18. Riverine and wet atmospheric inputs of materials to a North Africa coastal site (Annaba Bay, Algeria)

    NASA Astrophysics Data System (ADS)

    Ounissi, Makhlouf; Amira, Aicha Beya; Dulac, François

    2018-07-01

    This study simultaneously assesses for the first time the relative contributions of riverine and wet atmospheric inputs of materials into the Algerian Annaba Bay on the Mediterranean coast of North Africa. Surface water sampling and water discharge estimates were performed weekly in 2014 at the outlets of the Mafragh River (MR) and Seybouse River (SR). Riverine samples were analyzed for dissolved nutrients and particulate matter (suspended particulate matter: SPM; particulate organic carbon: POC; biogenic silica: BSi; chlorophyll a: Chl a; particulate organic nitrogen: PON and particulate organic phosphorus (POP). Rainwater samples were jointly collected at a close weather station on a daily basis and analyzed for dissolved nutrients. The rainwater from the Annaba region was characterized by high concentrations of phosphate (PO4) and silicic acid (Si(OH)4) that are several times the average Mediterranean values, and by strong deposition fluxes. Conversely, the levels of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) and associated fluxes were remarkably low. The dissolved nutrient fluxes for the two catchments were low following the lowering of the river flows, but those of particulate matter (POC, Chl a, BSi) displayed significant amounts, especially for the MR catchment. BSi and POP represented approximately a third of the total silicon and total phosphorus fluxes, respectively. The levels of dissolved N and P in the MR water were comparable to those in rainwater. MR appeared to be a nearly pristine ecosystem with low nutrient levels and almost balanced N:P and Si:N ratios. SR water had low Si(OH)4 levels but was highly charged with NH4 and PO4 and showed unbalanced N:P and Si:N ratios in almost all samples. These conditions have resulted in large phytoplankton biomasses, which may lead to eutrophication. More importantly, the rainwater was identified as a relevant source of fertilizers for marine waters and agricultural land in the Annaba area and can partially balance the loss of Si(OH)4 from rivers to the bay due to dam retention.

  19. Water quality of the lower Columbia River basin; analysis of current and historical water-quality data through 1994

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Tanner, Dwight Q.; Morace, Jennifer L.; McKenzie, Stuart W.; Skach, Kenneth A.

    1996-01-01

    Trend tests showed significant (r < 0.05) downward trends from 1973 to 1994 for three constituents at the Columbia River at Warrendale: phosphorus in unfiltered water, total dissolved solids, and specific conductance. These trends may be a consequence of more conservative agricultural practices in the area upstream from Warrendale.

  20. Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1987-01-01

    A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)

  1. Rainfall-runoff relationships and water-quality assessment of Coon Creek watershed, Anoka County, Minnesota

    USGS Publications Warehouse

    Arntson, A.D.; Tornes, L.H.

    1985-01-01

    Water-quality characteristics were determined based on 14 water samples from 4 sites and 1 bottom-mate rial sample from each site. Results of the analyses indicated that streams draining urban areas carry the highest concentrations of most constituents sampled. Sand Creek at Xeon Boulevard, which drains the most urbanized area, had the highest mean concentration of metals, chloride, dissolved solids, and suspended sediment. Concentrations of total phosphorus ranged from 0.04 to 0.43 milligram per liter at the rural sites on County Ditch 58 at Andover Boulevard and Coon Creek at Raddison Road. Average phosphorus concentrations at the rural sites are comparable to concentrations at the urban sites.

  2. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits

    USGS Publications Warehouse

    Hein, J.R.; Hsueh-Wen, Yeh; Gunn, S.H.; Sliter, W.V.; Benninger, L.M.; Chung-Ho, Wang

    1993-01-01

    The phosphorites occur in a wide variety of forms, but most commonly carbonate fluorapatite (CFA) replaced middle Eocene and older carbonate sediment in a deep water environment (>1000 m). Element ratios distinguish seamount phosphorites from continental margin, plateau, and insular phosphorites. Uranium and thorium contents are low and total rare earch element (REE) contents are generally high. The paleoceanographic conditions initiated and sustained development of phosphorite by accumulation of dissolved phosphorus in the deep sea during relatively stable climatic conditions when oceanic circulation was sluggish. Fluctuations in climate, sealevel, and upwelling that accompanied the climate transitions may have driven cycles of enrichment and depletion of the deep-sea phosphorus reservoir. -from Authors

  3. Occurrence of phosphorus, nitrate, and suspended solids in streams of the Cheney Reservoir Watershed, south-central Kansas, 1997-2000

    USGS Publications Warehouse

    Milligan, Chad R.; Pope, Larry M.

    2001-01-01

    Improving water quality of Cheney Reservoir in south-central Kansas is an important objective of State and local water managers. The reservoir serves as a water supply for about 350,00 people in the Wichita area and an important recreational resource for the area. In 1992, a task force was formed to study and prepare a plan to identify and mitigate potential sources of stream contamination in the Cheney Reservoir watershed. This task force was established to develop stream-water-quality goals to aid in the development and implementation of best-management practices in the watershed. In 1996, the U.S. Geological Survey entered into a cooperative study with the city of Wichita to assess the water quality in the Cheney Reservoir watershed. Water-quality constituents of particular concern in the Cheney Reservoir watershed are phosphorus, nitrate, and total suspended solids. Water-quality samples were collected at five streamflow-gaging sites upstream from the reservoir and at the outflow of the reservoir. The purpose of this report is to present the results of a 4-year (1997-2000) data-collection effort to quantify the occurrence of phosphorus, nitrate, and suspended solids during base-flow, runoff, and long-term streamflow conditions (all available data for 1997-2000) and to compare these results to stream-water-quality goals established by the Cheney Reservoir Task Force. Mean concentrations of each of the constituents examined during this study exceeded the Cheney Reservoir Task Force stream-water-quality goal for at least one of the streamflow conditions evaluated. Most notably, mean base-flow and mean long-term concentrations of total phosphorus and mean base-flow concentrations of dissolved nitrate exceeded the goals of 0.05, 0.10, and 0.25 milligram per liter, respectively, at all five sampling sites upstream from the reservoir. Additionally, the long-term stream-water-quality goal for dissolved nitrate was exceeded by the mean concentration at one upstream sampling site, and the base-flow total suspended solids goal (20 milligrams per liter) and long-term total suspended solids goal (100 milligrams per liter) were each exceeded by mean concentrations at three upstream sampling sites. Generally, it seems unlikely that water-quality goals for streams in the Cheney Reservoir watershed will be attainable for mean base-flow and mean long-term total phosphorus and total suspended solids concentrations and for mean base-flow dissolved nitrate concentrations as long as current (2001) watershed conditions and practices persist. However, future changes in these conditions and practices that mitigate the transport of these consitutents may modify this conclusion.

  4. Selected papers in the hydrologic sciences, 1986

    USGS Publications Warehouse

    Subitzky, Seymour

    1987-01-01

    Water-quality data from long-term (24 years), fixed- station monitoring at the Cape Fear River at Lock 1 near Kelly, N.C., and various measures of basin development are correlated. Subbasin population, number of acres of cropland in the subbasin, number of people employed in manufacturing, and tons of fertilizer applied in the basin are considered as measures of basinwide development activity. Linear correlations show statistically significant posi- tive relations between both population and manufacturing activity and most of the dissolved constituents considered. Negative correlations were found between the acres of harvested cropland and most of the water-quality measures. The amount of fertilizer sold in the subbasin was not statistically related to the water-quality measures considered in this report. The statistical analysis was limited to several commonly used measures of water quality including specific conductance, pH, dissolved solids, several major dissolved ions, and a few nutrients. The major dissolved ions included in the analysis were calcium, sodium, potassium, magnesium, chloride, sulfate, silica, bicarbonate, and fluoride. The nutrients included were dissolved nitrite plus nitrate nitrogen, dissolved ammonia nitrogen, total nitrogen, dissolved phosphates, and total phosphorus. For the chemicals evaluated, manufacturing and population sources are more closely associated with water quality in the Cape Fear River at Lock 1 than are agricultural variables.

  5. Effects of nitrogen and phosphorus on anatoxin-a, homoanatoxin-a, dihydroanatoxin-a and dihydrohomoanatoxin-a production by Phormidium autumnale.

    PubMed

    Heath, Mark W; Wood, Susanna A; Barbieri, Rafael F; Young, Roger G; Ryan, Ken G

    2014-12-15

    Anatoxins are powerful neuromuscular blocking agents produced by some cyanobacteria. Consumption of anatoxin-producing cyanobacterial mats or the water containing them has been linked to numerous animal poisonings and fatalities worldwide. Despite this health risk, there is a poor understanding of the environmental factors regulating anatoxin production. Non-axenic Phormidium autumnale strain CAWBG557 produces anatoxin-a (ATX), homoanatoxin-a (HTX) and their dihydrogen-derivatives dihydroanatoxin-a (dhATX) and dihydrohomoanatoxin-a (dhHTX). The effects of varying nitrogen and phosphorus concentrations on the production of these four variants were examined in batch monocultures. The anatoxin quota (anatoxin per cell) of all four variants increased up to four fold in the initial growth phase (days 0-9) coinciding with the spread of filaments across the culture vessel during substrate attachment. Dihydroanatoxin-a and dhHTX, accounted for over 60% of the total anatoxin quota in each nitrogen and phosphorus treatment. This suggests they are being internally synthesised and not just derived following cell lysis and environmental degradation. The four anatoxin variants differed in their response to varying nitrogen and phosphorus concentrations. Notably, dhATX quota significantly decreased (P ≤ 0.03) when nitrogen and phosphorus concentrations were elevated (nitrogen = 21 mg L(-1); phosphorus = 3 mg L(-1)), while HTX quota increased when the phosphorus concentrations were reduced (ca. < 0.08 mg L(-1)). This is of concern as HTX has a high toxicity and anatoxin producing P. autumnale blooms in New Zealand usually occur in rivers with low water column dissolved reactive phosphorus. Copyright © 2014. Published by Elsevier Ltd.

  6. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  7. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  8. Data from synoptic water-quality studies on the Colorado River in the Grand Canyon, Arizona, November 1990 and June 1991

    USGS Publications Warehouse

    Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.

    1996-01-01

    Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.

  9. Water quality of the tidal Potomac River and estuary hydrologic data report, 1980 water year

    USGS Publications Warehouse

    Blanchard, Stephen; Coupe, R.H.; Woodward, J.C.

    1982-01-01

    This report contains data on the physical and chemical properties measured in the Tidal Potomac River and Estuary during the 1980 Water Year. Data were collected routinely at five stations, and periodically at 17 stations including three stations near the mouth of the Potomac River in Chesapeake Bay. Each of the five stations represent a cross section through which the transport of selected dissolved and suspended materials can be computed. The remaining stations represent locations at which data were collected for special synoptic studies such as salt water migration, and dissolved oxygen dynamics. Routinely, samples were analyzed for silica, nitrogen, phosphorus, chlorophyll-a, pheophytin, and suspended sediment. Additional samples were analyzed for organic carbon, calcium, manganese, magnesium, sodium, alkalinity, sulfate, iron, potassium, chloride, fluoride, seston, algal growth potential, adenosine triphosphate, nitrifying bacteria and dissolved-solids residue. In addition, solar radiation measurements and in-situ measurements of dissolved oxygen, specific conductance, pH, temperature, and Secchi disk transparency are reported. (USGS)

  10. Modeling the relative importance of nutrient and carbon loads ...

    EPA Pesticide Factsheets

    The Louisiana continental shelf (LCS) in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In order to gain a more fundamental understanding of the controlling factors leading to hypoxia, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM) was applied to this area to simulate dissolved oxygen concentrations in the water as a function of various nutrient loadings. The model is a numerical, biogeochemical, three-dimensional ecological model that receives its physical transport data from the Navy Coastal Ocean Model (NCOM-LCS). GoMDOM was calibrated to a large set of nutrient, phytoplankton, dissolved oxygen, sediment nutrient flux, sediment oxygen demand (SOD), primary production, and respiration data collected in 2006 and corroborated with field data collected in 2003. The primary objective was to use the model to estimate a nutrient load reduction of both nitrogen and phosphorus necessary to reduce the size of the hypoxic area to 5,000 km2, a goal established in the 2008 Gulf of Mexico Hypoxia Action Plan prepared by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Using the year 2006 as a test case, the model results suggest that the nitrogen and phosphorus load reduction from the Atchafalaya and Mississippi River basins would need to be reduced by 64% to achieve the target hypoxia area. The Louisiana continental shelf (LCS) in the northern part of the Gulf of Mexico has a history of subsurface hypoxia in the summer.

  11. Water quality of Lake Austin and Town Lake, Austin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less

  12. Water-quality trend analysis and sampling design for the Devils Lake Basin, North Dakota, January 1965 through September 2003

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2006-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, the Devils Lake Basin Joint Water Resource Board, and the Red River Joint Water Resource District, to analyze historical water-quality trends in three dissolved major ions, three nutrients, and one dissolved trace element for eight stations in the Devils Lake Basin in North Dakota and to develop an efficient sampling design to monitor the future trends. A multiple-regression model was used to detect and remove streamflow-related variability in constituent concentrations. To separate the natural variability in concentration as a result of variability in streamflow from the variability in concentration as a result of other factors, the base-10 logarithm of daily streamflow was divided into four components-a 5-year streamflow anomaly, an annual streamflow anomaly, a seasonal streamflow anomaly, and a daily streamflow anomaly. The constituent concentrations then were adjusted for streamflow-related variability by removing the 5-year, annual, seasonal, and daily variability. Constituents used for the water-quality trend analysis were evaluated for a step trend to examine the effect of Channel A on water quality in the basin and a linear trend to detect gradual changes with time from January 1980 through September 2003. The fitted upward linear trends for dissolved calcium concentrations during 1980-2003 for two stations were significant. The fitted step trends for dissolved sulfate concentrations for three stations were positive and similar in magnitude. Of the three upward trends, one was significant. The fitted step trends for dissolved chloride concentrations were positive but insignificant. The fitted linear trends for the upstream stations were small and insignificant, but three of the downward trends that occurred during 1980-2003 for the remaining stations were significant. The fitted upward linear trends for dissolved nitrite plus nitrate as nitrogen concentrations during 1987-2003 for two stations were significant. However, concentrations during recent years appear to be lower than those for the 1970s and early 1980s but higher than those for the late 1980s and early 1990s. The fitted downward linear trend for dissolved ammonia concentrations for one station was significant. The fitted linear trends for total phosphorus concentrations for two stations were significant. Upward trends for total phosphorus concentrations occurred from the late 1980s to 2003 for most stations, but a small and insignificant downward trend occurred for one station. Continued monitoring will be needed to determine if the recent trend toward higher dissolved nitrite plus nitrate as nitrogen and total phosphorus concentrations continues in the future. For continued monitoring of water-quality trends in the upper Devils Lake Basin, an efficient sampling design consists of five major-ion, nutrient, and trace-element samples per year at three existing stream stations and at three existing lake stations. This sampling design requires the collection of 15 stream samples and 15 lake samples per year rather than 16 stream samples and 20 lake samples per year as in the 1992-2003 program. Thus, the design would result in a program that is less costly and more efficient than the 1992-2003 program but that still would provide the data needed to monitor water-quality trends in the Devils Lake Basin.

  13. Water quality in the Bear River Basin of Utah, Idaho, and Wyoming prior to and following snowmelt runoff in 2001

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, Lawrence E.

    2006-01-01

    Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.

  14. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).

  15. Effects of urbanization on water quality in the Kansas River, Shunganunga Creek Basin, and Soldier Creek, Topeka, Kansas, October 1993 through September 1995

    USGS Publications Warehouse

    Pope, L.M.; Putnam, J.E.

    1997-01-01

    A study of urban-related water-qulity effects in the Kansas River, Shunganunga Creek Basin, and Soldier Creek in Topeka, Kansas, was conducted from October 1993 through September 1995. The purpose of this report is to assess the effects of urbanization on instream concentrations of selected physical and chemical constituents within the city of Topeka. A network of seven sampling sites was established in the study area. Samples principally were collected at monthly intervals from the Kansas River and from the Shunganunga Creek Basin, and at quarterly intervals from Soldier Creek. The effects of urbanization werestatistically evaluated from differences in constituent concentrations between sites on the same stream. No significant differences in median concentrations of dissolved solids, nutrients, or metals and trace elements, or median densities offecal bacteria were documented between sampling sites upstream and downstream from the major urbanized length of the Kansas River in Topeka.Discharge from the city's primary wastewater- treatment plant is the largest potential source of contamination to the Kansas River. This discharge increased concentrations of dissolved ammonia, totalphosphorus, and densities of fecal bacteria.Calculated dissolved ammonia as nitrogen concentrations in water from the Kansas River ranged from 0.03 to 1.1 milligrams per liter after receiving treatment-plant discharge. However, most of the calculated concentrations wereconsiderably less than 50 percent of Kansas Department of Health and Environment water- quality criteria, with a median value of 20 percent.Generally, treatment-plant discharge increased calculated total phosphorus concentrations in water from the Kansas River by 0.01 to 0.04 milligrams per liter, with a median percentage increase of 7.6 percent. The calculated median densities of fecal coliform and fecal Streptococci bacteria in water from the Kansas River increased from 120 and 150colonies per 100 milliliters of water, respectively, before treatment-plant discharge to a calculated 4,900 and 4,700 colonies per 100 milliliters of water, respectively, after discharge. Median concentrations of dissolved solids were not significantly different between three sampling sites in the Shunganunga Creek Basin. Median concentrations of dissolved nitrate as nitrogen, total phosphorus, and dissolved orthophosphate were significantly larger in water from the upstream- most Shunganunga Creek sampling site than in water from either of the other sampling sites in the Shunganunga Creek Basin probably because of the site's proximity to a wastewater-treatment plant.Median concentrations of dissolved nitrate as nitrogen and total phosphorus during 1993-95 at upstream sampling sites were either significantlylarger than during 1979-81 in response to increase of wastewater-treatment plant discharge or smaller because of the elimination of wastewater-treatment plant discharge. Median concentrations of dissolved ammonia as nitrogen were significantly less during 1993-95 than during 1979-81. Median concentrations of total aluminum, iron, maganese, and molybdenum were significantly larger in water from the downstream-mostShunganunga Creek sampling site than in water from the upstream-most sampling site. This probably reflects their widespread use in the urbanenvironment between the upstream and downstream Shunganunga Creek sampling sites. Little water-quality effect from the urbanization was indicated by results from the Soldier Creek sampling site. Median concentrations of most water-quality constituents in water from this sampling site were the smallest in water from any sampling site in the study area. Herbicides were detected in water from all sampling sites. Some of the more frequently detected herbicides included acetochlor, alachlor,atrazine, cyanazine, EPTC, metolachlor, prometon, simazine, and tebuthiuron. Detected insecticides including chlordane,

  16. Effect of residential development on stream phosphorus dynamics in headwater suburbanizing watersheds of southern Ontario, Canada.

    PubMed

    Duval, Tim P

    2018-10-01

    Suburban landscapes are known to have degraded water quality relative to natural settings, including increased total phosphorus (TP) levels; however, the effect of subdivision construction activities on stream TP dynamics are less understood. This study measured TP and its constituents particulate, dissolved organic, and dissolved inorganic phosphorus (PP, DOP, and DIP, respectively) in two headwater streams of contrasting urbanization activity to examine whether the land-use conversion process itself contributed to TP concentrations and export. The nested watershed undergoing significant active residential community construction contained large areas of cleared former agricultural field and associated sediment mounds with elevated soil TP (~1000 mg kg -1 ), and twice as many stormwater management (SWM) ponds than the watershed with completed suburban communities. Daily stream sampling for six months revealed limited differences in TP between urbanized and urbanizing watersheds regardless of season or stream flow condition; however, the forms of TP varied significantly. The proportion of TP as DOP was consistently higher in the urbanizing stream relative to the urban stream, which was in line with significant decreases in DOP concentration as proportion of cleared former agricultural land decreased and density of SWM ponds increased. The DOP, and to a lesser extent DIP and PP, dynamics resulted in a 2.5× greater areal export of TP from a small watershed actively being suburbanized during the study period compared to the larger watershed with greater land urbanized 3-5 years ago. The results of this study suggest stream TP concentrations are relatively unresponsive to active versus established suburban cover, but the forms of TP can be quite different, and the period of home construction can increase phosphorus (P) delivery to and export through nearby streams. This information can aid land managers and urban planners update best management practices to mitigate the transfer of terrestrial P to the aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Occurrence of dissolved solids, nutrients, atrazine, and fecal coliform bacteria during low flow in the Cheney Reservoir watershed, south-central Kansas, 1996

    USGS Publications Warehouse

    Christensen, V.G.; Pope, L.M.

    1997-01-01

    A network of 34 stream sampling sites was established in the 1,005-square-mile Cheney Reservoir watershed, south-central Kansas, to evaluate spatial variability in concentrations of selected water-quality constituents during low flow. Land use in the Cheney Reservoir watershed is almost entirely agricultural, consisting of pasture and cropland. Cheney Reservoir provides 40 to 60 percent of the water needs for the city of Wichita, Kansas. Sampling sites were selected to determine the relative contribution of point and nonpoint sources of water-quality constituents to streams in the watershed and to identify areas of potential water-quality concern. Water-quality constituents of interest included dissolved solids and major ions, nitrogen and phosphorus nutrients, atrazine, and fecal coliform bacteria. Water from the 34 sampling sites was sampled once in June and once in September 1996 during Phase I of a two-phase study to evaluate water-quality constituent concentrations and loading characteristics in selected subbasins within the watershed and into and out of Cheney Reservoir. Information summarized in this report pertains to Phase I and was used in the selection of six long-term monitoring sites for Phase II of the study. The average low-flow constituent concentrations in water collected during Phase I from all sampling sites was 671 milligrams per liter for dissolved solids, 0.09 milligram per liter for dissolved ammonia as nitrogen, 0.85 milligram per liter for dissolved nitrite plus nitrate as nitrogen, 0.19 milligram per liter for total phosphorus, 0.20 microgram per liter for dissolved atrazine, and 543 colonies per 100 milliliters of water for fecal coliform bacteria. Generally, these constituents were of nonpoint-source origin and, with the exception of dissolved solids, probably were related to agricultural activities. Dissolved solids probably occur naturally as the result of the dissolution of rocks and ancient marine sediments containing large salt deposits. Nutrients also may have resulted from point-source discharges from wastewater-treatment plants. An examination of water-quality characteristics during low flow in the Cheney Reservoir watershed provided insight into the spatial variability of water-quality constituents and allowed for between-site comparisons under stable-flow conditions; identified areas of the watershed that may be of particular water-quality concern; provided a preliminary evaluation of contributions from point and nonpoint sources of contamination; and identified areas of the watershed where long-term monitoring may be appropriate to quantify perceived water-quality problems.

  18. Mineral fertilizer and manure effects on leached inorganic nitrogen, nitrate isotopic composition, phosphorus, and dissolved organic carbon under furrow irrigation

    USDA-ARS?s Scientific Manuscript database

    To improve nitrogen (N) use efficiency in irrigated agriculture, a better understanding is needed of mineral fertilizer and manure effects on nutrient leaching in a furrow irrigated silt loam in southern Idaho. In this 2003-to-2006 field study, we measured deep percolation fluxes at 1.2-m depth and...

  19. Water quality in the St Croix National Scenic Riverway, Wisconsin

    USGS Publications Warehouse

    Graczyk, D.J.

    1986-01-01

    Yields for suspended sediment, total phosphorus, total nitrogen, and dissolved solids at the study stations were consistently lower than at other stations in the State. Suspendedsediment yields ranged from 1.9 to 13.3 tons per square mile. The average suspended-sediment yield for Wisconsin is 80 tons per square mile. Total phosphorous and the other constituents exhibited the same trend.

  20. Functional evaluation of pollutant transformation in sediment from combined sewer system.

    PubMed

    Shi, Xuan; Ngo, Huu Hao; Sang, Langtao; Jin, Pengkang; Wang, Xiaochang C; Wang, Guanghua

    2018-07-01

    In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from -80 mV to -340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Changchun; Liu, Deyan; Song, Yanyu; Yang, Guisheng; Wan, Zhongmei; Li, Yingchen; Xu, Xiaofeng

    2011-03-01

    Anthropogenic activities have increased phosphorus (P) inputs to wetland ecosystems. However, little is known about the effect of P enrichment on soil respiration in these ecosystems. To understand the effect of P enrichment on soil respiration, we conducted a field experiment in Calamagrostis angustifolia-dominated freshwater marshes, the Sanjiang Plain, Northeast China. We investigated soil respiration in the first growing season after P addition at four rates (0, 1.2, 4.8 and 9.6 g P m-2 year-1). In addition, we also examined aboveground biomass, soil labile C fractions (dissolved organic C, DOC; microbial biomass C, MBC; easily oxidizable C, EOC) and enzyme activities (invertase, urease and acid phosphatase activities) following one year of P addition. P addition decreased soil respiration during the growing season. Dissolved organic C in soil pore water increased after P addition at both 5 and 15 cm depths. Moreover, increased P input generally inhibited soil MBC and enzyme activities, and had no effects on aboveground biomass and soil EOC. Our results suggest that, in the short-term, soil respiration declines under P enrichment in C. angustifolia-dominated freshwater marshes of Northeast China, and its extent varies with P addition levels.

  2. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the Boise River measured at Parma do not constitute all of the increase in nutrient and sediment loads in the Snake River between the upstream and downstream sites. Surrogate models were developed using a combination of continuously monitored variables to estimate concentrations of nutrients and suspended sediment when samples were not possible. The surrogate models explained from 66 to 95 percent of the variability in nutrient and suspended sediment concentrations, depending on the site and model. Although the surrogate models could not always represent event-based changes in modeled parameters, they generally were successful in representing seasonal and annual patterns. Over a longer period, the surrogate models could be a useful tool for measuring compliance with state and site-specific water-quality standards and TMDL targets, for representing daily and seasonal variability in constituents, and for assessing effects of phosphorus reduction measures within the watershed.

  3. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  4. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  5. Insights into Seasonal Variations in Phosphorus Concentrations and Cycling in Monterey Bay

    NASA Astrophysics Data System (ADS)

    Kong, M.; Defforey, D.; Paytan, A.; Roberts, K.

    2014-12-01

    Phosphorus (P) is an essential nutrient for life as it is a structural constituent in many cell components and a key player in cellular energy metabolism. Therefore, P availability can impact primary productivity. Here we quantify dissolved and particulate P compounds and trace P sources and cycling in Monterey Bay over the course of a year. This time series gives insights into monthly and seasonal variations in the surface water chemistry of this region. Preliminary characterization of seawater samples involves measuring total P and soluble reactive P (SRP) concentrations. 31P nuclear magnetic resonance spectroscopy (31P NMR) is used to determine the chemical structure of organic phosphorus compounds present in surface seawater. The isotopic signature of phosphatic oxygen (δ18Op) is used as a proxy for studying P cycling and sources. Oxygen isotope ratios in phosphate are determined by continuous-flow isotope mass ratio spectrometry (CF-IRMS) following purification of dissolved P from seawater samples and precipitation as silver phosphate. We expect to observe seasonal changes in P concentrations, as well as differences in organic P composition and P sources. The chemical structure of organic P compounds will affect their bioavailability and thus the extent to which they can fuel primary productivity in Monterey Bay. δ18Op will reflect source signatures and provide information on turnover rates of P in surface waters. Results from this work will provide valuable insights into seasonal changes in P cycling in surface waters and have important implications for understanding primary productivity in the Monterey Bay ecosystem.

