Sample records for dissolved selenium concentrations

  1. Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.

    2004-11-01

    The cycling of dissolved selenium was examined in the North San Francisco Bay estuary using 5 surface water transects from the Pacific Ocean (Golden Gate) to the Sacramento and San Joaquin Rivers, monthly river sampling, and three collections of oil refinery effluents during 1997-2000. By combining these data with earlier results from the mid-1980s, a nearly 16-year record of riverine fluxes, estuarine processes, and anthropogenic inputs was obtained. The Sacramento River concentrations and speciation have remained unchanged over the period, and while the speciation of selenium in the San Joaquin is similar, its dissolved selenium concentrations have decreased by almost one half. More significantly, the concentration of selenium from oil refinery discharges to the mid-estuary has decreased 66% and its speciation changed from one dominated by selenite (66%) to one that is only 14% selenite. This change in refinery effluents occurred while our study was underway, with the result being a pronounced decrease in selenite concentrations (82%), and hence total dissolved selenium, in the mid-estuary. A companion study found that sediment/water exchange is a minor flux to the estuary, and hence selenium inputs from the Sacramento River, as well as refineries during low flow (summer, fall) periods exert major controls on the dissolved selenium behavior in this estuary. Nevertheless, in situ processes associated with organic matter cycling (photosynthesis and respiration) still modify the distributions and internal transformations of dissolved selenium, notably organic selenide.

  2. Assessment of dissolved-selenium concentrations and loads in the lower Gunnison River Basin, Colorado, as part of the Selenium Management Program, from 2011 to 2016

    USGS Publications Warehouse

    Henneberg, Mark F.

    2018-04-23

    The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected sites. Annual 85th percentiles for dissolved selenium were calculated for the five core sites having USGS streamflow-gaging stations using estimated dissolved-selenium concentrations from linear regression models. The 85th-percentile concentrations for WYs 2011–2016 based on this method ranged from 0.62 µg/L and 1.1µg/L at Uncompahgre River at Colona to 12.1 µg/L and 18.7 µg/L at Uncompahgre River at Delta. The 85th percentiles for dissolved selenium also were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2016. The annual 85th-percentile concentrations based on the discrete samples ranged from 0.16 µg/L and 0.17 µg/L at Gunnison River below Gunnison Tunnel to 62.2 µg/L and 170 µg/L at Loutzenhizer Arroyo at North River Road. A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 9,100 lb from WY 1986 to WY 2016, a 40.8 percent reduction during the time period. The trend analysis for the annual dissolved-selenium load for WY 1994 to WY 2016 indicates a decrease of 6,300 lb per year, or 33.3 percent.

  3. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  4. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for transport to streams and irrigation drains that are tributary to the Gunnison, Uncompahgre, and Colorado Rivers. Selenium concentrations in about 64\\x11percent of water samples collected from the lower Gunnison River and about 50 percent of samples from the Colorado River near the Colorado-Utah State line exceeded the U.S.\\x11Environmental Protection Agency criterion of 5\\x11micrograms per liter for protection of aquatic life. Almost all selenium concentrations in samples collected during the nonirrigation season from Mancos Shale areas exceeded the aquatic-life criterion. The maximum selenium concentrations in surface-water samples were 600\\x11micrograms per liter in the Uncompahgre Project area and 380\\x11micrograms per liter in the Grand Valley. Irrigation drainage from the Uncompahgre Project and the Grand Valley might account for as much as 75 percent of the selenium load in the Colorado River near the Colorado-Utah State line. The primary source areas of selenium were the eastern side of the Uncompahgre Project and the western one-half of the Grand Valley, where there is extensive irrigation on soils derived from Mancos Shale. The largest mean selenium loads from tributary drainages were 14.0 pounds per day from Loutsenhizer Arroyo in the Uncompahgre Project and 12.8 pounds per day from Reed Wash in the Grand Valley. Positive correlations between selenium loads and dissolved-solids loads could indicate that salinity-control projects designed to decrease dissolved-solids loads also could decrease selenium loads from the irrigated areas. Selenium concentrations in irrigation drainage in the Grand Valley were much higher than concentrations predicted by simple evaporative concentration of irrigation source water. Selenium probably is removed from pond water by chemical and biological processes and incorporated into bottom sediment. The maximum selenium concentration in bottom sediment was 47 micrograms per gram from a pond on the eastern side of the

  5. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    USGS Publications Warehouse

    Henneberg, Mark F.

    2016-08-10

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2014. The instantaneous 85th percentiles for samples for WY 2014 ranged from 1.1 µg/L at Uncompahgre River at Colona to 125 µg/L at Loutzenhizer Arroyo at North River Road.A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 8,000 lb from WY 1986 to WY 2014, a 34.8 percent reduction during the time period, and an additional 6.2 percent reduction from a reported 28.6 percent reduction during WYs 1986–2008. The trend analysis for WY 1992 to WY 2014 indicates a decrease of 5,800 lb per year, or 27.9 percent.

  6. Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill samples from the Powder River basin, Wyoming

    USGS Publications Warehouse

    See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J.

    1995-01-01

    Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill aquifers were investigated. Backfill and ground-water samples were collected at coal mines in the Powder River Basin, Wyoming. Backfill was generally dominated by aluminum (14,400 to 49,000 mg/kg (milligrams per kilogram)), iron (3,330 to 23,200 mg/kg), and potassium (7,950 to 18,000 mg/kg). Backfill saturated-paste selenium concentrations ranged from 1 to 156 mg/kg (microsiemens per kilogram). Ground-water total selenium concentrations ranged from 3 to 125 mg/L. Dissolved organic carbon in all ground-water samples was dominated by hydrophobic and hydrophilic acids (38 to 84 percent). Selenite sorption/desorption experiments were conducted using background solutions of distilled-deionized water, 0.1 molar calcium chloride, and isolated hydrophobic and hydrophilic acids. Selenite sorption was larger when 0.1 molar calcium chloride was used. The addition of hydrophilic acid decreased selenite sorption more than the addition of hydrophobic acids. Geochemical modelling was used to predict the solid phases controlling dissolved selenium concentrations and to evaluate the effects of dissolved organic carbon on selenium solubility. Results suggested that 55 to 90 percent of selenium in backfill precipitation/dissolution extracts was dominated by magnesium selenate ion pairs. Dissolved organic carbon had little effect on selenium speciation. A redox chamber was constructed to control Eh and pH in water and backfill-core sample suspensions. The response of selenite and selenate in water samples to redox conditions did not follow thermodynamic predictions. Reduction of selenate in water samples did not occur at any of the redox levels tested.

  7. Selenium and Mercury Concentrations in Fish, Wolford Mountain Reservoir, Colorado, 2005

    USGS Publications Warehouse

    Bauch, Nancy J.

    2007-01-01

    A reconnaissance investigation of selenium and total mercury in fish in Wolford Mountain Reservoir, Colorado, was conducted by the U.S. Geological Survey in June 2005, in cooperation with the Colorado River Water Conservation District. A total of 32 game and nongame fish were collected from three sites in the reservoir for analysis of selenium and total mercury. Five species of fish were sampled: white sucker (Catostomus commersonii, n=17), brown trout (Salmo trutta, n=5), rainbow trout (Oncorhynchus mykiss, n=5), cutthroat trout (Oncorhynchus clarkii, n=3), and splake (Salvelinus fontinalis x Salvelinus namaycush, n=2). Selenium concentrations ranged from 1.05 to 11.7 micrograms per gram (equivalent to parts per million or ppm) dry weight, whole body. Almost 22 percent (7 of 32) of fish samples had selenium concentrations greater than 7.91 micrograms per gram dry weight, the U.S. Environmental Protection Agency 2004 draft freshwater chronic criterion for selenium in whole-body fish tissue. Total mercury concentrations in muscle plug samples ranged from 0.012 to 0.320 microgram per gram wet weight. Concentrations of mercury in muscle plug samples are comparable to concentrations in fillet samples, and only one fish sample, a nongame white sucker, had a total mercury concentration greater than the U.S. Environmental Protection Agency water-quality criterion for the protection of human health of 0.3 microgram per gram wet weight in fillets. Converting muscle plug or fillet concentrations of mercury to whole-body concentrations, four fish samples (12.5 percent) had estimated whole-body total mercury concentrations greater than 0.1 microgram per gram wet weight concentration in whole-body fish tissue, the U.S. Fish and Wildlife Service criterion for protection of fish-eating birds and wildlife. Water-quality data for dissolved selenium and total mercury in two tributaries and three reservoir sites were compiled and compared. Dissolved concentrations of selenium in one tributary and one reservoir site (prior to 1998) were greater than 4.6 micrograms per liter, the State of Colorado chronic water-quality standard for dissolved selenium for protection of aquatic life. Total mercury concentrations in most water samples from two tributaries and three reservoir sites were less than or equal to 0.01 microgram per liter, the State of Colorado chronic water-quality standard for total mercury for protection of aquatic life. Selenium and mercury in fish in Wolford Mountain Reservoir most likely are not directly related to selenium and mercury concentrations in reservoir water, as most selenium and mercury in fish tissue results from the presence of selenium and mercury in the diet rather than through gill uptake from water. Results of this reconnaissance investigation of selenium and total mercury in fish in Wolford Mountain Reservoir indicate that concentrations of selenium were elevated in some fish. Most total mercury concentrations in fish were less than criteria levels.

  8. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  9. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  10. Dissolved-selenium data for wells in the western San Joaquin Valley, California, February to July 1985

    USGS Publications Warehouse

    Neil, J.M.

    1986-01-01

    Water samples were collected for selenium analysis from 63 wells in western San Joaquin Valley, California, during February to July 1985. Results of the data collection indicate that dissolved selenium concentrations ranged from less than 1 to 120 micrograms per liter; more than 50 percent of the wells sampled had concentrations of less than 1 microgram per liter. Four additional samples collected from public supply wells in the western valley had concentrations ranging from less than 1 to 2 micrograms per liter. All samples from five public supply wells east of the study area had concentrations less than 1 microgram per liter. The U.S. Environmental Protection Agency 's drinking-water standard of 10 micrograms per liter for selenium was slightly exceeded in 2 of 39 domestic wells (11 and 13 micrograms per liter) and substantially exceeded in 2 of 11 irrigation and agricultural wells (55 and 120 micrograms per liter). (USGS)

  11. Biological alkylation and colloid formation of selenium in methanogenic UASB reactors.

    PubMed

    Lenz, Markus; Smit, Martijn; Binder, Patrick; van Aelst, Adriaan C; Lens, Piet N L

    2008-01-01

    Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.

  12. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and inversely correlated with total suspended-solids concentrations. Although pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially mosquitofish, mollies, and red shiner (Cyprinella lutrensis). Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 32.8 micrograms per liter (?g/L), with selenate as the major constituent. Selenium concentrations in other matrices varied widely among drains and ponds, with one drain (Trifolium 18) exhibiting especially high concentrations in food chain matrices [particulate organic detritus, 5.98-58.0 micrograms of selenium per gram (?g Se/g); midge larvae, 12.7-50.6 ?g Se/g] and in fish (mosquitofish, 13.2-20.2 ?g Se/g; sailfin mollies, 12.8-30.4 ?g Se/g; all concentrations are based on dry weights). Although selenium was accumulated by all trophic levels, biomagnification (defined as a progressive increase in selenium concentration from one trophic level to the next higher level) in midge larvae and fish occurred only at lower exposure concentrations. Judging mostly from circumstantial evidence, the health and wellbeing of poeciliids and pupfish are not believed to be threatened by ambient exposure to selenium in the drains and ponds.

  13. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    USGS Publications Warehouse

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.

  14. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  15. Irrigation drainage studies of the Angostura Reclamation Unit and the Belle Fourche Reclamation Project, western South Dakota : results of 1994 sampling and comparisons with 1988 data

    USGS Publications Warehouse

    Sando, Steven K.; Williamson, Joyce E.; Dickerson, Kimberly K.; Wesolowski, Edwin A.

    2001-01-01

    The U.S. Department of the Interior started the National Irrigation Water Quality Program in 1985 to identify the nature and extent of irrigation-induced water-quality problems that might exist in the western U.S. The Angostura Reclamation Unit (ARU) and Belle Fourche Reclamation Project (BFRP) in western South Dakota were included as part of this program. The ARU and BFRP reconnaissance studies were initiated in 1988, during below-normal streamflow conditions in both study areas. Surface water, bottom sediment, and fish were resampled in 1994 at selected sites in both study areas during generally near-normal streamflow conditions to compare with 1988 study results. Concentrations of major ions in water for both the ARU and BFRP study areas are high relative to national baseline levels. Major-ion concentrations for both areas generally are lower for 1994 than for 1988, when low-flow conditions prevailed, but ionic proportions are similar between years. For ARU, dissolved-solids concentrations probably increase slightly downstream from Angostura Reservoir; however, the available data sets are insufficient to confidently discern effects of ARU operations on dissolved-solids loading. For BFRP, dissolved-solids concentrations are slightly higher at sites that are affected by irrigation drainage; again, however, the data are inconclusive to determine whether BFRP operations increase dissolved-solids loading. Most trace-element concentrations in water samples for both study areas are similar between 1988 and 1994, and do not show strong relations with discharge. ARU operations probably are not contributing discernible additional loads of trace elements to the Cheyenne River. For BFRP, concentrations of some trace elements are slightly higher at sites downstream from irrigation operations than at a site upstream from irrigation operations. BFRP operations might contribute to trace-element concentrations in the Belle Fourche River, but available data are insufficient to quantify increases. For both study areas, concentrations of several trace elements occasionally exceed National Irrigation Water Quality Program guidelines. Selenium routinely occurs in concentrations that could be problematic at sites upstream and downstream from both study areas. Elevated selenium concentrations at sites upstream from irrigation operations indicate that naturally occurring selenium concentrations are relatively high in and near the study areas. While ARU operations probably do not contribute discernible additional loads of selenium to the Cheyenne River, BFRP operations might contribute additional selenium loads to the Belle Fourche River. Concentrations of most trace elements in bottom sediment, except arsenic and selenium, are similar to typical concentrations for western U.S. soils for both study areas. Bottom-sediment arsenic and selenium (1988) concentrations in both study areas can reach levels that might be of concern; however, there is insufficient information to determine whether irrigation operations contribute to these elevated concentrations. Concentrations of most trace elements in fish in both study areas are less than values known to adversely affect fish or birds, although there are occasional exceedances of established criteria. However, selenium concentrations in fish samples routinely are within the National Irrigation Water Quality Program level of concern, and also commonly exceed the dietary guideline for avian consumers for both study areas. Selenium concentrations in fish samples generally are higher at sites downstream from irrigation operations. For BFRP, arsenic and mercury concentrations are elevated in fish samples from site B-18, which is influenced by mine tailings.

  16. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration. 

  17. Analysis of Dissolved Selenium Loading for Selected Sites in the Lower Gunnison River Basin, Colorado, 1978-2005

    USGS Publications Warehouse

    Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.

    2008-01-01

    Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water-quality standard. The Uncompahgre River, Gunnison River at Delta, and Gunnison River near Grand Junction would require 69, 34 and 53 percent, respectively, of the mean annual load to be reduced for water years 2001 through 2005 to meet the water-quality standard. Mean annual load reductions can be further reduced by targeting the periods of time when selenium would be removed from streams by remediation. During a previous study of selenium loads in the Lower Gunnison River Basin, mean annual load reductions were estimated at the Gunnison River near Grand Junction for the 1997?2001 study period. Mean annual load reductions estimated for this study period were less than those estimated for the 2001?05 study period, emphasizing the importance of understanding that different study periods can result in different load reduction estimates.

  18. The behavior of dissolved inorganic selenium in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Jing; Qu, Jianguo; Zhang, Guosen; Zhang, Anyu; Zhang, Ruifeng

    2016-02-01

    To investigate the behavior of inorganic selenium species in the Changjiang Estuary, samples were taken during summer (July 2011) and winter (March 2012). Dissolved inorganic selenium (DISe) concentrations averaged 1.79 nmol/L in summer and 1.24 nmol/L in winter; the average selenite [Se(IV)] to selenate [Se(VI)] ratio [Se(IV)/Se(VI)] was 0.42 in summer and 0.61 in winter. The data show that Se(IV) and Se(VI) concentrations in the estuary behaved strictly conservatively during winter but non-conservatively during summer due to adsorption by suspended particulate matter (SPM) and assimilation by phytoplankton. In addition, the Se concentration distributions in the Changjiang Estuary were controlled by three water masses, each with a specific Se(IV)/Se(VI) ratio "signature": the Changjiang Water input, the Taiwan Warm Current, and the Yellow Sea Coastal Current. The Se(IV) concentrations were related to the nitrate, silicate, and phosphate concentrations in the estuary. The DISe and Se(IV) concentrations were comparable to those found in other coastal regions and estuaries, which were considered to be natural levels.

  19. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Pine River Project area, Southern Ute Indian Reservation, southwestern Colorado and northwestern New Mexico, 1988-89

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Thompson, A.L.; Formea, J.J.; Wickman, D.W.

    1993-01-01

    During 1988-89, water, bottom sediment, biota, soil, and plants were sampled for a reconnaissance investigation of the Pine River Project area in southwestern Colorado. Irrigation drainage does not seem to be a major source of dissolved solids in streams. Concentrations of manganese, mercury, and selenium exceeded drinking-water regulations in some streams. The maximum selenium concentration in a stream sample was 94 microg/L in Rock Creek. Irrigation drainage and natural groundwater are sources of some trace elements to streams. Water from a well in a nonirrigated area had 4,800 microg/L of selenium. Selenium concentrations in soil on the Oxford Tract were greater in areas previously or presently irrigated than in areas never irrigated. Some forage plants on the Oxford Tract had large selenium concentrations, including 180 mg/km in alfalfa. Most fish samples had selenium concentrations greater than the National Contaminant Biomonitoring Program 85th percentile. Selenium concentrations in aquatic plants, aquatic inverte- brates, and small mammals may be of concern to fish and wildlife because of possible food-chain bioconcentration. Selenium concentrations in bird samples indicate selenium contamination of biota on the Oxford Tract. Mallard breasts had selenium concentrations exceeding a guideline for human consumption. The maximum selenium concentration in biota was 50 microg/g dry weight in a bird liver from the Oxford Tract. In some fish samples, arsenic, cadmium, copper, and zinc exceeded background concentrations, but concentrations were not toxic. Mercury concentrations in 16 fish samples exceeded the background concentration. Ten mercury concentrations in fish exceeded a guideline for mercury in food for consumption by pregnant women.

  20. Year 3 Summary Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2008-01-01

    This report summarizes findings from the third year of a 4-year-long field investigation to document selected baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water quality and fish species were measured at roughly quarterly intervals from April 2007 to January 2008. The water quality measurements included total suspended solids and total (particulate plus dissolved) selenium. In addition, during April and October 2007, water samples were collected from seven intensively monitored drains for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices (particulate organic detritus, filamentous algae, net plankton, and midge [chironomid] larvae), and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for desert pupfish (Cyprinodon macularius), an endangered species that we were not permitted to take for selenium determinations. Water quality values were typical of surface waters in a hot desert climate. A few drains exhibited brackish, near anoxic conditions especially during the summer and fall when water temperatures occasionally exceeded 30 degrees C. In general, total selenium concentrations in water varied directly with conductivity and inversely with pH. Although desert pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially red shiner (Cyprinella lutrensis), mosquitofish, and mollies. Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 24.1 ug/L, with selenate as the major constituent in all samples. Selenium concentrations in other matrices varied widely among drains and ponds, with at least one drain (for example, Trifolium 18) exhibiting especially high concentrations in food chain organisms (in detritus, 13.3-28.9 ug Se/g; in net plankton, 11.9-19.3 ug Se/g; in midge larvae, 12.7-15.4 ug Se/g) and fish (in mollies, 12.8-25.1 ug Se/g; in mosquitofish, 13.2-20.2 ug Se/g; all concentrations are dry weights). These elevated concentrations approached or exceeded average concentrations reported from flowing waters in seleniferous wetlands in the San Joaquin Valley.

  1. Selenium in soil, water, sediment, and biota of the lower Sun River area, West-Central Montana

    USGS Publications Warehouse

    Nimick, David A.; Lambing, John H.; Palawski, Donald U.

    1993-01-01

    A U.S. Department of the Interior study started in 1990 examined the source, movement, fate, and possible biological effects of selenium associated with irrigation drainage from the Sun River Irrigation Project in west-central Montana. Concentrations of total selenium in soil samples ranged from 0.1 to 8.5 micrograms per gram; the maximum concentrations were measured in nonirrigated areas overlying geologic formations containing seleniferous shale. In irrigated areas, concentrations of dissolved selenium in ground water flowing toward Freezeout Lake ranged from less than 1 to 18 micrograms per liter (??g/L) in terrace gravel and from 1 to 190 ??g/L in glacial deposits derived from seleniferous shale. Concentrations of total selenium ranged from less than 1 to 180 ??g/L in surface irrigation drainage, and from less than 1 to 1,000 ??g/L in natural flows from nonirrigated land. Selenium concentrations in water from lakes generally were less than the aquatic-life criterion for chronic toxicity. The range of selenium concentrations in bottom sediment of lakes was similar to that of local soils. However, biological samples indicate that selenium is accumulating through the aquatic food chain. Selenium concentrations indicative of biological risk were exceeded in at least 80 percent of the freshwater-invertebrate, bird-egg, and bird-liver samples collected from all wetland sites.

  2. Occurrence and distribution of dissolved solids, selenium, and uranium in groundwater and surface water in the Arkansas River Basin from the headwaters to Coolidge, Kansas, 1970-2009

    USGS Publications Warehouse

    Miller, Lisa D.; Watts, Kenneth R.; Ortiz, Roderick F.; ,

    2010-01-01

    In 2007, the U.S. Geological Survey (USGS), in cooperation with City of Aurora, Colorado Springs Utilities, Colorado Water Conservation Board, Lower Arkansas Valley Water Conservancy District, Pueblo Board of Water Works, Southeastern Colorado Water Activity Enterprise, Southeastern Colorado Water Conservancy District, and Upper Arkansas Water Conservancy District began a retrospective evaluation to characterize the occurrence and distribution of dissolved-solids (DS), selenium, and uranium concentrations in groundwater and surface water in the Arkansas River Basin based on available water-quality data collected by several agencies. This report summarizes and characterizes available DS, dissolved-selenium, and dissolved-uranium concentrations in groundwater and surface water for 1970-2009 and describes DS, dissolved-selenium, and dissolved-uranium loads in surface water along the main-stem Arkansas River and selected tributary and diversion sites from the headwaters near Leadville, Colorado, to the USGS 07137500 Arkansas River near Coolidge, Kansas (Ark Coolidge), streamgage, a drainage area of 25,410 square miles. Dissolved-solids concentrations varied spatially in groundwater and surface water in the Arkansas River Basin. Dissolved-solids concentrations in groundwater from Quaternary alluvial, glacial drift, and wind-laid deposits (HSU 1) increased downgradient with median values of about 220 mg/L in the Upper Arkansas subbasin (Arkansas River Basin from the headwaters to Pueblo Reservoir) to about 3,400 mg/L in the Lower Arkansas subbasin (Arkansas River Basin from John Martin Reservoir to Ark Coolidge). Dissolved-solids concentrations in the Arkansas River also increased substantially in the downstream direction between the USGS 07086000 Arkansas River at Granite, Colorado (Ark Granite), and Ark Coolidge streamgages. Based on periodic data collected from 1976-2007, median DS concentrations in the Arkansas River ranged from about 64 mg/L at Ark Granite to about 4,060 mg/L at Ark Coolidge representing over a 6,000 percent increase in median DS concentrations. Temporal variations in specific conductance values (which are directly related to DS concentrations) and seasonal variations in DS concentrations and loads were investigated at selected sites in the Arkansas River from Ark Granite to Ark Coolidge. Analyses indicated that, for the most part, specific conductance values (surrogate for DS concentrations) have remained relatively constant or have decreased in the Arkansas River since about 1970. Dissolved-solids concentrations in the Arkansas River were higher during the nonirrigation season (November-February) than during the irrigation season (March-October). Average annual DS loads, however, were higher during the irrigation season than during the nonirrigation season. Average annual DS loads during the irrigation season were at least two times and as much as 23 times higher than average annual DS loads during the nonirrigation season with the largest differences occurring at sites located downstream from the two main-stem reservoirs at USGS 07099400 Arkansas River above Pueblo, Colorado (Ark Pueblo), (which is below Pueblo Reservoir) and USGS 07130500 Arkansas River below John Martin Reservoir, Colorado (Ark below JMR). View report for unabridged abstract.

  3. General surface- and ground-water quality in a coal-resource area near Durango, southwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and Carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. (USGS)

  4. General surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. 10 refs., 11 figs., 10 tabs.

  5. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  6. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  7. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2012

    USGS Publications Warehouse

    Thomas, Judith C.; Arnold, Larry R. Rick

    2015-07-06

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Ten monitoring wells were installed during October and November 2012. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system will provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  8. TRANSPORT OF CHROMIUM AND SELENIUM IN A PRISTINE SAND AND GRAVEL AQUIFER: ROLE OF ADSORPTION PROCESSES

    EPA Science Inventory

    Field transport experiments were conducted in an oxic sand and gravel aquifer using Br (bromide ion), Cr (chromium, injected as Cr(VI)), Se (selenium, injected as Se(VI)), and other tracers. The aquifer has mildly acidic pH values and low concentrations of dissolved salts. Within...

  9. Oxidation and mobilization of selenium by nitrate in irrigation drainage

    USGS Publications Warehouse

    Wright, W.G.

    1999-01-01

    Selenium (Se) can be oxidized by nitrate (NO3-) from irrigation on Cretaceous marine shale in western Colorado. Dissolved Se concentrations are positively correlated with dissolved NO3- concentrations in surface water and ground water samples from irrigated areas. Redox conditions dominate in the mobilization of Se in marine shale hydrogeologic settings; dissolved Se concentrations increase with increasing platinum-electrode potentials. Theoretical calculations for the oxidation of Se by NO3- and oxygen show favorable Gibbs free energies for the oxidation of Se by NO3-, indicating NO3- can act as an electron acceptor for the oxidation of Se. Laboratory batch experiments were performed by adding Mancos Shale samples to zero- dissolved-oxygen water containing 0, 5, 50, and 100 mg/L NO3- as N (mg N/L). Samples were incubated in airtight bottles at 25??C for 188 d; samples collected from the batch experiment bottles show increased Se concentrations over time with increased NO3- concentrations. Pseudo first-order rate constants for NO3- oxidation of Se ranged from 0.0007 to 0.0048/d for 0 to 100 mg N/L NO3- concentrations, respectively. Management of N fertilizer applications in Cretaceous shale settings might help to control the oxidation and mobilization of Se and other trace constituents into the environment.

  10. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum, chromium, copper, iron, manganese, nickel, and zinc, none of which cause significant water-quality problems in the river.

  11. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    USGS Publications Warehouse

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  12. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  13. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  14. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  15. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed.

  16. Temporal variations in dissolved selenium in Lake Kinneret (Israel)

    USGS Publications Warehouse

    Nishri, A.; Brenner, I.B.; Hall, G.E.M.; Taylor, Howard E.

    1999-01-01

    Selenium is an essential micronutrient for the growth of the dinoflagellate Peridinium gatunense that dominates the spring algal bloom in Lake Kinneret (LK). The relationship between the levels of dissolved selenium species and the occurance of algal blooms in this lake was studied. During algal blooms of P. gatunense in spring and of the blue-green Aphanizomenon ovalisporum in fall (in 1994) the concentration of epilimnetic dissolved organic Se (Se(org)) increased whereas that of selenite (SeIV) decreased, to levels below the limit of detection: 5 ng/l. The disappearance of SeIV during these blooms is attributed to algal uptake and it is suggested that the growth of both algae may have depended on Se(org) regeneration. A budget performed for selenate (SeVI) suggests that this species is also consumed by algae but to a lesser extent than SeIV (in 1994 ~40% of the epilimnetic load). During the stratification period the hypolimnion of Lake Kinneret becomes anoxic, with high levels of dissolved sulfide. The affects of this environment on the distribution of Se oxy-anions, selenite (SeIV) and selenate(SeVI), were also studied. At the onset of thermal stratification (March) about 35% of the lake inventory of both Se oxidized species are entrapped in the hypolimnion. During stages of oxygen depletion and H2S accumulation, SeIV is completely and SeVI partially removed from this layer. The removal is attributed to reduction followed by formation of particulate reduced products, such as elemental selenium Se(o). The ratio between SeVI to total dissolved selenium (SE(T)) in water sources to the lake is ~0.84, about twice the corresponding ratio in the lake (~0.44, during holomixis). In the lake about 75% of annual SeVI inflow from external sources undergoes reduction to selenide (Se-II) and Se(o) through epilimnetic algal assimilation and hypolimnetic anoxic reduction, respectively. It is suggested that the latter oxidation of the dissolved organic selenide released from biogenic particles and of Se(o) only to the tetravalent species is the cause for the lower ratio of SeVI/Se(T) in the lake.

  17. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower-Colorado River valley, Arizona, California, and Nevada

    USGS Publications Warehouse

    Radtke, D.B.; Kepner, W.G.; Effertz, R.J.

    1988-01-01

    The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)

  18. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  19. Distribution and bioaccumulation of selenium in aquatic microcosms

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Little, Edward E.; La Point, Thomas W.

    1989-01-01

    Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved 75Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of 75Se over the range 80–180 mg SO4 liter−1. When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.

  20. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.

  1. Ultrasonic extraction of arsenic and selenium from rocks associated with mountaintop removal/valley fills coal mining: Estimation of bioaccessible concentrations.

    PubMed

    Pumure, I; Renton, J J; Smart, R B

    2010-03-01

    Ultrasonic extraction (UE) was used to estimate the total bioaccessible fractions of arsenic and selenium released from rocks associated with mountaintop removal/valley fill coal mining. The combined readily bioaccessible amounts of arsenic and selenium in water soluble, exchangeable and NaOH fractions can be extracted from the solid phase within a 20 or 25 min application of 200 W cm(-2) ultrasound energy in nanopure water for selenium and arsenic, respectively. Application of a two-way ANOVA predicted that there are no significant differences (p0.001, n=12) in the extracted arsenic and selenium concentrations between the combined bioaccessible and ultrasonic extracts. The mechanisms for the UE of arsenic and selenium are thought to involve the formation of secondary minerals on the particle surfaces which eventually dissolve with continued sonication. This is supported by the presence of transient Si-O stretching and OH absorption and bending ATR-FTIR peaks at 795.33 cm(-1), 696.61 cm(-1) and 910.81 cm(-1). The subsequent dissolution of secondary minerals is followed by the release of chemical species that include selenium and arsenic. Release rates decrease after the ultrasound energy elastic limit for the particles is reached. Selenium and arsenic are bound differently within the rock lattice because no selenium was detected in the acid soluble fraction and no arsenic was found in the exchangeable fraction. However, selenium was found in the exchangeable fraction and arsenic was found in the acid soluble fraction. The characterization of coal associated rocks is essential to the design of methodologies and procedures that can be used to control the release of arsenic and selenium from valley fills. Published by Elsevier Ltd.

  2. Assessing selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado.

    PubMed

    Gates, Timothy K; Cody, Brent M; Donnelly, Joseph P; Herting, Alexander W; Bailey, Ryan T; Mueller Price, Jennifer

    2009-01-01

    Prudent interventions for reducing selenium (Se) in groundwater and streams within an irrigated river valley must be guided by a sound understanding of current field conditions. An emerging picture of the nature of Se contamination within the Lower Arkansas River Valley in Colorado is provided by data from a large number of groundwater and surface water sampling locations within two study regions along the river. Measurements show that dissolved Se concentrations in the river are about double the current Colorado Department of Public Health and Environment (CDPHE) chronic standard of 4.6 microg L(-1) for aquatic habitat in the upstream region and exceed the standard by a factor of 2 to 4 in the downstream region. Groundwater concentrations average about 57.7 microg L(-1) upstream and 33.0 microg L(-1) downstream, indicating a large subsurface source for irrigation-induced dissolution and mobilization of Se loads to the river and its tributaries. Inverse correlation was found between Se concentration and the distance to the closest identified shale in the direction upstream along the principal groundwater flow gradient. The data also exhibited, among other relationships, a moderate to strong correlation between dissolved Se and total dissolved solids in groundwater and surface water, a strong correlation with uranium in groundwater, and power relationships with nitrate in groundwater. The relationship to nitrate, derived primarily from N fertilizers, reveals the degree to which dissolved Se depends on oxidation and inhibited reduction due to denitrification and suggests that there are prospects for reducing dissolved Se through nitrate control. Current and future results from these ongoing studies will help provide a foundation for modeling and for the discovery of best management practices (BMPs) in irrigated agriculture that can diminish Se contamination.

  3. Selenium

    USGS Publications Warehouse

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There, waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  4. Characterization and data-gap analysis of surface-water quality data in the Piceance study area, western Colorado, 1959–2009

    USGS Publications Warehouse

    Thomas, Judith C.; Moore, Jennifer L.; Schaffrath, Keelin R.; Dupree, Jean A.; Williams, Cory A.; Leib, Kenneth J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, county, and industry partners, developed a Web-accessible common data repository to provide access to historical and current (as of August 2009) water-quality information (available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml). Surface-water-quality data from public and private sources were compiled for the period 1931 to 2009 and loaded into the common data repository for the Piceance Basin. A subset of surface-water-quality data for 1959 to 2009 from the repository were compiled, reviewed, and checked for quality assurance for this report. This report contains data summaries, comparisons to water-quality standards, trend analyses, a generalized spatial analysis, and a data-gap analysis for select water-quality properties and constituents. Summary statistics and a comparison to standards were provided for 347 sites for 33 constituents including field properties, nutrients, major ions, trace elements, suspended sediment, Escherichia coli, and BTEX (benzene, toluene, ethylbenzene, and xylene). When sufficient data were available, trends over time were analyzed and loads were calculated for those sites where there were also continuous streamflow data. The majority of sites had information on field properties. Water temperature data was available for 316 sites where data were collected between 1959 and 2009. The only trend that was detected in temperature was an upward trend at the Gunnison River near Grand Junction, Colorado. There were 326 values out of a total of 32,006 values in the study area that exceeded the aquatic-life standard for daily maximum water temperature. For the entire study area, 196 sites had dissolved-oxygen data collected between 1970 and 2009, and median dissolved-oxygen concentrations ranged from 6.8 to11.2 milligrams per liter (mg/L). There were 185 concentrations that exceeded the dissolved oxygen aquatic-life standard out of a total of 11,248 values. The pH data were available for 276 sites, and median pH values ranged from 7.5 to 9.0. There were 241 values that exceeded the high pH standard and 13 values that were less than the low pH standard of the 16,790 values in the study area. Nutrients within the study area were not well represented in each basin and were often not being sampled currently. For the entire study area, 62 sites had nitrate data collected between 1958 and 2009, and median nitrate concentrations ranged from less than detection to 3.72 mg/L as nitrogen. The maximum contaminant level for domestic water supply for nitrate is 10 mg/L and was exceeded once in 3,736 samples. Total phosphorus was collected at 113 sites between 1974 and 2009, and median total phosphorus concentrations ranged from less than detection to 5.04 mg/L. The U.S. Environmental Protection Agency recommendation for phosphorus is less than 0.1 mg/L, and 1,469 of 4,842 samples exceeded this recommended standard. An upward trend in both nitrate and total phosphorus was detected in the White River above Coal Creek near Meeker, Colo. Standards for major ions exist only for chloride and sulfate. For the entire study area, 118 sites had both chloride and sulfate concentration data collected between 1958 and 2009. Median chloride concentrations ranged from 0.085 mg/L to 280 mg/L. Median sulfate concentrations ranged from 4.57 mg/L to 15,000 mg/L. Both chloride and sulfate domestic water-supply standards are 250 mg/L. There were 120 chloride concentrations and 1,111 sulfate concentration samples that exceeded these standards. A downward trend in dissolved solids was detected at the Colorado River near the Colorado-Utah state border and could be a result of salinity control work near Grand Junction, Colo. Trace elements were relatively well represented both temporally and spatially in the study area though the number of trace element samples per site was not typically enough to compute trends or loads except for selenium. There were 127 sites that had dissolved iron concentration data collected between 1961 and 2009, and median iron concentrations ranged from less than detection to 1,100 micrograms per liter (µg/L). The 30-day drinking-water standard for iron is 300 µg/L, and 203 samples exceeded the standard. Selenium was the best represented trace element with selenium concentration data collected at 197 sites between 1973 and 2009, and median selenium concentrations range from less than detection to 181 µg/L. The chronic standard of 4.6 µg/L for selenium concentrations was exceeded in 899 samples, and the acute aquatic-life standard of 18.4 µg/ for selenium was exceeded in 629 samples. High concentrations of selenium are of concern in the Lower Gunnison River Basin because of the combination of geologic formations and land use. There were significant downward trends in selenium at both main-stem sites on the Gunnison River at Delta, Colo., and the Gunnison River near Grand Junction, Colo. High selenium concentrations correlate with high salinity concentrations; thus, when salinity control efforts are conducted in selenium-rich areas in the Lower Gunnison River Basin, both salinity and selenium have the potential to decrease. Spatial, temporal, and analytical data gaps were identified in the study area. The spatial coverage of sampling sites could be expanded in the White River Basin by adding more tributary sites. No water-quality data exist for tributary streams in the area north of Rangely, Colo., where extensive energy development has occurred in a complex geologic setting. Douglas Creek has a drainage area of 425 square miles and has limited historic water-quality and water-quantity data. Limited data were available for field properties, major ions, nutrients, and trace elements on the main stem of the Colorado River between Glenwood Springs and Cameo, Colo. Nutrient data were minimally collected upstream from Colorado River at the Colorado-Utah state border and on the Gunnison River (major tributary in the reach). Approximately 30 percent of the samples for total phosphorus in the Lower Gunnison River Basin exceeded the recommended standard, yet there were insufficient data to do trends analysis in the Lower Gunnison River Basin except at the Gunnison near Grand Junction site. There is limited trace element data except for selenium in the Lower Gunnison River Basin. Additional sampling is necessary to understand the occurrence, concentrations, and loads of these constituents.

  5. Effects of surface applications of biosolids on groundwater quality and trace-element concentrations in crops near Deer Trail, Colorado, 2004-2010

    USGS Publications Warehouse

    Yager, Tracy J.B.; Crock, James G.; Smith, David B.; Furlong, Edward T.; Hageman, Philip L.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with Metro Wastewater Reclamation District (Metro District), studied biosolids composition and the effects of biosolids applications on groundwater quality and trace-element concentrations in crops of the Metro District properties near Deer Trail, Colorado, during 2004 through 2010. Priority parameters for each monitoring component included the nine trace elements regulated by Colorado for biosolids (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc); other constituents also were analyzed. All concentrations for the priority parameters in monthly biosolids samples were less than Colorado regulatory limits, and the concentrations were relatively consistent. Biosolids likely were the largest source of nitrogen and phosphorus on the Metro District properties. Plutonium isotopes were not detected in the biosolids, but many organic wastewater compounds (organic wastewater compounds: wastewater indicators, pharmaceuticals, and hormones) were detected in substantial concentrations relative to minimum reporting levels and various surface-water concentrations. Bismuth, copper, mercury, nitrogen, phosphorus, silver, biogenic sterols, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals, and plasticizers would be the most likely biosolids signature to indicate the presence of Metro District biosolids in soil or streambed sediment from the study area. Antimony, cadmium, cobalt, copper, molybdenum, nickel, nitrogen, phosphorus, selenium, tungsten, vanadium, zinc, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals or their degradates, and plasticizers would be the most likely biosolids signature for groundwater and surface water in the study area. More biosolids-signature components detected and larger concentration differences from untreated materials, baseline, and blank samples indicate more evidence of biosolids presence or effects. Although the inorganic constituent concentrations were relatively large in samples from one monitoring well, the concentrations of organic wastewater compounds in groundwater samples were not correspondingly large. Concentrations of organic wastewater compounds in the groundwater samples from all five monitoring wells were less than the minimum reporting levels with only a few detections. Some of the organic wastewater compounds detected could have anthropogenic sources that are not biosolids. Concentrations of priority parameters in groundwater varied spatially and temporally but generally were less than Colorado regulatory limits. Concentrations of dissolved nitrate, arsenic, and selenium, in addition to chloride, sulfate, total dissolved solids, boron, iron, manganese, and uranium, in samples from some wells exceeded the Colorado standards. Concentrations of dissolved nitrate (three wells), molybdenum (one well), selenium (two wells), and uranium (one well) in shallow groundwater had significant (alpha = 0.05) upward trends in some parts of the study area. The biosolids-signature results indicate that the aquifers intercepted by the five routinely sampled wells likely have received some recharge through treated (biosolids-applied) fields or biosolids-affected ponds. Adverse effects from this biosolids-related recharge range from few (if any) at one well to large and significantly (alpha = 0.05) increasing nitrate concentrations at another well. A statistical evaluation of five paired wheat-grain samples from treated (biosolids-applied) fields and untreated (control) fields did not indicate any evidence that biosolids applications significantly (alpha = 0.05 or 0.10) increased concentration of any of these constituents in wheat grain. The wheat-grain concentrations from this study were similar to those from other studies for fields in North America where no biosolids were applied. The data for the limited crop samples indicate that biosolids applications are not increasing the concentrations of arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, sulfur, and zinc in mature wheat grain from the study area.

  6. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006-2008

    USGS Publications Warehouse

    Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk

    2010-01-01

    Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.

  7. Solution-processed air-stable mesoscopic selenium solar cells

    DOE PAGES

    Zhu, Menghua; Hao, Feng; Ma, Lin; ...

    2016-07-28

    Crystalline selenium (c-Se) is a direct band gap semiconductor and has been developed for detector applications for more than 30 years. While most advances have been made using vacuum deposition processes, it remains a challenge to prepare efficient c-Se devices directly from solution. We demonstrate a simple solution process leading to uniform and high-crystallinity selenium films under ambient conditions. A combination of ethylenediamine (EDA) and hydrazine solvents was found to be effective in dissolving selenium powder and forming highly concentrated solutions. These can be used to infiltrate a mesoporous titanium dioxide layer and form a smooth and pinhole-free capping overlayer.more » Efficient light-induced charge injection from the crystalline selenium to TiO 2 was observed using transient absorption spectroscopy. A small amount of EDA addition in the hydrazine solution was found to improve the film coverage significantly, and on the basis of the finding, we are able to achieve up to 3.52% power conversion efficiency solar cells with a fill factor of 57%. Lastly, these results provide a method to control the crystalline selenium film and represent significant progress in developing low-cost selenium-based solar cells.« less

  8. Availability and quality of ground water, southern Ute Indian Reservation, southwestern Colorado

    USGS Publications Warehouse

    Brogden, Robert E.; Hutchinson, E. Carter; Hillier, Donald E.

    1979-01-01

    Population growth and the potential development of subsurface mineral resources have increased the need for information on the availability and quality of ground water on the Southern Ute Indian Reservation. The U.S. Geological Survey, in cooperation with the Southern Ute Tribal Council, the Four Corners Regional Planning Commission, and the U.S. Bureau of Indian Affairs, conducted a study during 1974-76 to assess the ground-water resources of the reservation. Water occurs in aquifers in the Dakota Sandstone, Mancos Shale, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, Fruitland Formation, Kirtland Shale, Animas and San Jose Formations, and terrace and flood-plain deposits. Well yields from sandstone and shale aquifers are small, generally in the range from 1 to 10 gallons per minute with maximum reported yields of 75 gallons per minute. Well yields from terrace deposits generally range from 5 to 10 gallons per minute with maximum yields of 50 gallons per minute. Well yields from flood-plain deposits are as much as 25 gallons per minute but average 10 gallons per minute. Water quality in aquifers depends in part on rock type. Water from sandstone, terrace, and flood-plain aquifers is predominantly a calcium bicarbonate type, whereas water from shale aquifers is predominantly a sodium bicarbonate type. Water from rocks containing interbeds of coal or carbonaceous shales may be either a calcium or sodium sulfate type. Dissolved-solids concentrations of ground water ranged from 115 to 7,130 milligrams per liter. Water from bedrock aquifers is the most mineralized, while water from terrace and flood-plain aquifers is the least mineralized. In many water samples collected from bedrock, terrace, and flood-plain aquifers, the concentrations of arsenic, chloride, dissolved solids, fluoride, iron, manganese, nitrate, selenium, and sulfate exceeded U.S. Public Health Service (1962) recommended limits for drinking water. Selenium in the ground water in excess of U.S. Public Health Service (1962) recommended limit of 10 micrograms per liter for drinking water occurs throughout the reservation but principally in the central part. Of the 265 wells and springs sampled, 74 contained water with selenium concentrations in excess of the recommended limit. Selenium concentrations exceeded 10 micrograms per liter principally in water from aquifers in the San Jose and Animas Formations. The maximum selenium concentration determined during the study was 13,000 micrograms per liter in a sample obtained from the San Jose Formation. The only known documented case of human selenium poisoning caused by drinking ground water occurred on the reservation.

  9. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data

    USGS Publications Warehouse

    Mars, J.C.; Crowley, J.K.

    2003-01-01

    Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.

  10. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    USGS Publications Warehouse

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical divisions of the United States, except the Central Lowland province of the Interior Plains, the Great Plains province of the Interior Plains, and the Basin and Ridge province of the Intermontane Plateaus. The relationship between dissolved-solids concentration and discharge per unit area is least variable in the New England province and Blue Ridge province of the Appalachian Highlands. The dissolved-solids concentration versus discharge per unit area in the Central Lowland province of the Interior Plains is highly variable. A sample collected from the hydrologic bench-mark station at Bear Den Creek near Mandaree, N. Dak., contained 3,420 milligrams per litre dissolved solids. This high concentration in the 'natural' environment indicates that natural processes can be principal agents in modifying the environment and can cause degradation. Average annual runoff and rock type can be used as predictive tools to determine the maximum dissolved-solids concentration expected in the 'natural' environment.

  11. Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.; Peltz, Lorri A.

    1999-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of land irrigated for agriculture, has been identified as being susceptible. Biological data were used to evaluate the reliability of the map. In 12 of DOl's 26 study areas, concentrations of selenium measured in bird eggs were elevated sufficiently to significantly reduce hatchability of the eggs. The GIS map identifies 9 of those 12 areas. Deformed bird embryos having classic symptoms of selenium toxicosis were found in four of the study areas, and the map identifies all four as susceptible to irrigation-induced selenium contamination.

  12. Selenium and other elements in juvenile striped bass from the San Joaquin Valley and San Francisco Estuary, California

    USGS Publications Warehouse

    Saiki, Michael K.; Palawski, Donald U.

    1990-01-01

    Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.

  13. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  14. Avoidance of selenium-treated food by mallards

    USGS Publications Warehouse

    Heinz, G.H.; Sanderson, C.J.

    1990-01-01

    Adult, male mallards (Anas platyrhynchos) were given a choice between a control diet and a diet containing 5, 10 or 20 ppm selenium as selenomethionine dissolved in water and mixed into the diet. At 10 and 20 ppm, selenium-treated diets were avoided. Avoidance appeared to be caused by a conditioned response, probably to illness caused by the selenium and not to an aversion to the taste of the selenium.

  15. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA.

    PubMed

    Schlekat, Christian E; Purkerson, David G; Luoma, Samuel N

    2004-12-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass: A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 microm) and large (250-500 microm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d(-1)), especially compared to bivalves (2-3% d(-1)). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 microg g(-1)) was lower than concentrations of 4.5 to 24 microg g(-1) observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  16. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Schlekat, C.E.; Purkerson, D.G.; Luoma, S.N.

    2004-01-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 ??m) and large (250-500 ??m) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d-1), especially compared to bivalves (2-3% d-1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 ??g g -1) was lower than concentrations of 4.5 to 24 ??g g-1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  17. Quality of ground water in the Columbia Basin, Washington, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, G.L.

    1986-01-01

    Groundwater from 188 sites in the Columbia Basin of central Washington was sampled and analyzed in 1983 for pH, specific conductance, and concentrations of fecal coliform bacteria, major dissolved ions, and dissolved iron, manganese, and nitrate. Twenty of the samples were also analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were sodium bicarbonate and calcium bicarbonate. The sodium bicarbonate water samples had higher pH, fluoride, and sodium:adsorption ratio values than samples with other water types. Most trace metal concentrations were also < 10 ug/Lmore » except for barium and zinc, which had maximum concentrations of 170 and 600 ug/L, respectively. Nitrate concentrations were < 1.0 mg/L in water from more than half the wells sampled. US EPA (Environmental Protection Agency) drinking water regulations were exceeded in several samples, most commonly involving pH and concentrations of fluoride, nitrate, and dissolved solids in samples from Adams and Grant Counties. Generally, the historical data lead to similar conclusions about the quality of groundwater in the Columbia Basin region. However, historical samples had higher dissolved solids concentrations in Douglas County. Historical samples also included fewer sodium bicarbonate type waters in the region as a whole than the 1983 samples. 24 refs., 2 figs., 4 tabs.« less

  18. Organic Selenium, Selenate and Selenite Accumulation by Lake Plankton and the Alga Chlamydomonas reinhardtii at Different pH and Sulfate Concentrations.

    PubMed

    Ponton, Dominic E; Fortin, Claude; Hare, Landis

    2018-04-19

    Selenium (Se) concentrations measured in lake planktonic food chains (microplankton < 64 µm, copepods and Chaoborus larvae) were strongly correlated with the concentrations of dissolved organic Se. These correlations were strengthened slightly by adding the concentrations of dissolved selenate to those of organic Se. To better understand the role of Se species and the influence of water chemistry on Se uptake, we exposed the green alga Chlamydomonas reinhardtii to selenite, selenate or selenomethionine at various H + ion and sulfate concentrations under controlled laboratory conditions. At low sulfate concentrations, inorganic Se species (selenate > selenite) were more readily accumulated by this alga than was selenomethionine. However, at higher sulfate concentrations the uptake of selenite was higher than that of selenate while the uptake of selenomethionine remained unchanged. While pH of the exposure water did not influence the uptake of selenate by this alga, the accumulation of selenomethionine and selenite increased with pH because of their relative pH-related speciation. The Se concentrations that we measured in C. reinhardtii exposed to selenomethionine were 30 times lower than those that we measured in field-collected microplankton exposed in the same laboratory conditions. This difference is explained by the taxa present in the microplankton samples. Using our laboratory measurements of Se uptake in microplankton and our natural Se concentrations in lakewater allowed us to model Se concentrations in a lake pelagic food chain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Ranking the Potential Yield of Salinity and Selenium from Subbasins in the Lower Gunnison River Basin Using Seasonal, Multi-parameter Regression Models

    NASA Astrophysics Data System (ADS)

    Linard, J.; Leib, K.; Colorado Water Science Center

    2010-12-01

    Elevated levels of salinity and dissolved selenium can detrimentally effect the quality of water where anthropogenic and natural uses are concerned. In areas, such as the lower Gunnison Basin of western Colorado, salinity and selenium are such a concern that control projects are implemented to limit their mobilization. To prioritize the locations in which control projects are implemented, multi-parameter regression models were developed to identify subbasins in the lower Gunnison River Basin that were most likely to have elevated salinity and dissolved selenium levels. The drainage area is about 5,900 mi2 and is underlain by Cretaceous marine shale, which is the most common source of salinity and dissolved selenium. To characterize the complex hydrologic and chemical processes governing constituent mobilization, geospatial variables representing 70 different environmental characteristics were correlated to mean seasonal (irrigation and nonirrigation seasons) salinity and selenium yields estimated at 154 sampling sites. The variables generally represented characteristics of the physical basin, precipitation, soil, geology, land use, and irrigation water delivery systems. Irrigation and nonirrigation seasons were selected due to documented effects of irrigation on constituent mobilization. Following a stepwise approach, combinations of the geospatial variables were used to develop four multi-parameter regression models. These models predicted salinity and selenium yield, within a 95 percent confidence range, at individual points in the Lower Gunnison Basin for irrigation and non-irrigation seasons. The corresponding subbasins were ranked according to their potential to yield salinity and selenium and rankings were used to prioritize areas that would most benefit from control projects.

  20. Quality of ground water in southeastern and south-central Washington, 1982

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    In 1982 groundwater was sampled at over 100 sites in the southeastern-south central region of Washington and analyzed for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved irons, and dissolved iron, manganese, and nitrate. Twenty percent of the samples were analyzed for concentrations of dissolved aluminum, arsenic, barium, cadmium, chromium, cooper, lead, mercury, selenium, silver, and zinc. The predominant water type was calcium bicarbonate. Some sodium bicarbonate water was found in samples from the Lower Yakima, Horse Heaven Hills, and Walla Walla-Tucannon subregions. Dissolved solids concentrations were typically less than 500 mg/L (milligrams per liter). Median iron and manganese concentrations were less than 20 micrograms/L except in the Palouse subregion, where the median concentration of iron was 200 micrograms/L and the median concentrations of manganese was 45 micrograms/L. Generally, trace-metal concentrations were also less than 10 micrograms/L except for barium, copper, and zinc. Nitrate concentrations were less than 1.0 mg/L in waters from half the wells sampled. Concentrations greater than 5.0 mg/L were found in areas of the Lower Yakima, Walla Walla-Tucannon and Hanford subregions. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulation limits were generally not exceeded, except for occasional high concentrations of nitrate or dissolved solids. The historical data for the region were evaluated for these same constituents. Quantitative differences were found, but the historical and 1982 data led to similar qualitative conclusions. (USGS)

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    1999-01-01

    The inductively coupled plasma?mass spectrometric (ICP?MS) methods have been expanded to include the determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium in filtered, acidified natural water. Method detection limits for these elements are now 10 to 200 times lower than by former U.S. Geological Survey (USGS) methods, thus providing lower variability at ambient concentrations. The bias and variability of the method was determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries at 5 to 10 times the method detection limit and 75 micrograms per liter in reagent-water, surface-water, and groundwater matrices averaged 93 percent for seven replicates, although selected elemental recoveries in a ground-water matrix with an extremely high iron sulfate concentration were negatively biased by 30 percent. Results for standard reference materials were within 1 standard deviation of the most probable value. Statistical analysis of the results from about 60 filtered, acidified natural-water samples indicated that there was no significant difference between ICP?MS and former USGS official methods of analysis.

  2. A methodology for ecosystem-scale modeling of selenium

    USGS Publications Warehouse

    Presser, T.S.; Luoma, S.N.

    2010-01-01

    The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determinehow Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate, tissue of different food web species). It can be used to forecast toxicity under different management or regulatory proposals or as a methodology for translating a fish-tissue (or other predator tissue) Se concentration guideline to a dissolved Se concentration. The model illustrates some critical aspects of implementing a tissue criterion: 1) the choice of fish species determines the food web through which Se should be modeled, 2) the choice of food web is critical because the particulate material to prey kinetics of bioaccumulation differs widely among invertebrates, 3) the characterization of the type and phase of particulate material is important to quantifying Se exposure to prey through the base of the food web, and 4) the metric describing partitioning between particulate material and dissolved Se concentrations allows determination of a site-specific dissolved Se concentration that would be responsible for that fish body burden in the specific environment. The linked approach illustrates that environmentally safe dissolved Se concentrations will differ among ecosystems depending on the ecological pathways and biogeochemical conditions in that system. Uncertainties and model sensitivities can be directly illustrated by varying exposure scenarios based on site-specific knowledge. The model can also be used to facilitate site-specific regulation and to present generic comparisons to illustrate limitations imposed by ecosystem setting and inhabitants. Used optimally, the model provides a tool for framing a site-specific ecological problem or occurrence of Se exposure, quantify exposure within that ecosystem, and narrow uncertainties abouthowto protect it by understanding the specifics of the underlying system ecology, biogeochemistry, and hydrology.?? 2010 SETAC.

  3. A methodology for ecosystem-scale modeling of selenium.

    PubMed

    Presser, Theresa S; Luoma, Samuel N

    2010-10-01

    The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate, tissue of different food web species). It can be used to forecast toxicity under different management or regulatory proposals or as a methodology for translating a fish-tissue (or other predator tissue) Se concentration guideline to a dissolved Se concentration. The model illustrates some critical aspects of implementing a tissue criterion: 1) the choice of fish species determines the food web through which Se should be modeled, 2) the choice of food web is critical because the particulate material to prey kinetics of bioaccumulation differs widely among invertebrates, 3) the characterization of the type and phase of particulate material is important to quantifying Se exposure to prey through the base of the food web, and 4) the metric describing partitioning between particulate material and dissolved Se concentrations allows determination of a site-specific dissolved Se concentration that would be responsible for that fish body burden in the specific environment. The linked approach illustrates that environmentally safe dissolved Se concentrations will differ among ecosystems depending on the ecological pathways and biogeochemical conditions in that system. Uncertainties and model sensitivities can be directly illustrated by varying exposure scenarios based on site-specific knowledge. The model can also be used to facilitate site-specific regulation and to present generic comparisons to illustrate limitations imposed by ecosystem setting and inhabitants. Used optimally, the model provides a tool for framing a site-specific ecological problem or occurrence of Se exposure, quantify exposure within that ecosystem, and narrow uncertainties about how to protect it by understanding the specifics of the underlying system ecology, biogeochemistry, and hydrology. © 2010 SETAC.

  4. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    Selenium discharges to the San Francisco Bay-Delta Estuary (Bay-Delta) could change significantly if federal and state agencies (1) approve an extension of the San Luis Drain to convey agricultural drainage from the western San Joaquin Valley to the North Bay (Suisun Bay, Carquinez Strait, and San Pablo Bay); (2) allow changes in flow patterns of the lower San Joaquin River and Bay-Delta while using an existing portion of the San Luis Drain to convey agricultural drainage to a tributary of the San Joaquin River; or (3) revise selenium criteria for the protection of aquatic life or issue criteria for the protection of wildlife. Understanding the biotransfer of selenium is essential to evaluating effects of selenium on Bay-Delta ecosystems. Confusion about selenium threats to fish and wildlife stem from (1) monitoring programs that do not address specific protocols necessary for an element that bioaccumulates; and (2) failure to consider the full complexity of the processes that result in selenium toxicity. Past studies show that predators are more at risk from selenium contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. This report presents an approach to conceptualize and model the fate and effects of selenium under various load scenarios from the San Joaquin Valley. For each potential load, progressive forecasts show resulting (1) water-column concentration; (2) speciation; (3) transformation to particulate form; (4) particulate concentration; (5) bioaccumulation by invertebrates; (6) trophic transfer to predators; and (7) effects on those predators. Enough is known to establish a first-order understanding of relevant conditions, biological response, and ecological risks should selenium be discharged directly into the North Bay through a conveyance such as a proposed extension of the San Luis Drain. The approach presented here, the Bay-Delta selenium model, determines the mass, fate, and effects of selenium released to the Bay-Delta through use of (1) historical land-use, drainage, alluvial-fill, and runoff databases; (2) existing knowledge concerning biogeochemical reactions and physiological parameters of selenium (e.g., speciation, partitioning between dissolved and particulate forms, and bivalve assimilation efficiency); and (3) site-specific data mainly from 1986 to 1996 for clams and bottom-feeding fish and birds. Selenium load scenarios consider effluents from North Bay oil refineries and discharges of agricultural drainage from the San Joaquin Valley to enable calculation of (a) a composite freshwater endmember selenium concentration at the head of the estuary; and (b) a selenium concentration at a selected seawater location (Carquinez Strait) as a foundation for modeling. Analysis of selenium effects also takes into account the mode of conveyance for agricultural drainage (i.e., the San Luis Drain or San Joaquin River); and flows of the Sacramento River and San Joaquin River on a seasonal or monthly basis. Load scenarios for San Joaquin Valley mirror predictions made since 1955 of a worsening salt (and by inference, selenium) build-up exacerbated by an arid climate and massive irrigation. The reservoir of selenium in the San Joaquin Valley is sufficient to provide loading at an annual rate of approximately 42,500 pounds of selenium to a Bay-Delta disposal point for 63 to 304 years at the lower range of projections presented here, even if influx of selenium from the California Coast Ranges could be curtailed. Disposal of wastewaters on an annual basis outside of the San Joaquin Valley may slow the degradation of valley resources, but drainage alone cannot alleviate the salt and selenium build-up in the San Joaquin Valley, at least within a century. Load scenarios also show the different proportions of selenium loading to the Bay-Delta. Oil refinery loads from 1986 to 1992 ranged from 8.5 to 20 pounds of selenium per day;

  5. Geochemical processes controlling selenium in ground water after mining, Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Naftz, D.L.; Rice, J.A.

    1989-01-01

    Geochemical data for samples of overburden from three mines in the Powder River Basin indicate a statistically significant (0.01 confidence level) positive correlation (r = 0.74) between Se and organic C. Results of factor analysis with varimax rotation on the major and trace element data from the rock samples indicate large (>50) varimax loadings for Se in two of the three factors. In Factor 1, the association of Se with constituents common to detrital grains indicates that water transporting the detrital particles into the Powder River Basin also carried dissolved Se. The large (>50) varimax loadings of Se and organic C in Factor 2 probably are due to the organic affinities characteristic of Se. Dissolved Se concentrations in water samples collected at one coal mine are directly related to the dissolved organic C concentrations. Hydrophilic acid concentrations in the water samples from the mine ranged from 35 to 43% of the total dissolved organic C, and hydrophobic acid concentrations ranged from 40 to 49% of the total dissolved organic C. The largest dissolved organic C concentrations in water from the same mine (34-302 mg/l), coupled with the large proportion of acidic components, may saturate adsorption sites on geothite and similar minerals that comprise the aquifer material, thus decreasing the extent of selenite (SeO32-) adsorption as a sink for Se as the redox state of ground water decreases. ?? 1989.