  6. Subsurface transport of orthophosphate in five agricultural watersheds, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Johnson, Henry M.

    2011-01-01

    Concentrations of dissolved orthophosphate (ortho P) in the unsaturated zone, groundwater, tile drains, and groundwater/stream water interfaces were assessed in five agricultural watersheds to determine the potential for subsurface transport. Concentrations of iron oxides were measured in the aquifer material and adsorption of ortho P on oxide surfaces was assessed by geochemical modeling. Attenuation of ortho P in these aquifers was attributed primarily to sorption onto iron oxides, and in one location onto clay minerals. Only one location showed a clear indication of phosphorus transport to a stream from groundwater discharge, although groundwater did contribute to the stream load elsewhere. Subsurface ortho P movement at a site in California resulted in a plume down gradient from orchards, which was attenuated by a 200 m thick riparian zone with natural vegetation. Iron oxides had an effect on phosphorus movement and concentrations at all locations, and groundwater chemistry, especially pH, exerted a major control on the amount of phosphorus adsorbed. Groundwater pH at a site in Maryland was below 5 and that resulted in complete sequestration of phosphorus and no movement toward the stream. Geochemical modeling indicated that as the surfaces approached saturation, groundwater concentrations of ortho P rise rapidly.

  7. Water and Streambed-Sediment Quality in the Upper Elk River Basin, Missouri and Arkansas, 2004-06

    USGS Publications Warehouse

    Smith, Brenda J.; Richards, Joseph M.; Schumacher, John G.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collected water and streambedsediment samples in the Upper Elk River Basin in southwestern Missouri and northwestern Arkansas from October 2004 through December 2006. The samples were collected to determine the stream-water quality and streambed-sediment quality. In 1998, the Missouri Department of Natural Resources included a 21.5-mile river reach of the Elk River on the 303(d) list of impaired waters in Missouri as required by Section 303(d) of the Federal Clean Water Act. The Elk River is on the 303(d) list for excess nutrient loading. The total phosphorus distribution by decade indicates that the concentrations since 2000 have increased significantly from those in the 1960s, 1980s, and 1990s. The nitrate as nitrogen (nitrate) concentrations also have increased significantly in post-1985 from pre-1985 samples collected at the Elk River near Tiff City. Concentrations have increased significantly since the 1960s. Concentrations in the 1970s and 1980s, though similar, have increased from those in the 1960s, and the concentrations from the 1990s and 2000s increased still more. Nitrate concentrations significantly increased in samples that were collected during large discharges (greater than 355 cubic feet per second) from the Elk River near Tiff City. Nitrate concentrations were largest in Indian Creek. Several sources of nitrate are present in the basin, including poultry facilities in the upper part of the basin, effluent inflow from communities of Anderson and Lanagan, land-applied animal waste, chemical fertilizer, and possible leaking septic systems. Total phosphorus concentrations were largest in Little Sugar Creek. The median concentration of total phosphorus from samples from Little Sugar Creek near Pineville was almost four times the median concentration in samples from the Elk River near Tiff City. Median concentrations of nutrient species were greater in the stormwater samples than the median concentrations in the ambient samples. Nitrate concentrations in stormwater samples ranged from 133 to 179 percent of the concentration in the ambient samples. The total phosphorus concentrations in the stormwater samples ranged from about 200 to more than 600 percent of the concentration in the ambient samples. Base-flow conditions as reflected by the seepage run of the summer of 2006 indicate that 52 percent of the discharge at the Elk River near Tiff City is contributed by Indian Creek. Little Sugar Creek contributes 32 percent and Big Sugar Creek 9 percent of the discharge in the Elk River near Tiff City. Only about 7 percent of the discharge at Tiff City comes from the mainstem of the Elk River. Concentrations of dissolved ammonia plus organic nitrogen as nitrogen, dissolved ammonia as nitrogen, dissolved phosphorus, and dissolved orthophosphorus were detected in all streambed-sediment leachate samples. Concentrations of leachable nutrients in streambed-sediment samples generally tended to be slightly larger along the major forks of the Elk River as compared to tributary sites, with sites in the upper reaches of the major forks having among the largest concentrations. Concentrations of leachable nutrients in the major forks generally decreased with increasing distance downstream.

  8. Groundwater nitrate remediation using plant-chip bioreactors under phosphorus-limited environment

    NASA Astrophysics Data System (ADS)

    Satake, Shunichi; Tang, Changyuan

    2018-02-01

    Groundwater denitrification bioreactors under limited phosphorus conditions were studied in column experiments using four types of plant-chips. When the phosphate-P concentration in the influent increased from 0.04 mg/L to 0.4 mg/L, the nitrate removal ratio increased from 61.6% to 86.1% in reed, from 7.2% to 12.6% in Japanese cedar, from 37.0% to 73.6% in Moso bamboo, and from 19.2% to 50.5% in Lithocarpus edulis. The carbon source of the denitrifiers' growth was indicated by the content of acid detergent soluble organic matter in the chips. Furthermore, according to the modified Michaelis-Menten-type equation proposed in the study, the denitrification rate was largely limited by the phosphate-P concentration in reed and L. eduilis, and by the dissolved organic carbon (DOC) in Japanese cedar. Denitrification in Moso bamboo was affected by both phosphate-P and DOC. Besides the DOC, phosphorus emerged as an important limiting element of denitrification in some bioreactor plant-chips.

  9. Stream quality in the San Lorenzo River Basin, Santa Cruz County, California

    USGS Publications Warehouse

    Sylvester, Marc A.; Covay, Kenneth J.

    1978-01-01

    Stream quality was studied from November 1973 through June 1975 in the San Lorenzo River basin, Calif., a rapidly developing mountainous area. Dissolved-ion concentrations indicate the basin can be divided into three water-quality areas corresponding to three geologic areas. Pronounced changes in water quality occurred during storms when streamflow, turbidity, nitrogen, phosphorus, potassium, and fecal-coliform bacteria concentrations increased, while dissolved-ion concentrations decreased owing to dilution. Total nitrogen and fecal-coliform concentrations exceeded State objectives in the Zayante and Branciforte Creek drainages probably because of domestic sewage from improperly operating septic-tank systems or the primary-treated sewage effluent discharged into a pit near Scotts Valley. Diel studies did not show appreciable dissolved-oxygen depletion in streams. Greater streamflows and residential development appear responsible for reduced diversity of benthic invertebrates downstream of the residential areas in the basin. (Woodard-USGS)

  10. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  11. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    USGS Publications Warehouse

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation water and precipitation, which have lower nutrient concentrations. The SRP concentrations, however, decreased faster than the dilution rate alone, possibly due to precipitation of phosphorus with iron, manganese, or calcium. The high concentrations of dissolved nitrogen and phosphorus during the growing season give rise to a rich plant community in the wetland consisting of emergent and submergent macrophytes and algae including phytoplankton and benthic and epiphytic algae that have pronounced effects on dissolved oxygen (DO) and pH. Midday readings of surface-water DO during summer often were supersaturated (as much as 310 percent saturation) with elevated pH (as much as 9.2 units), indicative of high rates of photosynthesis. Minimum DO concentrations in the shallow ground-water piezometer wells were 0.4 mg/L in the North Unit and 0.8 mg/L in the South Unit during summer, which is probably low enough to support microbial denitrification. Denitrification was confirmed during in-situ experiments conducted at the sediment-water interface, but rates were low due to low background nitrate (NO3). Nevertheless, denitrification (and plant uptake) likely contribute to low nitrate levels. Another possible cause of low nitrate levels is dissimilatory nitrate reduction to ammonia (DNRA), a microbial process that converts and decreases nitrate to ammonia. DNRA explains the excess ammonia production measured in the chambers treated with nitrate. Surface-water levels and standing surface-water volume in the Wood River Wetland reached a maximum in early spring, inundating 80-90 percent of the wetland. Surface-water levels and standing volume then declined reaching a minimum in August through November, when the South Unit was only 10 percent inundated and the North Unit was nearly dry. The shallow ground-water levels followed a trend similar to surface-water levels and indicated a strong upward gradient. A monthly water budget was developed individually for the North

  12. Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus.

    PubMed

    Sang, Junqiang; Zhang, Xihui; Li, Lingzhi; Wang, Zhansheng

    2003-11-01

    The purpose of this study was to investigate the effect of phosphorus addition on biological pretreatment of raw water. Experiments were conducted in pilot-scale bio-ceramic filters with raw water from a reservoir located in Beijing, China. The results demonstrated that phosphorus was the limiting nutrient for bacterial growth in the raw water investigated in this study. The measured values of bacterial regrowth potential (BRP) and biodegradable dissolved organic carbon (BDOC) of the raw water increased by 50-65% and 30-40% with addition of 50 microg of PO4(3-)-PL(-1), respectively. Addition of 25 microg of PO4(3-)-PL(-1) to the influent of bio-ceramic filter enhanced the percent removal of organics by 4.6, 5.7 and 15 percentage points in terms of COD(Mn), TOC and BDOC, respectively. Biomass in terms of phospholipid content increased by 13-22% and oxygen uptake rate (OUR) increased by 35-45%. The ratio of C:P for bacteria growth was 100:1.6 for the raw water used in this study. Since change of phosphorus concentrations can influence the performance of biological pretreatment and the biological stability of drinking water, this study is of substantial significance for waterworks in China. The role of phosphorus in biological processes of drinking water should deserve more attention.

  13. Nutrient and chlorophyll relations in selected streams of the New England Coastal Basins in Massachusetts and New Hampshire, June-September 2001

    USGS Publications Warehouse

    Riskin, Melissa L.; Deacon, J.R.; Liebman, M.L.; Robinson, K.W.

    2003-01-01

    The U.S. Environmental Protection Agency is developing guidance to assist states with defining nutrient criteria for rivers and streams and to better describe nutrient-algal relations. As part of this effort, 13 wadeable stream sites were selected, primarily in eastern Massachusetts, for a nutrient-assessment study during the summer of 2001. The sites represent a range of water-quality impairment conditions (reference, moderately impaired, impaired) based on state regulatory agency assessments and previously assessed nitrogen, phosphorus, and dissolved-oxygen data. In addition, a combination of open- and closed-canopy locations were sampled at six of the sites to investigate the effect of sunlight on algal growth. Samples for nutrients and for chlorophyll I from phytoplankton and periphyton were collected at all stream sites. Total nitrogen (dissolved nitrite + nitrate + total ammonia + organic nitrogen) and total phosphorus (phosphorus in an unfiltered water sample) concentrations were lowest at reference sites and highest at impaired sites. There were statistically significant differences (p < 0.05) among reference, moderately impaired, and impaired sites for total nitrogen and total phosphorus. Chlorophyll a concentrations from phytoplankton were not significantly different among site impairment designations. Concentrations of chlorophyll a from periphyton were highest at nutrient-impaired open-canopy sites. Chlorophyll a concentrations from periphyton samples were positively correlated with total nitrogen and total phosphorus at the open- and closed-canopy sites. Correlations were higher at open-canopy sites (p < 0.05, rho = 0.64 to 0.71) than at closed-canopy sites (p < 0.05, rho = 0.36 to 0.40). Statistically significant differences in the median concentrations of chlorophyll a from periphyton samples were observed between the open- and closed-canopy sites (p < 0.05). Total nitrogen and total phosphorus data from moderately impaired and impaired sites in this study exceeded the preliminary U.S. Environmental Protection Agency nutrient criteria values for the coastal region of New England. In an effort to establish more appropriate nutrient and chlorophyll criteria for streams in the New England coastal region, relations between total nitrogen and total phosphorus to periphyton chlorophyll a in wadeable streams from this study were quantified to present potential techniques for determining nutrient concentrations. Linear regression was used to estimate the total nitrogen and total phosphorus concentrations that corresponded to various chlorophyll a concentrations. On the basis of this relation, a median concentration for moderately enriched streams of 21 milligrams per square meter (mg/m2) of periphyton chlorophyll a from the literature corresponded to estimated concentrations of 1.3 milligrams per liter (mg/L) for total nitrogen and 0.12 mg/L for total phosphorus. The median concentration for periphyton chlorophyll a from the literature is similar to the 50th-percentile concentration of periphyton chlorophyll a (17 mg/m2) calculated with the data from open-canopy sites in this study. The 25th-percentile concentration for periphyton chlorophyll a of all open-canopy sites (5.2 mg/m2) and the 75th-percentile concentration for periphyton chlorophyll a of open-canopy reference sites (16 mg/m2) also were plotted to provide additional estimates and methods for developing total nitrogen and total phosphorus criteria. The 25th-percentile concentrations of total nitrogen and total phosphorus were calculated based on all sites in this study and were used as another potential criteria estimation. A concentration of 0.64 mg/L for total nitrogen and 0.030 mg/L for total phosphorus were calculated. As another possible method to develop threshold concentrations, the 10th-percentile concentrations of total nitrogen and total phosphorus were calculated based on all the impaired sites in this study. A concentration threshold of 0

  14. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that nitrogen inputs (858 kilograms per year) were dominated (30 percent) by plume water from the septic leach field and, possibly, by swimmers (34 percent). Phosphorus inputs (32 kilograms per year) were dominated by atmospheric dry deposition, background ground water, and estimated swimmer inputs. Swimmer inputs may represent more than 50 percent of the phosphorus load during the summer. The septic-system plume did not contribute phosphorus, but increased the nitrogen to phosphorus ratio for inputs from 41 to 59, on an atom-to-atom basis. The ratio of nitrogen to phosphorus in input loads and within the lake indicated algal growth would be strongly phosphorus limited. Nitrogen supply in excess of plant requirements may mitigate against nitrogen fixing organisms including undesirable blooms of cyanobacteria. Based on areal nutrient loading, Walden Pond is a mesotrophic lake. Hypolimnetic oxygen demand of Walden Pond has increased since a profile was measured in 1939. Currently (1999), the entire hypolimnion of Walden Pond becomes devoid of dissolved oxygen before fall turnover in late November; whereas historical data indicated dissolved oxygen likely remained in the hypolimnion during 1939. The complete depletion of dissolved oxygen likely causes release of phosphorus from the sediments. Walden Pond contains a large population of the deep-growing benthic macro alga Nitella, which has been hypothesized to promote water clarity in other clear-water lakes by sequestering nutrients and keeping large areas of the sediment surface oxygenated. Loss of Nitella populations in other lakes has correlated with a decline in water quality. Although the Nitella standing crop is large in Walden Pond, Nitella still appears to be controlled by nutrient availability. Decreasing phosphorus inputs to Walden Pond, by amounts under anthropogenic control would likely contribute to the stability of the Nitella population in the metalimnion, may reverse oxygen depletion in the hypolimnion, and decreas

  15. Water-quality assessment of the Porter County Watershed, Kankakee River basin, Porter County, Indiana

    USGS Publications Warehouse

    Bobo, Linda L.; Renn, Danny E.

    1980-01-01

    Water type in the 241-square mile Porter County watershed in Indiana, was calcium bicarbonate or mixed calcium bicarbonate and calcium sulfate. Concentrations of dissolved chemical constituents in surface water and contents of chlorinated hydrocarbons in streambed samples in the watershed were generally less than water-quality alert limits set by the U.S. Environmental Protection Agency, except in Crooked Creek. During sampling, this stream was affected by sewage, chlorinated hydrocarbons, and two chemical spills. Ranges of on-site field measurements were: specific conductance, from 102 to 1,060 micromhos per centimeter at 25 Celcius; water temperature, from 7.0 to 31.8 Celsius; pH, from 6.8 to 8.9; dissolved oxygen, from 2.5 to 14.9 milligrams per liter and from 27 to 148% saturation; and instantaneous discharge from 0 to 101 cubic feet per second. Concentrations of most dissolved-inorganic constituents (heavy metals and major ions) and dissolved solids did not vary significantly from one sampling period to the next at each site. Dissolved constituents whose concentrations varied significantly were iron, manganese, organic carbon, ammonia, nitrate plus nitrite, organic nitrogen, Kjeldahl nitrogen, and phosphorus. Concentrations of dissolved manganese, organic carbon, dissolved nitrite plus nitrate, and suspended sediment varied seasonally at most sites. Populations and identification of bacteria, phytoplankton, periphyton, and benthic invertebrates indicate a well-balanced environment at most sites, except in Crooked Creek.

  16. Impacts of changing atmospheric deposition chemistry on nitrogen and phosphorus loading to Ganga River (India).

    PubMed

    Pandey, Jitendra; Singh, Anand V; Singh, Ashima; Singh, Rachna

    2013-08-01

    Investigations on atmospheric deposition (AD) and water chemistry along a 35 km stretch of Ganga River indicated that although N:P stoichiometry of AD did not change, there were over 1.4-2.0 fold increase in AD-NO₃⁻, AD-NH₄⁺ and AD-PO₄³⁻ overtime. Concentration of dissolved inorganic-N (DIN) in river showed significant positive correlations with AD-NO₃⁻ and runoff DIN. Similarly, dissolved reactive-P (DRP) in river showed significant positive correlation with AD-PO₄³⁻ and runoff DRP. The study shows that AD has become an important source of N and P input to Ganga River.

  17. Sensitive monitoring of iodine species in sea water using capillary electrophoresis: vertical profiles of dissolved iodine in the Pacific Ocean.

    PubMed

    Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi

    2005-08-01

    Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.

  18. Oman Drilling Project Phase I Borehole Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for holes BT1, GT3 and BA2 due to hole obstruction (e.g. collapsed borehole wall). Results from the geophysical survey including preliminary log analysis will be presented for each OmanDP Phase I borehole.

  19. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    USGS Publications Warehouse

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within the ERW. Exceedances of State water-quality standards (nitrite, nitrate, and un-ionized ammonia) and levels higher than U.S. Environmental Protection Agency recommendations (total phosphorus) occur in several areas within the ERW. The majority of the exceedances are from comparisons to the U.S. Environmental Protection Agency total phosphorus recommendations. A positive correlation was observed between suspended sediment and total phosphorus. An upward trend in total dissolved solids in Gore Creek may be the result of increases in chloride salts. Highly significant trends were detected in sodium, potassium, and chloride with a significant upward trend in magnesium and a weakly significant upward trend in calcium. A quantitative analysis of the relative abundance of calcium, magnesium, sodium, and potassium to the available anions suggests that chloride salts likely are the source for the detected upward trends because chloride is the only commonly occurring anion with a trend in Gore Greek. A potential source for the observed chloride salts may be the chemical anti-icing and deicing products used during winter road maintenance in municipal areas and on Interstate-70. A downward trend in dissolved solids in the Eagle River between Gypsum and Avon may be contributing to the detected trend on the Eagle River at Gypsum. Significant downward trends were detected in specific ions such as calcium, magnesium, sulfate, and silica. Measures of total dissolved solids as well as comparisons to specific ions show that in water-quality samples within the ERW concentrations generally are lower in the headwaters, with increases downstream from Wolcott. Differences in concentrations likely result from increased abundance of salt-bearing geologic units downstream from Avon. Few sites had measured concentrations that exceeded the State standards for chloride.

  20. Statistical, graphical, and trend summaries of selected water-quality and streamflow data from the Trinity River near Crockett, Texas, 1964-85

    USGS Publications Warehouse

    Goss, Richard L.

    1987-01-01

    As part of the statistical summaries, trend tests were conducted. Several small uptrends were detected for total nitrogen, total organic nitrogen, total ammonia nitrogen, total nitrite nitrogen, total nitrate nitrogen, total organic plus ammonia nitrogen, total nitrite plus nitrate nitrogen, and total phosphorus. Small downtrends were detected for biochemical oxygen demand and dissolved magnesium.

  1. New York harbor water quality survey, 1993. (Includes appendices). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1994-11-30

    The 84th Water Quality Survey of New York Harbor was performed by the New York City Department of Environmental Protection in 1993. Common indicators of water quality which were monitored include human health indicators, such as the sewage-related coliform bacteria, and environmental health indicators such as dissolved oxygen, the nutrients nitrogen and phosphorus, and phytoplankton densities as estimated from chlorophyll `a`.

  2. Quantity and quality of runoff from selected guttered and unguttered roadways in northeastern Ramsey County, Minnesota

    USGS Publications Warehouse

    Mitton, G.B.; Payne, G.A.

    1997-01-01

    Length of latent period was statistically compared to constituent concentration levels of total phosphorus, dissolved sulfate, and total zinc and there was a correlation. Constituent loads were not associated with latent period. No correlation was found between traffic volumes which ranged from 1,888 to 7,172 vehicles per day and constituent concentrations or loads for this study.

  3. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.

    PubMed

    Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu

    2008-02-01

    Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.

  4. Patterns and variability in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bowles, Marshall; Hunter, Kimberley S.; Samarkin, Vladimir; Joye, Samantha

    2016-07-01

    We collected 69 sediment cores from distinct ecological and geological settings along the deep slope in the Northern Gulf of Mexico to evaluate whether specific geochemical- or habitat-related factors correlated with rates of microbial processes and geochemical signatures. By collecting replicate cores from distinct habitats across multiple sites, we illustrate and quantify the heterogeneity of cold seep geochemistry and microbial activity. These data also document the factors driving unique aspects of the geochemistry of deep slope gas, oil and brine seeps. Surprisingly little variation was observed between replicate (n=2-5) cores within sites for most analytes (except methane), implying that the common practice of collecting one core for geochemical analysis can capture the signature of a habitat in most cases. Depth-integrated concentrations of methane, dissolved inorganic carbon (DIC), and calcium were the predominant geochemical factors that correlated with a site's ecological or geological settings. Pore fluid methane concentration was related to the phosphate and DIC concentration, as well as to rates of sulfate reduction. While distinctions between seep habitats were identified from geochemical signatures, habitat specific geochemistry varied little across sites. The relative concentration of dissolved inorganic nitrogen versus phosphorus suggests that phosphorus availability limits biomass production at cold seeps. Correlations between calcium, chloride, and phosphate concentrations were indicative of brine-associated phosphate transport, suggesting that in addition to the co-migration of methane, dissolved organic carbon, and ammonium with brine, phosphate delivery is also associated with brine advection.

  5. Interactions between soil texture and placement of dairy slurry application: II. Leaching of phosphorus forms.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.

  6. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  7. Quality of water and bottom sediments, and nutrient and dissolved-solids loads in the Apopka-Beauclair Canal, Lake County, Florida, 1986-90

    USGS Publications Warehouse

    Schiffer, D.M.

    1994-01-01

    Nutrient-rich water enters Lake Beauclair and other lakes downstream from Lake Apopka in the Ocklawaha River chain of lakes in central Florida. Two sources of the nutrient-rich water are Lake Apopka outflow and drainage from farming operations adjacent to the Apopka-Beauclair Canal. Two flow and water- quality monitoring sites were established to measure nutrient and dissolved-solids loads at the outflow from lake Apopka and at a control structure on the Apopka-Beauclair Canal downstream from farming activities. Samples were collected biweekly for analysis of nutrients and monthly for analysis of major ions for 4 years. Most of the nutrient load transported through the lock and dam on the Apopka-Beauclair Canal was transported during periods of high discharge. In April 1987, when discharges were as high as 589 cubic feet per second, loads transported through the lock and dam accounted for 59 percent of the ammonia-plus- organic nitrogen load, 61 percent of the total nitrogen load, and 59 percent of the phosphorus load transported during the 1987 water year. Constituent concentrations in annual bottom sediment samples from the canal indicated that most of the constituent load is not being transported down- stream. An alternative approach was derived for determining the relative constituent load from farm input along the canal: Load computations using this approach indicated that, with the exception of phosphorus, nutrient and dissolved-solids loads due to farm activity along the canal account for 10 percent or less of the total load at the Apopka-Beauclair canal lock and dam. (USGS)

  8. Detection of phosphohydrolytic enzyme activity through the oxygen isotope composition of dissolved phosphate

    NASA Astrophysics Data System (ADS)

    Colman, A. S.

    2016-02-01

    Phosphohydrolytic enzymes play an important role in phosphorus remineralization. As they release phosphate (Pi) from various organophosphorus compounds, these enzymes facilitate the transfer of oxygen atoms from water to the phosphoryl moieties. Most such enzymatic reactions impart a significant isotopic fractionation to the oxygen transferred. If this reaction occurs within a cell, then the resultant oxygen isotope signal is overprinted by continued recycling of the Pi. However, if this reaction occurs extracellularly, then the isotopic signal will be preserved until the Pi is transported back into a cell. Thus, the oxygen isotope composition of Pi (δ18Op) in an aquatic ecosystem can serve as a useful indicator of the mechanisms by which P is remineralized. We develop a time-dependent model illustrating the sensitivity of the δ18O of dissolved phosphate to various modes of P remineralization. The model is informed by cell lysis experiments that reveal the relative proportions of P­i that are directly liberated from cytosol vs. regenerated from co-liberated dissolved organic phosphorus compounds via extracellular hydrolysis. By incorporating both cellular uptake and release fluxes of P, we show that the degree of isotopic disequilibrium in an aquatic ecosystem can be a strong indicator of P remineralization mode. Apparent oxygen isotope equilibrium between Pi and water arises in this model as a steady-state scenario in which fractionation upon cellular uptake of Pi counterbalances the hydrolytic source flux of disequilibrated Pi. Low and high rates of extracellular phosphohydrolase activity are shown to produce steady-state δ18Op values that are respectively above or below thermodynamic equilibrium compositions.

  9. Characterization of particulate and dissolved phosphorus in tile and nearby riverine systems

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Arai, Y.; David, M.; Gentry, L.

    2017-12-01

    In the Midwestern U.S., the drainage of agricultural land is predominantly managed by the tile drain system because of its poorly drain properties of clay rich indigenous soils. An accelerated subsurface flow of phosphorus (P) has recently been documented as a primary P transport path in contrast to the typical surface runoff events observed in the Eastern U.S. Recent studies suggested the important role of particulate P (PP) load in agricultural tile drainage water during high flow events. It was hypothesized that PP in the tile water is transported to riverine system contributing to the negative environmental impacts in the Midwestern U.S. In this study, correlation assessment of physicochemical properties of PP in agricultural tile drainage and nearby river samples after a storm event was conducted using a combination of 31P-nuclear magnetic resonance spectroscopy, P K-edge X-ray absorption near edge structure spectroscopy, X-ray diffraction, zetasizer, and transmission electron microscopy. Results show that significantly more colloidal (i.e. 1 nm- 2 µm) and silt-sized (i.e. > 2 µm) particles as well as higher dissolved total P (DTP) and dissolved reactive P (DRP) concentrations existed in river samples than tile samples. Tile and river samples showed similar zeta potential in each particle-size fraction and similar element distributions on colloidal fraction. However, colloidal P concentration and distribution are slightly different between tile and river samples: more colloidal total P and organic P existed in tile colloids than river colloids. The results of P speciation and mineralogical assessment will also be discussed.

  10. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.

    PubMed

    Gentry, L E; David, M B; Royer, T V; Mitchell, C A; Starks, K M

    2007-01-01

    Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.

  11. Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool.

    PubMed

    Vadas, P A; Good, L W; Moore, P A; Widman, N

    2009-01-01

    Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that monitored P loss in runoff from a variety of agricultural land uses for at least 1 yr. Results demonstrated (i) that our new methods to estimate P loss from surface manure and fertilizer are an improvement over methods used in existing Indexes, and (ii) that it was possible to reliably quantify annual dissolved, sediment, and total P loss in runoff using relatively simple methods and readily available inputs. Thus, a P loss quantification tool that does not require greater degrees of complexity or input data than existing P Indexes could accurately predict P loss across a variety of management and fertilization practices, soil types, climates, and geographic locations. However, estimates of runoff and erosion are still needed that are accurate to a level appropriate for the intended use of the quantification tool.