  6. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment concentrations were measured during cold-season flow and warm-season flow between Upper Fountain Creek site 07103707 (FoCr_8th) and Lower Fountain Creek site 07105500 (FoCr_Nevada) because of inflows from Monument Creek with higher suspended-sediment concentrations. Median suspended-sediment concentrations between sites 07104905 (MoCr_Bijou) and 07105500 (FoCr_Nevada) increased significantly during warm-season flow but showed no significant differences during cold-season flow and stormflow. Significant decreases in median suspended-sediment concentrations were measured between sites 07105500 (FoCr_Nevada) and 07105530 (FoCr_Janitell) during all flow regimes.Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with warm-season flow. Although large spatial variations in suspended-sediment yields occurred during warm-season flows, the suspended-sediment yield associated with stormflow were as much as 1,000 times larger than the suspended-sediment yields that occurred during warm-season flow. 

  7. Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria.

    PubMed

    Subedi, Gaurav; Taylor, Jon; Hatam, Ido; Baldwin, Susan A

    2017-09-01

    Increasing selenium concentrations in aquatic environments downstream of mine sites is of great concern due to selenium's bioaccumulation propensity and teratogenic toxicity. Removal of selenium from mine influenced water is complicated by the presence of nitrate, which is also elevated in mine influenced water due to the use of explosives in mining. In many biological treatment processes, nitrate as a thermodynamically more preferable electron acceptor inhibits selenate reduction. Here we report on an enrichment of a bacterial assemblage from a mine impacted natural marsh sediment that was capable of simultaneous selenate reduction and denitrification. Selenate reduction followed first order kinetics with respect to the concentration of total dissolved selenium. The kinetic rate constant was independent of initial nitrate concentration over the range 3-143 mg L -1 -NO 3 - -N. The initial concentration of selenate inhibited selenate reduction kinetics over the range 1-24 mg-Se L -1 . Dominant taxa that grew in selenate only medium were classified in the genera Pseudomonas, Lysinibacillus and Thauera. When nitrate was introduced in addition to selenate, previously rare taxa that became dominant were relatives of Exiguobacterium, Tissierella and Clostridium. Open reading frames (ORFs) associated with dissimilatory denitrification were identified for Pseudomonas, Thauera and Clostridium. In addition, ORFs were found that were homologous with known selenate reductase subunits (SerA and SerB). These findings suggest that native mine site bacteria can be used for removing selenate and nitrate from mine wastewater. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Healy, R.W.; Bartos, T.T.; Rice, C.A.; McKinley, M.P.; Smith, B.D.

    2011-01-01

    The Powder River Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of the large amounts of groundwater extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and water chemistry at one impoundment, Skewed Reservoir, has produced the most detailed data set for any impoundment in the Basin. Data were collected from a network of 21 observation wells and three suction lysimeters. A groundwater mound formed atop bedrock within initially unsaturated, unconsolidated deposits underlying the reservoir. Heterogeneity in physical and chemical properties of sediments resulted in complex groundwater flow paths and highly variable groundwater chemistry. Sulfate, bicarbonate, sodium, and magnesium were the dominant ions in all areas, but substantial variability existed in relative concentrations; pH varied from less than 3 to more than 9, and total dissolved solids concentrations ranged from less than 5000 to greater than 100,000 mg/L. Selenium was a useful tracer of reservoir water; selenium concentrations exceeded 300 μg/L in samples obtained from 18 of the 24 sampling points. Groundwater travel time from the reservoir to a nearby alluvial aquifer (a linear distance of 177 m) was calculated at 474 days on the basis of selenium concentrations. The produced water is not the primary source of solutes in the groundwater. Naturally occurring salts and minerals within the unsaturated zone, dissolved and mobilized by infiltrating impoundment water, account for most of the solute mass in groundwater. Gypsum dissolution, cation-exchange, and pyrite oxidation appear to be important reactions. The complex geochemistry and groundwater flow paths at the study site underscore the difficulty in assessing effects of surface impoundments on water resources within the Powder River Basin.

  9. Biomagnification of mercury and selenium in two lakes in southern Norway.

    PubMed

    Økelsrud, Asle; Lydersen, Espen; Fjeld, Eirik

    2016-10-01

    We have investigated bioaccumulation and trophic transfer of both mercury (Hg) and selenium (Se) in two lakes in southern Norway to reveal a suggested mitigating effect of Se on Hg biota accumulation. The study included analysis of total Se (Se), total Hg (Hg), and methyl-mercury (MeHg) in water, littoral and pelagic invertebrates and perch (Perca fluviatilis), together with stable isotope analysis (δ(15)N and δ(13)C) in biota. Mean dissolved Se ranged from 22 to 59ngL(-1), while Hg and MeHg in lake water ranged from 1 to 3ngL(-1) and 0.01 to 0.06ngL(-1). Biota Se and Hg concentrations (dry weight) ranged from 0.41mgSekg(-1) and 0.06mgHgkg(-1) in primary littoral invertebrates and up to 2.9mg Sekg(-1) and 3.6mgHgkg(-1) in perch. Both Hg and Se biomagnified in the food web, with a trophic magnification factor (TMF) of 4.64 for Hg and 1.29 for Se. The reported positive transfer of Se in the food web, despite the low measured dissolved Se, suggest that a major proportion of the Se in these lakes are both highly bioavailable and bioaccumulative. However, we did not find support for a Se-facilitated inhibition in the accumulation of Hg in perch, as Se and Hg concentrations in perch muscle correlated positively and Se did not explain any variations in Hg after we controlled for the effects of other important covariates. We postulate that this may be a result of insufficient concentrations of dissolved Se and subsequently in biota in our studied lakes for an efficient Hg sequestration up the food web. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Estimation of selenium loads entering the south arm of Great Salt Lake, Utah, from May 2006 through March 2008

    USGS Publications Warehouse

    Naftz, David L.; Johnson, William P.; Freeman, Michael L.; Beisner, Kimberly; Diaz, Ximena; Cross, VeeAnn A.

    2009-01-01

    Discharge and water-quality data collected from six streamflow-gaging stations were used in combination with the LOADEST software to provide an estimate of total (dissolved + particulate) selenium (Se) load to the south arm of Great Salt Lake (GSL) from May 2006 through March 2008. Total estimated Se load to GSL during this time period was 2,370 kilograms (kg). The 12-month estimated Se load to GSL for May 1, 2006, to April 30, 2007, was 1,560 kg. During the 23-month monitoring period, inflows from the Kennecott Utah Copper Corporation (KUCC) Drain and Bear River outflow contributed equally to the largest proportion of total Se load to GSL, accounting for 49 percent of the total Se load. Five instantaneous discharge measurements at three sites along the railroad causeway indicate a consistent net loss of Se mass from the south arm to the north arm of GSL (mean = 2.4 kg/day, n = 5). Application of the average daily loss rate equates to annual Se loss rate to the north arm of 880 kg (56 percent of the annual Se input to the south arm). The majority of Se in water entering GSL is in the dissolved (less than 0.45 micron) state and ranges in concentration from 0.06 to 35.7 micrograms per liter (ug/L). Particulate Se concentration ranged from less than 0.05 to 2.5 ug/L. Except for the KUCC Drain streamflow-gaging station, dissolved (less than 0.45 um) inflow samples contain an average of 21 percent selenite (SeO32-) during two sampling events (May 2006 and 2007). Selenium concentration in water samples collected from four monitoring sites within GSL during May 2006 through August 2007 were used to understand how the cumulative Se load was being processed by various biogeochemical processes within the lake. On the basis of the Mann-Kendall test results, changes in dissolved Se concentration at the four monitoring sites indicate a statistically significant (90-percent confidence interval) upward trend in Se concentration over the 16-month monitoring period. Furthermore, the upward trend at three of the four GSL sites also was significant at the 95-percent confidence interval. Given the large amount of Se removal from GSL of greater than 1,900 kg/year by gaseous flux and permanent sedimentation, the observed increase in both dissolved (less than 0.45 micron) and total (dissolved + particulate) Se in the open-water monitoring sites indicates additional, unquantified source(s) of Se are contributing substantial masses of Se load to the south arm of GSL. Potential source(s) of this unmeasured Se load could include (1) Se loads entering GSL from unmeasured surface inflows; (2) ground-water discharge to GSL; (3) wind-blown dust that is deposited directly on the lake surface; (4) wet and dry atmospheric deposition falling directly on the lake surface; and (5) lake sediment pore-water diffusion into the overlying water column. Electrical resistivity surveys in the south part of GSL indicate areas of potential ground-water discharge to the open water of GSL and elevated (exceeding 10,000 ug/L) Se concentrations have been previously measured in ground water within 1.6 kilometers of the south shore of GSL.

  11. Proceedings 43rd Stanford Geothermal Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stuart; Kirby, Stefan; Verplanck, Philip

    Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrationsmore » that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that brines in sedimentary basins, or derived from lacustrine evaporites, enable aqueous transport of gallium, germanium, and lithium.« less

  12. Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment.

    PubMed

    Zhang, Liang; Li, Daping; Gao, Ping

    2012-12-01

    Nano-selenium/protein is a kind of lower toxic supplement to human. Many microorganisms can reduce selenite/selenate to intracellular or extracellular selenium nanoparticles. This study examined the influence of dissolved oxygen on the expulsion of extracellular selenium/protein produced in Saccharomyces cerevisiae. More of the added selenite was reduced to extracellular selenium nanoparticles by yeast cells only under oxygen-limited condition than under aerobic or anaerobic condition. For the first time, we evidenced that selenium/protein nanoparticles synthesized in vivo were transported out of the cells by vesicle-like structures under microaerophilic environment. The characterizations of the extracellular spherical selenium/protein nanoparticles were also examined by SEM, TEM, EDX and FTIR.

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    USGS Publications Warehouse

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  14. Effects of land use on water quality of the Fountain Creek alluvial aquifer, east-central Colorado

    USGS Publications Warehouse

    Chafin, Daniel T.

    1996-01-01

    Water-quality data were collected from the Fountain Creek alluvial aquifer in 1988 and 1989 as part of the Toxic-Waste Ground-Water Contamination Program. These data indicate that dissolved solids, most major ions, fluoride, ammonium, boron, lithium, selenium, and strontium were more concentrated in the agricultural land-use area than in the upgradient urban land-use area. Nitrate and phosphate had significantly larger concentrations, and volatile organic compounds had significantly greater detection frequencies in the urban land-use area.

  15. Quantifying the Spatial and Seasonal Hydrodynamics of Subsurface Soil Salinity and Selenium Mobilization in the Pariette Watershed, Uintah Basin, UT

    NASA Astrophysics Data System (ADS)

    Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.

    2011-12-01

    A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.

  16. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances.Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium and zinc). Radionuclide activities and stable isotope (5 values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample.Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance. Logs for test-hole NOTS 7 do not include long- and short-normal resistivity, spontaneous-potential, or single-point resistivity. Logs for test-hole NOTS 7A include only caliper and natural-gamma logs.

  17. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation.

    PubMed

    Steen, Arvid; Strøm, Turid; Bernhoft, Aksel

    2008-03-31

    Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 microg/g) than ewe pens that received inorganic selenium (mean 0.24 microg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 microg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 microg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation.

  18. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation

    PubMed Central

    Steen, Arvid; Strøm, Turid; Bernhoft, Aksel

    2008-01-01

    Background Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Methods Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. Results In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 μg/g) than ewe pens that received inorganic selenium (mean 0.24 μg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 μg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 μg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Conclusion Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation. PMID:18377659

  19. Quality of ground water in the Puget sound region, Washington, 1981

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    Groundwater from more than 100 sites in the Puget Sound region, Washington, was sampled and analyzed in 1981 for pH, specific conductance, and concentrations of fecal coliform bacteria, major ions, and dissolved iron, manganese, and nitrate. 20% of the samples were analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were calcium bicarbonate and calcium-magnesium bicarbonate. Some wells in San Juan and Island Counties contained sodium chloride as a result of seawater intrusion. Dissolved solids concentrations were generally < 150 mg/L. Iron concentrations > 300 micrograms/L in 14% of all samples. Manganese concentrations > 50 micrograms/L in 40% of all samples. Trace-metal concentrations were generally < 10 mg/L , except for barium, copper, lead, and zinc. Nitrate concentrations were < 1.0 mg/L in water for over 75% of the sites. Concentrations > 1.0 mg/L in samples from Skagit, Whatcom , and Pierce Counties, were probably due to agricultural activities or septic tanks. Fecal coliform bacteria were detected in isolated instances. EPA drinking water regulations were exceeded only in isolated instances, except for widespread excessive iron and manganese concentrations. The historical data for the region were also evaluated for the same constituents. There are quantitative differences between historical and 1981 data, but they may be due to inconsistencies in data collection and analytical methods. (Author 's abstract)

  20. Diel variation of selenium and arsenic in a wetland of the Great Salt Lake, Utah

    USGS Publications Warehouse

    Dicataldo, G.; Johnson, W.P.; Naftz, D.L.; Hayes, D.F.; Moellmer, W.O.; Miller, T.

    2011-01-01

    Diel (24-h) changes in Se and As concentrations in a freshwater wetland pond bordering the Great Salt Lake (GSL) were examined. Selenium concentrations (filtered and unfiltered) changed on a diel basis, i.e., were depleted during early morning and enriched during daytime over August 17-18. During the May 24-25, 2006 and September 29-30 diel studies, no significant 24-h trends were observed in Se concentrations compared to August, which showed daily maximums up to 59% greater than the daily minimum. Both filtered and unfiltered As concentrations also varied on a diel cycle, with increased concentrations during early morning and decreased concentrations during daytime. Filtered As concentrations increased 110% during the May 24-25, 2006 diel study. Selenium varied in phase with pH, dissolved O2 (DO), and water temperature (Tw) whereas As varied opposite to Se, pH, DO and Tw. Changes in pH, DO and Tw showed a direct linear correlation (r=0.74, 0.75, and 0.55, respectively) to filtered Se. Also pH, DO and Tw were inversely correlated to filtered As concentration (r=-0.88, -0.87, and -0.84, respectively). Equilibrium geochemical speciation and sorption models were used to examine the potential oxidation state changes in Se and As, and sorption and desorption reactions corresponding to the observed 24-h variations in pe and pH. In this wetland it was postulated that diel Se variation was driven by sorption and desorption due to photosynthesis-induced changes in pH and redox conditions. Diel variations of As were hypothesized to be linked to pH-driven sorption and desorption as well as co-precipitation and co-dissolution with mineral phases of Mn. ?? 2010 Elsevier Ltd.

  1. Comparison of methods to determine selenium species in saturation extracts of soils from the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Fujii, Roger

    1988-01-01

    Undigested organic matter in some of the extracts inhibited selenium detection when using the digestion and Sep-Pac C18 methods, but the interference was removed by using the XAD-8 method. Combining XAD-8 resin and activated charcoal was an unacceptable method, because the activated charcoal removed selenite and selenate. Ninety-eight percent of the selenium in the extracts was selenate and about 100 percent of the isolated organic selenium was associated with the humic acid fraction of dissolved-organic matter.

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  3. Increased selenium threat as a result of invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay-Delta.

    PubMed

    Linville, Regina G; Luoma, Samuel N; Cutter, Lynda; Cutter, Gregory A

    2002-04-01

    Following the aggressive invasion of the bivalve, Potamocorbula amurensis, in the San Francisco Bay-Delta in 1986, selenium contamination in the benthic food web increased. Concentrations in this dominant (exotic) bivalve in North Bay were three times higher in 1995-1997 than in earlier studies, and 1990 concentrations in benthic predators (sturgeon and diving ducks) were also higher than in 1986. The contamination was widespread, varied seasonally and was greater in P. amurensis than in co-occurring and transplanted species. Selenium concentrations in the water column of the Bay were enriched relative to the Sacramento River but were not as high as observed in many contaminated aquatic environments. Total Se concentrations in the dissolved phase never exceeded 0.3 microg Se per l in 1995 and 1996; Se concentrations on particulate material ranged from 0.5 to 2.0 microg Se per g dry weight (dw) in the Bay. Nevertheless, concentrations in P. amurensis reached as high as 20 microg Se per g dw in October 1996. The enriched concentrations in bivalves (6-20 microg Se per g dw) were widespread throughout North San Francisco Bay in October 1995 and October 1996. Concentrations varied seasonally from 5 to 20 microg Se per g dw, and were highest during the periods of lowest river inflows and lowest after extended high river inflows. Transplanted bivalves (oysters, mussels or clams) were not effective indicators of either the degree of Se contamination in P. amurensis or the seasonal increases in contamination in the resident benthos. Se is a potent environmental toxin that threatens higher trophic level species because of its reproductive toxicity and efficient food web transfer. Bivalves concentrate selenium effectively because they bioaccumulate the element strongly and lose it slowly; and they are a direct link in the exposure of predaceous benthivore species. Biological invasions of estuaries are increasing worldwide. Changes in ecological structure and function are well known in response to invasions. This study shows that changes in processes such as cycling and effects of contaminants can accompany such invasions.

  4. Increased selenium threat as a result of invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay-Delta

    USGS Publications Warehouse

    Linville, R.G.; Luoma, S.N.; Cutter, L.; Cutter, G.A.

    2002-01-01

    Following the aggressive invasion of the bivalve, Potamocorbula amurensis, in the San Francisco Bay-Delta in 1986, selenium contamination in the benthic food web increased. Concentrations in this dominant (exotic) bivalve in North Bay were three times higher in 1995-1997 than in earlier studies, and 1990 concentrations in benthic predators (sturgeon and diving ducks) were also higher than in 1986. The contamination was widespread, varied seasonally and was greater in P. amurensis than in co-occurring and transplanted species. Selenium concentrations in the water column of the Bay were enriched relative to the Sacramento River but were not as high as observed in many contaminated aquatic environments. Total Se concentrations in the dissolved phase never exceeded 0.3 ??g Se per l in 1995 and 1996; Se concentrations on particulate material ranged from 0.5 to 2.0 ??g Se per g dry weight (dw) in the Bay. Nevertheless, concentrations in P. amurensis reached as high as 20 ??g Se per g dw in October 1996. The enriched concentrations in bivalves (6-20 ??g Se per g dw) were widespread throughout North San Francisco Bay in October 1995 and October 1996. Concentrations varied seasonally from 5 to 20 ??g Se per g dw, and were highest during the periods of lowest river inflows and lowest after extended high river inflows. Transplanted bivalves (oysters, mussels or clams) were not effective indicators of either the degree of Se contamination in P. amurensis or the seasonal increases in contamination in the resident benthos. Se is a potent environmental toxin that threatens higher trophic level species because of its reproductive toxicity and efficient food web transfer. Bivalves concentrate selenium effectively because they bioaccumulate the element strongly and lose it slowly; and they are a direct link in the exposure of predaceous benthivore species. Biological invasions of estuaries are increasing worldwide. Changes in ecological structure and function are well known in response to invasions. This study shows that changes in processes such as cycling and effects of contaminants can accompany such invasions. Copyright ?? 2002 .

  5. Concentrations and loads of suspended sediment and trace element pollutants in a small semi-arid urban tributary, San Francisco Bay, California.

    PubMed

    McKee, Lester J; Gilbreath, Alicia N

    2015-08-01

    Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.

  6. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  7. Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005

    USGS Publications Warehouse

    Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.

    2013-01-01

    The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).

  8. Selenium concentrations in the razorback sucker (Xyrauchen texanus): Substitution of non-lethal muscle plugs for muscle tissue in contaminant assessment

    USGS Publications Warehouse

    Waddell, B.; May, T.

    1995-01-01

    A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.

  9. Association of selenium status and blood glutathione concentrations in blacks and whites

    PubMed Central

    Richie, John P.; Muscat, Joshua E.; Ellison, Irina; Calcagnotto, Ana; Kleinman, Wayne; El-Bayoumy, Karam

    2011-01-01

    Selenium deficiency has been linked with increased cancer risk and, in some studies, selenium supplementation was protective against certain cancers. Previous studies suggest that selenium chemoprevention may involve reduced oxidative stress through enhanced glutathione (GSH). Our objectives were to examine the relationships between selenium and GSH in blood and modifying effects of race and sex in free living adults and individuals supplemented with selenium. Plasma selenium concentrations and free and bound GSH concentrations and γ-glutamyl cysteine ligase (GCL) activity in blood were measured in 336 healthy adults, (161 blacks, 175 whites). Plasma selenium and blood GSH were also measured in 36 healthy men from our previously conducted placebo-controlled trial of selenium-enriched yeast (247 μg/day for 9 months). In free-living adults, selenium concentrations were associated with increased blood GSH concentration and GCL activity (P<0.05). Further, selenium was significantly higher in whites than in blacks (P<0.01). After 9 months of supplementation, plasma selenium was increased 114% in whites and 50% in blacks (P<0.05) and blood GSH was increased 35% in whites (P<0.05) but was unchanged in blacks. These results indicate a direct association between selenium and GSH in blood of both free-living and selenium-supplemented individuals, with race being an important modifying factor. PMID:21462082

  10. Tissue distribution of selenium and effect of season and age on selenium content in roe deer from northwestern Poland.

    PubMed

    Pilarczyk, Bogumiła; Tomza-Marciniak, Agnieszka; Pilarczyk, Renata; Hendzel, Diana; Błaszczyk, Barbara; Bąkowska, Małgorzata

    2011-06-01

    The aim of the study was to compare selenium concentrations in different organs of roe deer from northwestern Poland. Samples of liver, kidneys, heart and lungs, collected from 74 roe deer shot during the hunting seasons of 2008-2009 in northwestern Poland, were studied. Selenium concentration in the organs was determined spectrofluorimetrically. Mean selenium concentration was 0.06 µg/g w.w. in the liver, 0.41 µg/g w.w. in the kidneys and 0.05 µg/g w.w. in the heart and lungs. Season had a significant effect on selenium concentration in the liver, kidneys, lungs and heart. In all the organs, the highest selenium concentration was found in spring and the lowest in autumn and winter. All animals studied were deficient in selenium. The low selenium concentration in the liver or heart can disturb their function, and in the future, it may be a factor contributing to the population decline of roe deer in the northwestern part of Poland.

  11. Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl

    NASA Astrophysics Data System (ADS)

    Puranen, Anders; Jonsson, Mats; Dähn, Rainer; Cui, Daqing

    2009-08-01

    In proposed high level radioactive waste repositories a large part of the spent nuclear fuel (SNF) canisters are commonly composed of iron. Selenium is present in spent nuclear fuel as a long lived fission product. This study investigates the influence of iron on the uptake of dissolved selenium in the form of selenate and the effect of the presence of dissolved uranyl on the above interaction of selenate. The iron oxide, and selenium speciation on the surfaces was investigated by Raman spectroscopy. X-ray Absorption Spectroscopy was used to determine the oxidation state of the selenium and uranium on the surfaces. Under the simulated groundwater conditions (10 mM NaCl, 2 mM NaHCO 3, <0.1 ppm O 2) the immobilized selenate was found to be reduced to oxidation states close to zero or lower and uranyl was found to be largely reduced to U(IV). The near simultaneous reduction of uranyl was found to greatly enhance the rate of selenate reduction. These findings suggest that the presence of uranyl being reduced by an iron surface could substantially enhance the rate of reduction of selenate under anoxic conditions relevant for a repository.

  12. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  13. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in theenvironment; however, waterfowl were reproducing at the two ponds. Three tributary streams of Mc Elmo Creek that drain irrigated areas of the Montezuma Valley south of the creek were sampled in 1994. Mud Creek probably is the largest source of selenium to Mc Elmo Creek. Most biota samples from Mud Creek had elevated selenium concentrations when compared to guidelines for dietary items and freshwater fish. Selenium concentrations in water samples collected in the Mancos River Basin upstream from Navajo Wash, which includes the Mancos Project, ranged from less than 1 to 10 micrograms per liter. Mud Creek contributed about 74 percent of the selenium load to the upper Mancos River in March 1994.Selenium concentrations were much higher in Navajo Wash; a sample collected in March had 97 micrograms per liter of selenium. Bottom-sediment samples from two ponds in the Mancos Projectexceeded the concentration of concern of 4 micrograms per gram. The highest selenium concentrations in biota samples from streams in the Mancos River Basin were for samples from Navajo Wash. Mostconcentrations in biota in the upper Mancos River Basin were less than guidelines. Mean selenium concentrations in eggs from aquatic birds collected at three ponds in the Mancos Project slightly exceed the guideline associated with reduced hatchability.Five bird livers had a mean selenium concentration of 32.6 micrograms per gram dry weight, whichslightly exceeded the mean concentration of 30 micrograms per gram dry weight that is associated with reproductive impairment. Two of the pondshad a high selenium hazard rating; however, mallard reproduction was observed in 1994 at one of the ponds that had a high selenium-hazard rating.

  14. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey.

    PubMed

    Emmanuelle, Barron; Virginie, Migeot; Fabienne, Séby; Isabelle, Ingrand; Martine, Potin-Gautier; Bernard, Legube; Sylvie, Rabouan

    2012-04-01

    Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration. We measured the individual selenium level of people exposed to selenium concentration in drinking water greater than the maximum recommended limit which is 10 μg/L. We carried out a prospective cohort study on 80 adults (40 exposed subjects i.e. living in the involved area and 40 non-exposed ones i.e. living elsewhere) in western France. We used three different approaches: (1) direct measurement of ingested selenium by the duplicate portion method, (2) dietary reconstitution with a food frequency questionnaire (FFQ) and (3) evaluation of the individual selenium status by measuring the selenium content in toenail clippings. Analyses were performed by inductively coupled plasma-mass spectrometry. The association between toenail selenium concentration and area of residence was analyzed using linear regression with repeated measurements. We estimated selenium intake from FFQ at 64±14 μg/day for exposed subjects as opposed to 52±14 μg/day for the non-exposed ones. On the basis of 305 duplicate diet samples, average intake was estimated at 64±26 μg/day for exposed subjects. Area of residence (p=0.0030) and smoking (p=0.0054) were independently associated with toenail selenium concentration. Whatever method used for estimating selenium intake, the selenium level in this studied area with high selenium concentrated drinking water is much lower than in seleniferous areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    PubMed

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  16. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    USGS Publications Warehouse

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith C.; Keith, Gabrielle L.

    2016-01-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L− 1) to 4070 μg L− 1, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted.

  17. Toxicity of agricultural subsurface drainwater from the San Joaquin Valley, California to juvenile chinook salmon and striped bass

    USGS Publications Warehouse

    Saiki, Michael K.; Jennings, Mark R.; Wiedmeyer, Raymond H.

    1992-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha (40-50 mm total length, TL) and striped bass Morone saxatilis (30-40 mm TL) were exposed to serial dilutions (100, 50, 25, and 12.5%) of agricultural subsurface drainwater (WWD), reconstituted drainwater (RWWD), and reconstituted seawater (IO). Agricultural subsurface drainwater contained naturally elevated concentrations of major ions (such as sodium and sulfate) and trace elements (especially boron and selenium), RWWD contained concentrations of major ions that mimicked those in WWD but trace elements were not elevated, and IO contained concentrations of total dissolved salt that were similar to those in WWD and RWWD but chloride replaced sulfate as the dominant anion. After 28 d of static exposure, over 75% of the chinook salmon in 100% WWD had died, whereas none had died in other dilutions and water types. Growth of chinook salmon in WWD and RWWD, but not in IO, exhibited dilution responses. All striped bass died in 100% WWD within 23 d, whereas 19 of 20 striped bass had died in 100% RWWD after 28 d. In contrast, none died in 100% IO. Growth of striped bass was impaired only in WWD. Fish in WWD accumulated as much as 200 μg/g (dry-weight basis) of boron, whereas fish in control water accumulated less than 3.1 μg/g. Although potentially toxic concentrations of selenium occurred in WWD (geometric means, 158-218 μg/L), chinook salmon and striped bass exposed to this water type accumulated 5.7 μg Se/g or less. These findings indicate that WWD was toxic to chinook salmon and striped bass. Judging from available data, the toxicity of WWD was due primarily to high concentrations of major ions present in atypical ratios, to high concentrations of sulfate, or to both. High concentrations of boron and selenium also may have contributed to the toxicity of WWD, but their effects were not clearly delineated.

  18. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA.

    PubMed

    Mills, Taylor J; Mast, M Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (<0.5μgL(-1)) to 4070μgL(-1), and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted. Published by Elsevier B.V.

  19. Optimal serum selenium concentrations are associated with lower depressive symptoms and negative mood among young adults.

    PubMed

    Conner, Tamlin S; Richardson, Aimee C; Miller, Jody C

    2015-01-01

    There is evidence that low, and possibly high, selenium status is associated with depressed mood. More evidence is needed to determine whether this pattern occurs in young adults with a wide range of serum concentrations of selenium. The aim of this study was to determine if serum selenium concentration is associated with depressive symptoms and daily mood states in young adults. A total of 978 young adults (aged 17-25 y) completed the Center for Epidemiological Studies-Depression scale and reported their negative and positive mood daily for 13 d using an Internet diary. Serum selenium concentration was determined by inductively coupled plasma mass spectrometry. ANCOVA and regression models tested the linear and curvilinear associations between decile of serum selenium concentration and mood outcomes, controlling for age, gender, ethnicity, BMI, and weekly alcohol intake. Smoking and childhood socioeconomic status were further controlled in a subset of participants. The mean ± SD serum selenium concentration was 82 ± 18 μg/L and ranged from 49 to 450 μg/L. Participants with the lowest serum selenium concentration (62 ± 4 μg/L; decile 1) and, to a lesser extent, those with the highest serum selenium concentration (110 ± 38 μg/L; decile 10) had significantly greater adjusted depressive symptoms than did participants with midrange serum selenium concentrations (82 ± 1 to 85 ± 1 μg/L; deciles 6 and 7). Depressive symptomatology was lowest at a selenium concentration of ∼85 μg/L. Patterns for negative mood were similar but more U-shaped. Positive mood showed an inverse U-shaped association with selenium, but this pattern was less consistent than depressive symptoms or negative mood. In young adults, an optimal range of serum selenium between ∼82 and 85 μg/L was associated with reduced risk of depressive symptomatology. This range approximates the values at which glutathione peroxidase is maximal, suggesting that future research should investigate antioxidant pathways linking selenium to mood. This trial was registered with the Australian New Zealand Clinical Trials Registry as ACTRN12613000773730. © 2015 American Society for Nutrition.

  20. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study.

    PubMed

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-04-01

    Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Overall, mean (± SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P < 0.001). Compared with the highest baseline selenium tertile, low and middle tertiles were positively associated with a change in maternal plasma or breast-milk selenium from 2 or 6 to 24 wk postpartum (both P < 0.001). With the use of linear regression, we showed that LNS that contained selenium and ARV were not associated with changes in maternal plasma and breast-milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P < 0.001) regardless of the study arm. Selenite supplementation of HIV-infected Malawian women was not associated with a change in their plasma or breast-milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women.