  12. Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.

    PubMed

    Withers, P J; Clay, S D; Breeze, V G

    2001-01-01

    Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.

  13. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns.

    PubMed

    Zhang, Qian; Ball, William P; Moyer, Douglas L

    2016-09-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir.

    PubMed

    Han, Chaonan; Zheng, Binghui; Qin, Yanwen; Ma, Yingqun; Yang, Chenchen; Liu, Zhichao; Cao, Wei; Chi, Minghui

    2018-01-01

    The impoundment of the Three Gorges Reservoir (TGR) has changed water-sand transport regime, with inevitable effects on phosphorus transport behavior in the TGR. In this study, we measured phosphorus fractions in water and suspended particles transported from upstream rivers of the TGR (the Yangtze River, the Jialing River and the Wu River) to reservoir inner region over the full operation schedule of the TGR. The aim was to determine how phosphorus fractions in water and particulate phases varied in response to natural hydrological processes and reservoir operations. The results showed that total phosphorus concentration (TP) in water in the TGR inner region was 0.17±0.05mg/L, which was lower than that in the Yangtze River (0.21±0.04mg/L) and the Wu River (0.23±0.03mg/L), but higher than that in the Jialing River (0.12±0.07mg/L). In the TGR inner region, there was no clear trend of total dissolved phosphorus (TDP), but total particulate phosphorus (TPP) showed a decreasing trend from tail area to head area because of particle deposition along the TGR mainstream. In addition, the concentrations of TPP in water and particulate phosphorus in a unit mass of suspended particles (PP) in the TGR inner region were higher in October 2014 and January 2015 (the impounding period and high water level period) than that in July 2015 (the low water level period). The temporal variations of PP and TPP concentrations in the TGR may be linked to the change of particle size distribution of suspended particles in the TGR. The particle size tended to be finer due to large-size particle deposition under stable hydrodynamic conditions in the process of TGR impoundment, resulting in high adsorption capacities of phosphorus in suspended particles. The results implied that phosphorus temporal variations in the TGR could exert different impacts on water quality in the TGR tributaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hydrology and water quality of Elkhead Creek and Elkhead Reservoir near Craig, Colorado, July 1995-September 2001

    USGS Publications Warehouse

    Kuhn, Gerhard; Stevens, Michael R.; Elliott, John G.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District, collected and analyzed baseline streamflow and water-quality information for Elkhead Creek and water-quality and trophic-state information for Elkhead Reservoir from July 1995 through September 2001. In the study area, Elkhead Creek is a meandering, alluvial stream dominated by snowmelt in mountainous headwaters that produces most of the annual discharge volume and discharge peaks during late spring and early summer. During most of water year 1996 (a typical year), daily mean discharge at station 09246400 (downstream from the reservoir) was similar to daily mean discharge at station 09246200 (upstream from the reservoir). Flow-duration curves for stations 09246200 and 09246400 were nearly identical, except for discharges less than about 10 cubic feet per second. Specific conductance generally had an inverse relation to discharge in Elkhead Creek. During late fall and winter when discharge was small and derived mostly from ground water, specific conductance was high, whereas during spring and early summer, when discharge was large and derived mostly from snowmelt, specific conductance was low. Water temperatures in Elkhead Creek were smallest during winter, about 0.0 degrees Celsius (oC), and largest during summer, about 20?25oC. Concentrations of major ions, nutrients, trace elements, organic carbon, and suspended sediment in Elkhead Creek indicated no substantial within-year variability and no substantial differences in variability from one year to the next. A seasonal pattern in the concentration data was evident for most constituents. The seasonal concentration pattern for most of the dissolved constituents followed the seasonal pattern of specific conductance, whereas some nutrients, some trace elements, and suspended sediment followed the seasonal pattern of discharge. Statistical differences between station 09246200 (upstream from the reservoir) and station 09246400 (downstream from the reservoir) were indicated for specific conductance, dissolved calcium, magnesium, sodium, and sulfate, acid-neutralizing capacity, and dissolved solids. Trend analysis indicated upward temporal trends for pH, dissolved ammonia plus organic nitrogen, total nitrogen, and total phosphorus at station 09246200; upward temporal trends for dissolved and total ammonia plus organic nitrogen, total nitrogen, and total phosphorus were indicated at station 09246400. No downward trends were indicated for any constituents. Annual loads for dissolved constituents during water years 1996?2001 were consistently larger at station 09246400 than at station 09246200, except for silica and sulfate. Mean monthly loads for dissolved constituents followed the seasonal pattern of discharge, indicating that most of the annual loads were transported during March?June. Annual dissolved nutrient loads at stations 09246400 and 09246200 were not substantially different, except for total phosphorus and total nitrogen loads, which were smaller at the downstream station than at the upstream station, most likely due to biological uptake and settling in the reservoir. Mean annual suspended-sediment load during water years 1996?2001 was about 87-percent smaller at the downstream station than at the upstream station. Temperature in Elkhead Reservoir varied seasonally, from about 0oC during winter when ice develops on the reservoir to about 20oC during summer. Specific conductance varied from minimums of 138 to 169 microsiemens per centimeter at 25oC (?S/cm) during snowmelt inflow to maximums of 424 to 610 ?S/cm during early spring low flow (April). Median pH in the reservoir ranged from 7.2 to 8.0 at all sites near the surface. Median dissolved oxygen ranged from 7.1 to 7.2 milligrams per liter (mg/L) in near-surface samples and from 4.8 to 5.6 mg/L in near-bottom samples. During reservoir stratification, specific conductance generally was largest in the e

  16. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  17. Water quality of the tidal Potomac River and Estuary; hydrologic data report, 1981 water year, with a section on collection and analysis of chlorophyll-a

    USGS Publications Warehouse

    Blanchard, Stephen F.; Coupe, Richard H.; Woodward, Joan C.

    1982-01-01

    This report contains data on the physical and chemical properties measured in the Tidal Potomac River and Estuary during the 1981 water year. Data were collected at least weekly at five stations, and periodically at 15 stations and at two other stations near the mouth of the Potomac River in Chesapeake Bay. Each of the five stations represent a cross section at which the transport of selected dissolved and suspended materials can be computed. The remaining 17 stations are locations at which data were collected for special studies of selected phenomena, such as salt water migration and dissolved oxygen dynamics. Samples were routinely analyzed for chlorophyll-a, nitrogen, pheophytin, phosphorus, silica and suspended sediment. Additional samples were analyzed for adenosine triphosphate, algal growth potential, alkalinity, calcium, chloride, dissolved-solids residue, fluoride, iron, manganese, magnesium, nitrifying bacteria, organic carbon, potassium, seston, sodium, and sulfate. In addition, in-situ measurements of dissolved oxygen, specific conductance, pH, temperature, solar radiation, and secchi disk transparency were made. (USGS)

  18. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Hydrology, water quality, and nutrient loads to the Bauman Park Lake, Cherry Valley, Winnebago County, Illinois, May 1996-April 1997

    USGS Publications Warehouse

    Kay, Robert T.; Trugestaad, Aaron

    1998-01-01

    The Bauman Park Lake occupies a former sand and gravel quarry in the Village of Cherry Valley, Illinois. The lake is eutrophic, and nuisance growths of algae and aquatic macrophytes are supported by nutrients (nitrogen and phosphorus) that are derived primarily from ground-water inflow, the main source of water for the lake. The lake has an average depth of about 18 feet, a maximum depth of about 28 feet, and a volume of 466 acre-feet at a stage of about 717 feet above sea level. The lake also is subject to thermal stratification, and although most of the lake is well oxidized, nearly anoxic conditions were present at the lake bottom during part of the summer of 1996. 4,648 pounds of nitrogen compounds were added to the Bauman Park Lake from May 1996 through April 1997. Phosphorus compounds were derived primarily from inflow from ground water (68.7 percent), sediments derived from shoreline erosion (15.6 percent), internal regeneration (11.7 percent), waterfowl excrement (1.6 percent), direct precipitation and overland runoff (1.2 percent), and particulate matter deposited from the atmosphere (1.2 percent). Nitrogen compounds were derived from inflow from ground water (62.1 percent), internal regeneration (19.6 percent), direct precipitation and overland runoff (10.1 percent), particulate matter deposited from the atmosphere (3.5 percent), sediments derived from shoreline erosion (4.4 percent), and waterfowl excrement (0.3 percent). About 13 pounds of phosphorus and 318 pounds of nitrogen compounds flow out of the lake to ground water. About 28 pounds of nitrogen is removed by denitrification. Algae and aquatic macrophytes utilize nitrate, nitrite, ammonia, and dissolved phosphorus. The availability of dissolved phosphorus in the lake water controls algal growth. Uptake of the nutrients, by aquatic macrophytes and algae, temporarily removes nutrients from the water column but not from the lake basin. Because the amount of nutrients entering the lake greatly exceeds the amount leaving, the nutrients are concentrated in the sediments at the lake bottom, where they can be used by the rooted aquatic macrophytes and released to the water column when the proper geochemical conditions are present.

  20. Loads and yields of selected constituents in streams and rivers of Monroe County, New York, 1984-2001

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Hydrologic data collected in Monroe County since the 1980s and earlier, including long-term records of streamflow and chemical loads, provide a basis for assessment of water-management practices. All monitored streams except Northrup Creek showed a slight (nonsignificant) overall decrease in annual streamflow over their period of record; Northrup Creek showed a slight increase.The highest yields of all constituents except chloride and sulfate were at Northrup Creek; these values exceeded those of the seven Irondequoit Creek basin sites and the Genesee River site. The highest yields of dissolved chloride were at the most highly urbanized site (Allen Creek), whereas the highest yields of dissolved sulfate were at the most upstream Irondequoit Creek sites -- Railroad Mills (active) and Pittsford (inactive). Yields of all constituents in the Genesee River at the Charlotte Pump Station were within the range of those at the Irondequoit Creek basin sites.The four active Irondequoit Creek basin sites showed significant downward trends in flow-adjusted loads of ammonia + organic nitrogen, possibly from the conversion of agricultural land to suburban land. Two active sites (Allen Creek and Blossom Road) and one inactive site (Thomas Creek) showed downward trends in loads of ammonia. All active sites showed significant upward trends in dissolved chloride loads. Northrup Creek showed a significant downward trend in total phosphorus load since the improvement in phosphorus removal at the Spencerport wastewater-treatment plant, and upward trends in dissolved chloride and sulfate loads. The Genesee River at the Charlotte Pump Station showed significant downward trends in loads of ammonia + organic nitrogen and chloride, and an upward trend in loads of orthophosphate.The improved treatment or diversion of sewage-treatment-plant-effluent has produced decreased yields of some constituents throughout the county, particularly in the Irondequoit Creek basin, where the loads of nutrients delivered to Irondequoit Bay have been decreased.

  1. Toxicological properties of white phosphorus (P{sub 4}): Effect of particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roebuck, B.D.; Nam, S.I.

    1995-12-31

    The ingestion of particles of white phosphorus (P{sub 4}) causes mortality of waterfowl at Eagle River Flats, Alaska. P{sub 4} poisoning results in behaviors that attract predators. To date, the toxic properties of P{sub 4} have been characterized when P{sub 4} is dissolved in various digestible oils. Herein, the authors compare the properties of dissolved P{sub 4} to particulate P{sub 4}. Farm-reared mallards (Anas Platvrhynchos) were gavaged with P{sub 4} (12 mg/kg body weight) dissolved in oil, large particles (1.87 mm mean diameter), or small particles (0.95 mm diameter). Signs of intoxication and times to convulsion were monitored. Individuals weremore » autopsied at the onset of convulsions. P{sub 4} in digestive tracts and body fat was analyzed by gas chromatography. For all 3 treatments, the behaviors of P{sub 4} intoxication were similar to observations of wild ducks. There was no difference between treatments for onset of lethargy, vomiting, poor motor/muscle control, or the first convulsive event. At autopsy, P{sub 4} was found throughout the digestive tracts with residual quantities of approximately 20% or less of the dose. Very little of the dissolved P{sub 4} remained in gizzards; whereas, in the small and large particle groups, the gizzard contents contained 78% and 64%, respectively, of the total P{sub 4} within the digestive tracts. Tissue concentrations of P{sub 4} were small and did not appear to be a significant source of P{sub 4} to predators. In conclusion, intoxication from particles of P{sub 4} is largely not a function of the size of the particles, but rather the dose. Residual P{sub 4} in the digestive tracts represents a risk to secondary receptors. These relative risks of particulate P{sub 4} to tissue P{sub 4} are somewhat similar to poisoning from lead shot.« less

  2. The impacts of no-till practice on nitrate and phosphorus loss: A meta-analysis

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Although no-till (NT) has been promoted as an alternative land management practice to conventional tillage (CT), its impact on water quality, especially nitrate (NO3-) and phosphorus (P) loss remain controversial. We conducted a meta-analysis to compare NO3- and P (dissolved P, particulate P and total P) concentration and load in NT and CT systems, including the co-varying physical (e.g., climate region, rainfall variability, transport pathways, slope gradient) and management variables (e.g., NT duration, crop species). In general, NT increased the amount of dissolved nutrient loss (both NO3- and P), but reduced that of particulate nutrient (particulate P). Specifically, NT resulted in an overall increase of runoff NO3- concentration in comparison to CT, but similar runoff NO3- load. In contrast, NO3- load via leaching was greater under NT than under CT, although NO3- concentration in leachate was similar under both tillage practices, indicating that the effect of NT on NO3- load was largely determined by changes in water flux. NT adoption, in comparison to CT, reduced particulate P concentration by 45% and load by 55%, but increased dissolved P loss by 35% (for both concentration and load). Some variations, however, were recorded with different co-varying variables. NT was, for example, least effective in reducing leachate NO3- concentration in fields planted with wheat, but generated lower leachate NO3- concentration from soybean fields (no N fertilizer applied). In contrast, total P concentration was similar with CT at NT fields planted with soybean and at sites under prolonged NT duration ( 10 years). The limited impact of NT on dissolved nutrient loss (both NO3- and P) remains a serious impediment toward harnessing the water quality benefits of this management practice and suggests that NT needs to be complemented with other management practices (e.g., cover crops, split fertilizer application, occasional tillage).

  3. Modeling water quality in the Tualatin River, Oregon, 1991-1997

    USGS Publications Warehouse

    Rounds, Stewart A.; Wood, Tamara M.

    2001-01-01

    The calibration of a model of flow, temperature, and water quality in the Tualatin River, Oregon, originally calibrated for the summers of 1991 through 1993, was extended to the summers of 1991 through 1997. The model is now calibrated for a total period of 42 months during the May through October periods of 7 hydrologically distinct years. Based on a modified version of the U.S. Army Corps of Engineers model CE-QUAL-W2, this model provides a good fit to the measured data for streamflow, water temperature, and water quality constituents such as chloride, ammonia, nitrate, total phosphorus, orthophosphate, phytoplankton, and dissolved oxygen. In particular, the model simulates ammonia concentrations and the effects of instream ammonia nitrification very well, which is critical to ongoing efforts to revise ammonia regulations for the Tualatin River. In addition, the model simulates the timing, duration, and relative size of algal blooms with sufficient accuracy to provide important insights for regulators and managers of this river.Efforts to limit the size of algal blooms through phosphorus control measures are apparent in the model simulations, which show this limitation on algal growth. Such measures are largely responsible for avoiding violations of the State of Oregon maximum pH standard of 8.5 in recent years, but they have not yet reduced algal biomass levels below the State of Oregon nuisance phytoplankton growth guideline of 15 ?g/L chlorophyll-a.Most of the dynamics of the instream dissolved oxygen concentrations are captured by the model. About half of the error in the simulated dissolved oxygen concentrations is directly attributable to error in the size of the simulated phytoplankton population. To achieve greater accuracy in simulating dissolved oxygen, therefore, it will be necessary to increase accuracy in the simulation of Tualatin River phytoplankton.Future efforts may include the introduction of multiple algal groups in the model. This model of the Tualatin River continues to be used as a quantitative tool to aid in the management of this important resource.

  4. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Tranter, Martyn

    2007-12-01

    Laboratory experiments were undertaken to determine the inorganic carbon uptake rate and the interactions between photosynthesis and water chemistry, particularly pH and nutrient concentrations, for cryoconite debris from Werenskioldbreen, a well-researched Svalbard glacier. Microorganisms in cryoconite debris took up inorganic carbon at rates between 0.6 and 15 μg C L-1 h-1 and fixed it as organic carbon. Cyanobacterial photosynthesis (75-93%) was the main process responsible for inorganic carbon fixation, while heterotrophic uptake (6-15%) only accounted for a minor part. The microbes in cryoconite debris were active shortly after melt and fixed carbon as long as there were favorable conditions. They were not truly psychrophilic: their physiological optimum temperature was higher than is prevalent in cryoconite holes. The pH was also a factor affecting photosynthesis in the cryoconite slurry. The highest dissolved inorganic carbon (DIC) uptake rates per liter of slurry occurred at pH ˜7, and there was a significant correlation between the initial pH and DIC fixation on a per cell basis, showing increasing DIC uptake rates when pH increased from ˜5.5 to 9. Inorganic carbon fixation resulted in an increased pH in solution. However, the microbes were able to photosynthesize in a wide range of pH from ˜4 to ˜10. The average C:N:P molar ratios in solution were ˜350:75:1. Unlike nitrogen, phosphorus concentrations decreased with increasing carbon uptake, and when the rate approached ˜15 μg C L-1 h-1, all available dissolved phosphorus was utilized within 6 h. Hence phosphorus is probably biolimiting in this system.

  5. Water-quality assessment of the Kentucky River basin, Kentucky; results of investigations of surface-water quality, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.

  6. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-15

    Extensive research in recent years has explored numerous new features in the forward osmosis membrane bioreactor (FOMBR) process. However, there is an aspect, which is revolutionary but not yet been investigated. In FOMBR, FO membrane shows high rejection for a wide range of soluble contaminants. As a result, hydraulic retention time (HRT) does not correctly reflect the nominal retention of these dissolved contaminants in the bioreactor. This decoupling of contaminants retention time (CRT, i.e. the nominal retention of the dissolved contaminants) from HRT endows FOMBR a potential in significantly reducing the HRT for wastewater treatment. In this work, we report our results in this unexplored treatment potential. Using real municipal wastewater as feed, both a hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) and a newly developed hybrid biofilm-forward osmosis membrane bioreactor (BF-FOMBR) achieved high removal of organic matter and nitrogen under HRT of down to 2.0 h, with significantly enhanced phosphorus recovery capacities. In the BF-FOMBR, the used of fixed bed biofilm not only obviated the need of additional solid/liquid separation (e.g. MF) to extract the side-stream for salt accumulation control and phosphorus recovery, but effectively quarantined the biomass from the FO membrane. The absence of MF in the side-stream further allowed suspended growth to be continuously removed from the system, which produced a selection pressure for the predominance of attached growth. As a result, a significant reduction in FO membrane fouling (by 24.7-54.5%) was achieved in the BF-FOMBR due to substantially reduced bacteria deposition and colonization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.

    PubMed

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Wang, Jun; Cai, Yuanli; Green, Nelson W; Wei, Shiqiang

    2017-05-01

    The phosphorus (P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid (HA) complexes were analyzed using the ultrafiltration method in this study. With an initial P concentration of 20mg/L (I=0.01mol/L and pH=7), it was shown that the colloid (1kDa-0.45μm) component of P accounted for 10.6%, 11.6%, 6.5%, and 4.0% of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite (FH), goethite (GE), ferrihydrite-humic acid complex (FH-HA), goethite-humic acid complex (GE-HA), respectively. The <1kDa component of P was still the predominant fraction in the supernatant, and underestimated colloidal P accounted for 2.2%, 55.1%, 45.5%, and 38.7% of P adsorption onto the solid surface of FH, FH-HA, GE and GE-HA, respectively. Thus, the colloid P could not be neglected. Notably, it could be interpreted that Fe 3+ hydrolysis from the adsorbents followed by the formation of colloidal hydrous ferric oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant. And colloidal adsorbent particles co-existing in the supernatant were another important reason for it. Additionally, dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant. Ultimately, we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P, even when considering other contaminants such as organic pollutants, heavy metal ions, and arsenate at the sediment/soil-water interface in the real environment. Copyright © 2016. Published by Elsevier B.V.

  8. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    PubMed

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Water-quality investigation, Salinas River, California

    USGS Publications Warehouse

    Irwin, G.A.

    1976-01-01

    Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)

  10. Ionic liquids containing symmetric quaternary phosphonium cations and phosphorus-containing anions, and their use as lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Luo, Huimin

    An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R 1, R 2, R 3, and R 4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X - is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto amore » mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.« less

  11. Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent.

    PubMed

    Xiong, Wenhui; Peng, Jian

    2008-12-01

    A novel phosphorus adsorbent, ferrihydrite-modified diatomite was developed and characterized in this study. The ferrihydrite-modified diatomite was made through surface modification treatments including NaOH treatment and ferrihydrite deposition on raw diatomite. In the NaOH treatment, surface SiO(2) of diatomite was partially dissolved in the NaOH solution. The dissolved Si contributed to form the stable 2-line ferrihydrite which deposited into the macropores and mesopores of diatomite. Blocking macropores and larger mesopores of diatomite with 0.24g Fe/g of 2-line ferrihydrite resulted in a specific surface area of 211.1m(2)/g for the ferrihydrite-modified diatomite, which is 8.5-fold increase than the raw diatomite (24.77m(2)/g). The surface modification also increased the point of zero charge (pH(PZC)) values to 10 for the ferrihydrite-modified diatomite from 5.8 for the raw diatomite. Because of the increased surface area and surface charge, the maximum adsorption capacity of ferrihydrite-modified diatomite at pH 4 and pH 8.5 was increased from 10.2mgP/g and 1.7mgP/g of raw diatomite to 37.3mgP/g and 13.6mgP/g, respectively.

  12. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil.

    PubMed

    Dantas, Enio W; Moura, Ariadne N; Bittencourt-Oliveira, Maria do Carmo

    2011-12-01

    This study investigated the dynamics of cyanobacteria in two deep, eutrophic reservoirs in a semi-arid region of Brazil during periods of stratification and destratification. Four collections were carried out at each reservoir at two depths at three-month intervals. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. Phytoplankton density was quantified for the determination of the biomass of cyanobacteria. The data were analyzed using CCA. Higher mean phytoplankton biomass values (29.8 mm(3).L(-1)) occurred in the period of thermal stratification. A greater similarity in the phytoplankton communities also occurred in this period and was related to the development of cyanobacteria, mainly Cylindrospermopsis raciborskii (>3.9 mm(3).L(-1)). During the period of thermal destratification, this species co-dominated the environment with Planktothrix agardhii, Geitlerinema amphibium, Microcystis aeruginosa and Merismopedia tenuissima, as well as with diatoms and phytoflagellates. Environmental instability and competition among algae hindered the establishment of blooms more during the mixture period than during the stratification period. Thermal changes in the water column caused by climatologic events altered other physiochemical conditions of the water, leading to changes in the composition and biomass of the cyanobacterial community in tropical reservoirs.

  13. How phosphorus limitation can control climatic gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  14. Quality of water in James Creek, Monroe County, Mississippi

    USGS Publications Warehouse

    Bednar, G.A.

    1981-01-01

    A short-term quality-of-water study of James Creek near Aberdeen , Mississippi was conducted on November 14-16, 1978, during a period of low streamflow. During the study, the water in the 2.6-mile stream reach was undesireable for many uses. Wastewater inflow immediately upstream of the study area contributed to the dissolved-solids load in James Creek. The specific conductance of the water ranged from 775 to 890 micromhos at the head of the study reach and from 650 to 750 micromhos at the end of the study reach. A substantial biochemical oxygen-demand was evident in James Creek. Five-day biochemical oxygen demand values downstream of a sewage disposal pond outfall ranged from 8.3 to 11 milligrams per liter and dissolved-oxygen concentrations ranged from 0.4 to 4.5 milligrams per liter. Nitrogen and phosphorus compounds and fecal bacteria densities were highest downstream. Total ammonia nitrogen and phosphorus concentrations in the water leaving the study area ranged from 0.29 to 1.4 milligrams per liter and from 0.65 to 1.7 milligrams per liter, respectively. Fecal coliform densities exceeding 50,000 colonies per 100 milliliters of sample were observed in the study area. The median fecal coliform density of the water leaving the study area was 2,800 colonies per 100 milliliters. (USGS)

  15. Phosphorus Availability, Phytoplankton Community Dynamics, and Taxon-Specific Phosphorus Status in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Labiosa, R. G.; Calhoun, M.; Street, J. H.; Post, A. F.; Paytan, A.

    2006-12-01

    The relationships among phytoplankton taxon-specific phosphorus-status, phytoplankton community composition, and nutrient levels were assessed over three seasons in the Gulf of Aqaba, Red Sea. During summer and fall, stratified surface waters were depleted of nutrients and picophytoplankton populations comprised the majority of cells (80% and 88% respectively). In winter, surface nutrient concentrations were higher and larger phytoplankton were more abundant (63%). Cell specific alkaline phosphatase activity (APA) derived from enzyme labeled fluorescence was consistently low (less than 5%) in the picophytoplankton throughout the year, whereas larger cells expressed elevated APA during the summer and fall but less in the winter. A nutrient addition bioassay during the fall showed that, relative to control, APA was reduced by half in larger cells following addition of orthophosphate, whereas the APA of picophytoplankton remained low (less than 1%) across all treatments and the control. These results indicate that the most abundant phytoplankton are not limited by orthophosphate and only some subpopulations (particularly of larger cells) exhibit orthophosphate-limitation throughout the year. Our results indicate that orthophosphate availability influences phytoplankton ecology, correlating with shifts in phytoplankton community structure and the nutrient status of individual cells. The role of dissolved organic phosphorus as an important phosphorus source for marine phytoplankton in oligotrophic settings and the need for evaluating nutrient limitation at the taxa and/or single cell level (rather than inferring it from nutrient concentrations and ratios or bulk enzyme activity measurements) are highlighted.

  16. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals.

  17. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.

    PubMed

    Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve

    2017-10-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remainmore » unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.« less

  19. Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry.

    PubMed

    Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki

    2016-06-01

    Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    NASA Astrophysics Data System (ADS)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  1. [Spatiotemporal characteristics of nitrogen and phosphorus in a mountainous urban lake].

    PubMed

    Bao, Jing-Yue; Bao, Jian-Guo; Li, Li-Qing

    2014-10-01

    Longjing Lake in Chongqing Expo Garden is a typical representative of mountainous urban lake. Based on water quality monitoring of Longjing Lake, spatiotemporal characteristics of nitrogen and phosphorus and their relations were analyzed, combined with natural and human factors considered. The results indicated that annual average concentrations of TN and TP in overall lake were (1.42 ± 0.46) mg · L(-1) and (0.09 ± 0.03) mg · L(-1), nitrogen and phosphorus concentrations fluctuated seasonally which were lower during the flooding season than those during the dry season. Nitrogen and phosphorus concentration in main water area, open water areas and bay areas of Longjing Lake were distributed with temporal and spatial heterogeneity by different regional influencing factors. The seasonal variation of the main water area was basically consistent with overall lake. Two open water areas respectively connected the main water area with the upstream region, bay areas. TN and TP concentrations were gradually reduced along the flow direction. Upstream water quality and surrounding park functional layout impacted nitrogen and phosphorus nutrient concentrations of open water areas. Nutrient concentrations of typical bay areas were higher than those of main water area and open water areas. The mean mass fraction of PN/TN and PP/TP accounted for a large proportion (51.7% and 72.8%) during the flooding season, while NO(3-)-N/TN and SRP/TP accounted for more (42.0% and 59.4%) during the dry season. The mass fraction of ammonia nitrogen and dissolved organic nitrogen in total nitrogen were relatively stable. The annual mean of N/P ratio was 18.429 ± 7.883; the period of nitrogen limitation was 5.3% while was 21.2% for phosphorus limitation.