  1. Total selenium concentrations in canine and feline foods commercially available in New Zealand.

    PubMed

    Simcock, S E; Rutherford, S M; Wester, T J; Hendriks, W H

    2005-02-01

    To determine the total selenium concentrations in petfoods commercially available in New Zealand and to establish whether these meet the current minimum recommended requirements of selenium in foods for cats and dogs. Samples (n=89) from petfoods commercially available in New Zealand were analysed for total selenium concentration using a fluorometric method. Data, expressed on a dry matter (DM) basis, were analysed according to petfood type (dog or cat, and wet or dry), predominant flavour (chicken, seafood, chicken and seafood, beef, meat mix, other), manufacturer and country of manufacture. Fifty percent of petfoods purchased for this study were manufactured in Australia, and the remainder were produced in the United States of America (USA), New Zealand or Thailand. Mean total selenium concentrations were similar (0.61-0.80 mg/kg DM) in petfoods produced in Australia, New Zealand and the USA, but higher (mean 3.77 mg/kg DM; p<0.05) in petfoods produced in Thailand. Petfoods produced in Australia, New Zealand and the USA contained a variety of predominant flavours, whereas petfoods from Thailand contained only seafood flavour. Seafood-based flavours had the highest selenium concentrations in both cat and dog foods. Wet and dry dog foods had similar concentrations of selenium to dry cat foods, but wet cat foods had higher and more variable concentrations of selenium than these others (p<0.05). The mean selenium concentrations in cat and dog foods were 1.14 and 0.40 mg/kg DM, respectively, and there were no significant differences between manufacturers. Selenium concentrations in commercial petfoods sold in New Zealand appeared to meet recommended dietary requirements, although the range of concentrations was highly variable. Whether these recommendations are adequate for the maintenance of optimal health in cats and dogs has yet to be determined. Overt selenium deficiency disorders are unlikely in dogs and cats in New Zealand fed commercial petfoods unless the bioavailability of selenium in particular petfoods is low.

  2. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999.

    PubMed

    May, T W; Walther, M J; Petty, J D; Fairchild, J F; Lucero, J; Delvaux, M; Manring, J; Armbruster, M; Hartman, D

    2001-11-01

    The Republican River Basin of Colorado, Nebraska, and Kansas lies in a valley which contains Pierre Shale as part of its geological substrata. Selenium is an indigenous constituent in the shale and is readily leached into surrounding groundwater. The Basin is heavily irrigated through the pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water, sediment, benthic invertebrates, and/or fish were collected from 46 sites in the Basin and were analyzed for selenium to determine the potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects of selenium in biota. Resulting selenium concentrations were compared to published guidelines or biological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 microg L(-1), which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3-5 microg L(-1), constituting a moderate hazard. Selenium concentrations in sediment indicated little to no hazard for selenium accumulation from sediments into the benthic food chain. Ninety-five percent of benthic invertebrates collected exhibited selenium concentrations exceeding 3 microg g(-1), a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 microg g(-1) selenium, indicating a high potential for toxicity and reproductive effects. However, examination of weight profiles of various species of collected individual fish suggested successful recruitment in spite of selenium concentrations that exceeded published biological effects thresholds for health and reproductive success. This finding suggested that universal application of published guidelines for selenium may be inappropriate or at least may need refinement for systems similar to the Republican River Basin. Additional research is needed to determine the true impact of selenium on fish and wildlife resources in the Basin.

  3. Serum selenium concentration in a representative sample of the Canarian population.

    PubMed

    Diaz Romero, C; López Blanco, F; Henríquez Sánchez, P; Rodríguez, E; Serra Majem, L

    2001-03-26

    The concentration of serum selenium in 395 individuals (187 males + 218 females) living in the Canary Islands, Spain was determined by hydride generation atomic absorption spectrometry. The mean selenium concentration was 74.7 +/- 25.2 microg/l ranging between 7.86 and 182.3 microg/l. Twenty-two adults (7.2% of the total) had serum selenium concentrations under 45 microg/l. It is widely accepted that below this selenium serum concentration (45 microg/l) there is an increased risk of cardiovascular disease and cancer. Our results fall within data recently published in other Spanish and European regions and are much lower than data observed in USA or seleniferous regions. The estimated Se intakes of our population were lower than the Recommended Dietary Allowances for American people. Individuals from Lanzarote had a mean Se concentration significantly higher than individuals from the other islands. This could be attributed to differences in Se content of soil and/or differences in dietary habits of the populations. Serum selenium concentration did not vary with the sex of the subjects. Individuals younger than 14 years old had a serum selenium concentration significantly lower than the rest of the individuals. No relationship with socio-economic status, educational level, smoking habits, physical exercise or beer consumption was found. However, individuals who consume wine more than three times a week showed higher selenium concentrations than individuals with lower consumption. Also, individuals with consumption above seven units of spirit drinks a week had the highest mean selenium concentration.

  4. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  5. Selenium in fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Bache, C.A.; Youngs, W.D.

    1976-03-05

    Selenium, at concentrations exceeding 200 parts per million (ppM) (dry weight), has been found in white sweet clover voluntarily growing on beds of fly ash in central New York State. Guinea pigs fed such clover concentrated selenium in their tissues. The contents of the honey stomachs of bees foraging on this seleniferous clover contained negligible selenium. Mature vegetables cultured on 10 percent (by weight) fly ash-amended soil absorbed up to 1 ppM of selenium. Fly ashes from 21 states contained total selenium contents ranging from 1.2 to 16.5 ppM. Cabbage grown on soil containing 10 percent (by weight) of thesemore » fly ashes absorbed selenium (up to 3.7 ppM) in direct proportion (correlation coefficient r = .89) to the selenium concentration in the respective fly ash. Water, aquatic weeds, algae, dragonfly nymphs, polliwogs, and tissues of bullheads and muskrats from a fly ash-contaminated pond contained concentrations of selenium markedly elevated over those of controls.« less

  6. Re-exposure of mallards to selenium after chronic exposure

    USGS Publications Warehouse

    Heinz, G.H.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed a control diet or a diet containing 15 ppm selenium as seleno-D,L-methionine for 21 weeks. After this initial exposure, the mallards were fed untreated food for 12 weeks, then were re-exposed to selenium at 100 ppm for five weeks. During re-exposure to 100 ppm selenium, the birds that had previously been exposed to 15 ppm selenium and those that had not previously been exposed did not differ in percentage of mortality (14.7 and 14.3%), weight loss in survivors (39.3 and 41.20%), selenium concentrations in the livers of survivors (35 and 53 ppm, wet weight), or selenium concentrations in the livers of birds that died (35 and 40 ppm, respectively). When the data from the birds that had previously been exposed to 15 ppm selenium were combined with the data from the birds that had not previously been exposed, selenium concentrations in the livers of birds that had died on the 100-ppm selenium treatment (38 ppm) did not differ from the concentrations in the livers of birds that had survived (43 ppm).

  7. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    PubMed Central

    Haug, Anna; Eich-Greatorex, Susanne; Bernhoft, Aksel; Wold, Jens P; Hetland, Harald; Christophersen, Olav A; Sogn, Trine

    2007-01-01

    Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form) per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle). The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5), DPA (22:5) and DHA (22:6), thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form) may increase the concentration of very long-chain omega-3 fatty acids in muscle. PMID:17967172

  8. Blood selenium concentrations in female Pacific black brant molting in Arctic Alaska: Relationships with age and habitat salinity

    USGS Publications Warehouse

    Franson, J. Christian; Flint, Paul L.; Schmutz, Joel A.

    2016-01-01

    Blood samples collected from 81 female Pacific black brant (Branta bernicla nigricans) molting near Teshekpuk Lake, Alaska, were analyzed for selenium concentration. The concentration of selenium in blood of after second year (hatched two or more years ago) females (0.84 μg/g wet weight) was significantly greater than the concentration in second year (hatched the previous year) females (0.61 μg/g wet weight). The concentrations of selenium we found in blood of black brant were 1.5 to 2 times greater than baseline values typical of freshwater birds, but considerably lower than reported in other marine waterfowl sampled in Alaska. This finding may be attributable in part to the nearly exclusive herbivorous diet of black brant. No relationship was noted between blood selenium concentration and molting habitat salinity. We are unaware of any previous reports of blood selenium concentrations in black brant.

  9. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Dolores Project area, southwestern Colorado and southeastern Utah, 1990-91

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Jensen, E.G.

    1995-01-01

    Water, bottom-sediment, and biota samples were collected in 1990-91 to identify water-quality problems associated with irrigation drainage in the Dolores Project area. Concentrations of cadmium, mercury, and selenium in some water samples exceeded aquatic-life criteria. Selenium was associated with irrigaton drainage from the Dolores Project, but other trace elements may be transported into the area in the irrigation water supply. Selenium concentrations exceeded the chronic aquatic-life criterion in water samples from lower McElmo Creek and Navajo Wash, which drain the Montezuma Valley, from newly irrigated areas, and from the Mancos River. The maximum selenium con- centration in water was 88 micrograms per liter from Navajo Wash. Concentrations of herbicides in water were less than concentrations harmful to aquatic life. Selenium concentrations in four bottom-sediment samples exceeded the baseline concentrations for soils in the Western United States. The largest selenium concentrations in biota were in samples from Navajo Wash, from newly irrigated areas north of the Montezuma Valley, and from the Mancos River basin. Selenium concentrations in aquatic-invertebrate samples from the newly irrigated areas exceeded a guideline for food items consumed by fish and wildlife. Selenium concen- trations in whole-body suckers were larger in the San Juan River downstream from the Dolores Project than upstream from the project at Four Corners. Selenium concentrations in fathead minnow samples from two sites were at adverse-effect levels. Mercury concentrations in warm-water game fish in reservoirs in the study area may be of concern to human health. Some concentrations of other trace elements exceeded background concentrations, but the concentrations were not toxicologically significant or the toxicologic significance is not known.

  10. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study123

    PubMed Central

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-01-01

    Background: Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. Objective: We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. Design: HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Results: Overall, mean (±SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P < 0.001). Compared with the highest baseline selenium tertile, low and middle tertiles were positively associated with a change in maternal plasma or breast-milk selenium from 2 or 6 to 24 wk postpartum (both P < 0.001). With the use of linear regression, we showed that LNS that contained selenium and ARV were not associated with changes in maternal plasma and breast-milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P < 0.001) regardless of the study arm. Conclusions: Selenite supplementation of HIV-infected Malawian women was not associated with a change in their plasma or breast-milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women. This trial was registered at clinicaltrials.gov as NCT00164736. PMID:24500152

  11. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    PubMed Central

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; <65 μg/L, 65–85 μg/L, and >85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration group a mortality of 14.0% in the non-treated group, and 6.0% in the actively treated group could be demonstrated; thus, there was an absolute risk reduction of 8.0%. In the group with a serum concentration of >85 μg/L, a cardiovascular mortality of 17.5% in the non-treated group, and 13.0% in the actively treated group was observed. No significant risk reduction by supplementation could thus be found in this group. Conclusions In this evaluation of healthy elderly Swedish municipality members, two important results could be reported. Firstly, a low mean serum selenium concentration, 67 μg/L, was found among the participants, and the cardiovascular mortality was higher in the subgroup with the lower selenium concentrations <65 μg/L in comparison with those having a selenium concentration >85 μg/L. Secondly, supplementation was cardio-protective in those with a low selenium concentration, ≤85 at inclusion. In those with serum selenium>85 μg/L and no apparent deficiency, there was no effect of supplementation. This is a small study, but it presents interesting data, and more research on the impact of lower selenium intake than recommended is therefore warranted. Trial Registration Clinicaltrials.gov NCT01443780 PMID:27367855

  12. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89

    USGS Publications Warehouse

    Low, Walton H.; Mullins, William H.

    1990-01-01

    Increased concern about the quality of irrigation drainage and its potential effects on human health, fish, and wildlife prompted the Department of the Interior to begin a program during late 1985 to identify irrigation-induced water-quality problems that might exist in the Western States. During `988, the Task Group on Irrigation Drainage selected the American Falls Reservoir area, Idaho, for study to determine whether potentially toxic concentrations of trace elements or organochlorine compounds existed in water, bottom sediment, and biota. The 91-square mile American Falls Reservoir has a total capacity of 1.7 million acre-feet and is used primarily for irrigation-water supply and power generation. Irrigated land upstream from the reservoir totals about 550,000 acres. Total water inflow to the reservoir is about 5.8 million acre-feet per year, of which about 63 percent is from surface-water runoff, 33 percent is from ground-water discharge, and about 4 percent is from ungaged tributaries, canals, ditches, sloughs, and precipitation. Ground-water discharge to the reservoir originates, in part, from irrigation of land upstream from and adjacent to the reservoir. The 1988 water year was a drought year, and water discharge was about 34 percent less than during 1939-88. Water samples were collected during the post-irrigation (October 1987) and irrigation (July 1988) seasons and were analyzed for major ions and trace elements. Bottom-sediment samples were collected during the irrigation season and were analyzed for trace elements and organochlorine compounds. Biota samples were collected during May, June, July, and August 1988 and were analyzed for trace elements and organochlorine compounds. Dissolved-solids concentrations in water ranged from 216 to 561 milligrams per liter. The similarity of dissolved-solids concentrations between the irrigation and post-irrigation seasons can be attributed to the large volume of ground-water discharge in the study area. Most trace-element concentrations in water were near analytical reporting limits; none exceeded State or Federal water-quality standards or criteria. Trace elements that were present at all sites in analytically detectable concentrations (in micrograms per liter) included arsenic (2 to 7), boron (40 to 130), uranium (0.7 to 3.5), vanadium (1 to 6) and zinc (less than 3 to 42). The ranges of arsenic, cadmium, and mercury concentrations in water analyzed during previous investigations. Selenium concentrations ranged from less than 1 (the reporting limit) to 6 micrograms per liter and did not exceed State of Federal water-quality standards or criteria. Concentrations of most trace elements in bottom sediment were similar to geometric mean concentrations in study area soils and were within the expected 95-percent range of concentrations in soils in the Western United States. Mercury concentrations in 9 of the 18 bottom-sediment samples exceeded the 95th-percentile concentration for mercury in area soils. Selenium concentration for selenium in area soils and, in 1 sample, exceeded the upper limit of the expected 95-percent range for selenium in Western United States soils. Most organochlorine compunds in bottom sediment were lower than analytical reporting limits. Only DDE (0.2 micrograms per kilogram) and DDT (0.3 micrograms per kilogram) were detected in bottom sediment from the Portneuf River. Except for mercury and selenium, concentrations of most trace elements in biota were not considered high enough to be harmful to humans or wildlife. Some mercury concentrations in fish exceeded the U.S. Fish and Wildlife Service National Contaminant Biomonitoring Program 85th-percentile concentration and were at levels that might not be safe for human consumption, especially for pregnant women. Elevated mercury concentrations in fish-eating waterbirds, such as double-crested cormorants, indicates biomagnification in the food chain. Selenium concentrations generally were low except in mallard livers (6.6 to 41.8 micrograms per gram, dry weight). This range is within the range of selenium concentrations (19 to 43 micrograms per gram, dry weight) reported in livers of ducks from Kesterson National Wildlife Refuge, California, where waterbird deformities, moralities, and reproductive impairment were observed. Selenium concentrations in mayfly nymphs were at or near dietary concentrations (5 to 8 micrograms per gram, dry weight) that had adverse reproductive effects on mallards during laboratory toxicity studies. p,p'DDE was detected in all waterbird eggs and juvenile mallared carcasses. Highest concentrations were in cormorant eggs (0.59 to 5.70 micrograms per gram, wet weight). p,p'DDE concentrations in four of five cormorant eggs exceeded the National Academy of Sciences, National Academy of Engineering criterion for protection of aquatic wildlife (1 microgram per gram, wet weight, for p,p'DDT and its metabolites). p,p'DDE was detected in all fish samples except rainbow trout. p,p'DDE was detected in one sample of Utah suckers. No concentrations of p,p'DDE or p,p'DDT in fish exceeded the criterion for protection of aquatic life. Total PCB's were detected in all cormorant eggs and all fish samples. PCB's were not detected in other waterbird eggs. PCB concentrations in cormorant eggs (0.28 to 1.8 micro per gram, wet weight) were lower than concentrations that would be expected to cause adverse effects. Two of the three carp samples contained PCB concntrations higher than the recommended level for protection of fish and wildlife (0.4 micrograms per gram, wet weight). Eggshell thinning was noted in cormorant and mallard eggs but was not considered great enough to cause reporductive problems. Observations of the general health of fish and waterbird populations during the study indicated that the area did not appear to have a serious contaminant problem that could be associated with irrigation grainage. No waterbird or fish die-offs were observed, and nesting waterbird populations were noted to be increasing. Selenium concentrations in mallard livers, however, are of concern, as are p,p'DDE residues in cormorant eggs.

  13. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts

    PubMed Central

    Ramos, Joseph F; Webster, Thomas J

    2012-01-01

    Background: Ventilator-associated pneumonia is a deadly nosocomial infection caused by contaminated endotracheal tubes. It has been shown that polyvinyl chloride (PVC, the endotracheal tube substrate) coated with elemental selenium nanoparticles reduces bacterial adherence and proliferation on PVC by over 99%. However, it is not known if selenium nanoparticles elicit a cytotoxic effect in vitro. The purpose of this study was to investigate the cytotoxic effects of PVC coated with selenium nanoparticles on fibroblasts, which are mammalian cells central to endotracheal tube intubation. Methods: Different concentrations of selenium nanoparticles were precipitated onto the PVC surface by reduction of selenium salts using glutathione. Characterization of PVC coated with selenium nanoparticles was done by scanning electron microscopy, energy dispersive x-ray, and contact angle measurements. For the cytotoxicity experiments, fibroblasts were seeded at a density of 5000 cm2 onto PVC coated with three different concentrations of selenium nanoparticles (high, medium, low) and incubated for 4 hours (adhesion) as well as for 24 hours and 72 hours (proliferation). The half-maximal inhibitory concentration (IC50) value was determined after 72 hours using an ultrahigh concentration. MTT assays were used to assess cell viability at the indicated time points. Results: The three concentrations of selenium nanoparticles did not elicit a cytotoxic effect after 72 hours (P < 0.01, n = 3). It was found that the IC50value was at the ultrahigh concentration of selenium nanoparticles. The nanoparticulate elemental selenium concentration previously shown to decrease the function of bacteria was shown not to cause a cytotoxic effect on fibroblasts in vitro. Conclusion: These findings demonstrate great selectivity between bacteria and healthy cells, and are a viable option for coating endotracheal tubes in order to prevent ventilator-associated pneumonia. PMID:22915842

  14. Reduced growth and survival of larval razorback sucker fed selenium-laden zooplankton

    USGS Publications Warehouse

    Hamilton, Steven J.; Buhl, Kevin J.; Bullard, Fern A.; McDonald, Susan

    2005-01-01

    Four groups of larval razorback sucker, an endangered fish, were exposed to selenium-laden zooplankton and survival, growth, and whole-body residues were measured. Studies were conducted with 5, 10, 24, and 28-day-old larvae fed zooplankton collected from six sites adjacent to the Green River, Utah. Water where zooplankton were collected had selenium concentrations ranging from <0.4 to 78 μg/L, and concentrations in zooplankton ranged from 2.3 to 91 μg/g dry weight. Static renewal tests were conducted for 20 to 25 days using reference water with selenium concentrations of <1.1 μg/L. In all studies, 80–100% mortality occurred in 15–20 days. In the 28-day-old larvae, fish weight was significantly reduced 25% in larvae fed zooplankton containing 12 μg/g selenium. Whole-body concentrations of selenium ranged from 3.7 to 14.3 μg/g in fish fed zooplankton from the reference site (Sheppard Bottom pond 1) up to 94 μg/g in fish fed zooplankton from North Roadside Pond. Limited information prior to the studies suggested that the Sheppard pond 1 site was relatively clean and suitable as a reference treatment; however, the nearly complete mortality of larvae and elevated concentrations of selenium in larvae and selenium and other elements in zooplankton indicated that this site was contaminated with selenium and other elements. Selenium concentrations in whole-body larvae and in zooplankton from all sites were close to or greater than toxic thresholds where adverse effects occur in fish. Delayed mortality occurred in larvae fed the two highest selenium concentrations in zooplankton and was thought due to an interaction with other elements.

  15. Selenium in waters in and adjacent to the Kendrick Project, Natrona County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.

    1975-01-01

    Selenium in concentrations exceeding the maximum limit, 0.01 milligrams per liter or 10 micrograms per liter, recommended by the U.S. Public Health Service in 'Drinking-Water Standards, 1962,' Public Health Pub. 956, is present in waters in areas near Casper, Wyo. Some streams containing selenium flow into the North Platte River upstream from several municipalities that obtain water from the river and the alluvium along the river. The area of this investigation includes about 725 square miles in Natrona County in central Wyoming. Study effort was most intensive within the area bounded by the North Platte River, Casper Creek, and Casper Canal, the approximate boundaries of the Kendrick irrigation project. Geologic formations in the area contain selenium that may have been derived from deposits of seleniferous material or from volcanic emanations brought down by rain. Formations older than Cretaceous age were not considered as important sources of selenium in waters of the area, because no irrigation water is applied to areas underlain by these rocks. The selenium concentration in 82 samples of Cretaceous rocks ranged from less than 10 to 4,200 ?g/kg (micrograms per kilogram of sample); no correlation was found between selenium concentration and the depth at which the sample was collected. Of four samples of Tertiary rocks analyzed, three contained no selenium and one had a selenium concentration of 40 ?g/kg. The selenium concentration in 93 samples of Quaternary rocks ranged from less than 10 to 52.0 ?g/kg, and the highest selenium concentration was generally found at depths less than 4 feet. No geologic formation has consistently high concentrations of selenium, but high concentrations were found at points throughout the study area. Probably the rocks in any locality could be the source of selenium in the water in the surrounding vicinity. The selenium concentration in water from some wells fluctuates widely. It is concluded that the selenium concentrations in the ground water in these areas have not reached a state of equilibrium in the aquifer. It is possible that such nonequilibrium conditions exist in aquifers throughout much of the area. If so, statements in this report concerning- trends of selenium concentration in ground water are somewhat speculative.Poison Spring Creek, Poison Spider Creek, Oregon Trail Drain, and Casper Creek are the principal tributaries that contribute selenium to the North Platte River. The selenium load, expressed in pounds per day, in Poison Spring Creek and Poison Spider Creek decreased slightly during the first year of sampling and increased slightly during the second year of sampling. The selenium load in Oregon Trail Drain is greatest in late winter and early spring during the period of low flow; the selenium load in Casper Creek varies, but shows no correlation with season and little correlation with stream discharge. The North Platte River above and below the irrigation project had consistently low selenium concentrations, 10 ?g/l (micrograms per liter) or less, in the period April 1968 through June 1969. The total selenium load contributed to the North Platte River from tributaries in the study area is almost undetectable after mixing with the river water. From the fall of 1968 .to the spring of 1969, results of water sampling in areas influenced by irrigation show that the selenium concentration increased at 29 percent of the locations (average net increase of 64 ?g/l), decreased at 34 percent of the locations (average net decrease of 80 ?g/l), and had little (10 ?g/l or .less) or no change at 37 percent of the locations. As a comparison, results of water sampling in areas not influenced by irrigation showed that the selenium concentration increased at 2 percent of the locations (average net increase of 30 ?g/l), decreased at 26 percent of the locations (average net decrease of 30?g/l), and had little or no change at 72 percent of the locations. It is not possible to

  16. Selenium concentrations in leaf material from Astragalus oxyphysus (Diablo Locoweed) and Atriplex lentiformis (quail bush) in the interior coast ranges and the western San Joaquin Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izbicki, J.A.; Harms, T.F.

    1986-01-01

    Leaf material from selenium accumulating plants was collected and analyzed for selenium to obtain a relative indication of selenium concentrations in soils and identify sites suitable for further soil study. Selenium concentrations of 14 samples of leaf material from Astragalus oxyphysus ranged from 0.08 to 3.5 microg/g dry weight and had a median concentration of 0.25 microg/g. Five replicate samples of A. oxyphysus had a mean selenium concentration of 0.22 microg/g and a standard deviation of 0.07. Selenium concentrations of 17 samples of leaf material from Atriplex lentiformis ranged from 0.08 to 7.5 microg/g and had a median concentration ofmore » 0.35 microg/g. As a general guideline, the National Academy of Sciences recommends a maximum safe tolerance level of 2 microg/g of selenium in animal feeds. One sample of A. oxyphysus, collected in the Panoche Creek drainage, exceeded 2 microg/g. Three samples of A. lentiformis, collected in Klipstein Canyon, Tumey Fan, and Panoche Fan, equaled or exceeded 2 microg/g. These sites may be suitable. 34 refs., 5 figs., 2 tabs.« less

  17. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): Relationship with flows in the upper Colorado River

    USGS Publications Warehouse

    Osmundson, B.C.; May, T.W.; Osmundson, D.B.

    2000-01-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 ??g/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 ??g/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995.

  18. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): relationship with flows in the upper Colorado River.

    PubMed

    Osmundson, B C; May, T W; Osmundson, D B

    2000-05-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 microg/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 microg/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995.

  19. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in the Yuma Valley, Arizona, 1995

    USGS Publications Warehouse

    Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William

    1997-01-01

    Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con

  20. Preliminary assessment of the effects of selenium in agricultural drainage on fish in the San Joaquin Valley

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; Hamilton, S.J.; Dinar, A.; Zilberman, D.

    1991-01-01

    Concentrations of total selenium were measured in whole-body samples of seven fishes from the Sacramento and San Joaquin River systems and the San Francisco Bay complex. Concentrations of selenium (up to 11 µg/g dry weight in whole-body composite samples) were highest in fish from canals and sloughs in the Grassland Water District (Grasslands) that received large inflows of subsurface agricultural drainage water. Slightly lower selenium concentrations occurred in fish from the San Joaquin River immediately downstream from tributaries draining the Grasslands. Although circumstantial evidence suggests that selenium-sensitive species such as bluegills and largemouth bass are being excluded from the Grasslands, conclusive evidence of selenium toxicity is still lacking. In response to earlier reports of high concentrations of selenium in several species collected from the Grasslands, the California Department of Health Services has urged people to limit consumption of fish from this region.

  1. Blood selenium concentrations in female Pacific black brant molting in Arctic Alaska: Relationships with age and habitat salinity.

    PubMed

    Franson, J Christian; Flint, Paul L; Schmutz, Joel A

    2016-10-15

    Blood samples collected from 81 female Pacific black brant (Branta bernicla nigricans) molting near Teshekpuk Lake, Alaska, were analyzed for selenium concentration. The concentration of selenium in blood of after second year (hatched two or more years ago) females (0.84μg/g wet weight) was significantly greater than the concentration in second year (hatched the previous year) females (0.61μg/g wet weight). The concentrations of selenium we found in blood of black brant were 1.5 to 2 times greater than baseline values typical of freshwater birds, but considerably lower than reported in other marine waterfowl sampled in Alaska. This finding may be attributable in part to the nearly exclusive herbivorous diet of black brant. No relationship was noted between blood selenium concentration and molting habitat salinity. We are unaware of any previous reports of blood selenium concentrations in black brant. Published by Elsevier Ltd.

  2. Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California

    USGS Publications Warehouse

    Gilliom, R.J.

    1989-01-01

    Selenium in tile drain water from parts of the western San Joaquin Valley, California, has adversely affected fish and waterfowl where drain water was impounded. Soils in these drained areas were derived from Coast Range marine sedimentary formations, were naturally saline and probably contained abundant soluble selenium. Decades of irrigation have redistributed the most soluble forms of selenium from the soil into groundwater and have caused the water table to rise 1 to 4 ft/year. Selenium in shallow groundwater has been further concentrated because of evapotranspiration. The rising water table has caused a large area of farmland to require artificial drainage of groundwater that contains high concentrations of selenium. The present areal distribution of selenium in shallow groundwater reflects the natural distribution of saline soils. The depth distribution of selenium in groundwater reflects the history of irrigation. The highest concentrations of selenium in groundwater (50 to more than 1,000 micrograms/L) are in a zone of variable thickness located between 20 and 150 ft below the water table. The toxic water in this zone was recharged during the first few decades of irrigation. The large volume of high selenium groundwater makes it desirable to leave this water where it is, rather than bring it to the land surface or allow it to move into parts of the aquifer that may be used for water supply. Selenium concentrations in the San Joaquin River depend on the magnitude of the selenium load from drain water and dilution by water with low concentrations of selenium from all other sources of streamflow. The San Joaquin Valley is a regional-scale example of how manipulation of the hydrologic system can cause water quality problems if naturally occurring toxic substances are mobilized. (USGS)

  3. Ecological aspects of selenium effects on plant growth and species diversity in soils with elevated concentrations of salinity and selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhangzhi.

    1991-01-01

    A field study was conducted in soils with elevated concentrations of salinity and selenium during 1986-1990 at Kesterson Reservoir, Merced County, California. The investigation was conducted in three stages of plant habitat restoration: (1) wet habitat, (2) dry habitat, and (3) fill dirt cover habitat. The total water extractable selenium concentrations of wet habitat, dry habitat and fill dirt cover habitat were 2260-3700, 90-670, and undetectable-37 [mu]g/kg dry soil, respectively. Among the vascular flowering plants, saltgrass (Distichlis spicata L.) was the dominant species in dry habitat, and cattail (Typha latifolia L.) was the dominant species in wet habitat in themore » evaporation ponds at Kesterson. High concentrations of selenium were found in Kesterson marsh plant species. In wet habitat, selenium concentrations averaged 12.50 ppm ([mu]g/g dry wt) in Distichlis spicata leaves, 15.20 ppm in Typha latifolia leaves and 4.10 ppm in Juncus mexicanus leaves, respectively. In dry habitat, the tissue selenium concentration was about 1.5 ppm for Distichlis spicata and 4 ppm for Atriplex species. In fill dirt cover habitat, plant tissue selenium concentrations ranged from 1 to 19 ppm. Biomass distribution, species richness, and selenium accumulation of plants were studied for four sites during 1988-1990. At two sites, the surface soil consisted of fill dirt. Another two sites were native-soil cover (including Kesterson sediment).« less

  4. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999

    USGS Publications Warehouse

    May, T.W.; Walther, M.J.; Petty, J.D.; Fairchild, J.F.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.; Hartman, D.

    2001-01-01

    The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 μg L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 μg L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 μg g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 μg g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin.

  5. Selenium in mainstream and sidestream smoke of cigarettes containing fly ash-grown tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Lisk, D.J.; Shane, B.S.

    The quantities of selenium, tar and nicotine present in mainstream (MS) and sidestream (SS) smoke of machine-smoked cigarettes was studied. The cigarettes were prepared from tobacco purposely cultured on fly ash-amended soil so as to increase its selenium concentration. Selenium concentration was found to be the same in the gaseous phase of both MS and SS smoke, but its concentration was significantly higher (p less than 0.05) in the particulate matter of the MS smoke. Tar was higher in MS smoke and nicotine in SS smoke. Factors affecting selenium concentrations in tobacco and its possible environmental significance are discussed.