  2. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Wen, Xuefa; Yu, Guirui

    2017-07-01

    Atmospheric phosphorus (P) deposition is not only an important external macronutrient source for aquatic ecosystems but also a major cause of high export coefficient (EC) values. However, there are limited numbers of studies in the literature that focus on estimating the deposition flux of reactive P (P r ). The aim of this study is to estimate the P r deposition on the Xiangxi River watershed, and therefore, provide a comprehensive understanding about the P r deposition on subtropical watersheds in China. Results have shown that maximal P r deposition fluxes reached 12 kg km -2 in our selected subtropical watershed. Furthermore, we found out the particulate phosphorus (PP) were dominating the total P r deposition in the Xiangxi River watershed. According to our experiments, certain forms of P r deposition were associated with high correlation coefficients with respect to the variation of rainfall intensity. Results also demonstrated that the dissolved organic phosphorus (DOP) and soluble reactive phosphorus (SRP) via wet deposition had large influences on the DOP and SRP concentrations in runoff, while the PO 4 -P and PP via wet deposition only affected PO 4 -P and PP loads through runoff discharge. Our experiments also shown that most parts of the P r in runoff water was derived from rainfall and its magnitudes varied with land types. Results suggested that during the dry season, the P r wet deposition not only was an important source for the P r transport driven by runoff, but also was one of the most important influencing factors that dominated the P r transport in subtropical watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.

  4. Statistical summary of selected physical, chemical, and toxicity characteristics and estimates of annual constituent loads in urban stormwater, Maricopa County, Arizona

    USGS Publications Warehouse

    Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.

    2001-01-01

    Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.

  5. Calibration of a simple and a complex model of global marine biogeochemistry

    NASA Astrophysics Data System (ADS)

    Kriest, Iris

    2017-11-01

    The assessment of the ocean biota's role in climate change is often carried out with global biogeochemical ocean models that contain many components and involve a high level of parametric uncertainty. Because many data that relate to tracers included in a model are only sparsely observed, assessment of model skill is often restricted to tracers that can be easily measured and assembled. Examination of the models' fit to climatologies of inorganic tracers, after the models have been spun up to steady state, is a common but computationally expensive procedure to assess model performance and reliability. Using new tools that have become available for global model assessment and calibration in steady state, this paper examines two different model types - a complex seven-component model (MOPS) and a very simple four-component model (RetroMOPS) - for their fit to dissolved quantities. Before comparing the models, a subset of their biogeochemical parameters has been optimised against annual-mean nutrients and oxygen. Both model types fit the observations almost equally well. The simple model contains only two nutrients: oxygen and dissolved organic phosphorus (DOP). Its misfit and large-scale tracer distributions are sensitive to the parameterisation of DOP production and decay. The spatio-temporal decoupling of nitrogen and oxygen, and processes involved in their uptake and release, renders oxygen and nitrate valuable tracers for model calibration. In addition, the non-conservative nature of these tracers (with respect to their upper boundary condition) introduces the global bias (fixed nitrogen and oxygen inventory) as a useful additional constraint on model parameters. Dissolved organic phosphorus at the surface behaves antagonistically to phosphate, and suggests that observations of this tracer - although difficult to measure - may be an important asset for model calibration.

  6. Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA.

    PubMed

    Kuwabara, James S; Topping, Brent R; Lynch, Dennis D; Carter, James L; Essaid, Hedeff I

    2009-03-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.

  7. Enzyme-mediated Nutrient Regeneration Following Lysis of Synechococcus WH7803

    NASA Astrophysics Data System (ADS)

    Mine, A. H.; Coleman, M.; Colman, A. S.

    2016-02-01

    Phosphate availability plays a pivotal role in limiting primary production in large regions of the oceans. In order to meet their metabolic needs, microbes use a variety of strategies to overcome phosphate stress. Expression of enzymes such as alkaline phosphatase (APase) allows cells to hydrolyze and use certain ambient dissolved organic phosphorus (DOP) compounds to meet their P demand. Cell lysis releases a range of nutrient forms and enzymes into the ambient environment and is an essential component of the microbial loop. Yet very few studies have attempted to characterize both the immediate and sustained nutrient remineralization linked to the milieu of organophosphorus compounds and enzymatic activity in lysate. We conducted experiments using Synechococcus WH7803 grown under nutrient replete and starved conditions to quantify the release of phosphate during viral lysis and lysis by lysozyme treatment. Dissolved inorganic and organic phosphorus concentrations and APase activity were monitored over time following lysis. We observed a significant initial release of orthophosphate that accompanies lysis. Following lysis, phosphate concentrations continue to rise for a period of hours to days as organophosphorus compounds continue to hydrolyze. Our observations suggest this is due to a combination of direct hydrolysis of DOP released during lysis, solubilization of POP followed by hydrolysis, and possibly polyphosphate decomposition. Size fractionated enzymatic assays suggest cellular debris associated enzymes and dissolved fractions are both important in DOP hydrolysis in the viral lysate, whereas particle associated APase activity dominates in the lysozyme treatments. Moreover, nutrient status prior to lysis has important controls on the initial nutrient release and subsequent regenerative flux. These findings underscore the significance of lysis and subsequent enzyme-mediated hydrolysis in nutrient regeneration and biogeochemical dynamics in marine ecosystems.

  8. Calibration of the APEX Model to Simulate Management Practice Effects on Runoff, Sediment, and Phosphorus Loss.

    PubMed

    Bhandari, Ammar B; Nelson, Nathan O; Sweeney, Daniel W; Baffaut, Claire; Lory, John A; Senaviratne, Anomaa; Pierzynski, Gary M; Janssen, Keith A; Barnes, Philip L

    2017-11-01

    Process-based computer models have been proposed as a tool to generate data for Phosphorus (P) Index assessment and development. Although models are commonly used to simulate P loss from agriculture using managements that are different from the calibration data, this use of models has not been fully tested. The objective of this study is to determine if the Agricultural Policy Environmental eXtender (APEX) model can accurately simulate runoff, sediment, total P, and dissolved P loss from 0.4 to 1.5 ha of agricultural fields with managements that are different from the calibration data. The APEX model was calibrated with field-scale data from eight different managements at two locations (management-specific models). The calibrated models were then validated, either with the same management used for calibration or with different managements. Location models were also developed by calibrating APEX with data from all managements. The management-specific models resulted in satisfactory performance when used to simulate runoff, total P, and dissolved P within their respective systems, with > 0.50, Nash-Sutcliffe efficiency > 0.30, and percent bias within ±35% for runoff and ±70% for total and dissolved P. When applied outside the calibration management, the management-specific models only met the minimum performance criteria in one-third of the tests. The location models had better model performance when applied across all managements compared with management-specific models. Our results suggest that models only be applied within the managements used for calibration and that data be included from multiple management systems for calibration when using models to assess management effects on P loss or evaluate P Indices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    PubMed

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  10. [Three dimensional fluorescent characteristics of soil dissolved organic matter (DOM) in Jiaozhou Bay coastal wetlands, China].

    PubMed

    Zi, Yuan Yuan; Kong, Fan Long; Xi, Min; Li, Yue; Yang, Ling

    2016-12-01

    In order to elucidate the structure characteristics of soil dissolved organic matter (DOM) and analyze the sources in Jiaozhou Bay coastal wetlands, four typical types of wetlands around Jiaozhou Bay were chosen, including Spartina anglica wetland, the barren wetland, Suaeda glauca wetland and Phragmites australis wetland. The soil samples were collected in January 2014. The contents of soil DOM were determined and the spectral analysis was made by three-dimensional fluorescent technology. The results showed that the contents of soil dissolved organic carbon (DOC) in four types of wetlands all decreased with the increasing soil depth, and S. anglica wetland ranked the first in the contents of soil DOC, followed by the barren wetland, S. glauca wetland and P. australis wetland. Five fluorescence peaks including B, T, A, D and C were found in the three-dimensional fluorescence spectrum (3DEEMs), indicating tyrosine-like, tryptophan-like, phenol-like, soluble microbial byproduct-like and humic acid-like- substances, respectively. Fluorescence integration (FRI) was applied in the qualitative analysis of five components. The results showed that tryptophan-like, phenol-like and tyrosine-like substances ranked in top three in content, followed by soluble microbial byproduct-like and humic acid-like substances which were not significantly different. Pearson correlation analysis demonstrated that a positive correlation existed between any two of the five components of DOM, and they were all positively related to DOC content. In addition, there existed different correlations between the five components of DOM and total phosphorus (TP), available phosphorus (AP) and total nitrogen (TN). The soil DOM in the four types of wetlands was mainly produced by biotic interactions, and the degree of humification was relatively low.

  11. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.

  12. Water Quality, Hydrology, and Response to Changes in Phosphorus Loading of Nagawicka Lake, a Calcareous Lake in Waukesha County, Wisconsin

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.

    2006-01-01

    Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.

  13. Quality of surface water in Missouri, water year 2015

    USGS Publications Warehouse

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  14. Quality of surface water in Missouri, water year 2011

    USGS Publications Warehouse

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  15. Quality of surface water in Missouri, water year 2012

    USGS Publications Warehouse

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  16. Quality of surface water in Missouri, water year 2014

    USGS Publications Warehouse

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  17. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China.

    PubMed

    Wang, Yujue; Liu, Dongyan; Dong, Zhijun; Di, Baoping; Shen, Xuhong

    2012-12-01

    The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    PubMed

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  19. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    PubMed Central

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978

  20. Phosphorus loading to tropical rain forest streams after clear-felling and burning in Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Malmer, Anders

    1996-07-01

    Most estimates of P export from natural or disturbed humid tropical ecosystems by streams have been based only on export of dissolved P, even though P often is limiting and can be expected to be strongly associated to particles. Therefore loss of ignition (LOI) and particulate P (Ppart) analyses were made on organic and inorganic detritus resulting from surface erosion and on stream-suspended sediments in an undisturbed rain forest (control), as well as during and after conversion of rain forest into forest plantation. Control forest surface erosion and stream sediments consisted mainly of organics, and dissolved P (Pdiss) dominated over Ppart in stream water. The same relation was found after conversion, with a maximum mean Pdiss/Ppart ratio of up to 10 after burning, compared with 2-2.5 for control forests. This larger difference was assumed to depend on PO4 dissolved from ashes to larger concentrations than could be adsorbed during the short time (<1 hour) to reach peak flow during rainstorms.

  1. Quality of surface water in Missouri, water year 2013

    USGS Publications Warehouse

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  2. Quality of surface water in Missouri, water year 2010

    USGS Publications Warehouse

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  3. Quality of Surface Water in Missouri, Water Year 2008

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  4. Evaluation of eutrophication of Ostravice river depending on the chemical and physical parameters

    NASA Astrophysics Data System (ADS)

    Hlavac, A.; Melcakova, I.; Novakova, J.; Svehlakova, H.; Slavikova, L.; Klimsa, L.; Bartkova, M.

    2017-10-01

    The main objective of this study was to evaluate which selected environmental parameters in rivers affect the concentration of chlorophyll a and the distribution of macrozoobenthos. The data were collected on selected profiles of the Ostravice mountain river in the Moravian-Silesian Region. The examined chemical and physical parameters include dissolved oxygen (DO), flow rate, oxidation-reduction potential (ORP), conductivity, temperature, pH, total nitrogen and phosphorus concentration.

  5. Environmental and Cultural Impact. Proposed Tennessee Colony Reservoir, Trinity River, Texas. Volume III. Appendices D and E.

    DTIC Science & Technology

    1972-01-01

    daily dissolved oxygen concentration above 5 mg/l, assuming there are normal seasonal and daily variations above this concentration, (2) dissovled oxygen ... Oxygen Concentrations: Surface oxygen determinations were made at each col- lecting station at monthly intervals. Determinations were done using a...Yellow Springs Oxygen Analyzer Model 54. G. Phosphorus and nitrogen determinations : Water samples for chemical analysis were collected at the surface

  6. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    NASA Astrophysics Data System (ADS)

    Bonnet, S.; Berthelot, H.; Turk-Kubo, K.; Fawcett, S.; Rahav, E.; l'Helguen, S.; Berman-Frank, I.

    2015-12-01

    N2 fixation rates were measured daily in large (~ 50 m3) mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia) to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm) UCYN-C cells into large (100-500 μm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton, mainly picoplankton (18 ± 4 %) followed by diatoms (3 ± 2 %) within 24 h of incubation. This is consistent with the observed dramatic increase in picoplankton and diatom abundances, primary production, bacterial production and standing stocks of particulate organic carbon, nitrogen and phosphorus during the second half of the experiment in the mesocosms. These results offer insights into the fate of DDN during a bloom of UCYN-C in low nutrient, low chlorophyll ecosystems.

  7. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy.

    PubMed

    Guo, Haiying; Xing, Yizhan; Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen; Li, Yuhong

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  8. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    PubMed Central

    Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells. PMID:29383288

  9. Using continuous monitoring of physical parameters to better estimate phosphorus fluxes in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal

    2016-04-01

    Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for dissolved and particulate phosphorus reveal independent transport mechanisms in an arable headwater catchment, Hydrological Processes, 29(14), 3162-3178

  10. Nutrient and Trace Metal Controls on Alkaline Phosphatase in the Subtropical Ocean: Insights from Bioassays and Gene Expression

    NASA Astrophysics Data System (ADS)

    Mahaffey, C.; Reynolds, S.; Davis, C. E.; Lohan, M. C.

    2016-02-01

    Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low in the surface ocean and limit biological activity. In response to phosphate limitation, organisms produce phosphohydrolytic enzymes, such as alkaline phosphatases (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. Synthesis of data from the surface ocean from 14 open ocean studies reveals an inverse hyperbolic relationship between phosphate and AP, where AP is significantly induced at phosphate concentrations below 50 nM and DOP concentrations decrease as AP increases. AP activity was significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the rates of AP, we demonstrate that other factors influence AP activity. AP are metalloenzymes and zinc and iron are co-factors of the AP proteins PhoA and PhoX, respectively. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increases the rate of AP. To our knowledge, our results are the first direct field-based evidence that AP activity is limited by zinc in the subtropical ocean. In colonies of nitrogen fixer, Trichodesmium, we found enhanced expression of the phoA gene in a region of elevated zinc concentrations and enhanced expression of the phoX gene in a region of elevated iron concentrations around the intertropical convergence zone. Our study highlights the potential link between the phosphorus cycle and trace metals, specifically zinc and iron, and implies that there is potential for zinc-phosphorus and iron-phosphorus co-limitation in the ocean via AP.

  11. Presence and distribution of nitrate and selected pesticides in surficial-sand aquifers and selected lakes, 1983-94, East Otter Tail County, Minnesota

    USGS Publications Warehouse

    Smith, Shannon E.; Ruhl, James E.

    1995-01-01

    Lake water was sampled from 11 sites on Little Pine, Big Pine, Rush, and Otter Tail Lakes. Nitrate-nitrogen concentrations were all below the detection limit (0.05 mg/L). The concentration of triazine herbicide compounds, as determined by immunoassay, was at or below the detection limit (0.10 ug/L) at all 11 sites. Dissolved oxygen concentrations at the sites ranged from 7.3 to 10.1 mg/L at the water surface, and from 5.3 to 9.7 mg/L at depth. Secchi disk transparency readings ranged from 4.0 to 7.4 feet. Total phosphorus concentrations were generally near or below the detection limit (0.01 mg/L) except at one site where the water had a total phosphorus concentration of 0.06 mg/L.

  12. Water-quality reconnaissance of Laguna Tortuguero, Vega Baja, Puerto Rico, March 1999-May 2000

    USGS Publications Warehouse

    Soler-Lopez, Luis; Guzman-Rios, Senen; Conde-Costas, Carlos

    2006-01-01

    The Laguna Tortuguero, a slightly saline to freshwater lagoon in north-central Puerto Rico, has a surface area of about 220 hectares and a mean depth of about 1.2 meters. As part of a water-quality reconnaissance, water samples were collected at about monthly and near bi-monthly intervals from March 1999 to May 2000 at four sites: three stations inside the lagoon and one station at the artificial outlet channel dredged in 1940, which connects the lagoon with the Atlantic Ocean. Physical characteristics that were determined from these water samples were pH, temperature, specific conductance, dissolved oxygen, dissolved oxygen saturation, and discharge at the outlet canal. Other water-quality constituents also were determined, including nitrogen and phosphorus species, organic carbon, chlorophyll a and b, plankton biomass, hardness, alkalinity as calcium carbonate, and major ions. Additionally, a diel study was conducted at three stations in the lagoon to obtain data on the diurnal variation of temperature, specific conductance, dissolved oxygen, and dissolved oxygen saturation. The data analysis indicates the water quality of Laguna Tortuguero complies with the Puerto Rico Environmental Quality Board standards and regulations.

  13. Nitrogen and Phosphorous Flow in Atlantic Forest Covered Watersheds on the Oceanic and Continental Slopes at Serra dos Órgãos mountain, Southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Vidal, M. M.; De Souza, P.; De Mello, W. Z.; Damaceno, I.; Bourseau, L.; Rodrigues, R. D. A.; Mattos, B. B.

    2017-12-01

    Concentration of nutrients above natural levels are found even at remote or protected environments due to atmospheric transportation from biomass burning emissions, urban and industrial areas. This study evaluate N and P atmospheric deposition at the oceanic and continental slopes of Serra dos Órgãos mountain, which are influenced by the pollutants emission from the Metropolitan Region of Rio de Janeiro. Flux of dissolved forms of N and P were measured in three watersheds in headwaters of Piabanha basin, southeastern Brazil, to understand the dynamics of the biogeochemical processes of these elements, related to anthropic influences of atmospheric inputs and export via stream flow. Samples of bulk precipitation (weekly; n=47) and stream water (monthly; n=13) were collected along one year (Sept 2014 - Sept 2015). During that period the annual rainfall in the oceanic slope (2163 mm) was the double of the continental one. It is important to stress that the rainfall in the oceanic slope was 13 % and 28% in 2014/15, respectively, lower than the long term average. Atmospheric deposition of total dissolved nitrogen (TDN) on the oceanic and continental slopes were, respectively, 15 and 8.6 kg N ha-1 year-1. The TDN outputs by stream water were 5-7 times lower in oceanic slope and 28 times lower on the continental one. The relative contribution of dissolved organic nitrogen (DON; 65%-70%) was higher than the one of dissolved inorganic nitrogen (DIN; 30-35%) to TDN deposition. Atmospheric deposition of total dissolved phosphorus (TDP) in oceanic and continental slopes were 1.4 and 0.95 kg P ha-1 year-1. Dissolved Organic Phosphorus (DOP; 89-96%) was higher than the inorganic one (PO43-; 5-11%). TDP outputs were 2-4 times lower, regarding to atmospheric contribution. The contribution of DOP (73-77 %) was higher than DIP (23-27 %). Results show variations in quantities and forms of N and P species due to natural and anthropogenic processes which contribute to the cycling of these elements in the Serra dos Órgãos. TDN atmospheric contribution on oceanic slope, as well as the DON/DIN ratio, was higher than found on previous studies on the same area.The differences between inputs and outputs of N and P balance can be attributed to factors, including biogeochemical and physical processes, and to an underestimation of stream flows in annual scale.

  14. Toxic substances in surface waters and sediments--A study to assess the effects of arsenic-contaminated alluvial sediment in Whitewood Creek, South Dakota

    USGS Publications Warehouse

    Kuwabara, James S.; Fuller, Christopher C.

    2003-01-01

    Field measurements and bioassay experiments were done to investigate the effects of arsenic and phosphorus interactions on sorption of these solutes by the benthic flora (periphyton and submerged macrophytes) in Whitewood Creek, a stream in western South Dakota. Short-term (24-hour) sorption experiments were used to determine arsenic transport characteristics for algae (first-order rate constants for solute sorption, biomass, and accumulation factors) collected in the creek along a transect beginning upstream from a mine discharge point and downgradient through a 57-kilometer reach. Temporal changes in biomass differed significantly between and within sampling sites. Arsenic concentrations in plant tissue increased with distance downstream, but temporal changes in concentrations in tissues differed considerably from site to site. Cultures of Achnanthes minutissima (Bacillariophyceae) and Stichococcus sp. (Chlorophyceae) were isolated from four sites along a longitudinal concentration gradient of dissolved arsenic within the study reach and were maintained at ambient solute concentrations. Arsenic accumulation factors and sorption-rate constants for these isolates were determined as a function of dissolved arsenate and orthophosphate. Cell surfaces of algal isolates exhibited preferential orthophosphate sorption over arsenate. Initial sorption of both arsenate and orthophosphate followed first-order mass transfer for each culturing condition. Although sorption-rate constants increased slightly with increased dissolved-arsenate concentration, algae, isolated from a site with elevated dissolved arsenic in the stream channel, had a significantly slower rate of arsenic sorption compared with the same species isolated from an uncontaminated site upstream. In diel studies, amplitudes of the pH cycles increased with measured biomass except at a site immediately downstream from water-treatment-plant discharge. Inorganic pentavalent arsenic dominated arsenic speciation at all sites?not a surprising result for the well-oxygenated water column along this reach. Concentration fluctuations in dissolved-arsenic species lagged pH fluctuations by approximately 3 hours at the most downstream site, but no discernible lag was observed at an artificially pooled area with an order of magnitude higher biomass. Furthermore, the amplitudes of diel fluctuations in arsenic species were greater at the pooled area than at the most downstream site. Lack of correspondence between changes in dissolved-orthophosphate concentrations and arsenic species may have resulted from preferential sorption of orthophosphate over arsenate by the biomass. Based on carbon-fixation estimates, the phosphorus demand from photosynthetic activity required water-column concentrations to be supplemented by another source such as phosphate regeneration within the benthic community or desorption of particle-bound phosphate.

  15. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.

    PubMed

    Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K

    2012-01-01

    Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (∼50,000mg/l), horticulture (∼3000mg/l), dryland cropping (∼2000mg/l), cotton (∼600mg/l) and grazing on native pastures (∼300mg/l). The highest median TN concentrations are from horticulture (∼32,000μg/l), cotton (∼6500μg/l), bananas (∼2700μg/l), grazing on modified pastures (∼2200μg/l) and sugar (∼1700μg/l). For TP it is forestry (∼5800μg/l), horticulture (∼1500μg/l), bananas (∼1400μg/l), dryland cropping (∼900mg/l) and grazing on modified pastures (∼400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Water-quality conditions and streamflow gain and loss of the South Prong of Spavinaw Creek basin, Benton County, Arkansas

    USGS Publications Warehouse

    Joseph, Robert L.; Green, W. Reed

    1994-01-01

    A study of the South Prong of Spavinaw Creek Basin conducted baween July 14 and July 23. 1993. described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 10 sites on the mainstem of the South Prong of Spavinaw Creek and from 4 sites on tributaries during periods of low to moderate streamflow (less than 11 cubic feet per second). Water samples were collected from 4 wells and 10 springs located in the basin. In 14 surface-water samples, nitrite plus nitrate concentrations ranged from 0.75 to 4.2 milligrams per liter as nitrogen (mg/L). Orthophosphorus concentrations ranged from 0 03 to O. 15 mg/L as phosphorus. Fecal coliform bacteria counts ranged from 61 to 1,400 colonies per 100 milliliters (col/lOO mL), with a median of 120 col/100 mL. Fecal streptococci bacteria counts ranged from 70 to greater than 2,000 col/100 mL with a median of 185 col/lOO mL. Analysis for selected metals collected at one surface-water sites indicates that concentrations were usually below the reporting limit. Diel dissolved oxygen concentrations and temperatures were measured at an upstream and downstream site on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 7.2 to 83 mg/L and temperatures ranged from 15.5 to 17.0 C. Dissolved oxygen concentrations were higher and temperature values were lower at lhe upstream site, which is located close to two springs that produce all of the flow at that site. Dissolved nitrite plus nitrate was present in all four wells sampled in the basin with concentrations ranging from 0.04 to 3.5 mg/L as nitrogen. Orthophosphorus was present in concentrations ranging from less than 0.01 to 0.07 mg/L as phosphorus. Volatile organic compound analyses in two wells indicate that toluene was present in both wells and chloroform was present in one well. All other volatile organic compounds were found to be below the reporting limits. Analysis for common constituents and selected metals indicated that fluoride concentrations in one well exceeded the U.S. Environmental Protection Agency's primary maximum contamination levels for drinking water. Analyses of water samples collected from springs indicate that nitrite plus nitrate concen- trations ranged from 0.43 to 3.9 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L at nitrogen. Orthophosphorus concentrations ranged from 0.02 to 0.09 mg/L as phosphorus. Fecal coliform bacteria counts ranged from less than 3 to more than 2,000 col/100 mL, with a median of 370 col/100 mL. Fecal streptococci bacteria counts ranged from less than 4 to greater than 2,000 col/100 mL with a median of 435 col/100 mL. Streamflow in nine reaches of the mainstream increased an average of 20 percent. Six losing reaches were identified during the study, one located on the mainstem and the other five located on tributaries to the mainstem.

  17. Reconnaissance of water quality at four swine farms in Jackson County, Florida, 1993

    USGS Publications Warehouse

    Collins, J.J.

    1996-01-01

    The quality of ground water on four typical swine farms in Jackson County, Florida, was studied by analyzing water samples from wastewater lagoons, monitoring wells, and supply wells. Water samples were collected quarterly for 1 year and analyzed for the following dissolved species: nitrate, nitrite, ammonium nitrogen, phosphorus, potassium, sulfate, chloride, calcium, magnesium, fluoride, total ammonium plus organic nitrogen, total phosphorus, alkalinity, carbonate, and bicarbonate. Additionally, the following field constituents were determined in the water samples: temperature, specific conductance, pH, dissolved oxygen, and fecal streptococcus and fecal coliform bacteria. Chemical changes in swine waste as it leaches and migrates through the saturated zone were examined by comparing median values and ranges of water- quality data from farm wastewater in lagoons, shallow pond, shallow monitoring wells, and deeper farm supply wells. The effects of hydrogeologic settings and swine farmland uses on shallow ground-water quality were examined by comparing the shallow ground-water-quality data set with the results of the chemical analyses of water from the Upper Floridan aquifer, and to land uses adjacent to the monitoring wells. Substantial differences occur between the quality of diluted swine waste in the wastewater lagoons, and that of the water quality found in the shallow pond, and the ground water frm all but two of the monitoring wells of the four swine farms. The liquid from the wastewater lagoons and ground water from two wells adjacent to and down the regional gradient from a lagoon on one site, have relatively high values for the following properties and constituents: specific conductance, dissolved ammonia nitrogen, dissolved potassium, and dissolved chloride. Ground water from all other monitoring wells and farm supply wells and the surface water pond, have relatively much lower values for the same properties and constituents. To determine the relation between land uses and ground-water quality on the four swine farms, ground-water-quality data were divided according to the following land uses: confined operations in which swine are kept in houses and not allowed to roam freely, and unconfined operations in which swine are allowed to roam freely in determined areas. Confined operations had lagoons to receive the diluted swine wastes washed from the houses.