  6. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    USGS Publications Warehouse

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were

  7. Deficient selenium status of a healthy adult Spanish population.

    PubMed

    Millán Adame, E; Florea, D; Sáez Pérez, L; Molina López, J; López-González, B; Pérez de la Cruz, A; Planells del Pozo, E

    2012-01-01

    Selenium is an essential micronutrient for human health, being a cofactor for enzymes with antioxidant activity that protect the organism from oxidative damage. An inadequate intake of this mineral has been associated with the onset and progression of chronic diseases such as hypertension, diabetes, coronary diseases, asthma, and cancer. For this reason, knowledge of the plasma and erythrocyte selenium levels of a population makes a relevant contribution to assessment of its nutritional status. The objective of the present study was to determine the nutritional status of selenium and risk of selenium deficiency in a healthy adult population in Spain by examining food and nutrient intake and analyzing biochemical parameters related to selenium metabolism, including plasma and erythrocyte levels and selenium-dependent glutathione peroxidase (GPx) enzymatic activity. We studied 84 healthy adults (31 males and 53 females) from the province of Granada, determining their plasma and erythrocyte selenium concentrations and the association of these levels with the enzymatic activity of glutathione peroxidase (GPx) and with life style factors. We also gathered data on their food and nutrient intake and the results of biochemical analyses. Correlations were studied among all of these variables. The mean plasma selenium concentration was 76.6 ± 17.3 μg/L (87.3 ± 17.4 μg/L in males, 67.3 ± 10.7 μg/L in females), whereas the mean erythrocyte selenium concentration was 104.6 μg/L (107.9 ± 26.1 μg/L in males and 101.7 ± 21.7 μg/L in females). The nutritional status of selenium was defined by the plasma concentration required to reach maximum GPx activity, establishing 90 μg/L as reference value. According to this criterion, 50% of the men and 53% of the women were selenium deficient. Selenium is subjected to multiple regulation mechanisms. Erythrocyte selenium is a good marker of longer term selenium status, while plasma selenium appears to be a marker of short-term nutritional status. The present findings indicate a positive correlation between plasma selenium concentration and the practice of physical activity. Bioavailability studies are required to establish appropriate reference levels of this mineral for the Spanish population.

  8. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium.

    PubMed

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F

    2017-01-05

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS 2 ) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS 2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS 2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene-SeS 2 full cell is 81% after 1,500 cycles at 268 mA g SeS2 -1 . The achieved cathode capacity is 403 mAh g SeS2 -1 (1,209 mAh cm SeS2 -3 ).

  9. Seasonal variability of iodine and selenium in surface and groundwater as a factor that may contribute to iodine isotope balance in the thyroid gland and its irradiation in case of radioiodine contamination during accidents at the NPP

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Kolmykova, Lyudmila; Ryzhenko, Boris; Berezkin, Viktor; Saraeva, Anastasia

    2016-04-01

    Radioiodine release to the environment during the accident at the Chernobyl NPP led to the increased risk of the thyroid cancer cases within the contaminated areas, the effect being aggravated in conditions of stable iodine and selenium deficiency in local food chains. Although the drinking water iodine is usually believed to contribute not more than 10% to local diet, our estimations accounting of water content in other products and several regional studies (e.g. India and Australia) proved its portion to be at least twice as much. As radioiodine isotopes are short-lived, their absorption depends greatly on stable iodine and selenium sufficiency in thyroid gland in the first few days of contamination and seasonal variation of stable iodine and selenium in local sources of drinking water may be significant as modifying the resulting thyroid irradiation in different seasons of the year. The main goal of the study was to evaluate seasonal variation of levels of iodine and selenium in natural waters of the Bryansk region as a possible factor affecting the radioiodine intake by thyroid gland of animals and humans in case of radioiodine contamination during the accident. Seasonal I and Se concentration was measured in the years of 2014 and 2015 at 14 test points characterizing surface (river and lake) and drinking groundwater. Obtained data proved considerable seasonal variation of I and Se concentration in natural waters (3,7-8,1 μg/l and 0,04-0,4 μg/l respectively) related to physico-chemical water parameters, such as pH, Eh and fluctuations in concentration of dissolved organic matter. The widest I and Se seasonal variability was observed in surface and well waters, maximum I level being found in autumn at the end of vegetation period characterized by active I leaching from the decomposed organic residues by long lasting precipitations. The content of selenium in the surface waters during summer-autumn (0,06-0,3 μg/l) was higher than in spring (0,04-0,05 μg/l). In drinking water from centralized supply pipeline low concentration of both elements was also registered in spring (3,7-4,3 μg/l (I) and 0,04-0,08 μg/l (Se)). Accounting of the fact that both the Chernobyl and Fukushima accidents took place in spring, we hypothesis that low iodine intake with water may have contributed to the risk of higher radioiodine intake by thyroid gland in the period of the accident. The work was supported the Russian Foundation for Basic Research (grant 13-05-00823).

  10. Chemical Data for Detailed Studies of Irrigation Drainage in the Salton Sea Area, California, 1995?2001

    USGS Publications Warehouse

    Schroeder, Roy A.

    2004-01-01

    The primary purpose of this report is to present all chemical data from the Salton Sea area collected by the U.S. Geological Survey between 1995 and 2001. The data were collected primarily for the Department of the Interior's National Irrigation Water Quality Program (NIWQP). The report also contains a brief summary and citation to investigations done for the NIWQP between 1992 and 1995. The NIWQP began studies in the Salton Sea area in 1986 to evaluate effects on the environment from potential toxins, especially selenium, in irrigation-induced drainage. This data report is a companion to several reports published from the earlier studies and to interpretive publications that make use of historical and recent data from this area. Data reported herein are from five collection studies. Water, bottom material, and suspended sediment collected in 1995-96 from the New River, the lower Colorado River, and the All-American Canal were analyzed for elements, semi-volatile (extractable) organic compounds, and organochlorine compounds. Sufficient suspended sediment for chemical analyses was obtained by tangential-flow filtration. A grab sample of surficial bottom sediment collected from near the deepest part of the Salton Sea in 1996 was analyzed for 44 elements and organic and inorganic carbon. High selenium concentration confirmed the effective transfer (sequestration) of selenium into the bottom sediment. Similar grab samples were collected 2 years later (1998) from 11 locations in the Salton Sea and analyzed for elements, as before, and also for nutrients, organochlorine compounds, and polycyclic aromatic hydrocarbons. Nutrients were measured in bottom water, and water-column profiles were obtained for pH, conductance, temperature, and dissolved oxygen. Element and nutrient concentrations were obtained in 1999 from cores at 2 of the above 11 sites, in the north subbasin of the Salton Sea. The most-recent study reported herein was done in 2001 and contains element data on suspended material isolated by continuous-flow centrifugation on samples collected in transects extending out from the Whitewater, the Alamo, and the New Rivers into the Salton Sea. Chemical data on suspended sediment and bottom material from tributory rivers and the Salton Sea itself show that many insoluble constituents, including selenium and DDE, are concentrated in the fine-grained, organic- and carbonate-rich bottom sediment from deep areas near the center of the Salton Sea. Data also show that selenium and arsenic are markedly enriched in seston (plankton, partially-degraded algal detritus, and mineral matter that compose suspended particulates in the lake) collected just below the water surface in the Salton Sea. This result indicates that bio-concentration in primary producers in the water column provides an important pathway whereby high selenium residues accumulate in fish and fish-eating birds at the Salton Sea.

  11. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  12. Toxicity of organic and inorganic selenium to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1988-01-01

    The toxicity of selenomethionine and sodium selenite to mallard ducklings (Anas platyrhynchos) was measured by feeding each form from hatching to six weeks of age at dietary concentrations of 0, 10, 20, 40, and 80 ppm selenium. At 80 ppm selenium, sodium selenite caused 97.5% mortality by six weeks and selenomethionine caused 100% mortality. At 40 ppm, these two forms of selenium caused 25 and 12.5% mortality. No mortality occurred at 10 or 20 ppm. Diets containing 20, 40, or 80 ppm selenium in both forms caused decreases in food consumption and growth. The only statistically significant effect of 10 ppm selenium was with sodium selenite, which resulted in larger livers than controls. Selenomethionine was more readily stored in the liver than sodium selenite at levels above 10 ppm selenium in the diet. Based on comparisons of residues of selenium in livers of surviving and dead ducklings, concentrations in the liver were not diagnostic of death due to selenium poisoning. Because both forms of selenium resulted in severe reductions in food consumption, selenium-induced starvation may have been related to duckling mortality. It was not clear whether either form of selenium at 10 ppm in the diet resulted in a leveling off of selenium concentrations in the liver within six weeks.

  13. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  14. Changing selenium nutritional status of Chinese residents

    USDA-ARS?s Scientific Manuscript database

    China has been designated as one of 40 countries deficient in selenium (Se) according to the World Health Organization. Selenium concentrations in hair are commonly used to evaluate the Se level of the human body. Moreover, hair Se concentrations are significantly correlated with Se concentrations ...

  15. Plasma Selenium Concentrations Are Sufficient and Associated with Protease Inhibitor Use in Treated HIV-Infected Adults123

    PubMed Central

    Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A

    2015-01-01

    Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: <20–600). Median plasma selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P < 0.01 within group), but the change did not differ between groups (+13.1 vs. +5.3 μg/L; P = 0.14 between groups). Conclusions: Plasma selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use and higher selenium may have implications for ART allocation, especially in resource-limited countries. Also, it appears that statin therapy may increase selenium concentrations; however, larger studies are necessary to confirm this finding. This trial was registered at clinicaltrials.gov as NCT01218802. PMID:26269240

  16. Influence of Selenium on the Production of T-2 Toxin by Fusarium poae.

    PubMed

    Cheng, Bolun; Zhang, Yan; Tong, Bei; Yin, Hong

    2017-07-01

    The objective of this study was to investigate the effects of selenium on the production of T-2 toxin by a Fusarium poae strain cultured in a synthetic medium containing different concentrations of selenium. The T-2 toxin contents in fermentative products were evaluated by a high performance liquid chromatography (HPLC). The results showed that the production of T-2 toxin was correlated with the concentration of selenium added to the medium. In all three treatments, the addition of 1 mg/L selenium to the medium resulted in a lower toxin yield than the control (0 mg/L); the yield of the toxin began to increase when selenium concentration was 10 mg/L, while it decreased again at 20 mg/L. In summary, T-2 toxin yield in the fermentative product was affected by the addition of selenium to the medium, and a selenium concentration of 20 mg/L produced the maximum inhibitory effect of T-2 toxin yield in the fermentative product of F. poae.

  17. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of land irrigated for agriculture, has been identified as being susceptible. Biological data were used to evaluate the reliability of the map. In 12 of DOI's 26 study areas, concentrations of selenium measured in bird eggs were elevated sufficiently to significantly reduce hatchability of the eggs. The GIS map identifies 9 of those 12 areas. Deformed bird embryos having classic symptoms of selenium toxicosis were found in four of the study areas, and the map identifies all four as susceptible to irrigation-induced selenium contamination. The report describes the geography, geology, and ground-water resources of the Dutch Flats area in Scotts Bluff and Sioux Counties, Nebr. The area comprises about 60 square miles and consists predominantly of relatively flat-lying terraces. Farming is the principal occupation in the area. The farm lands are irrigated largely from surface water; ground water is used only as a supplementary supply during drought periods. The climate in the area is semiarid, and the mean annual precipitation is about 16 inches. The rocks exposed in the Dutch Flats area are of Tertiary sad Quaternary age. A map showing the areas of outcrop of the rock formations is included in the report. Sufficient unconfined ground water for irrigation supplies is contained in the deposits of the .third terrace, and wells that yield 1,000 to 2,000 gallons a minute probably could be developed. The depth to water in the area ranges from a few feet to about 80 feet sad averages about 30 feet. The depth to water varies throughout the year; it is least in the late summer when the recharge from irrigation is greatest, sad it is greatest in the early spring before irrigation is begun. A map showing the depth to water in September 1949 is included in the report. The ground-water reservoir is recharged by seepage from irrigation canals and laterals, by seepage from irrigation water applied to the farms, and, to a much lesser extent, by precipitation. In the area b

  18. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.

    2002-01-01

    In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.

  19. Coupling contaminants with demography: Effects of lead and selenium in Pacific common eiders

    USGS Publications Warehouse

    Wilson, H.M.; Flint, Paul L.; Powell, A.N.

    2007-01-01

    We coupled intensive population monitoring with collection of blood samples from 383 nesting Pacific common eiders (Somateria mollisima v-nigrum) at two locations in Alaska (USA) from 2002 to 2004. We investigated annual, geographic, and within-season variation in blood concentrations of lead and selenium; compared exposure patterns with sympatrically nesting spectacled eiders (Somateria fischeri); and examined relationships with clutch size, egg viability, probability of hatching, and apparent survival of adult females. Lead concentrations were elevated in 3.6% of females, and all individuals exhibited elevated selenium, most (81%) at concentrations associated with death in captive waterfowl. Blood lead and selenium concentrations varied both within and among site-years and were lower than those of spectacled eiders. During incubation, blood lead concentrations in females increased significantly (possibly via re-release of stored lead from bone), whereas selenium concentrations decreased (likely because of natural excretion). Probability of a nest containing at least one nonviable egg was positively related to blood selenium in hens, but adverse effects in other life-history variables were not supported. Although reproduction appeared to be sensitive to selenium toxicity, our data suggest that high rates of nonviability are unlikely in this population and that selenium-related reductions to clutch size would be inconsequential at the scale of overall population dynamics. We conclude that Pacific common eiders and other wild marine birds likely have higher selenium tolerances than freshwater species and that interspecific differences in exposure levels may reflect differences in reproductive strategies.

  20. Evaluation of flushing of a high-selenium backwater channel in the Colorado River.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2004-02-01

    Concern has been raised that selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine if operation of a water control structure (opened in December 1996) that allowed the Colorado River to flow through a channel area at Walter Walker State Wildlife Area (WWSWA) would reduce selenium and other inorganic elements in water, sediment, aquatic invertebrates, and forage fish. Endangered Colorado pikeminnow were collected and muscle plug samples taken for selenium analysis. Selenium concentrations in filtered water were 21.0 microg/L in 1995, 23.5 microg/L in 1996, 2.1 microg/L in 1997, and 2.1 microg/L in 1998. Selenium concentrations in sediment cores and sediment traps were 8.5 microg/g in 1995, 8.2 microg/g in 1996, 4.8 microg/g in 1997, and 1.1 microg/g in 1998. Selenium concentrations in aquatic invertebrates were 27.4 microg/g in 1996, 15.5 microg/g in 1997, and 4.9 microg/g in 1998. Selenium concentrations in forage fish were 27.2 microg/g in 1996, 20.2 microg/g in 1997, and 8.6 microg/g in 1998. Selenium concentrations in muscle plugs of Colorado pikeminnow were 9.8 microg/g in 1995, 9.5 microg/g in 1996, 9.0 microg/g in 1997, and 10.3 microg/g in 1998. Although selenium concentrations in water, sediment, aquatic invertebrates, and forage fish decreased substantially after operation of the water control structure, a corresponding change in Colorado pikeminnow did not seem to occur. Selenium concentrations in muscle plugs decreased with increasing fish total length and weight, did not change between repeat sampling in the same year or recapture in subsequent years, and seemed to be most closely associated with the mean monthly river flow for the March-July period. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 51-81, 2004.

  1. Cross sectional study of serum selenium concentration and esophageal squamous dysplasia in western Kenya.

    PubMed

    Pritchett, Natalie R; Burgert, Stephen L; Murphy, Gwen A; Brockman, John D; White, Russell E; Lando, Justus; Chepkwony, Robert; Topazian, Mark D; Abnet, Christian C; Dawsey, Sanford M; Mwachiro, Michael M

    2017-12-08

    Low serum selenium status has been associated with increased risk of esophageal squamous cell carcinoma (ESCC). East Africa is a region of high ESCC incidence and is known to have low soil selenium levels, but this association has not previously been evaluated. In this study we assessed the association of serum selenium concentration and the prevalence of esophageal squamous dysplasia (ESD), the precursor lesion of ESCC, in a cross-sectional study of subjects from Bomet, Kenya. 294 asymptomatic adult residents of Bomet, Kenya completed questionnaires and underwent endoscopy with Lugol's iodine staining and biopsy for detection of ESD. Serum selenium concentrations were measured by instrumental neutron activation analysis. Odds ratios (OR) and confidence intervals (95% CI) for associations between serum selenium and ESD were calculated using unconditional logistic regression. The mean serum selenium concentration was 85.5 (±28.3) μg/L. Forty-two ESD cases were identified (14% of those screened), including 5 (12%) in selenium quartile 1 (Q1), 5 (12%) in Q2, 15 (36%) in Q3, and 17 (40%) in Q4. Higher serum selenium was associated with prevalence of ESD (Q4 vs Q1: OR: 3.03; 95% CI: 1.05-8.74) and this association remained after adjusting for potential confounders (Q4 vs Q1: OR: 3.87; 95% CI: 1.06-14.19). This is the first study to evaluate the association of serum selenium concentration and esophageal squamous dysplasia in an African population at high risk for ESCC. We found a positive association between higher serum selenium concentration and prevalence of ESD, an association contrary to our original hypothesis. Further work is needed to better understand the role of selenium in the etiology of ESCC in this region, and to develop effective ESCC prevention and control strategies.

  2. Supplementation of Merino ewes with vitamin E plus selenium increases α-tocopherol and selenium concentrations in plasma of the lamb but does not improve their immune function.

    PubMed

    Sterndale, S; Broomfield, S; Currie, A; Hancock, S; Kearney, G A; Lei, J; Liu, S; Lockwood, A; Scanlan, V; Smith, G; Thompson, A N

    2018-05-01

    Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or survival in the lambs.

  3. Comparison of ground-water quality in samples from selected shallow and deep wells in the central Oklahoma aquifer, 2003-2005

    USGS Publications Warehouse

    Becker, Carol J.

    2006-01-01

    The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in water from shallow and deep wells. Water from 9 shallow wells had nitrate nitrogen concentrations greater than 2 milligrams per liter, suggesting nitrogen sources at land surface have had an effect on water from these wells. Water from three shallow wells (13 percent) exceeded the nitrate nitrogen maximum contaminant level of 10 milligrams per liter in drinking water. Water from shallow wells had significantly lower concentrations of arsenic, chromium, iron, and selenium than water from deep wells, whereas, concentrations of barium, copper, manganese, and zinc were similar. Water-quality data indicate that arsenic frequently occurs in shallow ground water from the Central Oklahoma aquifer, but at low concentrations (<10 micrograms per liter). The occurrence of chromium and selenium in water from shallow wells was infrequent and at low concentrations in this study. It does not appear that the quality of water from a shallow well can be predicted based on the quality of water from a nearby deep well. The results show that in general terms, shallow ground water has significantly higher concentrations of most major ions and significantly lower concentrations of arsenic, chromium, and selenium than water from deep wells.

  4. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    PubMed

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  5. Overview of groundwater quality in the Piceance Basin, western Colorado, 1946--2009

    USGS Publications Warehouse

    Thomas, J.C.; McMahon, P.B.

    2013-01-01

    Groundwater-quality data from public and private sources for the period 1946 to 2009 were compiled and put into a common data repository for the Piceance Basin. The data repository is available on the web at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml. A subset of groundwater-quality data from the repository was compiled, reviewed, and checked for quality assurance for this report. The resulting dataset consists of the most recently collected sample from 1,545 wells, 1,007 (65 percent) of which were domestic wells. From those samples, the following constituents were selected for presentation in this report: dissolved oxygen, dissolved solids, pH, major ions (chloride, sulfate, fluoride), trace elements (arsenic, barium, iron, manganese, selenium), nitrate, benzene, toluene, ethylbenzene, xylene, methane, and the stable isotopic compositions of water and methane. Some portion of recharge to most of the wells for which data were available was derived from precipitation (most likely snowmelt), as indicated by δ2H [H2O] and δ18O[H2O] values that plot along the Global Meteoric Water Line and near the values for snow samples collected in the study area. Ninety-three percent of the samples were oxic, on the basis of concentrations of dissolved oxygen that were greater than or equal to 0.5 milligrams per liter. Concentration data were compared with primary and secondary drinking-water standards established by the U.S. Environmental Protection Agency. Constituents that exceeded the primary standards were arsenic (13 percent), selenium (9.2 percent), fluoride (8.4 percent), barium (4.1 percent), nitrate (1.6 percent), and benzene (0.6 percent). Concentrations of toluene, xylenes, and ethylbenzene did not exceed standards in any samples. Constituents that exceeded the secondary standard were dissolved solids (72 percent), sulfate (37 percent), manganese (21 percent), iron (16 percent), and chloride (10 percent). Drinking-water standards have not been established for methane, which was detected in 24 percent of samples. Methane concentrations were greater than or equal to 1 milligram per liter in 8.5 percent of samples. Methane isotopic data for samples collected primarily from domestic wells in Garfield County indicate that methane in samples with relative high methane concentrations were derived from both biogenic and thermogenic sources. Many of the constituents that exceeded standards, such as arsenic, fluoride, iron, and manganese, were derived from rock and sediment in aquifers. Elevated nitrate concentrations were most likely derived from human sources such as fertilizer and human or animal waste. Information about the geologic unit or aquifer in which a well was completed generally was not provided by data sources. However, limited data indicate that Quaternary deposits in Garfield and Mesa Counties, the Wasatch Formation in Garfield County, and the Green River Formation in Rio Blanco County had some of the highest median concentrations of selected constituents. Variations in concentration with depth could not be evaluated because of the general lack of well-depth and water-level data. Concentrations of several important constituents, such as arsenic, manganese, methane, and nitrate, were related to concentrations of dissolved oxygen. Concentrations of arsenic, manganese, and methane were significantly higher in groundwater with low dissolved-oxygen concentrations than in groundwater with high dissolved-oxygen concentrations. In contrast, concentrations of nitrate were significantly higher in groundwater with high dissolved-oxygen concentrations than in groundwater with low dissolved-oxygen concentrations. These results indicate that measurements of dissolved oxygen may be a useful indicator of groundwater vulnerability to some human-derived contaminants and enrichment from some natural constituents. Assessing such a large and diverse dataset as the one available through the repository poses unique challenges for reporting on groundwater quality in the study area. The repository contains data from several studies that differed widely in purpose and scope. In addition to this variability in available data, gaps exist spatially, temporally, and analytically in the repository. For example, groundwater-quality data in the repository were not evenly distributed throughout the study area. Several key water-quality constituents or indicators, such as dissolved oxygen, were underrepresented in the repository. Ancillary information, such as well depth, depth to water, and the geologic unit or aquifer in which a well was completed, was missing for more than 50 percent of samples. Future monitoring could avoid several limitations of the repository by making relatively minor changes to sample- collection and data-reporting protocols. Field measurements for dissolved oxygen could be added to sampling protocols, for example. Information on well construction and the geologic unit or aquifer in which a well was completed should be part of the water-quality dataset. Such changes would increase the comparability of data from different monitoring programs and also add value to each program individually and to that of the regional dataset as a whole. Other changes to monitoring programs could require greater resources, such as sampling for a basic set of constituents that is relevant to major water-quality issues in the regional study area. Creation of such a dataset for the regional study area would help to provide the kinds of information needed to characterize background conditions and the spatial and temporal variability in constituent concentrations associated with those conditions. Without such information, it is difficult to identify departures from background that might be associated with human activities.

  6. Hazard assessment of selenium and other trace elements in wild larval razorback sucker from the Green River, Utah

    USGS Publications Warehouse

    Hamilton, S.J.; Muth, R.T.; Waddell, B.; May, T.W.

    2000-01-01

    Contaminant investigations of the Green River in northeastern Utah have documented selenium contamination at sites receiving irrigation drainage. The Green River provides critical habitat for four endangered fishes including the largest extant riverine population of endangered razorback sucker. Although 2175 larval razorback suckers were collected from the river between 1992 and 1996, very few juveniles have been captured within recent decades. Selenium concentrations were measured in larval razorback suckers collected from five sites in the Green River (Cliff Creek, Stewart Lake Drain, Sportsman's Drain, Greasewood Corral, and Old Charlie Wash) to assess the potential for adverse effects on recruitment of larvae to the juvenile stage and the adult population. Larvae from all sites contained mean selenium concentrations ranging from 4.3 to 5.8 ??g/g. These values were at or above the proposed toxic threshold of 4 ??g/g for adverse biological effects in fish, which was derived from several laboratory and field studies with a wide range of fish species. At two sites, Cliff Creek and Stewart Lake Drain, selenium concentrations in larvae increased over time as fish grew, whereas selenium concentrations decreased as fish grew at Sportsman's Drain. Evaluation of a 279-larvae composite analyzed for 61 elements demonstrated that selenium and, to a lesser extent, vanadium were elevated to concentrations reported to be toxic to a wide range of fish species. Elevated selenium concentrations in larval razorback suckers from the five sites suggest that selenium contamination may be widespread in the Green River, and that survival and recruitment of larvae to the juvenile stage may be limited due to adverse biological effects. Selenium contamination may be adversely affecting the reproductive success and recruitment of endangered razorback sucker.

  7. Association between Serum Selenium Concentrations and Levels of Proinflammatory and Profibrotic Cytokines-Interleukin-6 and Growth Differentiation Factor-15, in Patients with Alcoholic Liver Cirrhosis.

    PubMed

    Prystupa, Andrzej; Kiciński, Paweł; Luchowska-Kocot, Dorota; Błażewicz, Anna; Niedziałek, Jarosław; Mizerski, Grzegorz; Jojczuk, Mariusz; Ochal, Andrzej; Sak, Jarosław J; Załuska, Wojciech

    2017-04-21

    According to some authors, serum selenium levels are strongly associated with the severity of liver diseases, including liver cirrhosis. The aim of this study was to determine the relationship between the concentration of selenium and pro-inflammatory and profibrotic cytokines-interleukin-6 (IL-6) and growth differentiation factor 15 (GDF-15) in patients with alcoholic liver cirrhosis. The parameters studied were determined in the serum of 99 patients with alcoholic liver cirrhosis divided based on the severity of disease according to the Child-Turcotte-Pugh criteria. In patients with liver cirrhosis, the serum selenium concentration was statistically lower, whereas serum IL-6 and GDF-15 concentrations were higher than those in the control group. Moreover, the concentration of selenium negatively correlated with the levels of GDF-15 and IL-6. The above results may indicate a role of selenium deficiency in the pathogenesis and progression of alcoholic liver disease.

  8. Contamination of different portions of raw and boiled specimens of Norway lobster by mercury and selenium.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele

    2013-11-01

    The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.

  9. Selenium concentrations in waters tributary to and in the vicinity of the Kesterson National Wildlife Refuge, Fresno and Merced counties, California

    USGS Publications Warehouse

    Presser, T.S.; Barnes, Ivan

    1984-01-01

    Analyses were made for selenium in waters and other materials of the Kesterson National Wildlife Refuge. Analyses were also made of source agricultural drainage waters from the San Luis Drain discharged into the refuge, and surrounding irrigation supply and return waters. Selenium concentrations range from 140 to 1 ,400 micrograms per liter (microgram/L) in irrigation drain waters supplied to the San Luis Drain. The selenium supplied to the Kesterson National Wildlife Refuge is to a small extent precipitated in sodium sulfate (thenardite) but a higher concentration was found in an alagal mat. Most other waters of the area contain less than detectable < 2 micrograms per liter concentrations of selenium. Oxidation of organic matter and reduction of selenate to selenite were found to be necessary for a quantitative analysis of total selenium. (USGS)

  10. Development of a simple and fast voltammetric procedure for determination of trace quantity of Se(IV) in natural lake and river water samples.

    PubMed

    Grabarczyk, Malgorzata; Korolczuk, Mieczyslaw

    2010-03-15

    A simple and fast cathodic stripping voltammetric procedure for determination of trace quantity of Se(IV) in natural samples containing high concentrations of surfactants and humic substances was developed. The procedure exploiting selenium accumulation (from sample solution spiked with 0.1 mol L(-1) HClO(4) and 4 x 10(-4)mol L(-1) Cu(NO(3))(2)) as Cu(2)Se was employed as the initial method. The deposited Cu(2)Se was stripped by differential pulse cathodic potential scan. The interference from dissolved organic matter such as surfactants and humic substances was eliminated by adding Amberlite XAD-7 resin to the voltammetric cell. The whole procedure was applied to a single cell, which allows one to monitor the voltammetric scan. Optimum conditions for removing the surfactants and humic substances due to their adsorption on XAD-7 resin were evaluated. The method was tested on synthetic samples spiked with surfactants and humic substances. The calibration graph for Se(IV) under optimized conditions following the accumulation of 30s was linear in the range from 2 x 10(-9) to 2 x 10(-7)mol L(-1) and was found to obey the equation y=0.74x-0.61, where y and x are the peak current (nA) and Se(IV) concentration (nmol L(-1)), respectively. The linear correlation coefficient was r=0.9993. The relative standard deviation for determination of Se(IV) at the concentration of 1 x 10(-8)mol L(-1) was 3.7% (n=5). The detection limit estimated from three times the standard deviation for low Se(IV) concentration and accumulation time of 30s was about 7.8 x 10(-10)mol L(-1). The presented procedure was successfully applied to selenium determination in TMRAIN-95 certified reference material and to real samples including spiked lake and river waters for selenium speciation. (c) 2009 Elsevier B.V. All rights reserved.

  11. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  12. Plasma and erythrocyte glutathione peroxidase activity, serum selenium concentration, and plasma total antioxidant capacity in cats with IRIS stages I-IV chronic kidney disease.

    PubMed

    Krofič Žel, M; Tozon, N; Nemec Svete, A

    2014-01-01

    Serum selenium concentrations and the activity of plasma glutathione peroxidase (GPx) decrease with the progression of chronic kidney disease (CKD) in human patients. Selenium is considered a limiting factor for plasma GPx synthesis. Plasma total antioxidant capacity (TAC) is decreased in CKD cats in comparison to healthy cats. Serum selenium concentrations and plasma and erythrocyte GPx activity in cats with CKD are lower than in healthy cats. Serum selenium concentrations, the activity of enzymes, and plasma TAC progressively decrease with the progression of kidney disease according to IRIS (International Renal Interest Society) classification. Twenty-six client-owned cats in IRIS stages I-IV of CKD were compared with 19 client-owned healthy cats. A CBC, serum biochemical profile, urinalysis, plasma and erythrocyte GPx activity, serum selenium concentration, and plasma TAC were measured in each cat. Cats in IRIS stage IV CKD had a significantly higher (P = .025) activity of plasma GPx (23.44 ± 6.28 U/mL) than cats in the control group (17.51 ± 3.75 U/mL). There were no significant differences in erythrocyte GPx, serum selenium concentration, and plasma TAC, either among IRIS stages I-IV CKD cats or between CKD cats and healthy cats. Erythrocyte GPx activity, serum selenium concentration, and plasma TAC do not change in CKD cats compared with healthy cats. Selenium is not a limiting factor in feline CKD. Increased plasma GPx activity in cats with stage IV CKD suggests induction of antioxidant defense mechanisms. Antioxidant defense systems might not be exhausted in CKD in cats. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  13. The relationship between selenium levels and breast cancer: a systematic review and meta-analysis.