  18. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and spatial variability of nutrient stresses so that limitations on discharge can be better targeted.

  19. Water-quality assessment of the Frank Lyon, Jr., nursery pond releases into Lake Maumelle, Arkansas, 1991-1996

    USGS Publications Warehouse

    Green, William Reed

    1998-01-01

    Releases of the Frank Lyon, Jr., Nursery Pond into Lake Maumelle were monitored during 1991 through 1996 to assess the impact that the releases have on the water quality of Lake Maumelle. Results indicated that the water-quality impact of the nursery pond release into Lake Maumelle is variable, and appears to be related to the volume of the nursery pond at release and the amount of fertilizer applied within the nursery pond earlier in the year. In 1991 through 1994 and in 1996, nursery pond release loads for nutrients (except for dissolved nitrite plus nitrate nitrogen), total and dissolved organic carbon, iron, and manganese were greater than what would be expected in the annual area load from that basin. In 1995, only ammonium nitrate was appliec to the nursery pond. As a result, the 1995 phosphorus load was lower than in other years, and was less than what would be expected in the annual areal load. Nutrient enrichment, on average, in Lake Maumelle from the nursery pond release resulted in what would be equivalent to an 8 percent increase in concentration of total phosphorus, 50 percent increase in dissolved orthophosphorus, 0.1 percent increase in dissolved nitrite plus nitrate nitrogen, 2.5 percent increase in total ammonia plus organic nitrogen, and 5.7 percent increase in dissolved ammonia nitrogen, assuming that the nutrient load was conservative and evenly distributed throughout the water body. Evidence of elevated turbidity, nutrient, and chlorphyll a concentrations in the epilimnetic water outside the receiving embayment were apparent for as long as 3 weeks after the 1995 and 1996 releases. In general, highest values were found at the site located where the receiving embayment meets the open water of Lake Maumelle. Much of the released material in the nursery pond originated in the cooler, anoxic hypolimnetic water. The initial release water was seen to plunge beneath the warmer water existing in the receiving embayment and was transported into the open water of Lake Maumelle, under the thermocline. The quantity of water and mass of constituents transported into the open water under the thermocline is unknown and probably remained isolated from the surface water until fall turnover.

  20. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River Basin, Connecticut, 2000-2001

    USGS Publications Warehouse

    Colombo, Michael J.; Grady, Stephen J.; Todd Trench, Elaine C.

    2004-01-01

    A consistent and pervasive pattern of nutrient enrichment was substantiated by water-quality sampling in the Quinebaug River and its tributaries in eastern Connecticut during water years 2000 and 2001. Median total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency?s recently recommended regional ambient water-qual-ity criteria for streams (0.71 and 0.031 milligrams per liter, respectively). Maximum total phosphorus concentrations exceeded 0.1 milligrams per liter at nearly half the sampled locations in the Quinebaug River Basin. Elevated total nitrogen and total phosphorus concentrations were measured at all stations on the mainstem of the Quinebaug River, the French River, and the Little River. Nutrient enrichment was related to municipal wastewater point sources at the sites on the mainstem of the Quinebaug River and French River, and to agricultural nonpoint nutrient sources in the Little River Basin. Nutrient enrichment and favorable physical factors have resulted in excessive, nuisance algal blooms during summer months, particularly in the numerous impoundments in the Quinebaug River system. Phytoplankton algal density as high as 85,000 cells per milliliter was measured during such nuisance blooms in water years 2000 and 2001. Different hydrologic conditions during the summers of 2000 and 2001 produced very different seston algal populations. Larger amounts of precipitation sustained higher streamflows in the summer of 2000 (than in 2001), which resulted in lower total algal abundance and inhibited the typical algal succession from diatoms to cyanobacteria. Despite this, nearly half of all seston chlorophyll-a concentrations measured during this study exceeded the recommended regional ambient stream-water-quality criterion (3.75 micrograms per liter), and seston chlorophyll-a concentrations as large as 42 micrograms per liter were observed in wastewa-ter-receiving reaches of the Quinebaug River. Estimates of primary productivity and respiration obtained from diel dissolved oxygen monitoring and from light- and dark-bottle dissolved oxygen measurements demonstrated that instream metabolic processes are consistent with a seston-algae dominant system. The highest estimated maximum primary productivity rate was 1.72 grams of oxygen per cubic meter per hour at the Quinebaug River at Jewett City during September 2001. The observed extremes in diel dissolved oxygen concentrations (less than 5 milligrams per liter) and pH (greater than 9) may periodically stress aquatic organisms in the Quinebaug River Basin.

  1. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    USGS Publications Warehouse

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35 percent below normal prior to nutrient management, whereas precipitation was 4 percent above normal and streamflow was 3 percent below normal during the first 2 years of nutrient management. Eighty-four percent of the 20.44 inches of streamflow was base flow prior to nutrient management and 54 percent of the 31.14 inches of streamflow was base flow during the first 2 years of the nutrient-management phase. About 31 percent of the measured precipitation during the first 4 years of the study was discharged as surface water; the remaining 69 percent was removed as evapotranspiration or remained in ground-water storage. Median concentrations of total nitrogen and dissolved nitrate plus nitrite in base flow increased from 4.9 and 4.1 milligrams per liter as nitrogen, respectively, prior to nutrient management to 5.8 and 5.0 milligrams per liter, respectively, during nutrient management. Median concentrations of ammonia nitrogen and organic nitrogen did not change significantly in base flow. Median concentrations of total and dissolved phosphorus in base flow did not change significantly and were 0.05 and 0.03 milligrams per liter as phosphorus, respectively, prior to the management phase, and 0.05 and 0.04 milligrams per liter, respectively, during the management phase. Concentrations and loads of dissolved nitrite plus nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations and loads decreased as nutrient utilization and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment 5,300 pounds of nitrogen, and 70.4 pounds of phosphorous discharged in base flow in the 2 years prior to nutrient management. During the first 2 years of nutrient management about 2,860 pounds of suspended sediment, 5,700 pounds of nitrogen, and 46.6 pounds of phosphorus discharged in base flow. Prior to nutrient management, about 260,000 pounds of suspende

  2. Simulating stream transport of nutrients in the eastern United States, 2002, using a spatially-referenced regression model and 1:100,000-scale hydrography

    USGS Publications Warehouse

    Hoos, Anne B.; Moore, Richard B.; Garcia, Ana Maria; Noe, Gregory B.; Terziotti, Silvia E.; Johnston, Craig M.; Dennis, Robin L.

    2013-01-01

    Existing Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models for the northeastern and southeastern regions of the United States were recalibrated to achieve a hydrographically consistent model with which to assess nutrient sources and stream transport and investigate specific management questions about the effects of wetlands and atmospheric deposition on nutrient transport. Recalibrated nitrogen models for the northeast and southeast were sufficiently similar to be merged into a single nitrogen model for the eastern United States. The atmospheric deposition source in the nitrogen model has been improved to account for individual components of atmospheric input, derived from emissions from agricultural manure, agricultural livestock, vehicles, power plants, other industry, and background sources. This accounting makes it possible to simulate the effects of altering an individual component of atmospheric deposition, such as nitrate emissions from vehicles or power plants. Regional differences in transport of phosphorus through wetlands and reservoirs were investigated and resulted in two distinct phosphorus models for the northeast and southeast. The recalibrated nitrogen and phosphorus models account explicitly for the influence of wetlands on regional-scale land-phase and aqueous-phase transport of nutrients and therefore allow comparison of the water-quality functions of different wetland systems over large spatial scales. Seven wetland systems were associated with enhanced transport of either nitrogen or phosphorus in streams, probably because of the export of dissolved organic nitrogen and bank erosion. Six wetland systems were associated with mitigating the delivery of either nitrogen or phosphorus to streams, probably because of sedimentation, phosphate sorption, and ground water infiltration.

  3. Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City.

    PubMed

    Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao

    2013-11-01

    Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.

  4. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Supcharoen, Ratsirin; Sioudom, Khamfeuane; Kum, Veasna; Chanyotha, Supitcha; Kritsananuwat, Rawiwan

    2017-06-01

    Tonle Sap Lake (Cambodia), a classic example of a "flood pulse" system, is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about six fold. The lake is likely phosphorus limited and we hypothesized that groundwater discharge, including recirculated lake water, may represent an important source of P and other nutrients. To address this question, we surveyed hundreds of kilometers of the lake for natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth. All major inorganic nutrients and phosphorus species were evaluated by systematic sampling throughout the lake. Results showed that there were radon hotspots, all at the boundaries between the permanent lake and the floodplain, indicating likely groundwater inputs. A radon mass balance model indicates that the groundwater flow to Tonle Sap Lake is approximately 10 km3/yr, about 25% as large as the floodwaters entering from the Mekong River during the wet monsoon. Our results suggest that the groundwater-derived dissolved inorganic phosphorus (DIP) contribution to Tonle Sap is more than 30% of the average inflows from all natural sources. Since the productivity of the lake appears to be phosphorus limited, this finding suggests that the role of groundwater is significant for Tonle Sap Lake and perhaps for other flood pulse systems worldwide.

  5. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer.

    PubMed

    Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C

    2004-01-01

    Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.

  6. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    PubMed

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  7. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Dahbi, Mouad; Fukunishi, Mika; Horiba, Tatsuo; Yabuuchi, Naoaki; Yasuno, Satoshi; Komaba, Shinichi

    2017-09-01

    Electrochemical performance of the red phosphorus electrode was examined in ionic-liquid electrolyte, 0.25 mol dm-3 sodium bisfluorosulfonylamide (NaFSA) dissolved N-methyl-N-propylpyridinium-bisfluorosulfonylamide (MPPFSA), at room temperature. We compared its electrochemical performance to conventional EC/PC/DEC, EC/DEC, and PC solutions containing 1 mol dm-3 NaPF6. The electrode in NaFSA/MPPFSA demonstrated a reversible capacity of 1480 mAh g-1 and excellent capacity retention of 93% over 80 cycles, which is much better than those in the conventional electrolytes. The difference in capacity retention for the electrolytes correlates to the different solid electrolyte interphase (SEI) layer formed on the phosphorus electrode. To understand the SEI formation in NaFSA/MPPFSA and its evolution during cycling, we investigate the surface layer of the red phosphorus electrodes with hard X-ray photoelectron spectroscopy (HAXPES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). A detailed analysis of HAXPES spectra demonstrates that SEI layer consists of major inorganic and minor organic species, originating from decomposition of MPP+ and FSA-. Homogenous surface layer is formed during the first cycle in NaFSA/MPPFSA while in alkyl carbonate ester electrolytes, continuous growth of surface film up to the 20th cycle is observed. Possibility of red phosphorous electrode for battery applications with pure ionic liquid is discussed.

  8. The short-term effects of prescribed burning on biomass removal and the release of nitrogen and phosphorus in a treatment wetland.

    PubMed

    White, J R; Gardner, L M; Sees, M; Corstanje, R

    2008-01-01

    Nutrient removal by constructed wetlands can decline over time due to the accumulation of organic matter. A prescribed burn is one of many management strategies used to remove detritus in macrophyte-dominated systems. We quantified the short-term effects on effluent water quality and the amount of aboveground detritus removed from a prescribed burn event. Surface water outflow concentrations were approximately three times higher for P and 1.5 times higher for total Kjeldhal nitrogen (TKN) following the burn event when compared to the control. The length of time over which the fire effect was significant (P < 0.05), 3 d for TKN and up to 23 d for P fractions. Over time, the concentration of soluble reactive phosphorus (SRP) in the effluent decreased, but was compensated with increases in dissolved organic phosphorus (DOP) and particulate phosphorus (PP), such that net total P remained the same. Total aboveground biomass decreased by 68.5% as a result of the burn, however, much of the live vegetation was converted to standing dead material. These results demonstrate that a prescribed burn can significantly decrease the amount of senescent organic matter in a constructed wetland. However, short-term nutrient releases following the burn could increase effluent nutrient concentrations. Therefore, management strategies should include hydraulically isolating the burned area immediately following the burn event to prevent nutrient export.

  9. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River and Oak Grove Fork) had the highest concentrations of phosphorus (and lowest concentrations of nitrogen), and streams draining forestland in the middle basin (Clear Creek, Eagle Creek, and the North Fork of the Clackamas River) had relatively high concentrations of nitrogen (and low concentrations of phosphorus). In contrast, relatively low concentrations of both nitrogen and phosphorus were found at the two reference streams, reflecting their pristine condition. Relatively high phosphorus levels in the upper basin are probably due to the erosion of naturally occurring phosphorus deposits in this area. Likely sources of nitrogen (mostly nitrate) in the forested watersheds include nitrogen-fixing plants, atmospheric deposition, timber harvesting, and applications of urea fertilizers.

  10. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.

  11. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    USGS Publications Warehouse

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.

  12. Long-term records reveal decoupling of nitrogen and phosphorus cycles in a large, urban lake in response to an extreme rainfall event

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Loken, L. C.; Oliver, S. K.; Collins, S.; Butitta, V.; Stanley, E. H.

    2017-12-01

    Extreme events can play powerful roles in shifting ecosystem processes. In lakes, heavy rainfall can transport large amounts of particulates and dissolved nutrients into the water column and, potentially, alter biogeochemical cycling. However, the impacts of extreme rainfall events are often difficult to study due to a lack of long-term records. In this paper, we combine daily discharge records with long-term lake water quality information collected by the North Temperate Lakes Long-Term Ecological Research (NTL LTER) site to investigate the impacts of extreme events on nutrient cycling in lakes. We focus on Lake Mendota, an urban lake within the Yahara River Watershed in Madison, Wisconsin, USA, where nutrient data are available at least seasonally from 1995 - present. In June 2008, precipitation amounts in the Yahara watershed were 400% above normal values, triggering the largest discharge event on record for the 40 years of monitoring at the streamgage station; hence, we are able to compare water quality records before and after this event as a case study of how extreme rain events couple or decouple lake nutrient cycling. Following the extreme event, the lake-wide mass of nitrogen and phosphorus increased in the summer of 2008 by 35% and 21%, respectively, shifting lake stoichiometry by increasing N:P ratios (Figure 1). Nitrogen concentrations remained elevated longer than phosphorus, suggesting (1) that nitrogen inputs into the lake were sustained longer than phosphorus (i.e., a "smear" versus "pulse" loading of nitrogen versus phosphorus, respectively, in response to the extreme event) and/or (2) that in-lake biogeochemical processing was more efficient at removing phosphorus compared to nitrogen. While groundwater loading data are currently unavailable to test the former hypothesis, preliminary data from surficial nitrogen and phosphorus loading to Lake Mendota (available for 2011 - 2013) suggest that nitrogen removal efficiency is less than phosphorus, supporting the latter hypothesis. As climate change is expected to increase the frequency of extreme events, continued monitoring of lakes is needed to understand biogeochemical responses and when and how water quality threats may occur.

  13. Dipeptidyl peptidase (DP) 6 and DP10: novel brain proteins implicated in human health and disease.

    PubMed

    McNicholas, Kym; Chen, Tong; Abbott, Catherine A

    2009-01-01

    Dipeptidyl peptidase (DP) 6 and DP10 are non-enzyme members of the dipeptidyl peptidase IV family, which includes fibroblast activation protein, DP8, and DP9. DP6 and DP10 proteins have been shown to be critical components of voltage-gated potassium (Kv) channels important in determining cellular excitability. The aim of this paper was to review the research to date on DP6 and DP10 structure, expression, and functions. To date, the protein region responsible for modulating Kv4 channels has not been conclusively identified and the significance of the splice variants has not been resolved. Resolution of these issues will improve our overall knowledge of DP6 and DP10 and lead to a better understanding of their role in diseases, such as asthma and Alzheimer's disease.

  14. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    PubMed

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Standard Method for Analyzing Gases in Titanium and Titanium Alloys. Standard Method for the Chemical Analysis of Titanium Alloys.

    DTIC Science & Technology

    1982-10-28

    form a non- soluble complex. After filtering and burning the non-pure molybdenum trioxide is weighed. Ammonia water is used to dissolve the molybdenum...niobium and tantalum should use the methyl alcohol distillation - curcumin absorption luminosity 66 method for determination. II. The Methyl Alcohol...Distillation - Curcumin Absorption Luminosity Method 1. Summary of Method In a phosphorus sulfate medium, boron and methyl alcohol produce methyl borate

  16. Predicting Upwelling Radiance on the West Florida Shelf

    DTIC Science & Technology

    2006-03-31

    National Science Foundation . The chemical and biological model includes the ability to simulate multiple groups of phytoplankton, multiple limiting nutrients, spectral light harvesting by phytoplankton, multiple particulate and dissolved degradational pools of organic material, and non-stoichometric carbon, nitrogen, phosphorus, silica, and iron dynamics. It also includes a complete spectral light model for the prediction of Inherent Optical Properties (IOPs). The coupling of the predicted IOP model (Ecosim 2.0) with robust radiative transfer model (Ecolight

  17. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; He, Yixin; Yuan, Xingzhong; Chen, Huai; Peng, Changhui; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Liu, Shuangshuang

    2017-04-01

    Greenhouse gas (GHG) emissions from reservoirs and global urbanization have gained widespread attention, yet the response of GHG emissions to the watershed urbanization is poorly understood. Meanwhile, there are millions of small reservoirs worldwide that receive and accumulate high loads of anthropogenic carbon and nitrogen due to watershed urbanization and can therefore be hotspots of GHG emissions. In this study, we assessed the GHG concentrations and fluxes in sixteen small reservoirs draining urban, agricultural and forested watersheds over a period of one year. The concentrations of pCO2, CH4 and N2O in sampled urban reservoirs that received more sewage input were higher than those in agricultural reservoirs, and were 3, 7 and 10 times higher than those in reservoirs draining in forested areas, respectively. Accordingly, urban reservoirs had the highest estimated GHG flux rate. Regression analysis indicated that dissolved total phosphorus, dissolved organic carbon (DOC) and chlorophyll-a (Chl-a) had great effect on CO2 production, while the nitrogen (N) and phosphorus (P) content of surface water were closely related to CH4 and N2O production. Therefore, these parameters can act as good predictors of GHG emissions in urban watersheds. Given the rapid progress of global urbanization, small urban reservoirs play a crucial role in accounting for regional GHG emissions and cannot be ignored.

  18. [Nutrient spatiotemporal distribution and eutrophication process in subsidence waters of Huainan and Huaibei mining areas, China].

    PubMed

    Qu, Xi-Jie; Yi, Qi-Tao; Hu, You-Biao; Yan, Jia-Ping; Yu, Huai-Jun; Dong, Xiang-Lin

    2013-11-01

    A total of eight mining subsidence waters, including five sites in Huainan "Panxie" Mining Areas (PXS-1, PXS-2, PXS-3, PXS-4, and PXS-5) and three sites in Huaibei "Zhu-Yang huang" Mining Areas (HBDH, HBZH, HBNH), were selected to study the nutrient temporal and spatial distribution and trophic states. Among the sites, three sites (PXS-1, PXS-3, and HBDH) showed higher nutrient level and could be classified into moderate eutrophication, whereas the other five were in moderate nutrient level and mild eutrophication. Overall, the nutrient level of Huainan mining subsidence waters was higher than that of Huaibei mining subsidence waters. All the test samples in the two mining areas had a higher ratio of nitrogen to phosphorus (N:P), being 25-117 in Huainan and 17-157 in Huaibei, and with a seasonal variety, the lowest in growth season. The dissolved inorganic phosphorus (DIP) in total phosphorous (TP) occupied a small percentage, being averagely 15.4% and 18.4% in Huainan and Huaibei mining areas, respectively. Nitrate was the main specie of dissolved inorganic nitrogen (DIN), with the ratio of nitrate to DIN being 74% and 89% in Huainan and Huaibei mining areas, respectively. Relative to the waters age, human activities could be one of the main factors responsible for the high nutrient level and the faster eutrophication process of these waters.

  19. Eco-environmental impact assessment of pre-leisure beach nourishment on the benthic invertebrate community at Anping coast

    NASA Astrophysics Data System (ADS)

    Shih, Chun-Han; Kuo, Yi-Yu; Chu, Ta-Jen; Chou, Wen-Chieh; Chang, Wei-Tse; Lee, Ying-Chou

    2011-06-01

    In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach habitats and reduce biomass and invertebrate density at sites where they were employed. We conducted an eco-environmental evaluation at the Anping artificial beach-nourishment project area. At this site, sand piles within a semi-enclosed spur groin have been enforced by use of eco-engineering concepts since 2003. Four sampling sites were monitored during the study period from July 2002 to September 2008. The environmental impact assessment and biological investigations that we conducted are presented here. The results from this study indicate that both biotic (number of species, number of individual organisms, and Shannon-Wiener diversity) and abiotic parameters (suspended solids, biological oxygen demand, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, total phosphorus, total organic carbon, median diameter, and water content) showed significant differences before and after beach engineering construction. Biological conditions became worse in the beginning stages of the engineering but improved after the restoration work completion. This study reveals that the composition of benthic invertebrates changed over the study period, and two groups of organisms, Bivalvia and Gastropoda, seemed to be particularly suitable to this habitat after the semi-enclosed artificial structures completion.

  20. Transport of dissolved and suspended material by the Potomac River at Chain Bridge, at Washington, D.C., water years 1978-81

    USGS Publications Warehouse

    Blanchard, Stephen F.; Hahl, D.C.

    1987-01-01

    The measuring station Potomac River at Chain Bridge at Washington, D.C., is located at the upstream end of the tidal Potomac River. Water-quality data were collected intensively at this site from December 1977 through September 1981 as part of a study of the tidal Potomac River and Estuary. Analysis of water-discharge data from the long-term gage at Little Falls, just up stream from Chain Bridge, shows that streamflow for the 1979-81 water years had characteristics similar to the 51-year average discharge (1931-81). Loads were computed for various forms of phosphorus and nitrogen, major cations and anions, silica, biochemical oxygen demand, chlorophyll a and pheophytin, and suspended sediment. Load duration curves for the 1979-81 water years show that 50 percent of the time, water passing Chain Bridge carried at least 28 metric tons per day of total nitrogen, 1.0 metric tons per day of total phosphorus, 70 metric tons per day of silica, and 270 metric tons per day of suspended sediment. No consistent seasonal change in constituent concentrations was observed; however, a seasonal trend in loads due to seasonal changes in runoff was noted. Some storm runoff events transported as much dissolved and suspended material as is transported during an entire low-flow year.

  1. Water quality of North Carolina streams; water-quality characteristics for selected sites on the Cape Fear River, North Carolina, 1955-1980; variability, loads, and trends of selected constituents

    USGS Publications Warehouse

    Crawford, J. Kent

    1985-01-01

    Historical water-quality data collected by the U.S. Geological Survey from the Cape Fear River at Lock 1, near Kelly, North Carolina, show increasing concentrations of total-dissolved solids, specific conductance, sulfate, chloride, nitrite plus nitrate nitrogen, magnesium, sodium, and potassium during the past 25 years. Silica and pH show decreasing trends during the same 1957-80 period. These long-term changes in water quality are statistically related to increasing population in the basin and especially to manufacturing employment. Comparisons of water-quality data for present conditions with estimated natural conditions indicate that over 50 percent of the loads of most major dissolved substances in the river at Lock 1 are the result of development impacts in the basin. Over 80 percent of the nutrients plus nitrate nitrogen, ammonia nitrogen, and total phosphorus presently in the streams originate from development. At four sampling stations on the Cape Fear River and its tributaries, recent water-quality data show that most constituents are always within North Carolina water-quality standards and Environmental Protection Agency water-quality criteria. However, iron, manganese and mercury concentrations usually exceed standards. Although no algal problems have been identified in the Cape Fear River, nitrogen and phosphorus are present in concentrations that have produced nuisance algal growths in lakes

  2. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash.

    PubMed

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J

    2011-05-01

    Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    PubMed

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Human fetal ductal plate revisited. I. ductal plate expresses NCAM, KIT, MET, PDGFRA, and neuroendocrine antigens (NSE, chromogranin, synaptophysin, and CD56).

    PubMed

    Terada, Tadashi

    2014-10-01

    The molecular mechanisms of ductal plate (DP) development and differentiation (DD) in human fetal livers (HFLs) are unclear. The author immunohistochemically investigated expressions of NCAM, KIT, KIT, PDGFRA, and neuroendocrine antigens in 32 HFLs. The processes of human intrahepatic bile duct (IBD) DD could be categorized into four stages: DP, remodeling DP, remodeled DP, and mature IBD. NCAM was always expressed in DP and remodeling DP, but not in remodeled DP and mature IBD. The biliary elements were positive for cytokeratin (CK)7, 8, 18, and 19. The hepatoblasts were positive for CK8 and CD18, but negative for CK7 and CK19; however, periportal hepatoblasts showed biliary-type CKs (CK7 and CK19). NCAM was always expressed in DP and remodeling DP, but not in remodeled DP and mature IBD. KIT was occasionally (12/32 cases) expressed in DP and remodeling DP, but not in remodeled DP and mature IBD. NCAM expression was also seen in some hepatoblasts and hematopoietic cells and neurons. KIT was also expressed in some hepatoblasts, hematopoietic cells, and mast cells. MET and PDGFRA were strongly expressed in DP, remodeling DP, remodeled DP, and mature IBD. MET and PDGFRA were also strongly expressed in hepatoblasts and hematopoietic cells. MET and PDGFRA were not expressed in portal mesenchyme, portal veins, sinusoids, and hepatic veins. DP showed immunoreactive chromogranin, synaptophysin, neuron-specific enolase (NSE), and CD56. Expressions of chromogranin and CD56 were infrequently seen in remodeling DP. No expressions of these four neuroendocrine antigens were seen in remodeled DP and mature IBD. The nerve fibers were consistently positive for chromogranin, synaptophysin, NSE, and CD56 in the portal mesenchyme in the stages of remodeling DP, remodeled DP, and mature IBDs. The data suggest that NCAM, KIT/stem cell factor-signaling, NSE, hepatocyte growth factor/MET signaling, PDGFα/PDGFRA signaling, chromogranin, synaptophysin, and CD56 play important roles in DD of biliary cells of HFL. They also suggest that the DP cells having neuroendocrine molecules give rise to hepatic stem/progenitor cells. © 2014 Wiley Periodicals, Inc.

  5. Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.