    PubMed

    Babaknejad, Nasim; Sayehmiri, Fatemeh; Sayehmiri, Kourosh; Rahimifar, Parya; Bahrami, Somaye; Delpesheh, Ali; Hemati, Farhad; Alizadeh, Sajjad

    2014-06-01

    Breast cancer is the most common cancer type. In several studies, hints have been provided that there is a correlation between selenium deficiency and the incidence of breast cancer. Findings of these published reports are, however, inconsistent. This study serves as a pioneering study aiming at combining the results of studies using a meta-analytic method. A total of 16 articles published between 1980 and 2012 worldwide were selected through searching PubMed, Scopus, and Google scholar databases, and the information were analyzed using a meta-analytic method [random effects model]. I (2) statistics were used to examine heterogeneity. The information was then analyzed by STATA version 12. In this study, due to the non-uniform methods used to measure selenium concentrations, selenium levels were measured in the various subgroups in both case and control groups. There were significant correlations between selenium concentration and breast cancer [P<0.05]. Hence, the mean risk differentiating criteria were estimated to be 0.63 [95% confidence interval [95% CI] 0.93 to 0.32] in serum and toenails. Subgroup analysis showed that the value in toenails was -0.07 [95% CI -0.16 to 0.03] and in serum -1.04 [95% CI 1.71 to -0.38]. In studies in which selenium concentrations were measured in serum, a significant correlation was observed between selenium concentration and breast cancer. In contrast, in studies in which selenium concentration was measured in toenails, the correlation was not significant. Therefore, the selenium concentration can be used as one predictor for breast cancer.

  14. Correlation between mercury and selenium concentrations in Indian hair from Rondĵnia State, Amazon region, Brazil.

    PubMed

    Soares, Mônica Campos; Sarkis, Jorge Eduardo Souza; Müller, Regina Céli Sarkis; Brabo, Edilson Silva; Santos, Elizabete Oliveira

    2002-03-15

    Total mercury and selenium concentrations were determined in hair samples collected from Wari (Pacaás Novos) Indians living in Doutor Tanajura village, Gujará-Mirim city, Rondĵnia State. The mercury concentrations in some samples are much higher than the values determined in samples from individuals not exposed to mercury contamination, occupationally or environmentally. The selenium concentrations are in the normal range. A correlation was observed between the mercury and selenium concentration and the values of the molar ratio approach 1 at low Hg concentrations. This fact is related to the equimolar complex formed by [(Hg-Se)n]m-Seleprotein P, which can decrease the bioavailable mercury in the organism.

  15. Manganese and selenium concentrations in cerebrospinal fluid of seriously ill children.

    PubMed

    Franěk, Tomáš; Kotaška, Karel; Průša, Richard

    2017-11-01

    The homeostasis of essential trace elements such as selenium and manganese may be altered in patients with severe diseases of various etiologies (trauma brain injuries, tumors, leukemias, lymphomas, neurological diseases). Concentration of manganese and selenium were determined in cerebrospinal fluid by electrothermal atomic absorption spectrometry in 50 hospitalized children with various clinical ethiologies including oncological, neurological, and brain related diseases. The concentrations of manganese in cerebrospinal fluid of children were 0.97±0.67 μg/L. The concentrations of selenium were 13.3±3.5 μg/L. The concentrations were similar as published in adults. The values did not correlated with the age, gender and severity of the disease. We evaluated values of selenium and manganese in cerebrospinal fluid of seriously diseased children. © 2017 Wiley Periodicals, Inc.

  16. Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research.

    PubMed

    Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette

    2013-10-01

    Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Selenium concentrations in irrigation drain inflows to the Salton Sea, California, October 2006 and January 2007

    USGS Publications Warehouse

    May, Thomas W.; Walther, Mike W.; Brumbaugh, William G.

    2007-01-01

    This report presents raw data on selenium concentrations in samples of water, sediment, detritus, and selected food-chain matrices collected from selected agricultural drains in the southern portion of the Salton Sea during October 2006 and January 2007. Total selenium and selenium species were determined in water samples, whereas total selenium was determined in sediment, detritus, algae, plankton, midge larvae (Family Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna).

  18. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms.

    PubMed

    Dolgova, N V; Hackett, M J; MacDonald, T C; Nehzati, S; James, A K; Krone, P H; George, G N; Pickering, I J

    2016-03-01

    Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported. A possible contributing factor may be that different chemical forms of selenium were used in different studies. Using larval stage zebrafish (Danio rerio) as a model organism, we report a comparison of the toxicities and tissue selenium distributions of four different chemical forms of selenium. We find that the organic forms of selenium tested (Se-methyl-l-selenocysteine and l-selenomethionine) show considerably more toxicity than inorganic forms (selenite and selenate), and that this appears to be correlated with the level of bioaccumulation. Despite differences in concentrations, the tissue specific pattern of selenium accumulation was similar for the chemical forms tested; selenium was found to be highly concentrated in pigment (melanin) containing tissues especially for the organic selenium treatments, with lower concentrations in eye lens, yolk sac and heart. These results suggest that pigmented tissues might serve as a storage reservoir for selenium.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent for arsenic and from 82 to 93 percent for selenium, depending on the flow conditions used. Statistical analysis of dissolved and whole-water recoverable analytical results for the same set of water samples indicated that there is no significant difference between the GF-AAS and HG-AAS methods. Interferences related to various chemical constituents were also identified. Although sulfate and chloride in association with various cations might interfere with the determination of arsenic and selenium by GF-AAS, the use of a magnesium nitrate/palladium matrix modifier and low-flow argon during atomization helped to minimize such interferences. When using stabilized temperature platform furnace conditions where stop flow is used during atomization, the addition of hydrogen (5 percent volume/volume) to the argon minimized chemical interferences. Nevertheless, stop flow during atomization was found to be less effective than low flow in reducing interference effects.

  20. [Studies of bioavailability of different food sources of selenium in experiment].

    PubMed

    Egorova, E A; Gmoshinskiĭ, I V; Zorin, S I; Mazo, V K

    2006-01-01

    The selenium bioavailability in selenium enriched Spirulina (Arthrospira platensis), phycocyanin containing (Se-PC) protein isolate, separated from this micro algae and in sodium selenite was studied and compared in rats. The daily dose of selenium per one animal was 5 microgram in all experimental groups. The average selenium levels in blood serum and liver of animals that received sodium selenite during 14 days were the highest. The average selenium level in blood serum of animals fed with selenium enriched Spirulina platensis after 14 days of receiving was the same with the control group, but the average concentration of selenium in their liver was rather high and close to this parameter of sodium selenite animal group. The animals which were fed with Se-PC showed better results. Their average selenium level in blood serum was higher than in Spirulina group, but lower than in sodium selenite group. The average concentration of selenium in the liver of these animals was the same with sodium selenite animal group. As regards to animals that were fed with selenium enriched Spirulina, Se-PC and sodium selenite for 21 days, the average selenium levels ratio in their blood serum and liver was higher than in control group, but these results were not significantly different among each other. The concentrations of selenium in seminal glands in all groups of animals including control group both after 14 and 21 days feeding were close to each other.

  1. A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium

    PubMed Central

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene—SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2−1. The achieved cathode capacity is 403 mAh gSeS2−1 (1,209 mAh cmSeS2−3). PMID:28054543

  2. Effects of selenium on mallard duck reproduction and immune function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, P.L.; Yuill, T.M.; Fairbrother, A.

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. The objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of adult mallards were exposed for 95-99 days on streams with sodium selenite-treated water at 10 and 30 ppb, or on untreated streams. Selenium biomagnified through the food chain to the ducks. Disease resistance was decreased in ducklings hatched on the streams and challenged with duck hepatitis virus 1 (DHV1) when 15-days old. Liver selenium concentrations for these ducklings on the 10 andmore » 30 ppb streams was 3.6 and 7.6 ppm dry weight, respectively. Mortality of ducklings purchased when 7-days old, exposed to selenium for 14 days, and challenged when 22-days old was not affected. However, their selenium exposure was lower (liver selenium 4.1 ppm dry weight for the 30 ppb stream). Five parameters of immune function were measured in adult ducks. Phagocytosis of killed Pasteurella multocida by blood heterophils and monocytes, and blood monocyte concentrations were higher in adult males following 84 days exposure to 30 ppb selenium. Their liver selenium concentrations were 11.1 ppm dry weight after 95-99 days exposure.« less

  3. Blood Selenium Concentration and Blood Cystatin C Concentration in a Randomly Selected Population of Healthy Children Environmentally Exposed to Lead and Cadmium.

    PubMed

    Gać, Paweł; Pawlas, Natalia; Wylężek, Paweł; Poręba, Rafał; Poręba, Małgorzata; Pawlas, Krystyna

    2017-01-01

    This study aimed at evaluation of a relationship between blood selenium concentration (Se-B) and blood cystatin C concentration (CST) in a randomly selected population of healthy children, environmentally exposed to lead and cadmium. The studies were conducted on 172 randomly selected children (7.98 ± 0.97 years). Among participants, the subgroups were distinguished, manifesting marginally low blood selenium concentration (Se-B 40-59 μg/l), suboptimal blood selenium concentration (Se-B: 60-79 μg/l) or optimal blood selenium concentration (Se-B ≥ 80 μg/l). At the subsequent stage, analogous subgroups of participants were selected separately in groups of children with BMI below median value (BMI <16.48 kg/m 2 ) and in children with BMI ≥ median value (BMI ≥16.48 kg/m 2 ). In all participants, values of Se-B and CST were estimated. In the entire group of examined children no significant differences in mean CST values were detected between groups distinguished on the base of normative Se-B values. Among children with BMI below 16.48 kg/m 2 , children with marginally low Se-B manifested significantly higher mean CST values, as compared to children with optimum Se-B (0.95 ± 0.07 vs. 0.82 ± 0.15 mg/l, p < 0.05). In summary, in a randomly selected population of healthy children no relationships could be detected between blood selenium concentration and blood cystatin C concentration. On the other hand, in children with low body mass index, a negative non-linear relationship was present between blood selenium concentration and blood cystatin C concentration.

  4. Associations of Spatial Disparities of Alzheimer's Disease Mortality Rates with Soil Selenium and Sulfur Concentrations and Four Common Risk Factors in the United States.

    PubMed

    Sun, Hongbing

    2017-01-01

    Associations between environmental factors and spatial disparity of mortality rates of Alzheimer's disease (AD) in the US are not well understood. To find associations between 41 trace elements, four common risk factors, and AD mortality rates in the48 contiguous states. Isopleth maps of AD mortality rates of the 48 states and associated factors were examined. Correlations between state average AD mortality rates and concentrations of 41 soil elements, wine consumption, percentage of current smokers, obesity, and diagnosed diabetes of the 48 states between 1999 and 2014 were analyzed. Among 41 elements, soil selenium concentrations have the most significant inverse correlations with AD mortality rates. Rate ratio (RR) of the 6 states with the lowest product of soil selenium and sulfur concentrations is 53% higher than the 6 states with the highest soil selenium sulfur product in the 48 states (RR = 1.53, CI95% 1.51-1.54). Soil tin concentrations have the most significant inverse correlation with AD mortality growth rates between 1999 and 2014, followed by soil sulfur concentrations. Percentages of obesity, diagnosed diabetes, smoking, and wine consumption per capita also correlate significantly with AD mortality growth rates. High soil selenium and sulfur concentrations and wine consumption are associated with low AD mortality rates. Given that average soil selenium and sulfur concentrations are indicators of their intakes from food, water, and air by people in a region, long-term exposure to high soil selenium and sulfur concentrations might be beneficial to AD mortality rate reduction in a region.

  5. [Selenium metabolism in patients with severe multiple trauma].

    PubMed

    Zaĭnudinov, Z M; Shabanov, A K; Zorin, S N; Kuzovlev, A N; Mal'tsev, G Iu; Azarov, Ia B; Vorozhko, I V; Grebenchikov, O A

    2014-01-01

    To define a relation between the selenium level and the risk of the development of nosocomial pneumonia in patients with severe multiple trauma depending on the trauma severity and the volume of blood loss. We measured serum selenium concentration in 40 patients with severe multiple trauma. The ISS score was used to estimate the trauma severity. Patients were divided into 2 groups: group I--25 patients without pneumonia, group II--15 patients with pneumonia. The volume of blood loss was estimated in each group. The oxidative stress was estimated by means of the antioxidant index. For selected groups the significant difference (P < 0.05) in the volume of blood loss was detected. It was shown the significant decrease of selenium concentration (P < 0.05) in both groups in comparison with control for all testing time points (the 6-12 hrs, 24 hrs, 3 and 5-7 days). The mean of selenium concentration in group II was significantly lower in comparison to the group I. A significant difference of selenium concentrations (P < 0.05) between groups were detected on the 6-12 hrs and day 3 from the trauma onset. The antioxidant index was significantly lower in the group II within the 6-12 hrs, 12-24 hrs and 5-7 days (P < 0.05) in comparison to group I. The severe multiple trauma and severe blood loss lead to a selenium deficiency in the blood serum starting with the first hours from the trauma onset, which leads to the critical level of selenium concentration by the Ist day's end after trauma. It also leads to a pronounced oxidative stress that is reflected in the antioxidant index dynamics. Thus serum selenium concentration may be included in the set of the early prognostic detectors to detect infectious pulmonary complications development at severe multiple trauma, and it could be the basis for the decision to take early prophylaxis using selenium medications.

  6. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  7. Diagnostic criteria for selenium toxicosis in aquatic birds: dietary exposure, tissue concentrations, and macroscopic effects

    USGS Publications Warehouse

    Albers, P.H.; Green, D.E.; Sanderson, C.J.

    1996-01-01

    A feeding study with mallard ducks (Anas platyrhynchos) was conducted during March-July, 1988 in Laurel, Maryland, to identify diagnostic criteria for selenium toxicosis in birds. One-year-old male mallards in groups of 21 were fed diets containing 0, 10, 20, 40, or 80 parts per million (ppm) selenium, as seleno-DL-methionine, for 16 weeks. All ducks receiving 80 ppm died. Ducks receiving 40 or 80 ppm selenium consumed less feed than ducks in the other treatment groups. Body weights of ducks receiving 40 or 80 ppm selenium declined during the study. The post-breeding molt was delayed in ducks receiving 40 ppm; most ducks receiving 80 ppm selenium died prior to the onset of molt. At necropsy, numerous abnormalities were observed in ducks that died but only a small number of abnormalities were observed in ducks surviving to the end of the study in the 40 ppm group. Weights of the heart, spleen, and pancreas were mostly lower and weights of the kidney were higher for ducks dying during the study than for euthanized ducks. Liver weights were unaffected. Selenium accumulated in soft tissues approximately in proportion to dietary concentrations. Selenium concentrations in tissues of all ducks that died were different from those of surviving ducks in the 0, 10, and 20 ppm groups, but were not different from those of surviving ducks in the 40 ppm group. Proposed diagnostic criteria for fatal chronic selenosis were derived from body weight, macroscopic abnormalities, organ weights, and concentrations of selenium in the liver. Proposed diagnostic criteria for non-fatal chronic selenosis were derived from body weight, plumage condition, macroscopic abnormalities, concentrations of selenium in the liver, reproductive failure, and alterations of blood and tissue chemistries. Lead or dioxin poisoning have diagnostic criteria most similar to selenium toxicosis.

  8. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study.

    PubMed

    Galan-Chilet, Inmaculada; Tellez-Plaza, Maria; Guallar, Eliseo; De Marco, Griselda; Lopez-Izquierdo, Raul; Gonzalez-Manzano, Isabel; Carmen Tormos, M; Martin-Nuñez, Gracia M; Rojo-Martinez, Gemma; Saez, Guillermo T; Martín-Escudero, Juan C; Redon, Josep; Javier Chaves, F

    2014-09-01

    The role of selenium exposure in preventing chronic disease is controversial, especially in selenium-repleted populations. At high concentrations, selenium exposure may increase oxidative stress. Studies evaluating the interaction of genetic variation in genes involved in oxidative stress pathways and selenium are scarce. We evaluated the cross-sectional association of plasma selenium concentrations with oxidative stress levels, measured as oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8-oxo-7,8-dihydroguanine (8-oxo-dG) in urine, and the interacting role of genetic variation in oxidative stress candidate genes, in a representative sample of 1445 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.76 µg/L. In fully adjusted models the geometric mean ratios for oxidative stress biomarker levels comparing the highest to the lowest quintiles of plasma selenium levels were 0.61 (0.50-0.76) for GSSG/GSH, 0.89 (0.79-1.00) for MDA, and 1.06 (0.96-1.18) for 8-oxo-dG. We observed nonlinear dose-responses of selenium exposure and oxidative stress biomarkers, with plasma selenium concentrations above ~110 μg/L being positively associated with 8-oxo-dG, but inversely associated with GSSG/GSH and MDA. In addition, we identified potential risk genotypes associated with increased levels of oxidative stress markers with high selenium levels. Our findings support that high selenium levels increase oxidative stress in some biological processes. More studies are needed to disentangle the complexity of selenium biology and the relevance of potential gene-selenium interactions in relation to health outcomes in human populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues.

    PubMed

    Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco

    2013-09-01

    Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Selenium.

    PubMed

    Barceloux, D G

    1999-01-01

    The 4 natural oxidation states of selenium are elemental selenium (0), selenide (-2), selenite (+4), and selenate (+6). Inorganic selenate and selenite predominate in water whereas organic selenium compounds (selenomethionine, selenocysteine) are the major selenium species in cereal and in vegetables. The principal applications of selenium include the manufacture of ceramics, glass, photoelectric cells, pigments, rectifiers, semiconductors, and steel as well as use in photography, pharmaceutical production, and rubber vulcanizing. High concentrations of selenium in surface and in ground water usually occur in farm areas where irrigation water drains from soils with high selenium content (Kesterson Reservoir, California) or in lakes receiving condenser cooling water from coal-fired electric power plants (Belews Lake, North Carolina). For the general population, the primary pathway of exposure to selenium is food, followed by water and air. Both selenite and selenate possess substantial bioavailability. However, plants preferentially absorb selenates and convert them to organic compounds. Aquatic organisms (e.g., bivalves) can accumulate and magnify selenium in the food chain. Selenium is an essential component of glutathione peroxidase, which is an important enzyme for processes that protect lipids in polyunsaturated membranes from oxidative degradation. Inadequate concentrations of selenium in the Chinese diet account, at least in part, for the illness called Keshan disease. Selenium deficiency occurs in the geographic areas where Balkan nephropathy appears, but there is no direct evidence that selenium deficiency contributes to the development of this chronic, progressive kidney disease. Several lines of scientific inquiry suggest that an increased risk of cancer occurs as a result of low concentrations of selenium in the diet; however, insufficient evidence exists at the present time to recommend the use of selenium supplements for the prevention of cancer. The toxicity of most forms of selenium is low and the toxicity depends on the chemical form of selenium. The acute ingestion of selenious acid is almost invariably fatal, preceded by stupor, hypotension, and respiratory depression. Chronic selenium poisoning has been reported in China where changes in the hair and nails resulted from excessive environmental exposures to selenium. Garlic odor on the breath is an indication of excessive selenium exposure as a result of the expiration of dimethyl selenide. The US National Toxicology Program lists selenium sulfide as an animal carcinogen, but there is no evidence that other selenium compounds are carcinogens.

  11. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Increasing evidence suggests that high selenium levels are associated with diabetes and other cardiometabolic risk factors. OBJECTIVES: We evaluated the association of serum selenium concentrations with fasting plasma glucose, glycosylated hemoglobin levels, and diabetes in the most rec...

  12. Overwinter survival of mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed diets supplemented with 0, 10, 20, 40, or 80 g/g selenium in the form of selenomethionine. Mortality in each of these treatments was 0, 10, 25, 95, and 100%, respectively, during a 16-week exposure that started in November. After one week of treatment, body weights were significantly depressed by the 20, 40, and 80-ug/g selenium treatments, but not by 10 :g/g selenium. Four weeks after being returned to an untreated diet, the body weight of birds fed 20 ug/g selenium had increased to the point of being statistically inseparable from the weight of controls. Signs of selenium poisoning in the dead included severe emaciation, mottling of the liver, empty gizzard, and the presence of a yellowish fluid around some organs. Concentrations of selenium in blood were related to dietary treatments, but mortality was not clearly related to a threshold concentration of selenium in blood.

  13. Occupational tellurium exposure and garlic odour.

    PubMed

    Berriault, C J; Lightfoot, N E

    2011-03-01

    Few studies have considered garlic odour as a socially important outcome of occupational tellurium (Te) exposure or concurrent exposures, and most known guidelines focus on other signs and symptoms (e.g. weight loss and somnolence). This study considers workers exposed to tellurium and selenium (Se) at an Ontario, Canada silver refinery. To establish the relation of urinary tellurium concentrations to reporting garlic odour, while considering other work-related factors such as concurrent urinary selenium concentrations. Historical surveillance records of urinary analyses for tellurium and selenium concentrations (μmol Te or Se/mol creatinine in urine) and symptom self-reports were used. Records were available from December 1986 to June 2002. Logistic regression models were fitted using age at sampling, tellurium and selenium urine concentration and duration of employment. Individual main effects were age adjusted and the final model was fitted for tellurium and selenium urine concentration and duration of employment. Urinary tellurium concentration was significantly associated with garlic odour reporting (odds ratio = 1.74, 95% confidence interval 1.01-2.97, P < 0.05). Furthermore, the likelihood of reporting garlic odour rose as workers reached urinary tellurium concentrations >1 μmol/mol creatinine. Tellurium urinary concentrations of <1 μmol/mol creatinine appear to limit, but not eliminate, the likelihood of reporting garlic odour. Future studies should consider the effect of concurrent selenium exposure as well as other workplace factors and hygiene.

  14. Assessment of selenium nutritional status of school-age children from rural areas of China in 2002 and 2012.

    PubMed

    Liu, X; Piao, J; Li, M; Zhang, Y; Yun, C; Yang, C; Yang, X

    2016-03-01

    To assess the selenium nutritional status of 3458 school-age children recruited from rural areas using the China Nutrition and Health Survey 2002 and 2012 (CNHS 2002 and CNHS 2012). The serum selenium concentration was determined by high-resolution inductively coupled plasma mass spectrometry. The prevalence of dietary selenium intake insufficiency was calculated according to the formula suggested by and the estimated average requirements of the new Chinese Dietary Reference Intakes. The percentage of low selenium was based on the cutoff values with a serum selenium concentration below the threshold limit of clinical importance in coronary and cardiovascular diseases (<45 μg/l) and in abnormal physiological functions (<60 μg/l). The overall median serum selenium concentration was 64.3 μg/l in the CNHS 2002 and 74.2 μg/l in the CNHS 2012. The median calculated dietary selenium intake was 26.7 μg/day in the CNHS 2002 and 33.2 μg/day in the CNHS 2012 together with a 61.1% and 52.8% dietary selenium intake insufficiency in the CNHS 2002 and in the CNHS 2012. In addition, the percentages of low selenium (<45 μg/l and <60 μg/l) were 25.1 and 43.8% in the CNHS 2002 but 9.4 and 25.6% in the CHNS 2012. The selenium nutritional status of school-age children was significantly improved in the CNHS 2012 versus the CNHS 2002. However, the health risk for selenium malnutrition in school-age children remains a potential problem affecting children's health.

  15. Groundwater quality and the relation between pH values and occurrence of trace elements and radionuclides in water samples collected from private wells in part of the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.

  16. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    USGS Publications Warehouse

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the different units, with medians that range from about 2.4 to 4.0 mg/L. Median whole-water phosphorus concentrations for the different Lake Andes units range from 0.2 to 0.5 mg/L, and decrease downstream through Lake Andes. Median selenium concentrations are substantially lower for Andes Creek (3 ?g/L (micrograms per liter)) than for the other tributary stations (34, 18, and 7 ?g/L). Median selenium concentrations for the lake stations (ranging from less than 1 to 2 ?g/L) are substantially lower than tributary stations. The pesticides 2,4-D and atrazine were the most commonly detected pesticides in Lake Andes. Median concentrations for 2,4-D for Lake Andes range from 0.07 to 0.11 ?g/L; the median concentration for Owens Bay is 0.04 ?g/L. Median concentrations for atrazine for Lake Andes range from 0.2 to 0.4 ?g/L; the median concentration for Owens Bay is less than 0.1 ?g/L. Concentrations of both 2,4-D and atrazine are largest for the most upstream part of Lake Andes that is most influenced by tributary inflow. Median suspended-sediment concentrations for Lake Andes tributaries range from 22 to 56 mg/L. Most of the suspended sediment transported in the Lake Andes tributaries consists of particles less than 63 ?m (micrometers) in diameter. Concentrations of most constituents in bottom sediments generally had similar ranges and medians for the Lake Andes tributaries. However, Andes Creek generally had lower concentrations of several metals. For Lake Andes, medians and ranges for most constituents generally were similar among the different units. However, selenium concentrations tended to be higher in the upstream part of the lake, and generally decreased downstream. Results of vertical sediment cores collected from a single site in the South Unit of Lake Andes in October 2000 indicate that selenium loading to Lake Andes increased during the period 1952 through 2000. Choteau Creek has a drainage area of 619 mi2. In the upstream part of the basin, Chotea

  17. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population.

    PubMed

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik; Debrabant, Birgit; Nybo, Mads; Cold, Søren; Hegedüs, Laszlo

    2015-06-01

    Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake. The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast or matching yeast-based placebo tablets (n=126). A total of 361 participants, equally distributed across treatment groups, completed the 5-year intervention period. Plasma samples were analyzed for selenium and serum samples for TSH, free triiodothyronine (FT3), and free thyroxine (FT4) at baseline, and after 6 months, and 5 years of supplementation. Plasma selenium concentrations increased significantly and dose-dependently in treatment groups receiving selenium (P<0.001). Serum TSH and FT4 concentrations decreased significantly and dose-dependently by 0.066 mIU/l (P=0.010) and 0.11 pmol/l (P=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared with placebo, by decreasing serum TSH and FT4 concentrations. Based on these findings, selenium supplementation is not warranted under conditions of marginal selenium deficiency. However, a role for selenium supplementation in the treatment of autoimmune thyroid diseases is still unresolved. © 2015 European Society of Endocrinology.

  18. [The selenium haemostasis during experimental anaphylaxis reaction in rats treated with reduced glutathione and selenium enriched spirulina].

    PubMed

    Golubkina, N A; Mazo, V K; Gmoshinskiĭ, I V; Zorin, S N; Tambiev, A Kh; Kirikova, N N

    2000-01-01

    The main events caused by anaphilaxis in selenium haemostasis in rats include significant increase of selenium excretion with urine (6.36 +/- 1.18 nM Se/18 h., n = 10, compared with 1.72 +/- 0.38 nM Se/18 h., n = 10) and decrease of selenium plasma/selenium erythrocytes ratio from 0.939 to 0.791. Reduced glutathione (G-SH) administration led to 1.5-fold decrease of plasma selenium level and 1.3-fold increase of selenium concentration in intestinal walls of sensitized rats (r = -0.720, P < 0.001). Chromatographic separation of plasma proteins showed that intragastric intubation of G-SH to sensibilized rats significantly decreased the protein P content and did not influence the concentration of Se-GSHPx, thus indicating the local selenium acceptor role of G-SH. G-SH administration did not influence the intestinal permeability in sensitised rats while use of complex additive: G-SH and selenium enriched spirulina--normalized the latter parameter and the ratio of protein P/Se-GSHPx in plasma.

  19. Concentrations of metals and trace elements in blood of spectacled and king eiders in northern Alaska, USA

    USGS Publications Warehouse

    Wilson, Heather M.; Petersen, Margaret R.; Troy, Declan

    2004-01-01

    In 1996, we measured concentrations of arsenic, barium, cadmium, lead, mercury, and selenium in blood of adult king (Somateria spectabilis) and spectacled (Somateria fischeri) eiders and duckling spectacled eiders from northern Alaska, USA. Concentrations of selenium exceeded background levels in all adults sampled and 9 of 12 ducklings. Mercury was detected in all adult spectacled eiders and 5 of 12 ducklings. Lead concentrations were above the clinical toxicity threshold in one duckling (0.64 ppm) and two adult female spectacled eiders (0.54 and 4.30 ppm). Concentrations of cadmium and mercury varied between species; barium, cadmium, mercury, and selenium varied between sexes. In female spectacled eiders, mercury concentrations increased during the breeding season and barium and selenium levels decreased through the breeding season. Selenium declined at 2.3 ± 0.9% per day and levels were lower in spectacled eiders arriving to the breeding grounds in northern Alaska than in western Alaska. The variation in selenium levels between breeding areas may be explained by differences in timing and routes of spring migration. Most trace elements for which we tested were not at levels currently considered toxic to marine birds. However, the presence of mercury and elevated lead in ducklings and adult female spectacled eiders suggests these metals are available on the breeding grounds.

  20. Marine redox structure at the culmination of the Great Oxidation Event: Insights from the Zaonega Formation, Karelia, Russia

    NASA Astrophysics Data System (ADS)

    Kipp, M.; Lepland, A.; Buick, R.

    2017-12-01

    The availability of dissolved oxygen is thought to have been the dominant throttle on the evolution and diversification of eukaryotic life during the Proterozoic Eon [1]. In the mid-Proterozoic, during the interval that presaged the rise of eukaryotes to ecological dominance, oxygen scarcity is thought to have relegated eukaryotic organisms to slivers of oxygenated shallow oceans [2]. However, recent work has suggested that oxygen levels rose dramatically during the early Paleoproterozoic Great Oxidation Event before crashing to the low levels of the mid-Proterozoic [3]. Evidence from selenium isotopes in shales [4] and iodate concentrations in carbonates [5] has even suggested that wide swathes of continental shelves were oxic enough to support eukaryotic organisms at this time. How oxic though, and for how long, remain poorly constrained. Here we present new selenium geochemical data from the Zaonega Formation of Karelia, Russia that can help resolve those questions. Previous work has proposed that the Zaonega Formation, and correlative Francevillian Series of Gabon, record the establishment of an oxygen-rich atmosphere at the culmination of the GOE [6]. Our selenium isotope dataset provides a test for this hypothesis, and can also be used to assess the preservation of the geochemical signatures in the Zaonega Formation. These data point to regional redox fluctuations, but due to the short marine residence time of selenium, extrapolating these results to global phenomena remains difficult. 1. Reinhard, et al (2016) PNAS 2. Planavsky, et al (2014) Science 3. Bekker and Holland (2012) EPSL 4. Kipp, et al (2017) PNAS 5. Hardisty, et al (2014) Geology 6. Kump, et al (2011) Science

  1. Influence of HIV infection and the use of antiretroviral therapy on selenium and selenomethionine concentrations and antioxidant protection.