    2005-01-01

    The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported

  6. Analysis of ambient conditions and simulation of hydrodynamics and water-quality characteristics in Beaver Lake, Arkansas, 2001 through 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2006-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas. The purpose of this report is to describe the ambient hydrologic and water-quality conditions in Beaver Lake and its inflows and describe a two-dimensional model developed to simulate the hydrodynamics and water quality of Beaver Lake from 2001 through 2003. Water-quality samples were collected at the three main inflows to Beaver Lake; the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Nutrient concentrations varied among the tributaries because of land use and contributions of nutrients from point sources. The median concentrations of total ammonia plus organic nitrogen were greater for the White River than Richland and War Eagle Creeks. The greatest concentrations of nitrite plus nitrate and total nitrogen, however, were observed at War Eagle Creek. Phosphorus concentrations were relatively low, with orthophosphorus and dissolved phosphorus concentrations mostly below the laboratory reporting limit at the three sites. War Eagle Creek had significantly greater median orthophosphorus and total phosphorus concentrations than the White River and Richland Creek. Dissolved organic-carbon concentrations were significantly greater at the White River than at War Eagle and Richland Creeks. The White River also had significantly greater turbidity than War Eagle Creek and Richland Creek. The temperature distribution in Beaver Lake exhibits the typical seasonal cycle of lakes and reservoirs located within similar latitudes. Beaver Lake is a monomictic system, in which thermal stratification occurs annually during the summer and fall and complete mixing occurs in the winter. Isothermal conditions exist throughout the winter and early spring. Nitrogen concentrations varied temporally, longitudinally, and vertically in Beaver Lake for 2001 through 2003. Nitrite plus nitrate concentrations generally decreased from the upstream portion of Beaver Lake to the downstream portion and generally were greater in the hypolimnion. Total ammonia plus organic nitrogen concentrations also decreased from the upstream end of Beaver Lake to the downstream end and were substantially greater in the hypolimnion of Beaver Lake. Phosphorus concentrations mostly were near or below laboratory detection limits in the epilimnion and metalimnion in Beaver Lake and were substantially greater in the hypolimnion in the upstream and middle parts of the reservoir. Measured total and dissolved organic carbon in Beaver Lake was relatively uniform spatially, longitudinally, and vertically in the reservoir from January 2001 through December 2003. Chlorophyll a concentrations measured at sites in the upstream portion of the lake were significantly greater than at the other sites in the downstream portion of Beaver Lake. During the study period, water clarity in Beaver Lake was significantly greater at the downstream end of the reservoir than at the upstream end. The greatest Secchi depths at the downstream end of the reservoir generally were observed in 2001 compared to 2002 and 2003, but did not have a seasonal pattern as observed at sites in the middle and upstream portion of the reservoir. Similar to Secchi depth results, turbidity results indicated greater water clarity in the downstream portion of Beaver Lake compared to the upstream portion. Turbidity also was greater in the hypolimnion than in the epilimnion in the reservoir during the stratification season. A two-dimensional, laterally averaged, hydrodynamic, and water-quality model using CE-QUAL-W2 Version 3.1 was developed for Beaver Lake and calibrated based on vertical profiles of temperature and dissolved oxygen, and water-quality constituent concentrations collected at various depths at four sites in the reservoir from April 2001 to April 2003. Simulated temperatures and dissolved-oxygen concentrations compared reasonably well with measured t

  7. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    USGS Publications Warehouse

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network and constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of water resources in the State. Six sites from the Ambient Water-Quality Monitoring Network, with data available from the 1993 through 2008 water years, were chosen to compare water-quality conditions and long-term trends of dissolved oxygen, selected physical properties, total suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorous, fecal indicator bacteria, and selected trace elements. The six sites used in the study were classified in groups corresponding to the physiography, main land use, and drainage basin size, and represent most stream types in Missouri. Long-term trends in this study were analyzed using flow-adjusted and non-flow adjusted models. Highly censored datasets (greater than 5 percent but less than 50 percent censored values) were not flow-adjusted. Trends that were detected can possibly be related to changes in agriculture or urban development within the drainage basins. Trends in nutrients were the most prevalent. Upward flow-adjusted trends in dissolved nitrate plus nitrite (as nitrogen) concentrations were identified at the Elk River site, and in total phosphorus concentrations at the South Fabius and Grand River sites. A downward flow-adjusted trend was identified in total phosphorus concentrations from Wilson Creek, the only urban site in the study. The downward trend in phosphorus possibly was related to a phosphorus reduction system that began operation in 2001 at a wastewater treatment plant upstream from the sampling site. Total suspended solids concentrations indicated an upward non-flow adjusted trend at the two northern sites (South Fabius and Grand Rivers). The increase in total suspended solids concentrations could be because of soil erosion from land cultivated for row crops. Most trace element data examined in the study were highly censored and could not be used for flow-adjusted trend analyses. Water-quality conditions were assessed to explore relations between data from sites and to the State water-quality standards where applicable for selected constituents. Streamflow varied at each site because of drainage area, land use, and groundwater inputs. Dissolved oxygen and water temperature were similar at all sites except the urban site located on Wilson Creek. Specific conductance was similar between the most northern (South Fabius and Grand River sites) and the most southern sites (Current and Elk River sites). Total suspended solids concentrations were near the method reporting level at all sites, except the northern sites. Streams in northern Missouri are more turbid than streams in southern Missouri and are affected by large volumes of sediment deposition because of soil erosion from land cultivated for row crops. Geometric means of Escherichia coli were calculated from the recreational seasons within the study period. Only the Grand River site exceeded the whole-body-contact standard for frequently used waters. The South Fabius and Grand River sites and the Wilson Creek site had statistically larger densities of both fecal indicator bacteria types than the remaining sites.

  8. Water quality and streamflow gains and losses of Osage and Prairie Creeks, Benton County, Arkansas, July 2001

    USGS Publications Warehouse

    Moix, Matthew W.; Barks, C. Shane; Funkhouser, Jaysson E.

    2003-01-01

    Osage and Prairie Creeks in Benton County, Arkansas, were studied between July 24 and July 26, 2001, to describe the surface-water quality and the streamflow gains and losses along sections of each mainstem. The creeks are located in northwestern Arkansas. Water-quality samples were collected at 12 surface-water sites on the mainstem and at 6 points of inflow for Osage Creek, and at 9 surface-water sites on the mainstem and at 4 points of inflow for Prairie Creek. Water-quality analyses were performed by Rogers Water Utilities and the Arkansas Water Resources Laboratory. Streamflow measurements were made along the mainstem of each creek and at points of inflow (prior to confluence with the mainstem) to identify gaining and losing reaches. Water-quality data collected for Osage Creek indicated that dissolved ammonia concentrations were within the typical range of concentrations measured for streams in the Springfield and Salem Plateaus. Nitrite plus nitrate and total phosphorus concentrations were within the range of concentrations measured for several streams in the western part of the Springfield and Salem Plateaus. Total phosphorus concentrations measured on the mainstem of Osage Creek were higher downstream from the Rogers wastewater-treatment plant than upstream from the wastewater-treatment plant. Water-quality data collected for Prairie Creek indicated that dissolved ammonia concentrations measured for three mainstem sites were above the typical level of dissolved ammonia concentrations measured for streams in the Springfield and Salem Plateaus. High concentrations of dissolved ammonia measured at these sites might be indicative of sewage disposal or organic waste. Most concentrations of nitrite plus nitrate for Prairie Creek were above the range measured for some of the least-disturbed streams of the Ozark Highlands ecoregion but were within the range that is typical for several streams in the western part of the Springfield and Salem Plateaus. Total phosphorus concentrations were below or within the range that is typical for several streams in the western part of the Springfield and Salem Plateaus with elevated concentrations measured at two sties. Elevated concentrations of total phosphorus measured might be indicative of sewage or animal metabolic waste. Identification of losing and gaining reaches indicates that interaction exists between the local shallow unconfined ground-water aquifer and surface flow in Osage and Prairie Creeks. Measured streamflow for the mainstem of Osage Creek ranged from 2.34 to 19.1 cubic feet per second during this study. Streamflow measured at the beginning of the study reach for Osage Creek was 2.34 cubic feet per second, and streamflow measured at the downstream end of the study reach was 15.7 cubic feet per second. One losing and two gaining reaches were identified on the mainstem of Osage Creek with a net gain of 3.58 cubic feet per second upstream from the wastewater-treatment plant. Measured streamflow for the mainstem of Prairie Creek ranged from 0 to 3.17 cubic feet per second during this study. Streamflow measured at the beginning of the study reach for Prairie Creek was 0.44 cubic feet per second, and the stream bed was dry at the downstream end of the study reach. Three losing and two gaining reaches were identified on the mainstem of Prairie Creek with a net loss of 3.06 cubic feet per second.

  9. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore's coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Zhang, Hui; Bayen, Stéphane; Kelly, Barry C

    2015-08-01

    A gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) based method was developed for determination of 86 hydrophobic organic compounds in seawater. Solid-phase extraction (SPE) was employed for sequestration of target analytes in the dissolved phase. Ultrasound assisted extraction (UAE) and florisil chromatography were utilized for determination of concentrations in suspended sediments (particulate phase). The target compounds included multi-class hydrophobic contaminants with a wide range of physical-chemical properties. This list includes several polycyclic and nitro-aromatic musks, brominated and chlorinated flame retardants, methyl triclosan, chlorobenzenes, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Spiked MilliQ water and seawater samples were used to evaluate the method performance. Analyte recoveries were generally good, with the exception of some of the more volatile target analytes (chlorobenzenes and bromobenzenes). The method is very sensitive, with method detection limits typically in the low parts per quadrillion (ppq) range. Analysis of 51 field-collected seawater samples (dissolved and particulate-bound phases) from four distinct coastal sites around Singapore showed trace detection of several polychlorinated biphenyl congeners and other legacy POPs, as well as several current-use emerging organic contaminants (EOCs). Polycyclic and nitro-aromatic musks, bromobenzenes, dechlorane plus isomers (syn-DP, anti-DP) and methyl triclosan were frequently detected at appreciable levels (2-20,000pgL(-1)). The observed concentrations of the monitored contaminants in Singapore's marine environment were generally comparable to previously reported levels in other coastal marine systems. To our knowledge, these are the first measurements of these emerging contaminants of concern in Singapore or Southeast Asia. The developed method may prove beneficial for future environmental monitoring of hydrophobic organic contaminants in marine environments. Further, the study provides novel information regarding several potentially hazardous contaminants of concern in Singapore's marine environment, which will aid future risk assessment initiatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    PubMed

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  11. Improving Shipboard Applications of Non-Intrusive Load Monitoring

    DTIC Science & Technology

    2008-06-01

    EVENTS_LIST (EventNum) .EVENTCODE) case 0 %Unclassifiable case 1 %VP On STATE.VP.ON = STATE.VP.ON + 1; STATE.VP.START = true; PICTURES.RUNNING.VP.SHOW...true; case 2 %VP Off STATE.VP.STOP = true; PICTURES. RUNNING.VP. SHOW false; case 3 %DP On 149 STATE.DP.ON = STATE.DP.ON + 1; STATE.DP.START = true...PICTURES.RUNNING.DP.SHOW true; case 4 %DP Off STATE.DP.STOP = true; PICTURES.RUNNING.DP.SHOW = false; case 5 %VP On (Clogged) STATE.VP.ON = STATE.VP.ON

  12. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.

    PubMed

    Capps, Krista A; Flecker, Alexander S

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.

  13. Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System

    PubMed Central

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems. PMID:23342083

  14. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-03

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  15. Detection of Dystrophin Dp71 in Human Skeletal Muscle Using an Automated Capillary Western Assay System.

    PubMed

    Kawaguchi, Tatsuya; Niba, Emma Tabe Eko; Rani, Abdul Qawee Mahyoob; Onishi, Yoshiyuki; Koizumi, Makoto; Awano, Hiroyuki; Matsumoto, Masaaki; Nagai, Masashi; Yoshida, Shinobu; Sakakibara, Sachiko; Maeda, Naoyuki; Sato, Osamu; Nishio, Hisahide; Matsuo, Masafumi

    2018-05-23

    Dystrophin Dp71 is one of the isoforms produced by the DMD gene which is mutated in patients with Duchenne muscular dystrophy (DMD). Although Dp71 is expressed ubiquitously, it has not been detected in normal skeletal muscle. This study was performed to assess the expression of Dp71 in human skeletal muscle. Human skeletal muscle RNA and tissues were obtained commercially. Mouse skeletal muscle was obtained from normal and DMD mdx mice. Dp71 mRNA and protein were determined by reverse-transcription PCR and an automated capillary Western assay system, the Simple Western, respectively. Dp71 was over-expressed or suppressed using a plasmid expressing Dp71 or antisense oligonucleotide, respectively. Full-length Dp71 cDNA was PCR amplified as a single product from human skeletal muscle RNA. A ca. 70 kDa protein peak detected by the Simple Western was determined as Dp71 by over-expressing Dp71 in HEK293 cells, or suppressing Dp71 expression with antisense oligonucleotide in rhabdomyosarcoma cells. The Simple Western assay detected Dp71 in the skeletal muscles of both normal and DMD mice. In human skeletal muscle, Dp71 was also detected. The ratio of Dp71 to vinculin of human skeletal muscle samples varied widely, indicating various levels of Dp71 expression. Dp71 protein was detected in human skeletal muscle using a highly sensitive capillary Western blotting system.

  16. Surface-Water Quantity and Quality of the Upper Milwaukee River, Cedar Creek, and Root River Basins, Wisconsin, 2004

    USGS Publications Warehouse

    Hall, David W.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Southeastern Wisconsin Regional Planning Commission (SEWRPC), collected discharge and water-quality data at nine sites in previously monitored areas of the upper Milwaukee River, Cedar Creek, and Root River Basins, in Wisconsin from May 1 through November 15, 2004. The data were collected for calibration of hydrological models that will be used to simulate how various management strategies will affect the water quality of streams. The data also will support SEWRPC and Milwaukee Metropolitan Sewerage District (MMSD) managers in development of the SEWRPC Regional Water Quality Management Plan and the MMSD 2020 Facilities Plan. These management plans will provide a scientific basis for future management decisions regarding development and maintenance of public and private waste-disposal systems. In May 2004, parts of the study area received over 13 inches of precipitation (3.06 inches is normal). In June 2004, most of the study area received between 7 and 11 inches of rainfall (3.56 inches is normal). This excessive rainfall caused flooding throughout the study area and resultant high discharges were measured at all nine monitoring sites. For example, the mean daily discharge recorded at the Cedar Creek site on May 27, 2004, was 2,120 cubic feet per second. This discharge ranked ninth of the largest 10 mean daily discharges in the 75-year record, and was the highest discharge recorded since March 30, 1960. Discharge records from continuous monitoring on the Root River Canal near Franklin since October 1, 1963, indicated that the discharge recorded on May 23, 2004, ranked second highest on record, and was the highest discharge recorded since March 4, 1974. Water-quality samples were taken during two base-flow events and six storm events at each of the nine sites. Analysis of water-quality data indicated that most concentrations of dissolved oxygen, biological oxygen demand, fecal coliform bacteria, chloride, suspended solids, nitrate plus nitrite nitrogen, ammonia nitrogen, Kjeldahl nitrogen, total phosphorus, dissolved orthophosphorus, total copper, particulate mercury, dissolved mercury, particulate methylmercury, dissolved methylmercury, and total zinc were below U.S. Environmental Protection Agency (USEPA) and State of Wisconsin water-quality standards at all sites, with the exception of dissolved oxygen at the Kewaskum, Farmington, Root River Canal, Root River Racine, and Root River Mouth sites. Each of these sites had from several days to several weeks of daily average dissolved oxygen concentrations below the 5 milligrams per liter State of Wisconsin standard for aquatic life. The lowest dissolved oxygen concentrations were measured at the heavily urbanized Root River Mouth site in downtown Racine, Wisconsin, where elevated concentrations of ammonia may have contributed to oxygen consumption during oxidation of ammonia to nitrate. Additionally, the maximum concentrations of copper in several Root River samples exceeded draft USEPA Ambient Water-Quality Criteria (U.S. Environmental Protection Agency, 2003) for acute toxicity to several species of aquatic organisms. Substantial water-quality changes were not correlated with hydrologic changes at any of the nine sites. Base-flow water-quality was generally indistinguishable from that sampled during storm events. The sparsely developed upper Milwaukee River and Cedar Creek Basins had relatively low ranges of contamination for all laboratory-reported parameters. For all nine sites, the highest reported concentrations of chloride (216 mg/L), total phosphorus (0.627 mg/L), ortho-phosphorus (0.136 mg/L), nitrate plus nitrate (9.32 mg/L), and copper (38 ?g/L) were reported for samples collected at the Root River Canal site. The highest concentrations of fecal coliforms (3,600 colonies per 100 mL) and Escherichia coli (2,300 colonies per 100 mL) were reported in samples collected at Kewaskum. The highest concentrations of s

  17. Water quality in southern Florida; Florida, 1996-98

    USGS Publications Warehouse

    McPherson, Benjamin F.; Miller, Ronald L.; Haag, Kim H.; Bradner, Anne

    2000-01-01

    Major influences and findings for water quality and biology in southern Florida, including the Everglades, are described and illustrated. Samples were collected to determine total phosphorus, dissolved organic carbon, pesticides, mercury, nitrate, volatile organic carbon compounds, and radon-222. Water-management, agricultural, and land-use practices are discussed. Sixty-three species of fish in 26 families were collected; 43 native species, 10 exotic or nonnative species, and 10 species of marine fish that periodically inhabit canals and rivers were identified.

  18. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.

    PubMed

    Kobayashi, Tetsuro; Fujisawa, Akiko; Amagai, Masayuki; Iwasaki, Toshiroh; Ohyama, Manabu

    2011-10-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, our understanding of the biology of the canine DP is extremely limited. The aim of this study was to elucidate molecular biological and immunohistochemical characteristics of canine DP cells and determine appropriate conditions for in vitro expansion. Histological investigation revealed that the canine DP expressed biomarkers of human and rodent DP, including alkaline phosphatase (ALP) and versican. When microdissected, canine DP, but not fibroblasts, strongly expressed the DP-related genes for alkaline phosphatase, Wnt inhibitory factor 1 and lymphoid enhancer-binding factor 1, confirming successful isolation. The growth rate of isolated canine DP cells was moderate in conventional culture conditions for rodent and human DP; however, AmnioMAX-C100 complete medium allowed more efficient cultivation. Dermal papilla marker gene expression was maintained in early passage cultured DP cells, but gradually lost after the third passage. Approaches to mimic the in vivo DP environment in culture, such as supplementation of keratinocyte-conditioned medium or use of extracellular matrix-coated dishes, moderately ameliorated loss of DP gene expression in canine DP cells. It is possible that constituent factors in AmnioMAX may influence culture. These findings suggested that further refinements of culture conditions may enable DP cell expansion without impairing intrinsic properties and, importantly, demonstrated that AmnioMAX-cultured early passage canine DP cells partly maintained the biological characteristics of in vivo canine DP cells. This study provides crucial information necessary for further optimization of culture conditions of canine DP. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  19. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles

    NASA Astrophysics Data System (ADS)

    Pasquier, Benoît; Holzer, Mark

    2017-09-01

    The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the phosphorus and opal exports supported by aeolian, sedimentary, and hydrothermal iron. The geographic patterns of the export supported by each iron type are well constrained across the family of state estimates. Sedimentary-iron-supported export is important in shelf and large-scale upwelling regions, while hydrothermal iron contributes to export mostly in the Southern Ocean. The fraction of the global export supported by a given iron type varies systematically with its fractional contribution to the total iron source. Aeolian iron is most efficient in supporting export in the sense that its fractional contribution to export exceeds its fractional contribution to the total source. Per source-injected molecule, aeolian iron supports 3. 1 ± 0. 8 times more phosphorus export and 2. 0 ± 0. 5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal iron support 2. 3 ± 0. 6 and 4. ± 2. times less phosphorus export, and 1. 9 ± 0. 5 and 2. ± 1. times less opal export than the other iron types.

  20. Enhanced dissolved lipid production as a response to the sea surface warming

    NASA Astrophysics Data System (ADS)

    Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka

    2018-04-01

    The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.

  1. A Geochemical and Geophysical Assessment of Coastal Groundwater Discharge at Select Sites in Maui and O’ahu, Hawai’i

    USGS Publications Warehouse

    Swarzenski, Peter W.; Storlazzi, Curt; M.L. Dalier,; C.R. Glenn,; C.G. Smith,

    2015-01-01

    Based on the submarine groundwater discharge tracer 222Rn, coastal groundwater discharge rates ranged from about 22–50 cm per day at Kahekili, a site in the Ka’anapali region north of Lahaina in west Maui, while at Black Point in Maunalua Bay along southern O’ahu, coastal groundwater discharge rates ranged up to 700 cm per day, although the mean discharge rate at this site was 60 cm per day. The water chemistry of the discharging groundwater can be dramatically different than ambient seawater at both coastal sites. For example, at Kahekili the average concentrations of dissolved inorganic nitrogen (DIN), dissolved silicate (DSi) and total dissolved phosphorus (TDP) were roughly 188-, 36-, and 106-times higher in the discharging groundwater relative to ambient seawater, respectively. Such data extend our basic understanding of the physical controls on coastal groundwater discharge and provide an estimate of the magnitude and physical forcings of submarine groundwater discharge and associated trace metal and nutrient loads conveyed by this submarine route.

  2. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-08-16

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

  3. The quality of surface water on Sanibel Island, Florida, 1976-77

    USGS Publications Warehouse

    McPherson, Benjamin F.; O'Donnell, T. H.

    1979-01-01

    The quality of surface water in parts of the interior of Sanibel Island, Fla., has been periodically degraded by high concentrations of salt or macronutrients and by low concentrations of dissolved oxygen. In 1976 the chloride concentration of surface water ranged from about 500 milligrams per liter to almost that of seawater, 19,000 milligrams per liter. The highest salinities were during the dry season of 1976 in the Sanibel River near the Tarpon Bay control structure and are attributed to leakage of saline water past the structure. The highest concentrations of macronutrients occurred during the dry season in the eastern reach of the Sanibel River, where concentrations generally exceeded 4.0 milligrams per liter total nitrogen and 0.9 milligrams per liter total phosphorus. Concentrations of dissolved oxygen were lowest in the wet season along an eastern reach of the Sanibel River and in several nearby ponds and canals where near-anaerobic conditions prevailed. The high concentration of macronutrients and the low dissolved oxygen are attributed, in part, to urban and sewage effluent that flow directly or seep into surface water. (Kosco-USGS)

  4. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  5. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  6. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.

  7. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    PubMed

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  8. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2014-12-01

    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  9. Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK.

    PubMed

    Bowes, M J; Leach, D V; House, W A

    2005-01-05

    Chalk streams provide unique, environmentally important habitats, but are particularly susceptible to human activities, such as water abstraction, fish farming and intensive agricultural activity on their fertile flood-meadows, resulting in increased nutrient concentrations. Weekly phosphorus, nitrate, dissolved silicon, chloride and flow measurements were made at nine sites along a 32 km stretch of the River Frome and its tributaries, over a 15 month period. The stretch was divided into two sections (termed the middle and lower reach) and mass balances were calculated for each determinand by totalling the inputs from upstream, tributaries, sewage treatment works and an estimate of groundwater input, and subtracting this from the load exported from each reach. Phosphorus and nitrate were retained within the river channel during the summer months, due to bioaccumulation into river biota and adsorption of phosphorus to bed sediments. During the autumn to spring periods, there was a net export, attributed to increased diffuse inputs from the catchment during storms, decomposition of channel biomass and remobilisation of phosphorus from the bed sediment. This seasonality of retention and remobilisation was higher in the lower reach than the middle reach, which was attributed to downstream changes in land use and fine sediment availability. Silicon showed much less seasonality, but did have periods of rapid retention in spring, due to diatom uptake within the river channel, and a subsequent release from the bed sediments during storm events. Chloride did not produce a seasonal pattern, indicating that the observed phosphorus and nitrate seasonality was a product of annual variation in diffuse inputs and internal riverine processes, rather than an artefact of sampling, flow gauging and analytical errors.

  10. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  11. Physical and chemical characteristics of water from the hydrographic basin of the Poxim River, Sergipe State, Brazil.

    PubMed

    de Aguiar Netto, Antenor Oliveira; Garcia, Carlos Alexandre Borges; Hora Alves, José do Patrocínio; Ferreira, Robério Anastácio; Gonzaga da Silva, Marinoé

    2013-05-01

    The Poxim River is one of Sergipe State's major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region's population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0-2.8), the Poxim River (1.6-4.6), and the estuarine region (1.7-5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.

  12. Effects of benthic flora on arsenic transport

    USGS Publications Warehouse

    Kuwabara, James S.; Chang, Cecily C.Y.; Pasilis, Sofie P.

    1990-01-01

    Chemical and biological interactions involving arsenic (As) and phosphorus (P) appear to affect significantly As transport and distribution in Whitewood Creek, South Dakota. Data (first‐order uptake rate constants, standing crop, and accumulation factors) that can be used to predict As transport have been determined using algae collected in the creek along a transect from upstream of mine discharge down gradient through a 57‐km impacted reach. Cultures of Achnanthes minutissima (Bacillariophyceae) were isolated from four sites along a longitudinal gradient of dissolved As within the study reach and were maintained at ambient dissolved‐As concentrations. Arsenic sorption‐rate constants for cell surfaces of these isolates were estimated as a function of dissolved arsenate and orthophosphate. All isolates sorbed orthophosphate preferentially over arsenate. Initial sorption of both arsenate and orthophosphate appeared to follow a first‐order equation within media formulations but did not adequately describe other observed effects among formulations or between isolates. Although estimated sorption‐rate constants increased slightly with increased dissolved arsenate concentration, algae isolated from a site with elevated dissolved As had a significantly slower rate of As uptake compared with the same species isolated from an uncontaminated site upstream. Field and laboratory results indicate that the benthic flora represent a significant As pool, which may episodically affect water‐column concentrations. 

  13. Adequacy of Nasqan data to describe areal and temporal variability of water quality of the San Juan River Drainage basin upstream from Shiprock New Mexico

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.

    1987-01-01

    Analyses indicate that water quality in the San Juan River drainage basin upstream from Shiprock, New Mexico, is quite variable from station to station. Analyses are based on water quality data from the U.S. Geological Survey WATSTORE files and the New Mexico Environmental Improvement Division 's files. In the northeastern part of the basin, most streams are calcium-bicarbonate waters. In the northwestern and southern part of the basin, the streams are calcium-sulfate and sodium-sulfate waters. Geology, climate, and land use and water use affect the water quality. Statistical analysis shows that streamflow, suspended-sediment, dissolved-iron, dissolved-orthophosphate-phosphorus, dissolved-sodium, dissolved-sulfate, and dissolved-manganese concentrations, specific conductance, and pH are highly variable among most stations. Dissolved-radium-226 concentration is the least variable among stations. A trend in one or more water quality constituents for the time period, October 1, 1973, through September 30, 1981, was detected at 15 out of 36 stations tested. The NASQAN stations Animas River at Farmington and San Juan River at Shiprock, New Mexico, record large volumes of flow that represent an integration of the flow from many upstream tributaries. The data collected do not represent what is occurring at specific points upstream in the basin, but do provide accurate information on how water quality is changing over time at the station location. A water quality, streamflow model would be necessary to predict accurately what is occurring simultaneously in the entire basin. (USGS)

  14. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    USGS Publications Warehouse

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  15. Fluvial fluxes of water, suspended particulate matter, and nutrients and potential impacts on tropical coastal water Biogeochemistry: Oahu, Hawai'i

    USGS Publications Warehouse

    Hoover, D.J.; MacKenzie, F.T.

    2009-01-01

    Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai'i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8-77% (median 30%) of discharge, 57-99% (median 93%) of SPM fluxes, 11-79% (median 36%) of dissolved nutrient fluxes and 52-99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ???16 (the 'Redfield ratio' for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22-82%; median 69% of total phosphorus, range 49-93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks-years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.