    PubMed

    Watanabe, Lígia Moriguchi; Barbosa Júnior, Fernando; Jordão, Alceu Afonso; Navarro, Anderson Marliere

    2016-01-01

    The aim of the present study was to evaluate whether HIV infection and antiretroviral therapy (ART) use are associated with oxidative stress, concentrations of selenium and selenomethionine, and antioxidant protection. Individuals were classified as HIV negatives: control group (CG; n = 40); HIV positives: group 1 (G1; taking ART for >5 y, n = 40) and group 2 (G2; taking ART for <5 y, n = 40). Plasma and erythrocyte selenium, selenomethionine, glutathione (GSH), glutathione peroxidase activity (GPX), and malondialdehyde (MDA) were evaluated. Selenium deficiency (plasma selenium 45 μg/L) was not observed in any of the participants, and plasma selenium in CG (69.4 μg/L) was lower than in G1 and G2 (88.4 and 72.5 μg/L, respectively). G1 and G2 showed higher concentrations of MDA and GPX and lower concentration of GSH than CG. Multiple linear regression analysis indicated an association of MDA, GPX, and GSH with HIV status. CG participants showed higher concentrations of selenomethionine than G1 and G2 individuals and we observed a significant negative correlation between the concentration of selenomethionine and the use of ART. Prolonged ART use seems to increase the selenium in plasma, but influences the reduction of selenomethionine. HIV infection was associated with increased oxidative stress and appears to affect in protective activity of GPX. Finally, more studies are required to further address the importance of selenium and selenometabolites in the pathogenesis of infection and metabolism of HIV-positive individuals in prolonged use of ART. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    PubMed

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Erythrocyte selenium concentration predicts intensive care unit and hospital mortality in patients with septic shock: a prospective observational study

    PubMed Central

    2014-01-01

    Introduction Selenoenzymes can modulate the extent of oxidative stress, which is recognized as a key feature of septic shock. The pathophysiologic role of erythrocyte selenium concentration in patients with septic shock remains unknown. Therefore, the objective of this study was to evaluate the association of erythrocyte selenium concentration with glutathione peroxidase (GPx1) activity, GPx1 polymorphisms and with ICU and hospital mortality in septic shock patients. Methods This prospective study included all patients older than 18 years with septic shock on admission or during their ICU stay, admitted to one of the three ICUs of our institution, from January to August 2012. At the time of the patients’ enrollment, demographic information was recorded. Blood samples were taken within the first 72 hours of the patients’ admission or within 72 hours of the septic shock diagnosis for determination of selenium status, protein carbonyl concentration, GPx1 activity and GPx1 Pro198Leu polymorphism (rs 1050450) genotyping. Results A total of 110 consecutive patients were evaluated. The mean age was 57.6 ± 15.9 years, 63.6% were male. Regarding selenium status, only erythrocyte selenium concentration was lower in patients who died in the ICU. The frequencies for GPx1 Pro198Leu polymorphism were 55%, 38% and 7% for Pro/Pro, Pro/Leu and Leu/Leu, respectively. In the logistic regression models, erythrocyte selenium concentration was associated with ICU and hospital mortality in patients with septic shock even after adjustment for protein carbonyl concentration and acute physiology and chronic health evaluation II score (APACHE II) or sequential organ failure assessment (SOFA). Conclusions Erythrocyte selenium concentration was a predictor of ICU and hospital mortality in patients with septic shock. However, this effect was not due to GPx1 activity or Pro198Leu polymorphism. PMID:24887198

  4. Heavy metals in Franklin`s gull tissues: Age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    1999-04-01

    The authors examined the concentrations of lead, cadmium, chromium, mercury, manganese, and selenium in feathers, liver, kidney, heart, brain, and breast muscle of Franklin`s gulls (Larus pipixcan) nesting in northwestern Minnesota, USA, in 1994. Between 16% (chromium) and 71% (selenium, manganese) of the variation in metal concentrations was explained by tissue and age, except for selenium and arsenic, which were only explained by tissue. Of 35 possible differences (seven metals in five tissues), 24 significant age-related differences were found in Franklin`s gulls, with young generally having lower concentrations of metals in all of their tissues than adults. A notable exceptionmore » was the liver; young had significantly higher concentrations of selenium, chromium, manganese, and arsenic than did adults. Three notable findings were the following: young had significantly higher concentrations of selenium, chromium, manganese, and arsenic in their liver than did adults; young had 30 times as much chromium in the liver than adults; and adults had greatly elevated concentrations of cadmium in feathers, kidney, and liver.« less

  5. Toxicity of selenium and other elements in food organisms to razorback sucker larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.; Weston, L. Ken; McDonald, Susan F.

    2002-01-01

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4×4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 μg/l, in reference food (brine shrimp) was 3.2 μg/g, at Horsethief was 1.6 μg/l in water and 6.0 μg/g in zooplankton, at Adobe Creek was 3.4 μg/l in water and 32 μg/g in zooplankton, and at Walter Walker was 13 μg/l in water and 52 μg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of ≥4.6 μg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  6. Serum levels of Selenium and C-reactive protein in comatose patients with severe traumatic brain injury during the first week of hospitalization: case-control study.

    PubMed

    Belatar, Bahia; Laidi, Fatna; Abidi, Abdelah El; Eljaoudi, Rachid; Mamouch, Fouzia; Kabbaj, Saad; Maazouzi, Wajdi

    2018-01-01

    Mortality and morbidity related to traumatic brain injuries still remain high in patients. Many authors reported the importance of Selenium in maintaining the integrity of brain functions. This fact is supported by clinical evidence that therapy with selenium supplementation could help patients suffering from brain disorders like neurodegenerative diseases. The aim of our study was to assess the relationship between Selenium concentration in serum and evolution of comatose patients with severe traumatic brain injury, in the first week of admission, and the correlation between selenium and C-reactive protein. This case-control study was conducted with 64 comatose patients with TBI, in the Department of Anesthesiology and Reanimation, IbnSina University Hospital and Hospital of specialties in Rabat-Morocco, and healthy volunteers recruited in Blood transfusion center of Rabat. Blood sampling was collected from TBI patients, in the first week (3h after admission and each 48h during one week), and from healthy volunteers one time. Concentration of Se in serum was determined by electrochemical atomic absorption spectrometry. Statistical analysis was performed using Statistical software (SPSS) and the cases and controls were compared using the Mann-Whitney U test. A P-value < 0.05 was considered to be statistically significant. Comparison selenium concentration in the first day (D0), third day (D2) and fifth day according to the death and survival statue in patients did not show statistical significance (p > 0.05). Selenium concentration of D0 in patients and Selenium concentration in control group also did not show statistical significance (p > 0.05). Similarly, we did not report a correlation between selenium and C-reactive protein. According to our data selenium and CRP may not play a role in progression of coma state in patients with severe traumatic brain injury.

  7. Toxicity of selenium and other elements in food organisms to razorback sucker larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2002-09-24

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4 x 4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 microg/l, in reference food (brine shrimp) was 3.2 microg/g, at Horsethief was 1.6 microg/l in water and 6.0 microg/g in zooplankton, at Adobe Creek was 3.4 microg/l in water and 32 microg/g in zooplankton, and at Walter Walker was 13 microg/l in water and 52 microg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of >or=4.6 microg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  8. Production of Selenoprotein P (Sepp1) by Hepatocytes Is Central to Selenium Homeostasis*

    PubMed Central

    Hill, Kristina E.; Wu, Sen; Motley, Amy K.; Stevenson, Teri D.; Winfrey, Virginia P.; Capecchi, Mario R.; Atkins, John F.; Burk, Raymond F.

    2012-01-01

    Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions. PMID:23038251

  9. Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters.

    PubMed

    LeBlanc, Kelly L; Wallschläger, Dirk

    2016-06-21

    Laboratory algal cultures exposed to selenate were shown to produce and release selenomethionine, selenomethionine oxide, and several other organic selenium metabolites. Released discrete organic selenium species accounted for 1.6-13.1% of the selenium remaining in the media after culture death, with 1.3-6.1% of the added selenate recovered as organic metabolites. Analysis of water from an industrially impacted river collected immediately after the death of massive annual algal blooms showed that no selenomethionine or selenomethionine oxide was present. However, other discrete organic selenium species, including a cyclic oxidation product of selenomethionine, were observed, indicating the previous presence of selenomethionine. Industrial biological treatment systems designed for remediation of selenium-contaminated waters were shown to increase both the concentration of organic selenium species in the effluent, relative to influent water, and the fraction of organic selenium to up to 8.7% of the total selenium in the effluent, from less than 1.1% in the influent. Production and emission of selenomethionine, selenomethionine oxide, and other discrete organic selenium species were observed. These findings are discussed in the context of potentially increased selenium bioavailability caused by microbial activity in aquatic environments and biological treatment systems, despite overall reductions in total selenium concentration.

  10. Geochemistry of soils and shallow ground water, with emphasis on arsenic and selenium, in part of the Garrison Diversion Unit, North Dakota, 1985-87

    USGS Publications Warehouse

    Goolsby, D.A.; Severson, R.C.; Wilson, S.A.; Webber, Kurt

    1989-01-01

    The Garrison Diversion Unit is being constructed to transfer water from the Missouri River (Lake Sakakawea) to areas in east-central and southeastern North Dakota for expanded irrigation of agricultural lands. During initial investigations of irrigation return flows in 1969-76, the potential effects of toxic elements were considered, and the U.S. Bureau of Reclamation concluded these elements would have no adverse effects on streams receiving return flows. After the development of problems associated with selenium in irrigation return flows in the western San Joaquin Valley, Calif., in 1985, the U.S. Bureau of Reclamation initiated additional studies, including an investigation conducted in cooperation with the U.S. Geological Survey, to assist in collecting and evaluating trace-element data. Also, in 1986, with the passage of the Garrison Diversion Unit Reformulation Act, Congress mandated that soil surveys be conducted to determine if there are "*** soil characteristics which might result in toxic or hazardous irrigation return flows."In order to address this issue, an investigation was conducted during 1995-87 by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation to determine the occurrence and distribution of arsenic, selenium, and other trace elements in the soils of six potential irrigation areas along the Garrison Diversion Unit route and in the James River basin. A total of 165 soil samples were collected and analyzed for total concentrations of as many as 42 elements, including arsenic and selenium. In addition, 81 of the samples were analyzed for water-extractable concentrations of 14 elements, including arsenic and selenium, to aid in determining the extent to which they might be mobilized by the irrigation water. In a detailed phase of the investigation, 376 water samples were collected in one of the six potential irrigation areas, the west Oakes irrigation area. Most of these samples were analyzed for arsenic, selenium, and as many as 28 other elements.Results of the investigation indicate that soils in the potential irrigation areas contain small concentrations of arsenic, selenium, and other trace elements. The geometric mean concentrations of total arsenic and selenium were 4.15 and 0.13 milligrams per kilogram, respectively, which are considerably smaller than those measured in the western San Joaquin Valley, Calif., and soils from other areas in the western United States. Water-extractable concentrations of arsenic and selenium, determined on 1:5 soil to water extractions, generally were less than 10 percent of the total concentrations. The geometric mean water-extractable concentrations for both elements were 0.02 milligram per kilogram or less.The median and maximum concentrations of all constituents and properties indicative of irrigation drainage were tens to hundreds of times smaller in the Oakes test area drains than in western San Joaquin Valley drains. The maximum arsenic concentration in ground-water samples was 44 micrograms per liter, and the median concentration was 4 micrograms per liter. The maximum concentration in drain samples was 11 micrograms per liter, and the median concentration was 3 micrograms per liter.Only 22 percent of the water samples collected from wells in the Oakes test area contained detectable concentrations (1 microgram per liter or more) of selenium. However, selenium was detected in 63 percent of the samples collected from sites on drains. The greater incidence of detection of selenium in the drain samples is interpreted as an effect of the more oxidizing environment of the drains, which are about 8 feet below land surface near the top of the water table. The median selenium concentration in the drain samples, however, was only 1 microgram per liter, and the maximum concentration in 63 drain samples was 4 micrograms per liter. For comparison, the median selenium concentrations reported for drains in the western San Joaquin Valley, Calif., ranged from 84 to 320 micrograms per liter. Mater from two observation wells had the largest selenium concentrations (8 and 9 micrograms per liter) measured during the investigation. These were the only two samples that exceeded any of the water-quality regulations, standards, or criteria for selenium. Mercury and boron were the only other trace elements that exceeded standards and criteria. The median concentration of mercury was less than 0.1 microgram per liter, and the maximum concentration was 0.8 microgram per liter. The chronic freshwater-aquatic-life criterion for mercury (0.012 microgram per liter) is about 10 times less than the laboratory detection limit and is derived from bioconcentration factors based on methylmercury. Two boron samples exceeded the irrigation criteria of 750 micrograms per liter. Comparisons with criteria and standards indicate that the concentrations of trace elements determined in samples from wells and drains in the Oakes test area during this investigation should not adversely affect human and aquatic life or irrigated crops. The data collected indicate that the soils and ground water in the Garrison Diversion Unit contain small concentrations of trace elements, including arsenic and selenium. Based on a detailed study of soils and ground water in the west Oakes irrigation area, however, there is no evidence that expanded irrigation will mobilize these elements in concentrations large enough to adversely affect aquatic life in the James River ecosystem, based on current regulations, standards, and criteria. Data are not currently available to make definitive statements about selenium concentrations in ground water in Garrison Diversion Unit irrigation areas other than the west Oakes Irrigation area. Data available on total and water-extractable selenium concentrations in soils t however, indicate that concentrations in ground water would be similar to those determined in the west Oakes irrigation area. Plans have been developed to sample ground water in the additional areas.

  11. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  12. The Effect on Selenium Concentrations of a Randomized Intervention with Fish and Mussels in a Population with Relatively Low Habitual Dietary Selenium Intake

    PubMed Central

    Outzen, Malene; Tjønneland, Anne; Larsen, Erik H.; Andersen, Klaus K.; Christensen, Jane; Overvad, Kim; Olsen, Anja

    2015-01-01

    Selenium status of the Danish population is below that assumed optimal for the suggested protective effects against chronic diseases, including certain cancers. Fish and shellfish are important dietary sources of selenium in Denmark. We investigated the effect of increased fish and mussel intake on selenium blood concentrations in a population with relatively low habitual dietary selenium intake. We randomly assigned 102 healthy men and women (all non-smokers) aged 48–76 years to an intervention group (n = 51) or a control group (n = 51). Intervention participants received 1000 g fish and mussels/week for 26 weeks (~50 μg selenium/day). Controls received no intervention. Non-fasting blood samples were taken and whole blood selenium was determined using inductively coupled plasma-mass spectrometry (ICP-MS), and plasma selenoprotein P (SelP) was determined by high performance liquid chromatography coupled to ICP-MS. All available observations were included in linear multiple regression analysis to evaluate the effect of the intervention. The difference in mean change for intervention compared with control persons was 14.9 ng/mL (95% CI: 10.2, 19.7) for whole blood selenium, and 7.0 ng/mL (95% CI: 3.1, 10.9) for plasma SelP (Weeks 0–26). Selenium concentrations were significantly increased after 26 weeks of intervention, albeit to a lower degree than expected. PMID:25599275

  13. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    PubMed

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, P<0.01), higher percentages of iAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, P<0.01) but lower percentages of monomethylarsonate (MMA) in serum (15.5 vs 18.8%, P<0.01) ans dimethylarsinate acid (DMA) in urine (65.1 vs 69.8%, P<0.01). Subjects with lower selenium concentrations in serum (<50 microg/l) had a stronger tendency to the risk of skin lesions than individual having higher selenium concentrations [odd ratio (OR), 7.3; 95% confidence interval (95% CI), 1.5-35.7; P=0.014]. This OR estimation was confirmed in those subjects having higher ratios of As/Se in urine and serum, with OR as high as 10.3 and 3.8 respectively. Lower serum selenium status (<50 microg/l) is significantly correlated to the arsenic-associated skin lesions in the arsenic exposed population. The accumulation of iAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  14. Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex

    2016-01-01

    We conducted a detailed assessment of the maternal transfer of mercury and selenium to eggs in three bird species (n = 107 parents and n = 339 eggs), and developed predictive equations linking contaminant concentrations in eggs to those in six tissues of the mother (blood, muscle, liver, kidney, breast feathers, and head feathers). Mercury concentrations in eggs were positively correlated with mercury concentrations in each of the mother's internal tissues (R2 ≥ 0.95), but generally not with feathers. For each species, the proportion of mercury transferred to eggs decreased as mercury concentrations in the mother increased. At the same maternal mercury concentration, the proportion of mercury transferred to eggs differed among species, such that Forster's tern (Sterna forsteri) and black-necked stilt (Himantopus mexicanus) females transferred more methylmercury to their eggs than American avocet (Recurvirostra americana) females. Selenium concentrations in eggs also were correlated with selenium concentrations in the mother's liver (R2 = 0.87). Furthermore, mercury and selenium concentrations in tern eggs were positively correlated with those in the father (R2 = 0.84). Incubating male terns had 21% higher mercury concentrations in blood compared to incubating females at the same egg mercury concentration. We provide equations to predict contaminant concentrations in eggs from each of the commonly sampled bird tissues.

  15. Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs.

    PubMed

    Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex

    2016-03-01

    We conducted a detailed assessment of the maternal transfer of mercury and selenium to eggs in three bird species (n = 107 parents and n = 339 eggs), and developed predictive equations linking contaminant concentrations in eggs to those in six tissues of the mother (blood, muscle, liver, kidney, breast feathers, and head feathers). Mercury concentrations in eggs were positively correlated with mercury concentrations in each of the mother's internal tissues (R(2) ≥ 0.95), but generally not with feathers. For each species, the proportion of mercury transferred to eggs decreased as mercury concentrations in the mother increased. At the same maternal mercury concentration, the proportion of mercury transferred to eggs differed among species, such that Forster's tern (Sterna forsteri) and black-necked stilt (Himantopus mexicanus) females transferred more methylmercury to their eggs than American avocet (Recurvirostra americana) females. Selenium concentrations in eggs also were correlated with selenium concentrations in the mother's liver (R(2) = 0.87). Furthermore, mercury and selenium concentrations in tern eggs were positively correlated with those in the father (R(2) = 0.84). Incubating male terns had 21% higher mercury concentrations in blood compared to incubating females at the same egg mercury concentration. We provide equations to predict contaminant concentrations in eggs from each of the commonly sampled bird tissues. Published by Elsevier Ltd.

  16. Dissolved constituents including selenium in waters in the vicinity of Kesterson National Wildlife Refuge and the west grassland, Fresno and Merced Counties, California

    USGS Publications Warehouse

    Presser, T.S.; Barnes, Ivan

    1985-01-01

    Analyses were made for dissolved constituents including selenium (Se) in waters associated with subsurface agricultural drainage from the western San Joaquin Valley of California. In the vicinity of Kesterson National Wildlife Refuge and the Grassland wetlands area Se was found to be mobilized in water. As a consequence of this mobility and bioaccumulation in the aquatic food chain, Se occurred in waterfowl at levels toxic enough to cause deformities and deaths. Se concentrations in sumps that collect subsurface agricultural drainage water and inflows to drains sampled, ultimately leading into Kesterson National Wildlife Refuge and the Grassland, ranged from 84 to 4200 microgram/L (ug/L) Se. Levels of Se were reduced in the San Luis Drain flowing into Kesterson National Wildlife Refute to approximately 300 ug/L Se and in three of the drains sampled flowing into the Grassland to approximately 50 ug/L Se. Serious effects on water fowl habitat were caused by both these levels. Se contents of algal mats and salt crusts from evaporation ponds of the San Luis Drain contained up to parts per million Se. Total ecosystem assessment of Se may be necessary for the evaluation of the toxicity of Se to the environment. No other trace element reported exceeded the various criteria for water at the level of magnitude of Se. Other dissolved constituents and the isotopic ratios of oxygen and hydrogen were analyzed to elucidate water types, reaction states of the aqueous solution with respect to minerals, and the origin of mixed waters. These data will be used later to evaluate the geologic source of Se. Methods used for collection and analysis are described and documented. Hydrologic effects were found to be complex. Preliminary indications from wells are also given. A historical sequence is adhered to and other data from the study area which serve as a guide to the toxicity of Se are included. (Author 's abstract)

  17. Increased plasma selenium is associated with better outcomes in children with systemic inflammation.

    PubMed

    Leite, Heitor Pons; Nogueira, Paulo Cesar Koch; Iglesias, Simone Brasil de Oliveira; de Oliveira, Susyane Vieira; Sarni, Roseli Oselka Saccardo

    2015-03-01

    The aim of this study was to assess the effects of changes in plasma selenium on the outcome of critically ill children. Plasma selenium was prospectively measured in 99 children with acute systemic inflammation. The exposure variables were selenium level on admission and on day 5 of stay in the intensive care unit (ICU) and the difference in selenium concentrations between day 5 post-admission and the ICU admission (delta selenium). Selenium was given only as part of enteral diets. Age, malnutrition, red cell glutathione peroxidase-1 activity, serum C-reactive protein, Pediatric Index of Mortality 2, and Pediatric Logistic Organ Dysfunction scores were analyzed as covariates. The outcome variables were ventilator-free days, ICU-free days, and 28-d mortality. Plasma selenium concentrations increased from admission (median 23.4 μg/L, interquartile range 12.0-30.8) to day 5 (median 25.1 μg/L, interquartile range 16.0-39.0; P = 0.018). After adjustment for confounding factors, a delta selenium increase of 10 μg/L was associated with reductions in ventilator days (1.3 d; 95% confidence interval [CI], 0.2-2.3; P = 0.017) and ICU days (1.4 d; 95% CI, 0.5-2.3; P < 0.01). Delta selenium >0 was associated with decreased 28-d mortality on a univariate model (odds ratio, 0.67; 95% CI, 0.46-0.97; P = 0.036). The mean daily selenium intake (6.82 μg; range 0-48.66 μg) was correlated with the increase in selenium concentrations on day 5. An increase in plasma selenium is independently associated with shorter times of ventilation and ICU stay in children with systemic inflammation. These findings raise the hypothesis that selenium supplementation could be beneficial in children with critical illnesses. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Determination of selenium in fish from designated critical habitat in the Gunnison River, Colorado, March through October, 2012

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.

    2013-01-01

    This report presents results for the summer 2012 sam-pling of muscle plugs from common carp (Cyprinus carpio), bonytail chub (Gila elegans), Colorado pikeminnow (Ptycho-cheilus lucius), and razorback suckers (Xyrauchen texanus) inhabiting critical habitat in the Gunnison River in western Colorado. Total selenium in fish muscle plugs was determinedby instrumental neutron activation analysis. Total selenium concentrations (range and mean ± standard deviation) in micrograms per gram dry weight were 6.0 to 10.7, 8.8 ± 1.3 for common carp; 2.9 to 8.7, 5.6 ± 2.4 for Colorado pikemin-now; and 1.4 to 7.3, 3.4 ± 2.7 for razorback sucker. The selenium concentration for one bonytail chub sample was 0.8 micrograms per gram dry weight. Selenium concentrations in muscle plugs from 1 Colorado pikeminnow and 12 common carp exceeded the 8 micrograms per gram dry weight toxicity guideline for selenium in fish muscle tissue.

  19. Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis

    PubMed Central

    Yang, Zhen; Yan, Chonghuai; Liu, Gang; Niu, Yixin; Zhang, Weiwei; Lu, Shuai; Li, Xiaoyong; Zhang, Hongmei; Ning, Guang; Fan, Jiangao; Qin, Li; Su, Qing

    2016-01-01

    Selenium exposure can induce liver insulin resistance and increased liver triglyceride concentrations in animals, which may link to an increased risk of nonalcoholic fatty liver disease (NAFLD). However, epidemiological studies investigating the association between elevated plasma selenium levels and NAFLD were not available. We aimed to investigate the association of selenium levels with the prevalence of NAFLD in Chinese adults. This was a cross-sectional study of 8550 Chinese adults aged 40 yr or older in Shanghai, China. A questionnaire, anthropometric measurements, and laboratory tests were conducted. NAFLD was diagnosed by hepatic ultrasound after the exclusion of alcohol abuse and other liver diseases. Plasma selenium concentration was assessed by inductively coupled plasma mass spectroscopy. The median concentration of plasma selenium was 213.0 μg/L. Elevated plasma selenium levels were associated with higher triglycerides, LDL-cholesterol, fasting plasma glucose, post-loading plasma glucose, A1c, HOMA-IR, as well as ALT, AST and γ-GT (all P < 0.05). The odds ratios were substantially higher for NAFLD (OR = 1.54, 95% CI 1.13–2.18) in the highest selenium quartile compared with those in the lowest quartile, after adjustment for potential cofounder. The results of this study provided epidemiological evidence that increased plasma selenium level is associated with elevated prevalence of NAFLD. PMID:27853246

  20. Selenium impacts on razorback sucker, Colorado: Colorado River III. Larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-06-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 microg/L from 24-Road, 0.9 microg/L from Horsethief, 5.5 microg/L from Adobe Creek, and 10.7 microg/L from the North Pond. Selenium in dietary items averaged 2.7 microg/g in brine shrimp, 5.6 microg/g in zooplankton from Horsethief east wetland, 20 microg/g in zooplankton from Adobe Creek, and 39 microg/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of 4.6 microg/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  1. The Association between Selenium and Lipid Levels: a Longitudinal Study in Rural Elderly Chinese

    PubMed Central

    Chen, Chen; Jin, Yinlong; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Liang, Chaoke; Ma, Feng; Su, Liqin; Liu, Jingyi; Bian, Jianchao; Li, Ping; Gao, Sujuan

    2014-01-01

    A protective effect of selenium on lipid levels has been reported in populations with relatively low selenium status. However, recent studies found that high selenium exposure may lead to adverse cardiometabolic effects, particularly in selenium-replete populations. We examined the associations of selenium status with changes in lipid levels in a 7-year follow up of an elderly Chinese cohort including participants from selenium-deplete areas. Study population consisted of 140 elderly Chinese aged 65 or older with nail selenium levels measured at baseline (2003-2005). Lipid concentrations were measured in fasting blood samples collected at baseline and the 7-year follow-up (2010-2012). Analysis of covariance (ANCOVA) models was used to determine the association between baseline selenium status and changes in lipid levels from baseline to follow-up adjusting for other covariates. Mean (±standard deviation) baseline selenium concentration was 0.41±0.2mg/kg. In prospective analysis, we found that individuals in the highest selenium quartile group showed 1.11 SD decrease on total-cholesterol (p<0.001), 0.41 SD increase on HDL-cholesterol (p<0.001) and 0.52 SD decrease on triglyceride after 7 years than those in the lowest selenium quartile group. The similar trends were seen with significant lipids changes in the 2th and 3th quartile groups. Selenium has modestly beneficial effects on blood lipid levels in a population with relatively low selenium status. Our result suggests adequate dietary selenium intake as a potential prevention strategy for lowering lipid levels in selenium deplete populations. PMID:25263027

  2. Selenium accumulation in captive American kestrels (Falco sparverius) fed selenomethionine and naturally incorporated selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, J.T.; Wilson, B.W.; Santolo, G.M.

    1998-12-01

    Male-female pairs of kestrels were maintained for 11 weeks on diets containing 5 or 9 ppm selenium (Se) (dry weight) as seleno-L-methionine, or naturally incorporated Se in the form of mammals collected at Kesterson Reservoir, CA, USA. Selenium concentrations in blood and excreta of male and female kestrels within groups were similar. Near-maximal mean Se concentrations in blood were observed after the 5th week of treatment in the seleno-L-methionine-treated kestrels, and an approximately 1:1 ratio was observed between maximal blood concentrations and dietary concentrations. All treatment groups exhibited reduction of Se concentration in excreta, but not in blood, to baselinemore » values 4 weeks after treatment ended. No birds were observed to exhibit signs of general illness or Se toxicity during the study.« less

  3. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2016-01-01

    Over the last 50 years, compelling evidence has accumulated on the beneficial role of selenium in human health. In the present study, different proteins were evaluated as reducing agents for the eco-friendly synthesis of selenium nanoparticles from an aqueous solution of sodium selenite. This method is a simple, low cost green synthesis alternative to chemical synthesis. The high conversion of selenium ions to selenium nanoparticles (SeNPs) was achieved by a reaction mixture of 0.1 g bovine serum albumin and 0.1 g sodium selenite at a reaction temperature of 121°C for 20 min duration. The selenium nanoparticles were characterized by fourier transform infrared (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The FTIR spectral bands were sharp with strong absorption peaks at 1649 and 1551 cm(-1). SEM analysis of the synthesized selenium nanoparticles clearly showed the spherical shape with an average size ranging from 500 to 600 nm. The toxicity of SeNPs was evaluated using zebrafish embryos as a model system. SeNPs induced malformations in zebrafish embryos in a concentration-dependent manner. Selenium nanoparticles at 15-25 μg/ml concentration caused pericardial edema, tail malformation and decrease in heart rate in zebrafish embryos. Treatments with lower concentrations did not alter the heart rate or display any heart abnormalities. This study underlines the importance of identifying optimal SeNP concentration that could have potential therapeutic applications.

  4. Selenium: Element of Contrasts

    ERIC Educational Resources Information Center

    Goldsmith, Robert H.; And Others

    1978-01-01

    Reports on recent findings concerning the impact of selenium on human and animal health. In its various oxidation states, different concentrations of selenium may be helpful or detrimental to human health. (CP)

  5. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    PubMed

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  7. Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Anteau, M.J.; Afton, A.D.; Wooten, D.E.

    2003-01-01

    Previous research reported that concentrations of selenium in the livers of 88a??95% of lesser scaup from locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA were either elevated (10a??33 A?g/g dry weight [dw]) or in the potentially harmful range (>33 A?g/g dw). In order to determine the geographic extent of these high selenium concentrations, we collected lesser scaup in Louisiana, Arkansas, Illinois, Minnesota, Wisconsin, and Manitoba and analyzed the livers for 19 trace elements. We found that all trace element concentrations, except for selenium, generally were low. Arsenic, which usually is not detected in liver samples, was detected in Louisiana and may be related to past agricultural usages. Chromium, which also is not usually detected, was only present in lesser scaup from Arkansas and may be related to fertilizer applications. Cadmium and mercury concentrations did not differ among locations and concentrations were low. Selenium concentrations in Arkansas (geometric mean=4.2 A?g/g dw) were significantly lower than those in Louisiana (10.7 A?g/g dw), Illinois (10.5 A?g/g dw), and Minnesota (8.0 A?g/gdw); concentrations in Wisconsin and Manitoba were intermediate (6.6 and 6.5 A?g/g dw). About 25% of lesser scaup livers contained elevated selenium concentrations; however, none were in the harmful range. We concluded that selenium concentrations in lesser scaup in the Mississippi Flyway are elevated in some individuals, but not to the extent that has been documented in the industrial portions of the Great Lakes.

  8. Selenium and Human Health: Witnessing a Copernican Revolution?

    PubMed

    Jablonska, Ewa; Vinceti, Marco

    2015-01-01

    In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.

  9. Concentrations of selenium, mercury, and lead in blood of emperor geese in western Alaska

    USGS Publications Warehouse

    Franson, J.C.; Schmutz, J.A.; Creekmore, L.H.; Fowler, A.C.