  16. Date palm pollen allergoid: characterization of its chemical-physical and immunological properties.

    PubMed

    Mistrello, G; Harfi, H; Roncarolo, D; Kwaasi, A; Zanoni, D; Falagiani, P; Panzani, R

    2008-01-01

    Date palm (DP) pollen can cause allergic symptoms in people living in different countries. Specific immunotherapy with allergenic extracts by subcutaneous route is effective to cure allergic people. However, the risk of side effects has led to explore safer therapeutic modalities. The aim of our work was to evaluate IgE cross-reactivity between DP and autochthonous palm (European fan palm, EFP) pollen extracts, to chemically modify DP extract with potassium cyanate in order to obtain an allergoid, and to characterize it. By radioallergosorbent test inhibition, immunoblotting (IB) and skin prick test, in vitro and in vivo allergenic activities of native and modified DP extracts were compared. By SDS-PAGE and IB, we compared the protein profile and IgE-binding capacity of both native and modified DP, as well as of EFP extracts. By IB inhibition, IgE cross-reactivity of native DP and EFP extracts was evaluated. By ELISA, the capacity of modified DP-induced IgG to react with native DP extract was determined. Radioallergosorbent test inhibition, IB and skin prick test results demonstrated that modified DP was significantly less allergenic than native DP extract. The SDS-PAGE profile showed that potassium cyanate treatment of DP extract did not alter the molecular weight of its components. In addition, no difference was observed between native DP and EFP extracts. Subsequent IB inhibition data evidenced the existence of a strong IgE cross-reactivity between native DP and EFP extracts. ELISA results indicated that the administration of modified DP in mice was able to induce specific IgG also recognizing native DP extract. Modified DP extract (allergoid) seems to be a good candidate for immunotherapy of patients affected by specific allergy. 2007 S. Karger AG, Basel

  17. Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhang, Zengqiang; Awasthi, Mukesh Kumar; Du, Dan; Dang, Pengfei; Huang, Qian; Zhang, Yichen; Wang, Lu

    2018-06-13

    Metal oxide-Carbon composites have been developed tailoring towards specific functionalities for removing pollutants from contaminated environmental systems. In this study, we synthesized a novel CaO-MgO hybrid carbon composite for removal of phosphate and humate by co-pyrolysis of dolomite and sawdust at various temperatures. Increasing of pyrolysis temperature to 900 °C generated a composite rich in carbon, CaO and MgO particles. Phosphate and humate can be removed efficiently by the synthesized composite with the initial solution in the range of pH 3.0-11.0. The phosphate adsorption was best fitted by pseudo-second-order kinetic model, while the humate adsorption followed the pseudo-second-order and the intra-particle diffusion kinetic models. The maximum adsorption capabilities quantified by the Langmuir isotherm model were up to 207 mg phosphorus (or 621 mg phosphate) and 469 mg humate per one-gram composite used, respectively. Characterization of composites after adsorption revealed the contributions of phosphate crystal deposition and electrostatic attraction on the phosphate uptake and involvement of π - π interaction in the humate adsorption. The prepared composite has great potential for recovering phosphorus from wastewater, and the phosphate sorbed composite can be employed as a promising phosphorus slow-releasing fertilizer for improving plant growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Intra- and inter-annual trends in phosphorus loads and comparison with nitrogen loads to Rehoboth Bay, Delaware (USA)

    USGS Publications Warehouse

    Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.

    2012-01-01

    Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.

  19. Arctic water tracks retain phosphorus and transport ammonium

    NASA Astrophysics Data System (ADS)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  20. Rhodhiss Lake, North Carolina; analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1993-94

    USGS Publications Warehouse

    Giorgino, M.J.; Bales, J.D.

    1997-01-01

    From January 1993 through March 1994, the U.S. Geological Survey conducted an investigation of Rhodhiss Lake in cooperation with the Western Piedmont Council of Governments. Objectives of the investigation were to describe ambient hydrologic and water-quality conditions, to estimate loadings of nutrients and suspended solids from selected tributaries and point sources, and to simulate hydraulic circulation and water-quality characteristics in Rhodhiss Lake using a hydrodynamic computer model. The riverine headwaters of Rhodhiss Lake were unstratified, well oxygenated, and contained relatively high concentrations of suspended solids and nutrients throughout the study period. In general, concentrations of suspended solids, nitrate, orthophosphate, and total phosphorus decreased in a downstream direction from the headwaters to the Rhodhiss Dam. However, increases in specific conductance frequently were observed downstream from a wastewater discharge near mid-reservoir. From mid-reservoir to the dam, Rhodhiss Lake thermally stratified during the summer of 1993. In this reach, dissolved oxygen was rapidly depleted from the bottom waters beginning in May 1993, and anoxic conditions persisted in the hypolimnion through the summer. During summer stratification, concentrations of nitrite plus nitrate, ammonia, and orthophosphate were low in the epilimnion, but concentrations of ammonia, orthophosphate, and total phosphorus increased in the hypolimnion. During fall and winter, Rhodhiss Lake was characterized by alternating periods of stratification and mixing. A maximum chlorophyll-a concentration of 52 micrograms per liter was observed at mid-reservoir on November 17, 1993, and was the only value that exceeded the North Carolina water-quality standard of 40 micrograms per liter. Concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in the headwaters of Rhodhiss Lake 37 percent of the time, and at mid-reservoir and in the forebay 16 percent of the time. In Lower Creek, a tributary to Rhodhiss Lake, concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in 76 percent of the samples. This stream also contained elevated concentrations of nitrite plus nitrate, phosphorus, and specific conductance. Loading estimates showed that almost all of the suspended solids and the majority of the nitrogen and phosphorus entering the headwaters of Rhodhiss Lake originated from nonpoint sources. During the investigation, point sources accounted for less than 1 percent of the suspended solids load to the reservoir headwaters, but point sources accounted for up to 27 and 22 percent of the total nitrogen and total phosphorus loads, respectively. Additional loadings of nitrogen and phosphorus entered Rhodhiss Lake by municipal wastewater discharge near mid-reservoir. The U.S. Army Corps of Engineers CE-QUAL-W2 model is a two-dimensional, laterally averaged model that simulates hydrodynamics and water quality. The model was applied to Rhodhiss Lake from Huffman Bridge to Rhodhiss Dam--a distance of 18.5 kilometers--and was calibrated using data collected from April 1993 through March 1994. During the simulation period, measured water levels varied a total of 1.32 meters, and water temperatures ranged from 4 to 30 degrees Celsius. The calibrated model provided good agreement between measured and simu- lated water levels at Rhodhiss Dam. Likewise, simulated water temperatures were generally within 2 degrees Celsius of measured values; however, the model tended to overpredict temperatures near the bottom of the reservoir by 1 to 3 degrees Celsius during warm months. This suggests that the model, as calibrated, overpredicts vertical mixing. Simulated dissolved oxygen concentrations followed the same general patterns and magnitudes as measured values, and there was good agreement between simulated and measured frequency of occurrence of dissolved oxygen concentrations less than 5 milligra

  1. Restoration of the intrinsic properties of human dermal papilla in vitro.

    PubMed

    Ohyama, Manabu; Kobayashi, Tetsuro; Sasaki, Takashi; Shimizu, Atsushi; Amagai, Masayuki

    2012-09-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, characterization and/or propagation of human DPs have been unsatisfactory because of the lack of efficient isolation methods and the loss of innate characteristics in vitro. We hypothesized that culture conditions sustaining the intrinsic molecular signature of the human DP could facilitate expansion of functional DP cells. To test this, we first characterized the global gene expression profile of microdissected, non-cultured human DPs. We performed a 'two-step' microarray analysis to exclude the influence of unwanted contaminants in isolated DPs and successfully identified 118 human DP signature genes, including 38 genes listed in the mouse DP signature. The bioinformatics analysis of the DP gene list revealed that WNT, BMP and FGF signaling pathways were upregulated in intact DPs and addition of 6-bromoindirubin-3'-oxime, recombinant BMP2 and basic FGF to stimulate these respective signaling pathways resulted in maintained expression of in situ DP signature genes in primarily cultured human DP cells. More importantly, the exposure to these stimulants restored normally reduced DP biomarker expression in conventionally cultured DP cells. Cell growth was moderate in the newly developed culture medium. However, rapid DP cell expansion by conventional culture followed by the restoration by defined activators provided a sufficient number of DP cells that demonstrated characteristic DP activities in functional assays. The study reported here revealed previously unreported molecular mechanisms contributing to human DP properties and describes a useful technique for the investigation of human DP biology and hair follicle bioengineering.

  2. Coastal eutrophication thresholds: a matter of sediment microbial processes.

    PubMed

    Lehtoranta, Jouni; Ekholm, Petri; Pitkänen, Heikki

    2009-09-01

    In marine sediments, the major anaerobic mineralization processes are Fe(III) oxide reduction and sulfate reduction. In this article, we propose that the two alternative microbial mineralization pathways in sediments exert decisively different impacts on aquatic ecosystems. In systems where iron reduction dominates in the recently deposited sediment layers, the fraction of Fe(III) oxides that is dissolved to Fe(II) upon reduction will ultimately be transported to the oxic layer, where it will be reoxidized. Phosphorus, which is released from Fe(III) oxides and decomposing organic matter from the sediment, will be largely trapped by this newly formed Fe(III) oxide layer. Consequently, there are low concentrations of phosphorus in near-bottom and productive water layers and primary production tends to be limited by phosphorus (State 1). By contrast, in systems where sulfate reduction dominates, Fe(III) oxides are reduced by sulfides. This chemical reduction leads to the formation and permanent burial of iron as solid iron sulfides that are unable to capture phosphorus. In addition, the cycling of iron is blocked, and phosphorus is released to overlying water. Owing to the enrichment of phosphorus in water, the nitrogen : phosphorus ratio is lowered and nitrogen tends to limit algal growth, giving an advantage to nitrogen-fixing blue-green algae (State 2). A major factor causing a shift from State 1 to State 2 is an increase in the flux of labile organic carbon to the bottom sediments; upon accelerating eutrophication a critical point will be reached when the availability of Fe(III) oxides in sediments will be exhausted and sulfate reduction will become dominant. Because the reserves of Fe(III) oxides are replenished only slowly, reversal to State 1 may markedly exceed the time needed to reduce the flux of organic carbon to the sediment. A key factor affecting the sensitivity of a coastal system to such a regime shift is formed by the hydrodynamic alterations that decrease the transport of O2 to the near-bottom water, e.g., due to variations in salinity and temperature stratification.

  3. Spatial and Vertical Distribution of Dechlorane Plus in Mangrove Sediments of the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hao, Qin-Wei; Hu, Yong-Xia; Zheng, Xiao-Bo; Luo, Xiao-Jun; Diao, Zeng-Hui; Mai, Bi-Xian

    2016-10-01

    Thirty surface sediments and three sediment cores were collected from mangrove wetlands in the Pearl River Estuary of South China to investigate the spatial and vertical distribution of Dechlorane Plus (DP). DP concentrations in the mangrove surface sediments ranged from 0.0130 to 1.504 ng/g dry weight (dw). DP concentrations in sediments from Shenzhen were significantly greater than those from Guangzhou and Zhuhai. Anti-Cl11-DP, the dechlorinated product of anti-DP, was also detected in the mangrove sediments with concentrations ranged from not detected to 0.0198 ng/g dw. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in the mangrove sediments, suggesting that photo and/or microbial degradation of anti-DP might occur in the sediments. The f anti values in the mangrove sediments were close to those in the technical DP products, suggesting that stereoselective enrichment of anti-DP may not exist in the mangrove sediments. DP concentrations in the mangrove sediment cores generally showed an increasing trend from the bottom to top layers. This is the first study to report the occurrence of DP and its degradation product in the mangrove wetlands.

  4. Resurrecting KIR2DP1: A Key Intermediate in the Evolution of Human Inhibitory NK Cell Receptors That Recognize HLA-C.

    PubMed

    Hilton, Hugo G; Blokhuis, Jeroen H; Guethlein, Lisbeth A; Norman, Paul J; Parham, Peter

    2017-03-01

    KIR2DP1 is an inactive member of the human lineage III KIR family, which includes all HLA-C-specific receptor genes. The lethal, and only, defect in KIR2DP1 is a nucleotide deletion in codon 88. Fixed in modern humans, the deletion is also in archaic human genomes. KIR2DP1 is polymorphic, with dimorphism at specificity-determining position 44. By repairing the deletion, we resurrected 11 alleles of KIR2DP1 F , the functional antecedent of KIR2DP1 We demonstrate how K44-KIR2DP1 F with lysine 44 recognized C1 + HLA-C, whereas T44-KIR2DP1 F recognized C2 + HLA-C. Dimorphisms at 12 other KIR2DP1 F residues modulate receptor avidity or signaling. KIR2DP1 and KIR2DL1 are neighbors in the centromeric KIR region and are in tight linkage disequilibrium. Like KIR2DL1 , KIR2DP1 contributed to CenA and CenB KIR haplotype differences. Encoded on CenA , C1-specific K44-KIR2DP1 F were stronger receptors than the attenuated C2-specific T44-KIR2DP1 F encoded on CenB The last common ancestor of humans and chimpanzees had diverse lineage III KIR that passed on to chimpanzees but not to humans. Early humans inherited activating KIR2DS4 and an inhibitory lineage III KIR , likely encoding a C1-specific receptor. The latter spawned the modern family of HLA-C receptors. KIR2DP1 F has properties consistent with KIR2DP1 F having been the founder gene. The first KIR2DP1 F alleles encoded K44-C1 receptors; subsequently KIR2DP1 F alleles encoding T44-C2 receptors evolved. The emergence of dedicated KIR2DL2/3 and KIR2DL1 genes encoding C1 and C2 receptors, respectively, could have led to obsolescence of KIR2DP1 F Alternatively, pathogen subversion caused its demise. Preservation of KIR2DP1 F functional polymorphism was a side effect of fixation of the deletion in KIR2DP1 F by micro gene conversion. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Effects of agricultural best-management practices on the Brush Run Creek headwaters, Adams County, Pennsylvania, prior to and during nutrient management

    USGS Publications Warehouse

    Langland, M.J.; Fishel, D.K.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, investigated the effects of agricultural best-management practices on surface-water quality as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. This report characterizes a 0.63-square- mile agricultural watershed underlain by shale, mudstone, and red arkosic sandstone in the Lower Susquehanna River Basin. The water quality of the Brush Run Creek site was studied from October 1985 through September 1991, prior to and during the implementation of nutrient management designed to reduce sediment and nutrient discharges into Conewago Creek, a tributary to the Chesapeake Bay. The original study area was 0.38 square mile and included an area immediately upstream from a manure lagoon. The study area was increased to 0.63 square mile in the fall of 1987 after an extensive tile-drain network was discovered upstream and downstream from the established streamflow gage, and the farm owner made plans to spray irrigate manure to the downstream fields. Land use for about 64 percent of the 0.63 square mile watershed is cropland, 14 percent is pasture, 7 percent is forest, and the remaining 15 percent is yards, buildings, water, or gardens. About 73 percent of the cropland was used to produce corn during the study. The average annual animal population consisted of 57,000 chickens, 1,530 hogs, and 15 sheep during the study. About 59,340 pounds of nitrogen and 13,710 pounds of phosphorus were applied as manure and commercial fertilizer to fields within the subbasin during the 3-year period prior to implementation of nutrient management. During nutrient management, about 14 percent less nitrogen and 57 percent less phosphorus were applied as commercial and manure fertilizer. Precipitation totaled 209 inches, or 13 percent less than the long-term normal, during the 6-year study. Concentrations of total ammonia in precipitation were as high as 2.7 mg/L (milligrams per liter); in dry deposition the concentrations were as high as 5.4 mg/L, probably because of the ammonia that had volatilized from the manure-storage lagoon. Nitrate nitrogen in the upper 4 feet of the soil ranged from 17 to 452 pounds per acre and soluble phosphorus content ranged from 0.29 to 65 pounds per acre. The maximum concentration of total nitrogen was 2,400 mg/L on September 10, 1986, in discharge from the tile drain near the streamflow gage. Median concentrations of total nitrogen and dissolved nitrite plus nitrate in base flow at the water-quality gage were 14 mg/L and 4.4 mg/L, respectively; prior to nutrient management and during nutrient management, median concentrations were 14 mg/L and 6.2 mg/L, respectively. Significant reductions in total phosphorus and suspended-sediment concentrations occurred at the water-quality gage. The maximum concentrations of total phosphorus (160 mg/L) and suspended sediment (3,530 mg/L) were measured at a tile line above the water-quality gage. Concentrations of total nitrogen, dissolved ammonia, and total phosphorus in base flow increased during dry periods when discharges from the tile drain were not diluted. During nutrient management, only base-flow loads of suspended sediment increased. Total streamflow was about 121.8 inches. About 81 percent was storm runoff. Loads of total nitrogen, total phosphorus in stormflow, and suspended sediment increased 14, 44, and 41 percent during nutrient management, respectively. A load of about 787,780 pounds of sediment, 22,418 pounds of nitrogen, and 5,479 pounds of phosphorus was measured during 214 sampled stormflow days that represented 84 percent of the stormflow. About 812,924 pounds of sediment, 38,421 pounds of nitrogen, and 6,377 pounds of phosphorus were discharged during the 6-year study.

  6. Udder health of dairy cows fed different dietary energy levels after a short or no dry period without use of dry cow antibiotics.

    PubMed

    van Hoeij, R J; Lam, T J G M; Bruckmaier, R M; Dijkstra, J; Remmelink, G J; Kemp, B; van Knegsel, A T M

    2018-05-01

    Reports on the effects of length of dry period (DP) on udder health of cows that were not treated with dry cow antibiotics are scarce. Additionally, the effects of a reduced dietary energy level for cows with a 0-d DP on udder health have not yet been studied. The aims of this study were (1) to compare effects of a 0-d or 30-d DP without use of dry cow antibiotics on udder health across the DP and subsequent lactation in dairy cows fed different dietary energy levels and (2) to evaluate associations between udder health and metabolic status of dairy cows. Five weeks before the expected calving date, Holstein-Friesian dairy cows (n = 115) were blocked for parity, expected calving date, and milk yield and somatic cell count (SCC) at their 2 last test days and were randomly assigned to 2 DP lengths: 0-d DP (n = 77) or 30-d DP (n = 38). Quarter milk samples were taken in wk 5 prepartum and in wk 1 and 5 postpartum. Proportion of quarters with elevated SCC (SCC ≥200,000 cells/mL) and proportion of udder pathogens in quarter milk samples did not differ between DP lengths among weeks. After calving, 102 of these cows were randomly assigned to 3 treatments: a 30-d DP with a standard energy level required for expected milk yield (30-d DP SEL; n = 36), a 0-d DP with the same energy level as cows with a 30-d DP (0-d DP SEL; n = 33), and a 0-d DP with a low energy level (0-d DP LEL, n = 33). From wk 8 of lactation onward, cows received either a glucogenic ration consisting of corn silage and grass silage or a lipogenic ration consisting of grass silage and sugar beet pulp at a standard or low energy level. During wk 1 to 7 postpartum, treatment did not affect SCC or SCC corrected for milk yield. During wk 8 to 44 of lactation, 0-d DP SEL cows had a greater SCC than 0-d DP LEL or 30-d DP SEL cows and had a greater SCC corrected for milk yield than 0-d DP LEL cows. During wk 1 to 44 of lactation, occurrence of at least 1 elevation of SCC (SCC ≥200,000 cells/mL after 2 wk of SCC <200,000 cells/mL) was not different among treatments. The 0-d DP SEL cows but not the 0-d DP LEL cows tended to have a 2.17 times greater hazard of having a case of clinical mastitis at any time in lactation than 30-d DP SEL cows. In wk 1 to 44 of lactation, lower fat- and protein- corrected milk yield and energy intake, greater energy balance, and greater plasma insulin concentration were associated with greater SCC. In conclusion, DP length did not affect udder health in the DP and in early lactation but seemed to decrease udder health for 0-d DP SEL cows in later lactation compared with 30-d DP SEL or 0-d DP LEL cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma.

    PubMed

    Xu, Ye-Xing; Zeng, Man-Li; Yu, Di; Ren, Jie; Li, Fen; Zheng, Anyuan; Wang, Yong-Ping; Chen, Chen; Tao, Ze-Zhang

    2018-05-01

    The present study aimed to investigate the antitumor efficacy of di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) on head and neck squamous cell carcinoma (HNSCC) cells. The proliferation and apoptosis of HNSCC cells treated with the iron chelators DpC and Dp44mT were detected. The mechanism of DpC-induced apoptosis on HNSCC cells was investigated. The human HNSCC cell lines FaDu, Cal-27 and SCC-9 were cultured in vitro and exposed to gradient concentrations of DpC and Dp44mT. A Cell Counting Kit-8 assay was used to detect the viability of FaDu, Cal-27, SCC-9 cells. Double staining with annexin V and propidium iodide was performed for the detection of the proportion of apoptotic FaDu, Cal-27 and SCC-9 cells following treatment. The nuclear damage to Cal-27 cells that were treated with DpC was detected by Hoechst staining. Finally, western blot analysis was used to detect the expression of proteins associated with the DNA damage pathway in Cal-27 cells that were treated with DpC. The CCK-8 assay showed that treatment with DpC and Dp44mT was able to markedly inhibit the viability of FaDu, Cal-27 and SCC-9 cells in a concentration-dependent manner. In comparison to Dp44mT, treatment with DpC exhibited a more effective inhibitory effect on the viability of HNSCC cells. The proportion of apoptotic cells detected by flow cytometry increased in a dose-dependent manner in all cell lines following DpC and Dp44mT treatment, with the proportion of apoptotic HNSCC cells induced by DpC treatment being significantly higher compared with Dp44mT (P<0.05). The results of Hoechst staining revealed that the nuclei of Cal-27 cells exhibited morphological changes in response to DpC treatment, including karyopyknosis and nuclear fragmentation. The expression of DNA damage-associated proteins, including phosphorylated (p)-serine-protein kinase ATM, p-serine/threonine-protein kinase Chk1 (p-Chk-1), p-serine/threonine-protein kinase ATR (p-ATR), p-Chk-2, poly (ADP-ribose) polymerase, p-histone H2AX, breast cancer type 1 susceptibility protein, p-tumor protein P53, increased with increasing concentration of DpC in Cal-27 cells. Treatment with DpC and Dp44mT markedly inhibited cell viability and increased the apoptotic rates in human HNSCC cells in a concentration-dependent manner. DpC exhibited a stronger antitumor effect compared with Dp44mT, potentially inducing the apoptosis of HNSCC cells via the upregulation of DNA damage repair-associated proteins.

  8. Predicting organic matter, nitrogen, and phosphorus concentrations in runoff from peat extraction sites using partial least squares regression

    NASA Astrophysics Data System (ADS)

    Tuukkanen, T.; Marttila, H.; Kløve, B.

    2017-07-01

    Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).

  9. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City.

    PubMed

    Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru

    2010-01-01

    The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.

  10. Physical supply of nitrogen to phytoplankton in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Mahaffey, Claire; Williams, Richard G.; Wolff, George A.; Anderson, William T.

    2004-03-01

    Mechanisms supplying nitrogen (N) to phytoplankton, and thus constraining the levels of export production, over the oligotrophic subtropical Atlantic are assessed along a meridional transect. Stable nitrogen isotope signals reveal a localized region of N2 fixation over the northern subtropical gyre. Elsewhere, particulate organic nitrogen was isotopically enriched and there was no widespread evidence of a trophic bias. Thus phytoplankton are utilizing an enriched source of N along the transect through much of the oligotrophic Atlantic, which may reflect utilization of nitrate from the deep ocean or, possibly, a supply of dissolved organic nitrogen (DON) from a non-N2 fixing source. While there is a significant supply of DON over the subtropical gyres, reaching 0.15 mol Nm-2 yr-1, less than 10% of the DON is semilabile and thus only implies a relatively small contribution to the nitrogen supply required for export production. Over the central part of the subtropical gyres, the supply of N to phytoplankton is probably from nitrate in the underlying thermocline, possibly from convection and diapycnic transfer, or more likely, from finescale upwelling by mesoscale eddies and frontal circulations. The lateral supply of dissolved organic phosphorus (DOP) appears to be a factor of 2-3 times more important than the lateral supply of semilabile DON, and thus might play a role in contributing to the phosphorus (P) supply for phytoplankton. The lateral supply of DON and DOP might also be important in closing the N and P budgets over the North Atlantic.

  11. Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability.

    PubMed

    Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio

    2015-10-15

    This study evaluates the capacity of seven species and a Bloom of microalgae to grow in urban wastewater. Nutrient removal kinetics and biomass harvesting by means of centrifugation and coagulation-flocculation-sedimentation have been also tested. Results show that the best biomass productivities ranged from between 118 and 108 mgSS L(-1) d(-1) for the Bloom (Bl) and Scenedesmus obliquus (Sco). Regarding nutrient removal, microalgae were able to remove the total dissolved phosphorus and nitrogen concentrations by more than 80% and 87% respectively, depending on the species tested. The final total dissolved concentration of nitrogen and phosphorus in the culture media complies with the European Commission Directive 98/15/CE on urban wastewater treatment. Regarding harvesting, the results of coagulation-flocculation sedimentation using a 60 mg L(-1) dose of Ferric chloride were similar between species, exceeding the biomass removal efficiency by more than 90%. The results of centrifugation (time required to remove 90% of solids at 1000 rpm) were not similar between species, with the shortest time being 2.9 min for Sco, followed by the bloom (7.25 min). An overall analysis suggested that the natural bloom and Scenedesmus obliquus seem to be the best candidates to grow in pre-treated wastewater, according to their biomass production, nutrient removal capability and harvestability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effectiveness of a pressurized stormwater filtration system in Green Bay, Wisconsin: a study for the environmental technology verification program of the U.S. Environmental Protection Agency

    USGS Publications Warehouse

    Horwatich, J.A.; Corsi, Steven R.; Bannerman, Roger T.

    2004-01-01

    A pressurized stormwater filtration system was installed in 1998 as a stormwater-treatment practice to treat runoff from a hospital rooftop and parking lot in Green Bay, Wisconsin. This type of filtration system has been installed in Florida citrus groves and sewage treatment plants around the United States; however, this installation is the first of its kind to be used to treat urban runoff and the first to be tested in Wisconsin. The U.S. Geological Survey (USGS) monitored the system between November 2000 and September 2002 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Fifteen runoff events were monitored for flow and water quality at the inlet and outlet of the system, and comparison of the event mean concentrations and constituent loads was used to evaluate its effectiveness. Loads were decreased in all particulate-associated constituents monitored, including suspended solids (83 percent), suspended sediment (81 percent), total Kjeldahl nitrogen (26 percent), total phosphorus (54 percent), and total recoverable zinc (62 percent). Total dissolved solids, dissolved phosphorus, and nitrate plus nitrite loads remained similar or increased through the system. The increase in some constituents was most likely due to a ground-water contribution between runoff events. Sand/silt split analysis resulted in the median silt content of 78 percent at the inlet, 87 percent at the outlet, and 3 percent at the flow splitter.

  13. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  14. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions.

    PubMed

    Keene, Natalie A; Reusser, Steve R; Scarborough, Matthew J; Grooms, Alan L; Seib, Matt; Santo Domingo, Jorge; Noguera, Daniel R

    2017-09-15

    Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, recent research has shown that nitrification can be maintained using very low-DO concentrations (e.g., below 0.2 mg O 2 /L), and therefore, it may be possible to reduce energy use and costs in BNR facilities by decreasing aeration. However, the effect of reduced aeration on enhanced biological phosphorus removal (EBPR) is not understood. In this study, we investigated, at the pilot-scale level, the effect of using minimal aeration on the performance of an EBPR process. Over a 16-month operational period, we performed stepwise decreases in aeration, reaching an average DO concentration of 0.33 mg O 2 /L with stable operation and nearly 90% phosphorus removal. Under these low-DO conditions, nitrification efficiency was maintained, and nearly 70% of the nitrogen was denitrified, without the need for internal recycling of high nitrate aeration basin effluent to the anoxic zone. At the lowest DO conditions used, we estimate a 25% reduction in energy use for aeration compared to conventional BNR operation. Our improved understanding of the efficiency of low-DO BNR contributes to the global goal of reducing energy consumption during wastewater treatment operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Phylotype Dynamics of Bacterial P Utilization Genes in Microbialites and Bacterioplankton of a Monomictic Endorheic Lake.

    PubMed

    Valdespino-Castillo, Patricia M; Alcántara-Hernández, Rocío J; Merino-Ibarra, Martín; Alcocer, Javier; Macek, Miroslav; Moreno-Guillén, Octavio A; Falcón, Luisa I

    2017-02-01

    Microbes can modulate ecosystem function since they harbor a vast genetic potential for biogeochemical cycling. The spatial and temporal dynamics of this genetic diversity should be acknowledged to establish a link between ecosystem function and community structure. In this study, we analyzed the genetic diversity of bacterial phosphorus utilization genes in two microbial assemblages, microbialites and bacterioplankton of Lake Alchichica, a semiclosed (i.e., endorheic) system with marked seasonality that varies in nutrient conditions, temperature, dissolved oxygen, and water column stability. We focused on dissolved organic phosphorus (DOP) utilization gene dynamics during contrasting mixing and stratification periods. Bacterial alkaline phosphatases (phoX and phoD) and alkaline beta-propeller phytases (bpp) were surveyed. DOP utilization genes showed different dynamics evidenced by a marked change within an intra-annual period and a differential circadian pattern of expression. Although Lake Alchichica is a semiclosed system, this dynamic turnover of phylotypes (from lake circulation to stratification) points to a different potential of DOP utilization by the microbial communities within periods. DOP utilization gene dynamics was different among genetic markers and among assemblages (microbialite vs. bacterioplankton). As estimated by the system's P mass balance, P inputs and outputs were similar in magnitude (difference was <10 %). A theoretical estimation of water column P monoesters was used to calculate the potential P fraction that can be remineralized on an annual basis. Overall, bacterial groups including Proteobacteria (Alpha and Gamma) and Bacteroidetes seem to be key participants in DOP utilization responses.

  16. The Influence of Erosional Hotspots on Watershed-scale Phosphorus Dynamics in Intensively Managed Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Baker, A.; Finlay, J. C.; Gran, K. B.; Karwan, D. L.; Engstrom, D. R.; Atkins, W.; Muramoto-Mathieu, M.

    2017-12-01

    The Minnesota River Basin is an intensively-managed agricultural watershed which contributes disproportionately to downstream sediment and nutrient loading. The Le Sueur River, an actively eroding tributary to the Minnesota River, has been identified as a disproportionate contributor of sediment and nutrients to this system. In an effort to identify best practices for reduction of phosphorus (P) in the context of intensifying agriculture and climate change pressure, we coupled investigation of source sediment P chemistry with an existing fine sediment budget to create a watershed mass balance for sediment-associated P. Sediments collected from primary source areas including agricultural fields, glacial till bluffs, alluvial streambanks, ravines, and agricultural ditches were analyzed for total- and extractable-P, and sorptive properties. Preliminary integration of these data into a mass-balance suggests that less than a quarter of the total-P exported from this watershed can be attributed directly to sediment inputs, likely due to the low P concentration of most sediment sources. While sediment may supply less than 25% of the total-P exiting the Le Sueur, a high proportion of total-P load ( 66% on average) is in particulate form. This finding indicates that sorption of dissolved-P from upstream sources onto fine sediment plays a major role in determining the form and reactivity of P in the watershed. Sorption processes convert dissolved-P into particulate-P, and may substantially alter the fate and reactivity of P in downstream channels and lakes. In highly erosive rivers, as the Le Sueur, where inputs of sediment from deep soil horizons are dominant, the dynamic relationship between sediment and dissolved-P must be evaluated and incorporated into models to forecast potential for P retention and export from the landscape. By incorporating results of this mass balance and analysis of sediment sorptive properties into existing models, we can develop strategies that most effectively address both of these interwoven pollutants to aquatic ecosystems.

  17. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    USGS Publications Warehouse

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville than White River near Fayetteville and Richland Creek at Goshen. Loads and yields of most constituents were greater at the War Eagle Creek and White River stations than at the Richland Creek Station.

  18. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis

    NASA Astrophysics Data System (ADS)

    Withers, Paul J. A.; Hodgkinson, Robin A.; Rollett, Alison; Dyer, Chris; Dils, Rachael; Collins, Adrian L.; Bilsborrow, Paul E.; Bailey, Geoff; Sylvester-Bradley, Roger

    2017-05-01

    Soil phosphorus (P) fertility arising from historic P inputs is a major driver of P mobilisation in agricultural runoff and increases the risk of aquatic eutrophication. To determine the environmental benefit of lowering soil P fertility, a meta-analysis of the relationship between soil test P (measured as Olsen-P) and P concentrations in agricultural drainflow and surface runoff in mostly UK soils was undertaken in relation to current eutrophication control targets (30-35 µg P L-1). At agronomic-optimum Olsen P (16-25 mg kg-1), concentrations of soluble reactive P (SRP), total dissolved P (TDP), total P (TP) and sediment-P (SS-P) in runoff were predicted by linear regression analysis to vary between 24 and 183 µg L-1, 38 and 315 µg L-1, 0.2 and 9.6 mg L-1, and 0.31 and 3.2 g kg-1, respectively. Concentrations of SRP and TDP in runoff were much more sensitive to changes in Olsen-P than were TP and SS-P concentrations, which confirms that separate strategies are required for mitigating the mobilisation of dissolved and particulate P forms. As the main driver of eutrophication, SRP concentrations in runoff were reduced on average by 60 µg L-1 (71%) by lowering soil Olsen-P from optimum (25 mg kg-1) to 10 mg kg-1. At Olsen-P concentrations below 12 mg kg-1, dissolved hydrolysable P (largely organic) became the dominant form of soluble P transported. We concluded that maintaining agronomic-optimum Olsen-P could still pose a eutrophication risk, and that a greater research focus on reducing critical soil test P through innovative agro-engineering of soils, crops and fertilisers would give long-term benefits in reducing the endemic eutrophication risk arising from legacy soil P. Soil P testing should become compulsory in priority catchments suffering, or sensitive to, eutrophication to ensure soil P reserves are fully accounted for as part of good fertiliser and manure management.

  19. Quality of surface-water runoff in selected streams in the San Antonio segment of the Edwards aquifer recharge zone, Bexar County, Texas, 1997-2012

    USGS Publications Warehouse

    Opsahl, Stephen P.

    2012-01-01

    During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.

  20. Contemporary limnological and sedimentary analyses to investigate anthropogenic changes in nutrient fluxes at Lake Baikal, Siberia

    NASA Astrophysics Data System (ADS)

    Roberts, S.; McGowan, S.; Swann, G. E. A.; Mackay, A. W.; Panizzo, V.; Vologina, E.

    2014-12-01

    Large tectonic freshwater lakes face serious threats to their water quality, biological diversity and endemism through pollution and global warming. Lake Baikal is an important example as anthropogenic stressors (industrial pollution and cultural eutrophication) along with climate change could greatly affect the lake's unique ecosystem and pristine water conditions. Phosphorus, nitrogen and silica are thought to control phytoplankton development, however recent changes in nutrient impacts on Lake Baikal's phytoplankton remains unproven. This research aims to investigate the effect of anthropogenic and environmentally-driven changes on this large and biodiverse lake through seasonal sampling of the phytoplankton community (determined by chlorophyll and carotenoid pigments), chemical parameters (total phosphorus, dissolved organic carbon, silicate, nitrate and other major ions) and vertical profiles of pH, temperature and photosynethetically active radiation. Results show seasonal, vertical and spatial variability in the lake's phytoplankton biomass and composition with higher summer mixed-layer pigment concentrations in the south basin resulting in higher light attenuation coefficients and lower photic zone depths (R2=0.86, p < 0.05). Redundancy analysis shows that this distribution is primarily influenced by average dissolved organic carbon concentrations within the mixing layer, with the strongest negative correlation between picoplankton biomarkers and dissolved organic carbon concentrations (R2=-0.60, p < 0.05). Geochemical biomarkers (pigments and organic carbon [δ13Corganic]) from several sediment cores place these modern day observations within an historical context and allow the impact of past environmental changes on Lake Baikal's primary productivity over the last 60 years and natural climate-driven trends in past centuries to be assessed. These results show clear spatial and temporal changes between sites over this interval with greater increases in chlorophylls and their transformation products, along with biomarkers for diatoms, cryptophytes, green algae and cyanobacteria within the south and central basin.

  1. Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response

    NASA Astrophysics Data System (ADS)

    Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki

    2016-07-01

    In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.

  2. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    PubMed Central

    Gong, Yao; Yu, Zhigang; Yao, Qingzhen; Chen, Hongtao; Mi, Tiezhu; Tan, Jiaqiang

    2015-01-01

    The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1) with a lower concentration of dissolved silicate (average 131 μmol·L−1) and relatively low dissolved phosphate (average 0.35 μmol·L−1). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth. PMID:26287226

  3. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    USGS Publications Warehouse

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.

  4. Investigation on frictional characteristics and drawbead restraining force of steel with/without coating

    NASA Astrophysics Data System (ADS)

    Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun

    2013-12-01

    Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.

  5. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study - an elemental mass balance approach

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.

    2013-05-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.

  6. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay in Virginia, July 1988 through June 1995

    USGS Publications Warehouse

    Bell, C.F.; Belval, D.L.; Campbell, J.P.

    1996-01-01

    Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the 95-percent confidence level. These decreases can be attributed primarily to reductions in nonpoint nutrient and sediment loads, and may have been partially caused by implementation of best management practices on agricultural and silvicultural land. Flow-adjusted trends observed at the Appomattox, Pamunkey, and Mattaponi monitoring stations were more difficult to explain than those at the James and Rappahannock stations. Total Kjeldahl nitrogen and total phosphorus increased 16 and 23 percent, respectively, at the Appomattox River monitoring station from July 1989 through June 1995. Total phosphorus concentration increased about 46 percent at the Pamunkey River monitoring station between July 1989 and June 1995. At the Mattaponi River monitoring station, decreases in dissolved nitrite-plus-nitrate nitrogen were offset by increases in total Kjeldahl nitrogen, resulting in no net change in total nitrogen concentration from October 1989 through June 1995.

  7. Establishment and characterization of five immortalized human scalp dermal papilla cell lines.

    PubMed

    Kwack, Mi Hee; Yang, Jung Min; Won, Gong Hee; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2018-02-05

    Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, O. J.; Koch, B. P.; Kattner, G.

    2010-12-01

    Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) applications for dissolved organic matter (DOM) focus mainly on carbon, hydrogen, oxygen and nitrogen isotopes. Implementation of sulfur and especially phosphorus in the molecular formula assignment has been questionable because of ambiguous calculated elemental formulas. On the other hand, many compounds bearing these elements are well known to occur in the dissolved state as part of the permanent recycling processes (e.g. phospholipids, phosphonates) but analytics of dissolved organic phosphorus (DOP) and sulfur (DOS) are often hampered by the large inorganic P and S pools. Even less is known about complexation characteristics of the DOM moieties. Although electrochemical methods provide some information about trace metal speciation, the high amount of organic molecules and its insufficient description as chemical functional classes prevent the assignment of trace metals to ligand classes. Nevertheless, it is undoubtful that a varying but extensive amount of transition metals is bond in form of organic complexes. Hyphenation of reversed phase high performance liquid chromatography (RP-HPLC) with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) is a valuable tool to study these metal-organic interactions in a qualitative and quantitative approach. We established a desolvation method that allows direct transfer of high organic solvent loads into the plasma. Thus, in combination with internal standardization and external calibration, the investigation of a broad polarity scale was possible. This approach overcomes previous restrictions to non-organic solvent separation techniques like size exclusion chromatography (SEC). We used solid phase extracted DOM (SPE-DOM) from Atlantic and Southern Ocean water samples to show that organic sulfur and phosphorus species can be separated via RP-HPLC and that the partitioning can be correlated to trace metal binding capabilities in the different fractions. A molecular level investigation of these fractions via FT-ICR-MS revealed further details of the complexation features and connects the polarity-based separation on a C18 column to O/C and H/C elemental ratios. With our study, we showed that biologically relevant transition metals (e.g. Fe, Ni, Cu) and uranium are intrinsic constituents of the DOM fractions. Moreover, a comparison between samples from different ecological provinces and diagenetic conditions was performed to highlight the benefits of this approach for future marine biogeochemical research.

  9. Exploring the effects of black mangrove (Avicennia germinans) expansions on nutrient cycling in smooth cordgrass (Spartina alterniflora) marsh sediments of southern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Henry, K. M.; Twilley, R. R.

    2011-12-01

    Located at the northernmost extent of mangroves in the Gulf of Mexico, coastal Louisiana (LA) provides an excellent opportunity to study the effects of a climate-induced vegetation shift on nutrient cycling within an ecosystem. Climate throughout the Gulf Coast region is experiencing a general warming trend and scientists predict both hotter summers (+1.5 to 4 °C) and warmer winters (+1.5 to 5.5 °C) by 2100. Over the last two decades, mild winter temperatures have facilitated the expansion of black mangrove trees (Avicennia germinans) into the smooth cordgrass (Spartina alterniflora) along parts of the LA coast. Due to differences in morphology and physiology between these two species, the expansion of Avicennia has the potential to greatly alter sediment biogeochemistry, especially nutrient cycling. With such an extensive history of coastal nutrient enrichment and eutrophication in the Mississippi River delta, it is important to understand how nutrient cycling, retention, and removal in this region will be affected by this climate-induced vegetation expansion. We examined the effect of this species shift on porewater salinity, sulfide, and dissolved inorganic nutrient concentrations (nitrite, nitrate, ammonium, and phosphate) as well as sediment oxidation-reduction potential, bulk density, and nutrient content (carbon, nitrogen, phosphorus). We also measured net dinitrogen (N2:Ar), oxygen, and dissolved inorganic nutrient fluxes on intact, non-vegetated sediment cores collected from both Spartina and Avicennia habitats. Spartina sediments were more reducing, with higher concentrations of sulfides and ammonium. We found no significant difference between Spartina and Avicennia sediment dinitrogen, oxygen, or dissolved inorganic nutrient fluxes. Net dinitrogen fluxes for both habitat types were predominately positive, indicating higher rates of denitrification than nitrogen fixation at these sites. Sediments were primarily a nitrate sink, but functioned as both a source and sink of nitrite, ammonium, and phosphate depending on the season and light conditions. Further sediment analysis showed no significant difference in bulk density, carbon, nitrogen, or phosphorus content between Spartina and Avicennia sediments. Marine sediments high in bulk density and phosphorus content and low carbon and nitrogen content dominated the top several centimeters in both Spartina and Avicennia habitats. These surprising but reassuring results suggest that in a region where allochthonous sediment input dominates organic accretion from the primary producers, the climate-induced shift from Spartina to Avicennia will have little to no affect on littoral nutrient cycling.

  10. A dinoflagellate Cochlodinium geminatum bloom in the Zhujiang (Pearl) River estuary in autumn 2009

    NASA Astrophysics Data System (ADS)

    Ke, Zhixin; Huang, Liangmin; Tan, Yehui; Song, Xingyu

    2012-05-01

    A severe Cochlodinium geminatum red tide (>300 km2) was observed in the Zhujiang (Pearl) River estuary, South China Sea in autumn 2009. We evaluated the environmental conditions and phytoplankton community structure during the outbreak. The red tide water mass had significantly higher dissolved inorganic phosphate (DIP), ammonia, and temperature, but significantly lower nitrite, nitrate, dissolved inorganic nitrogen (DIN), and DIN/DIP relative to the non-red-tide zones. The phytoplankton assemblage was dominated by dinoflagellates and diatoms during the red tide. C. geminatum was the most abundant species, with a peak density of 4.13×107 cell/L, accounting for >65% of the total phytoplankton density. The DIN/DIP ratio was the most important predictor of species, accounting for 12.45% of the total variation in the phytoplankton community. Heavy phosphorus loading, low precipitation, and severe saline intrusion were likely responsible for the bloom of C. geminatum.

  11. Diverse stoichiometry of dissolved trace metals in the Indian Ocean

    PubMed Central

    Thi Dieu Vu, Huong; Sohrin, Yoshiki

    2013-01-01

    Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.

  12. Identification of HLA-DP polymorphism with DP alpha and DP beta probes and monoclonal antibodies: correlation with primed lymphocyte typing.

    PubMed Central

    Bodmer, J; Bodmer, W; Heyes, J; So, A; Tonks, S; Trowsdale, J; Young, J

    1987-01-01

    Thirty-four lymphoblastoid cell lines that had been previously typed for HLA-DP antigens by primed lymphocyte typing (PLT) were tested by Southern blotting and by ELISA. Using two DP beta probes and a DP alpha probe with a series of enzymes, it is possible to identify restriction fragment length polymorphism (RFLP) patterns characteristic of DPw1, -2, -3, -4, and possibly -5. ELISA typing results, based on two polymorphic DP antibodies DP11.1 and ILR1, were compared with PLT-defined and RFLP-defined types. Thus, using a range of probes and enzymes it is possible to identify DP polymorphism. The value of monoclonal antibodies for such studies is demonstrated, and the molecular data can, in some cases, pinpoint the amino acids responsible for the specificity of the monoclonal antibodies. Images PMID:2885841

  13. Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions.

    PubMed

    Frerker, Nadine; Raber, Kerstin; Bode, Felix; Skripuletz, Thomas; Nave, Heike; Klemann, Christian; Pabst, Reinhard; Stephan, Michael; Schade, Jutta; Brabant, Georg; Wedekind, Dirk; Jacobs, Roland; Jörns, Anne; Forssmann, Ulf; Straub, Rainer H; Johannes, Sigrid; Hoffmann, Torsten; Wagner, Leona; Demuth, Hans-Ulrich; von Hörsten, Stephan

    2009-01-01

    Treatment of diabetes type 2 using chronic pharmacological inhibition of dipeptidyl peptidase 4 (DP4) still requires an in-depth analysis of models for chronic DP4 deficiency, because adverse reactions induced by some DP4 inhibitors have been described. In the present study, a novel congenic rat model of DP4 deficiency on a "DP4-high" DA rat genetic background was generated (DA.F344-Dpp4(m)/ SvH rats) and comprehensively phenotyped. Similar to chronic pharmacological inhibition of DP4, DP4 deficient rats exhibited a phenotype involving reduced diet-induced body weight gain and improved glucose tolerance associated with increased levels of glucagon-like peptide-1 (GLP-1) and bound leptin as well as decreased aminotransferases and triglycerides. Additionally, DA.F344-Dpp4(m)/SvH rats showed anxiolytic-like and reduced stress-like responses, a phenomenon presently not targeted by DP4 inhibitors. However, several immune alterations, such as differential leukocyte subset composition at baseline, blunted natural killer cell and T-cell functions, and altered cytokine levels were observed. While this animal model confirms a critical role of DP4 in GLP-1-dependent glucose regulation, genetically induced chronic DP4 deficiency apparently also affects stress-regulatory and immuneregulatory systems, indicating that the use of chronic DP4 inhibitors might have the potential to interfere with central nervous system and immune functions in vivo.

  14. Exploring depressive personality traits in youth: origins, correlates, and developmental consequences.

    PubMed

    Rudolph, Karen D; Klein, Daniel N

    2009-01-01

    Research suggests that depressive personality (DP) disorder may represent a persistent, trait-based form of depression that lies along an affective spectrum ranging from personality traits to diagnosable clinical disorders. A significant gap in this area of research concerns the development of DP and its applicability to youth. The present research explored the construct of DP traits in youth. Specifically, this study examined the reliability, stability, and validity of the construct, potential origins of DP traits, and the developmental consequences of DP traits. A sample of 143 youth (mean age = 12.37 years, SD = 1.26) and their caregivers completed semistructured interviews and questionnaires on two occasions, separated by a 12-month interval. The measure of DP traits was reliable and moderately stable over time. Providing evidence of construct validity, DP traits were associated with a network of constructs, including a negative self-focus, high-negative and low-positive emotionality, and heightened stress reactivity. Moreover, several potential origins of DP traits were identified, including a history of family adversity, maternal DP traits, and maternal depression. Consistent with hypotheses regarding their developmental significance, DP traits predicted the generation of stress and the emergence of depression (but not nondepressive psychopathology) during the pubertal transition. Finally, depression predicted subsequent DP traits, suggesting a reciprocal process whereby DP traits heighten risk for depression, which then exacerbates these traits. These findings support the construct of DP traits in youth, and suggest that these traits may be a useful addition to developmental models of risk for youth depression.

  15. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    PubMed

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  16. Prostaglandin D2 effects and DP1 /DP2 receptor distribution in guinea pig urinary bladder out-flow region.

    PubMed

    Guan, Na N; Svennersten, Karl; de Verdier, Petra J; Wiklund, N Peter; Gustafsson, Lars E

    2017-02-01

    The proximal urethra and urinary bladder trigone play important roles in continence. We have previously shown that PGD 2 is released from guinea pig bladder urothelium/suburothelium and can inhibit detrusor contractile responses. We presently wished to investigate PGD 2 actions in guinea pig out-flow region and the distribution of DP 1 /DP 2 receptors. The effects of PGD 2 on urothelium-intact trigone and proximal urethra contractility were studied in organ bath experiments. Expression of DP 1 /DP 2 receptor proteins was analysed by western blot. Immunohistochemistry was used to identify distribution of DP 1 /DP 2 receptors. PGD 2 in a dose-dependent manner inhibited trigone contractions induced by electrical field stimulation (EFS) and inhibited spontaneous contractions of the proximal urethra. PGD 2 was equally (trigone) or slightly less potent (urethra) compared with PGE 2 . Expression of DP 1 and DP 2 receptors was found in male guinea pig bladder trigone, neck and proximal urethra. In the trigone and proximal urethra, DP 1 receptors were found on the membrane of smooth muscle cells and weak immunoreactivty was observed in the urothelium. DP 2 receptors were distributed more widespread, weakly and evenly in the urothelium and smooth muscles. Inhibitory effects by PGD 2 on motor activity of guinea pig trigone and proximal urethra are consistent with finding DP 1 and DP 2 receptors located in the urothelium and smooth muscle cells of the trigone and proximal urethra, and PGD 2 may therefore be a modulator of the bladder out-flow region, possibly having a function in regulation of micturition and a role in overactive bladder syndrome. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Dechlorane Plus in serum from e-waste recycling workers: influence of gender and potential isomer-specific metabolism.

    PubMed

    Yan, Xiao; Zheng, Jing; Chen, Ke-Hui; Yang, Junzhi; Luo, Xiao-Jun; Yu, Le-Huan; Chen, She-Jun; Mai, Bi-Xian; Yang, Zhong-Yi

    2012-11-15

    Dechlorane Plus (DP) and its dechlorinated product, anti-Cl₁₁-DP, were measured in serum of 70 occupationally exposed workers in an e-waste recycling region and 13 residents of an urban area in South China. The DP levels were significantly higher in the workers (22-2200 ng/g with median of 150 ng/g lipid) than in the urban residents (2.7-91 ng/g with median of 4.6 ng/g lipid). The DP concentrations in females were found to be associated with their age but such relation was not found for males. Significant differences in DP levels and DP isomer composition were found between genders. The females had remarkably higher DP levels and f(anti) values (fraction of anti-DP to total DPs) in serum than the males. Anti-Cl₁₁-DP was significantly correlated with anti-DP for both genders but with different slope of regression line. The ratios of anti-Cl₁₁-DP to anti-DP (mean of 0.017) in males were significantly higher than those (mean of 0.010) in females. Combining with the lower f(anti) values in males, it is likely that males have higher metabolic potential for DPs than females which resulted in the lower DP loading in serum. However, the different patterns of selective uptake and/or excretion of different compounds between genders cannot be eliminated as a possible reason for the observed gender differences. This study is the first to report on the gender difference in DP accumulation in human, and its mechanism is worth further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. [The significance of directional preponderance in the evaluation of vestibular function in patients with vertigo].

    PubMed

    Wang, J; Zhou, Y J; Yu, J; Gu, J

    2017-03-07

    Objective: To analyze the relationship between directional preponderance (DP), spontaneous nystagmus(SN) and vestibular disorders, and to investigate the significance of DP in directing peripheral vestibular function in patients with vertigo. Methods: This was a retrospective analysis of 394 cases diagnosed with peripheral vestibular disease accompanied by vertigo from March 2012 to June 2014 in the Outpatient Department of the Eye & ENT Hospital of Fudan University. Results of static and dynamic posture equilibrium tests, SN, unilateral weakness(UW), and DP in videonystagmography(VNG) were analyzed and compared. Results: The mean interval time between the last vertigo attack and examination in patients with SN or DP in caloric test were 4.4 d and 7.3 d respectively, and those without SN or DP were 18.3 d and 17.5 d respectively. The patients were divided into two groups according to DP results of caloric test. DP-normal group had 203 cases and DP-abnormal group had 191 cases. Spontaneous nystagmus was presented in 44 cases in the DP-normal group (21.67%) and four in the DP-abnormal group (2.09%). A significant difference was found between the two groups (χ 2 =35.27, P =0.000). Deficiency of vestibular function was noted in 165 cases in the DP-normal group (81.28%) and 123 (64.40%) in the DP-abnormal group in static and dynamic posture equilibrium tests. The difference between the two groups was statistically significant (χ 2 =14.26, P =0.000). Conclusion: Compared with DP-normal patients, DP-abnormal patients are more likely to have spontaneous nystagmus and balance disorders due to vestibular dysfunction.

  19. Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands.

    PubMed

    Forbes, Margaret G; Dickson, Kenneth R; Golden, Teresa D; Hudak, Paul; Doyle, Robert D

    2004-02-01

    Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.

  20. Impact of aeration disturbances on endogenous phosphorus fractions and their algae growth potential from malodorous river sediment.

    PubMed

    Zhu, Jin; He, Yan; Wang, Jianhua; Qiao, Zhaochao; Wang, Yi; Li, Zhihong; Huang, Minsheng

    2017-03-01

    The present work assessed the impact of aeration disturbances on sediment-bound phosphorus fractions and their algae growth potential from a typical malodorous river. Phosphorus was sequentially extracted by a modified version of Hedley fractionation method. It was found that the mean contents of TP was 1476.1 ± 60.3 mg/kg, consisting mainly of dilute HCl-extractable P (52.6%) and NaOH-P (19.2%). The algae growth potential tests demonstrated that algae growth had varied P-level requirements for different P speciation and NaOH-P promoted algae growth remarkably and its promoting effect was positively related to its concentration. Additionally, intermittent overlying water aeration modes were recommended, and run 1 (7.0 mg/L, 12 h) was deemed as the optimized aerated mode in terms of its relatively low ecological risk and high P retention. It was noted that NaOH-P was most affected by aeration disturbance and exhibited marked increase with the elevated dissolved oxygen (DO) level whether for intermittent overlying water or sediment aeration. This research helps to gain improved understanding of the ecological risk on sediment P, and NaOH-P is recognized as one ecologically important P fraction in the sediments considering its relatively high proportion and bioavailability.

Top