    1999-01-01

    We found up to 10 ppm wet weight of selenium in blood samples collected from emperor geese (Chen canagica) on their breeding grounds on the Yukon‐Kuskokwim Delta in western Alaska, USA. Incubating adult females captured in late May through mid‐June 1997 had significantly higher concentrations of selenium in their blood (mean = 5.60 ppm) than adult females captured during wing molt in late July 1996 (mean = 2.78 ppm). Females that nested early or were in good body condition had higher concentrations of selenium in their blood than did other nesting females. Blood samples from 4 of 29 goslings had detectable levels of selenium (mean = 0.14 ppm). Our findings suggest that emperor geese are exposed to more selenium in the marine environment of their wintering and staging areas on the Alaska Peninsula than on the breeding grounds. The highest concentration of mercury found in the blood of emperor geese was 0.24 ppm. One bird had a blood lead concentration of 0.67 ppm, but 82% had no detectable lead in their blood, suggesting that lead exposure from the ingestion of lead shot poses little threat for emperor geese in western Alaska, contrary to findings reported for sympatric spectacled eiders (Somateria fischeri).

  10. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency

    PubMed Central

    2014-01-01

    Introduction Low plasma selenium concentrations are frequent in critically ill patients. However, whether this is due to systemic inflammation, a deficient nutritional state or both is still not clear. We aimed to determine the factors associated with low plasma selenium in critically ill children while considering the inflammatory response and nutritional status. Method A prospective study was conducted in 173 children (median age 34 months) with systemic inflammatory response who had plasma selenium concentrations assessed 48 hours after admission and on the 5th day of ICU stay. The normal reference range was 0.58 μmol/L to 1.6 μmol/L. The outcome variable was ‘low plasma selenium’, which was defined as plasma selenium values below the distribution median during this period. The main explanatory variables were age, malnutrition, sepsis, C-reactive protein (CRP), and clinical severity scores. The data were analyzed using a Binomial Generalized Estimating Equations model, which includes the correlation between admission and 5th day responses. Results Malnutrition and CRP were associated with low plasma selenium. The interaction effect between these two variables was significant. When CRP values were less than or equal to 40 mg/L, malnutrition was associated with low plasma selenium levels (odds ratio (OR) = 3.25, 95% confidence interval (CI) 1.39 to 7.63, P = 0.007; OR = 2.98, 95% CI 1.26 to 7.06, P = 0.013; OR = 2.49, 95% CI 1.01 to 6.17, P = 0.049, for CRP = 10, 20 and 40 mg/L, respectively). This effect decreased as CRP concentrations increased and there was loose significance when CRP values were >40 mg/L. Similarly, the effect of CRP on low plasma selenium was significant for well-nourished patients (OR = 1.13; 95% CI 1.06 to 1.22, P <0.001) but not for the malnourished (OR = 1.03; 95% CI 0.99 to 1.08, P = 0.16). Conclusions There is a significant interaction between the magnitude of the inflammatory response and malnutrition on low plasma selenium. This interaction should be considered when interpreting plasma concentrations as an index of selenium status in patients with systemic inflammation as well as in the decision on selenium supplementation. PMID:24886623

  11. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Milliard, S.P.

    1988-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley, CA, were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones - the alluvial fan and basin trough. Selenium concentrations are significantly (α = 0.05) higher in the groundwater of the alluvial-fan zone than in that of the basin-trough zone. The concentrations of oxyanion trace elements were significantly correlated (α = 0.05) with groundwater salinity, but the correlations between selenium and salinity and between molybdenum and salinity were significantly different (α = 0.05) in the alluvial-fan geologic zone compared with those in the basin-trough geologic zone. The evidence suggests that the main factors affecting selenium concentrations in the shallow groundwater are the degree of groundwater salinity and the geologic source of the alluvial soil material.

  12. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 1. Hematological and population level assessment.

    PubMed

    Lohner, T W; Reash, R J; Willet, V E; Rose, L A

    2001-11-01

    Sunfish were collected from coal ash effluent-receiving streams and Ohio River watershed reference sites to assess the effects of exposure to low-level selenium concentrations. Selenium, copper, and arsenic concentrations were statistically higher in tissue samples from exposed fish than in reference fish. Leukopenia, lymphocytosis, and neutropenia were evident in exposed fish and were indicative of metal exposure and effect. White blood cell counts and percent lymphocyte values were significantly correlated with liver selenium concentrations. Plasma protein levels were significantly lower in exposed fish than in fish from the Ohio River, indicating that exposed fish may have been nutritionally stressed. Condition factors for fish from the ash pond-receiving streams were the same as, or lower than, those of fish from the reference sites. There was no evidence that the growth rate of fish in the receiving streams differed from that of fish in the reference streams. Despite liver selenium concentrations which exceeded reported toxicity thresholds and evidence of significant hematological changes, there were no significant differences in fish condition factors, liver-somatic indices, or length-weight regressions related to selenium.

  13. Selenium stable isotope investigation into selenium biogeochemical cycling in a lacustrine environment: Sweitzer Lake, Colorado.

    PubMed

    Clark, Scott K; Johnson, Thomas M

    2010-01-01

    We present a comprehensive set of Se concentration and isotope ratio data collected over a 3-yr period from dissolved, sediment-hosted, and organically bound Se in a Se-contaminated lake and littoral wetland. Median isotope ratios of these various pools of Se spanned a narrow isotopic range (delta80/76Se(SRM-3149)) = 1.14-2.40 per thousand). Selenium (VI) reduction in the sediments is an important process in this system, but its isotopic impact is muted by the lack of direct contact between surface waters and reduction sites within sediments. This indicates that using Se isotope data as an indicator of microbial or abiotic Se oxyanion reduction is not effective in this or other similar systems. Isotopic data suggest that most Se(IV) in the lake originates from oxidation of organically bound Se rather than directly through Se(VI) reduction. Mobilization of Se(VI) from bedrock involves only a slight isotopic shift. Temporally constant isotopic differences observed in Se(VI) from two catchment areas suggest the potential for tracing Se(VI) from different source areas. Phytoplankton isotope ratios are close to those of the water, with a small depletion in heavy isotopes (0.56 per thousand). Fish tissues nearly match the phytoplankton, being only slightly depleted in the heavier isotopes. This suggests the potential for Se isotopes as migration indicators. Volatile, presumably methylated Se was isotopically very close to median values for phytoplankton and macrophytes, indicating a lack of isotopic fractionation during methylation.

  14. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food.

    PubMed

    Hart, D J; Fairweather-Tait, S J; Broadley, M R; Dickinson, S J; Foot, I; Knott, P; McGrath, S P; Mowat, H; Norman, K; Scott, P R; Stroud, J L; Tucker, M; White, P J; Zhao, F J; Hurst, R

    2011-06-15

    The retention and speciation of selenium in flour and bread was determined following experimental applications of selenium fertilisers to a high-yielding UK wheat crop. Flour and bread were produced using standard commercial practices. Total selenium was measured using inductively coupled plasma-mass spectrometry (ICP-MS) and the profile of selenium species in the flour and bread were determined using high performance liquid chromatography (HPLC) ICP-MS. The selenium concentration of flour ranged from 30ng/g in white flour and 35ng/g in wholemeal flour from untreated plots up to >1800ng/g in white and >2200ng/g in wholemeal flour processed from grain treated with selenium (as selenate) at the highest application rate of 100g/ha. The relationship between the amount of selenium applied to the crop and the amount of selenium in flour and bread was approximately linear, indicating minimal loss of Se during grain processing and bread production. On average, application of selenium at 10g/ha increased total selenium in white and wholemeal bread by 155 and 185ng/g, respectively, equivalent to 6.4 and 7.1μg selenium per average slice of white and wholemeal bread, respectively. Selenomethionine accounted for 65-87% of total extractable selenium species in Se-enriched flour and bread; selenocysteine, Se-methylselenocysteine selenite and selenate were also detected. Controlled agronomic biofortification of wheat crops for flour and bread production could provide an appropriate strategy to increase the intake of bioavailable selenium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  16. Involvement of Superoxide Dismutases in the Response of Escherichia coli to Selenium Oxides

    PubMed Central

    Bébien, Magali; Lagniel, Gilles; Garin, Jérôme; Touati, Danièle; Verméglio, André; Labarre, Jean

    2002-01-01

    Selenium can provoke contrasting effects on living organisms. It is an essential trace element, and low concentrations have beneficial effects, such as the reduction of the incidence of cancer. However, higher concentrations of selenium salts can be toxic and mutagenic. The bases for both toxicity and protection are not clearly understood. To provide insights into these mechanisms, we analyzed the proteomic response of Escherichia coli cells to selenate and selenite treatment under aerobic conditions. We identified 23 proteins induced by both oxides and ca. 20 proteins specifically induced by each oxide. A striking result was the selenite induction of 8 enzymes with antioxidant properties, particularly the manganese and iron superoxide dismutases (SodA and SodB). The selenium inductions of sodA and sodB were controlled by the transcriptional regulators SoxRS and Fur, respectively. Strains with decreased superoxide dismutase activities were severely impaired in selenium oxide tolerance. Pretreatment with a sublethal selenite concentration triggered an adaptive response dependent upon SoxRS, conferring increased selenite tolerance. Altogether, our data indicate that superoxide dismutase activity is essential for the cellular defense against selenium salts, suggesting that superoxide production is a major mechanism of selenium toxicity under aerobic conditions. PMID:11872706

  17. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia.

    PubMed

    Barwick, M; Maher, W

    2003-10-01

    In this study the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass ecosystem in Lake Macquarie, NSW, Australia, to determine if biomagnification of these trace metals is occurring and if they reach concentrations that pose a threat to the resident organisms or human consumers. Selenium was found to biomagnify, exceeding maximum permitted concentrations for human consumption within carnivorous fish tissue, the highest trophic level examined. Selenium concentrations measured within carnivorous fish were also above those shown to elicit sub-lethal effects in freshwater fish. As comparisons are made to selenium concentrations known to effect freshwater fish, inferences must be made with caution. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium, zinc and lead concentrations were below concentrations shown to elicit adverse responses in biota. Copper concentrations within crustaceans M. bennettae and P. palagicus were found to exceed maximum permitted concentrations for human consumption. It is likely that copper concentrations within these species were accumulated due to the essential nature of this trace metal for many species of molluscs and crustaceans. Arsenic showed some evidence of biomagnification. Total arsenic concentrations are similar to those found in other uncontaminated marine ecosystems, thus arsenic concentrations are unlikely to cause adverse effects to aquatic organisms. Inorganic arsenic concentrations are below maximum permitted concentrations for human consumption.

  18. Selenium Biomarkers in Prostate Cancer Cell Lines and Influence of Selenium on Invasive Potential of PC3 Cells

    PubMed Central

    Hendrickx, Wouter; Decock, Julie; Mulholland, Francis; Bao, Yongping; Fairweather-Tait, Susan

    2013-01-01

    Dietary selenium intake has been linked to reduced cancer risk, however the underlying mechanisms are yet unknown. We question the commonly used practice of applying selenium concentrations found in human blood to in vitro studies and evaluated the utility of biomarkers, e.g., glutathione peroxidase 1 (GPx1) and thioredoxin reductase 1 (TrxR1), to determine appropriate selenium levels for in vitro work. Furthermore, we investigated the effects of Se-methylselenocysteine (SeMSC) on prostate cancer cell migration and invasion. After excluding cytotoxicity, we demonstrated that prostate cancer cell lines respond differently to selenium treatment as observed through biomarker assessment. We found that the maximum levels of GPx1 activity and TrxR1 expression were reached at lower selenium concentrations in LNCaP compared to PC3 cells, and PC3 compared to DU145 cells. Therefore the use of selenium concentrations extrapolated from human studies for in vitro work may be applicable when further informed using a readout of selenium repletion including use of selenium responsive biomarkers. No effect on PC3 migration or invasion was observed after long term SeMSC treatment; however a slight increase was found when treatment was solely administered during the assay. The opposite could be observed when cells were cultured under low serum conditions, with a significant increase in migration upon long term but not upon acute SeMSC treatment. To conclude, these findings indicate that it is imperative to study the selenium sensitivity of an in vitro model preferably using biomarkers before investigating any effects on biological processes, or before comparing models. PMID:24066278

  19. Protective effect of selenium on lung cancer in smelter workers.

    PubMed Central

    Gerhardsson, L; Brune, D; Nordberg, I G; Wester, P O

    1985-01-01

    A possible protective effect of selenium against lung cancer has been indicated in recent studies. Workers in copper smelters are exposed to a combination of airborne selenium and carcinogens. In this study lung tissue concentrations of selenium, antimony, arsenic, cadmium, chromium, cobalt, lanthanum, and lead from 76 dead copper smelter workers were compared with those of 15 controls from a rural area and 10 controls from an urban area. The mean exposure time for the dead workers was 31.2 years, and the mean retirement time after the end of exposure 7.2 years. Lung cancer appeared in the workers with the lowest selenium lung tissue levels (selenium median value 71 micrograms/kg wet weight), as compared with both the controls (rural group, median value 110; urban group, median value 136) and other causes of death among the workers (median value 158). The quotient between the metals and selenium was used for comparison: a high quotient indicating a low protective effect of selenium and vice versa. The median values of the quotients between antimony, arsenic, cadmium, lanthanum, lead, chromium, and cobalt versus selenium were all numerically higher among the cases of lung cancer, the first five significantly higher (p less than 0.05) in 28 of the 35 comparisons between the lung cancer group and all other groups of smelter workers and controls. The different lung metal concentrations for each person were weighted according to their carcinogenic potency (Crx4 + Asx3 + Cdx2 + Sbx1 + Cox1 + Lax1 + Pbx1) against their corresponding selenium concentrations. From these calculations the protective effect of selenium was even more pronounced. PMID:4041390

  20. Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair.

    PubMed

    Seppänen, K; Kantola, M; Laatikainen, R; Nyyssönen, K; Valkonen, V P; Kaarlöpp, V; Salonen, J T

    2000-06-01

    The purpose of this study was to evaluate the effect of four months of yeast-based selenium supplementation on selenium and mercury status in subjects with low serum selenium. The study was carried out in Rakvere, Estonia. Pubic hair mercury, serum selenium and blood selenium concentrations in 23 subjects (serum selenium < 90 micrograms/l) were investigated before and after selenium supplementation. Thirteen subjects were randomized into the selenium supplementation group and ten into the placebo group. The selenium supplementation group received daily 100 micrograms of selenomethionine. Selenium supplementation reduced pubic hair mercury level by 34% (p = 0.005) and elevated serum selenium by 73% and blood selenium by 59% in the supplemented group (p < 0.001 for both). The study indicates that mercury accumulation in pubic hair can be reduced by dietary supplementation with small daily amounts of organic selenium in a short range of time.

  1. A dietary assessment of selenium risk to aquatic birds on a coal mine affected stream in Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayland, M.; Casey, R.; Woodsworth, E.

    In this article, we present the results of a dietary-based assessment of the risk that selenium may pose to two aquatic bird species, the American Dipper (Cinclus mexicanus) and the Harlequin Duck (Histrionicus histrionicus), on one of the coal mine-affected streams, the Gregg River. The study consisted of (1) a literature-based toxicity assessment, (2) simulation of selenium exposure in the diets and eggs of the two species, and (3) a risk assessment that coupled information on toxicity and exposure. Diet and egg selenium concentrations associated with a 20% hatch failure rate were 6.4 and 17 {mu} g {center_dot} g{sup -1}more » dry wt, respectively. Simulated dietary selenium concentrations were about 2.0-2.5 {mu} g {center_dot} g{sup -1} higher on the Gregg River than on reference streams for both species. When simulated dietary concentrations were considered, hatch failure rates on the Gregg River were predicted to average 12% higher in American Dippers and 8% higher in Harlequin Ducks than at reference streams. Corresponding values were only 3% for both species when predicted egg concentrations were used. Elevated levels of selenium in insects in some of the reference streams were unexpected and raised a question as to whether aquatic birds have evolved a higher tolerance level for dietary selenium in these areas.« less

  2. Selenium impacts on razorback sucker, Colorado: Colorado River: III. Larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.

    2005-01-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 μg/L from 24-Road, 0.9 μg/L from Horsethief, 5.5 μg/L from Adobe Creek, and 10.7 μg/L from the North Pond. Selenium in dietary items averaged 2.7 μg/g in brine shrimp, 5.6 μg/g in zooplankton from Horsethief east wetland, 20 μg/g in zooplankton from Adobe Creek, and 39 μg/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of ⩾4.6 μg/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  3. Selenium mobilization during a flood experiment in a contaminated wetland: Stewart Lake Waterfowl Management Area, Utah

    USGS Publications Warehouse

    Naftz, D.L.; Yahnke, J.; Miller, J.; Noyes, S.

    2005-01-01

    Constructed and natural wetlands can accumulate elevated levels of Se; however, few data are available on cost-effective methods for remobilization and removal of Se from these areas. A field experiment was conducted to assess the effectiveness of flooding on the removal of Se from dry surface sediments. The 83-m2 flood-experiment plot contained 10 monitoring wells, a water-quality minimonitor (continuous measurement of pH, specific conductance, water temperature, and dissolved O2), a down-hole Br electrode, and 2 pressure transducers. Flooding was initiated on August 27, 2002, and a Br tracer was added to water delivered through a pipeline to the flood plot during the first 1.2 h. Standing water depth in the flood plot was maintained at 0.3 m through September 1, 2002. The Br tracer data indicate a dual porosity system that includes fracture (mud cracks) and matrix flow components. Mean vertical water velocities for the matrix flow component were estimated to range from 0.002 to 0.012 m/h. Dissolved (less than 0.45 ??m) Se increased from pre-flood concentrations of less than 10 ??g/L to greater than 800 ??g/L during flooding in samples from deep (2.0 m below land surface) ground water. Selenium concentrations exceeded 5500 ??g/L in samples from shallow (0.8 m below land surface) ground water. Ratios of Se to Br in water samples indicate that Se moved conservatively during the experiment and was derived from leaching of near-surface sediments. Cumulative Se flux to the deep ground water during the experiment ranged from 9.0 to 170 mg/m2. Pre- and post-flood surface soil sampling indicated a mean Se flux of 720 mg/m2 through the top 15 cm of soil. Ground-water samples collected 8 months after termination of the flood experiment contained Se concentrations of less than 20 ??g/L. The minimonitor data indicate a rapid return to chemically reducing conditions in the deep ground water, limiting the mobility of the Se dissolved in the water pulse introduced during the flood experiment. Ratios of Se to Br in deep ground-water samples collected 8 months after the experiment confirmed the removal of Se from the aqueous phase. Based on the median Se flux rate estimated during the experiment of 0.65 mg/h/m2 (n = 52), 7 flooding cycles would be required to meet the 4 ??g/g remediation goal in surface soils from the SLWMA wetland.

  4. Selenium and mining in the Powder River Basin, Wyoming: Phase III - a preliminary survey of selenium concentrations in deer mice (Peromyscus maniculatus) livers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raisbeck, M.L.; Vance, G.F.; Steward, D.G.

    1995-09-01

    Samples of liver tissue from deer mice trapped on not-yet-mined areas and reclaimed areas at five surface coal mines in the Powder River Basin of northeastern Wyoming were analyzed for selenium. The overall mean concentration of selenium in wet weight liver tissue was 1.685 ppm. The mean value from not-yet-mined areas was 1.437 ppm; the mean value from reclaimed areas was 1.910 ppm (significant at p<0.1016). When one not-yet-mined outlier was removed, significance rose to p<0.0004. Mine-to-mine comparison of samples stratified by type (that is, by not-yet-mined or reclaimed), showed average tissue concentrations from the reclaimed area of Mine 1more » were also higher (p<0.0143) then not-yet-mined area samples at Mine 1. No statistically significant differences were found between mines for samples from not-yet-mined areas, and no statistically significant differences were found between Mines 2, 3, 4, and 5 for samples from reclaimed areas. Multiple analysis of variance using the factors: site (mine) and type (not-yet-mined or reclaimed) was not significantly significant (p<0.2115). Simple linear regression showed that selenium concentrations in dry tissue could easily be predicted from wet tissue selenium (r2=0.9775), demonstrating that percent water in the samples was relatively constant. Animal body weight in general was not a predictor for either wet or dry tissue selenium concentrations, but was related to body weight at the higher tissue concentrations of selenium encountered in samples from the reclaimed area at Mine 1. Mouse body weights at Mine 1 were higher on the reclaimed area than mouse body weights from the not-yet-mined area.« less

  5. Environmental Implications of Excessive Selenium: A Review

    Treesearch

    A. Dennis Lemly

    1997-01-01

    Selenium is a trace element that is normally present in surface waters at concentrations of about 0.1 - 0.3 parts-per-billion; Lemly, 1985a. In slightly greater amounts, i. e., l-5 ppb, it can bioaccumulate in aquatic food chains and become a concentrated dietary source of selenium that is highly toxic to fish and wildlife (Lemly and Smith, 1987; Lemly, 1993a). Dietary...

  6. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin

    USGS Publications Warehouse

    May, T.W.; Fairchild, J.F.; Petty, J.D.; Walther, M.J.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.

    2008-01-01

    The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin. ?? Springer Science+Business Media B.V. 2007.

  7. Species richness and selenium accumulation of plants in soils with elevated concentration of selenium and salinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.Z.; Wu, L.

    1991-12-01

    Field studies were conducted in soils with elevated concentrations of Se and salinity at Kesterson, California. Biomass distribution, species richness, and selenium accumulation of plants were examined for two sites where 15 cm of surface soil was removed and replaced with fill dirt in the fall of 1989, and two sites were native soil cover. The Se concentrations in the top 15 cm of fill dirt ranged from undetectable to 36 ng g-1. For the native soil sites, Se levels ranged from 75 to 550 ng g-1. Soil Se concentrations below 15 cm ranged from 300 to 700 ng g-1more » and were comparable between the fill dirt and the native soil sites. At least 20 different plant species were brought into the two fill dirt sites with the top soil. Avena fatua L., Bassia hyssopifolia Kuntze Rev. Gen. Pl., Centaurea solstitialis L., Erysimum officianale L., Franseria acanthicarpa Cav. Icon., and Melilotus indica (L.) All. contributed over 60% of the total biomass. Only 5 species were found in the native soil sites, and salt grass (Distichlis spicata L.) was the predominant species and accounted for over 80% of the total biomass. Between 1989 and 1990, two years after the surface soil replacement, the two fill dirt sites had a 70% reduction in species richness. Plant tissue selenium concentrations were found to be quite variable between plant species and between sites of sampling. At the fill dirt sites, the plant species with deep root systems accumulated greater amounts of selenium than the shallow-rooted species. The soil selenium concentration of the field soil had no negative effect on pollen fertility, seed set, and seed germination for the plant species examined. However, seedling growth was impaired by the soil selenium concentrations. This suggests that a selection pressure of soil Se concentration may have been imposed on plant species such as M. indica in an early stage of its life cycle.« less

  8. Glutathione peroxidase response in tissues of rats fed diets containing fish protein concentrate prepared from shark flesh of known mercury and selenium contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, S.J.; Andrewartha, K.A.

    1981-01-01

    Studies have been reported using experimental animals and synthetic diets containing selenium and mercury compounds to demonstrate detoxification of mercury by selenium. The mechanism of detoxification remains obscure. Most experiments have involved the use of high levels of both elements and relied on the observation of gross symptoms. The measurement of enzyme systems may be useful in detecting effects of mercury at a lower, subclinical level and in elucidating the biochemistry of mercury/selenium interactions. The activity of the selenoenzyme glutathione peroxidase (GSH-Px) in rats is dependent on dietary selenium and attempts have been made to use this enzyme as anmore » indicator of mercury/selenium interactions. The research described in this paper was designed to investigate the effect of mercury, in the form and amounts which occur naturally in seafood, on the availability of selenium at levels approximating the nutritional requirement. In anticipation of mercury lowering the GSH-Px response a range of selenium concentrations was used, from nutritional deficiency to three times the nutritional requirement.« less

  9. Selenium deficiency in cattle associated with Heinz bodies and anemia.

    PubMed

    Morris, J G; Cripe, W S; Chapman, H L; Walker, D F; Armstrong, J B; Alexander, J D; Miranda, R; Sanchez, A; Sanchez, B; Blair-West, J R

    1984-02-03

    Cattle grazing St. Augustine grass growing on peaty muck soils in the Florida Everglades developed anemia associated with the presence of Heinz bodies and suboptimal concentrations of selenium in blood. Selenium supplementation corrected the anemia, prevented Heinz body formation, increased the body weight of cows and calves, and elevated blood selenium. This may be the first recorded example of widespread anemia in a population due to selenium deficiency.

  10. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna.

    PubMed

    Yamashita, Yumiko; Yamashita, Michiaki

    2010-06-11

    A novel selenium-containing compound having a selenium atom in the imidazole ring, 2-selenyl-N(alpha),N(alpha),N(alpha)-trimethyl-L-histidine, 3-(2-hydroseleno-1H-imidazol-5-yl)-2-(trimethylammonio)propanoate, was identified from the blood and other tissues of the bluefin tuna, Thunnus orientalis. The selenium-containing compound was purified from the tuna blood in several chromatographic steps. High resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the exact mass of the [M+H](+) ion of the compound was 533.0562 and the molecular formula was C(18)H(29)N(6)O(4)Se(2). Its gross structure was assigned as the oxidized dimeric form of an ergothioneine selenium analog in which the sulfur of ergothioneine is replaced by selenium. Therefore, we named this novel selenium-containing compound "selenoneine." By speciation analysis of organic selenium compounds using liquid chromatography inductively coupled plasma mass spectrometry, selenoneine was found widely distributed in various tissues of the tuna, with the highest concentration in blood; mackerel blood contained similar levels. Selenoneine was measurable at 2-4 orders of magnitude lower concentration in a limited set of tissues from squid, tilapia, pig, and chicken. Quantitatively, selenoneine is the predominant form of organic selenium in tuna tissues.

  11. Selenium accumulation in mammals exposed to contaminated California irrigation drainwater

    USGS Publications Warehouse

    Clark, D.R.

    1987-01-01

    In May 1984, 332 mammals of 10 species were collected at Kesterson Reservoir (San Joaquin Valley, Merced Co., CA), which had received selenium-laden irrigation drainwater, and at the nearby Volta Wildlife Area, which had not. The study concentrated on the California vole (Microtus californicus); 88 were taken at Kesterson, 89 at Volta. Mean selenium concentrations in livers were as much as 522 times higher at Kesterson. There were species-to-species differences at Kesterson; higher selenium concentrations occurred in carnivorous species and/or species that feed on foods closely linked to pond water. There were also pond-to-pond differences at Kesterson; drainwater historically was delivered to Ponds 1 and 2, where concentrations in 1984 were higher, with subsequent flow to other ponds, where they were lower. Whereas none of 50 adult female voles from Kesterson was pregnant, 12 of 41 (29%) from Volta were pregnant. However, this cessation of reproductive activity at Kesterson was probably not due to selenium toxicity but could have resulted because drying conditions at Kesterson forced voles to a seed diet earlier than at Volta. One malformation was found among five embryonic litters of three species from Kesterson. Mammals seem much less susceptible to selenium-induced embryonic abnormalities than birds. No adverse impacts of selenium on wild mammals were demonstrated; however, some sensitive species might have been extirpated from Kesterson before this study began. In addition, high concentrations in small mammal species at Kesterson may threaten predatory birds and mammals that feed on them, with the endangered San Joaquin kit fox (Vulpes macrotis mutica) of particular concern.

  12. Selected vitamins and essential elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: geographical variations and effect of animal population density.

    PubMed

    Hassan, Ammar Ali; Sandanger, Torkjel M; Brustad, Magritt

    2012-07-01

    Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat.

  13. Selected Vitamins and Essential Elements in Meat from Semi-Domesticated Reindeer (Rangifer tarandus tarandus L.) in Mid- and Northern Norway: Geographical Variations and Effect of Animal Population Density

    PubMed Central

    Hassan, Ammar Ali; Sandanger, Torkjel M.; Brustad, Magritt

    2012-01-01

    Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat. PMID:22852060

  14. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  15. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  16. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  17. The impact of GPX1 on the association of groundwater selenium and depression: a project FRONTIER study

    PubMed Central

    2013-01-01

    Background Prior animal model and human-based studies have linked selenium concentrations to decreased risk for depression; however, this work has not focused on household groundwater levels or specific depressive symptoms. The current study evaluated the link between groundwater selenium levels and depression. We also sought to determine if a functional polymorphism in the glutathione peroxidase 1 (GPX1) gene impacted this link. Methods We used a cross-sectional design to analyze data from 585 participants (183 men and 402 women) from Project FRONTIER, a study of rural health in West Texas. Residential selenium concentrations were estimated using Geospatial Information System (GIS) analyses. Linear regression models were created using Geriatric Depression Scale (GDS-30) total and subfactor scores as outcome variables and selenium concentrations as predictor variables. Analyses were re-run after stratification of the sample on GPX1 Pro198Leu genotype (rs1050454). Results Selenium levels were significantly and negatively related to all GDS and subfactor scores accounting for up to 17% of the variance beyond covariates. Selenium was most strongly protective against depression among homozygous carriers of the C allele at the Pro198Leu polymorphism of the GPX1 gene. Analyses also point towards a gene-environmental interaction between selenium exposure and GPX1 polymorphism. Conclusion Our results support the link between groundwater selenium levels and decreased depression symptoms. These findings also highlight the need to consider the genetics of the glutathione peroxidase system when examining this relationship, as variation in the GPX1 gene is related to depression risk and significantly influences the protective impact of selenium, which is indicative of a gene-environment interaction. PMID:23289525

  18. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort.

    PubMed

    Hughes, David J; Duarte-Salles, Talita; Hybsier, Sandra; Trichopoulou, Antonia; Stepien, Magdalena; Aleksandrova, Krasimira; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Affret, Aurélie; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verena; Kaaks, Rudolf; Boeing, Heiner; Bamia, Christina; Lagiou, Pagona; Peppa, Eleni; Palli, Domenico; Krogh, Vittorio; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; Bueno-de-Mesquita, Hendrik Bastiaan; Peeters, Petra H; Engeset, Dagrun; Weiderpass, Elisabete; Lasheras, Cristina; Agudo, Antonio; Sánchez, Maria-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Hemmingsson, Oskar; Wareham, Nicholas J; Khaw, Kay-Tee; Bradbury, Kathryn E; Cross, Amanda J; Gunter, Marc; Riboli, Elio; Romieu, Isabelle; Schomburg, Lutz; Jenab, Mazda

    2016-08-01

    Selenium status is suboptimal in many Europeans and may be a risk factor for the development of various cancers, including those of the liver and biliary tract. We wished to examine whether selenium status in advance of cancer onset is associated with hepatobiliary cancers in the EPIC (European Prospective Investigation into Cancer and Nutrition) study. We assessed prediagnostic selenium status by measuring serum concentrations of selenium and selenoprotein P (SePP; the major circulating selenium transfer protein) and examined the association with hepatocellular carcinoma (HCC; n = 121), gallbladder and biliary tract cancers (GBTCs; n = 100), and intrahepatic bile duct cancer (IHBC; n = 40) risk in a nested case-control design within the EPIC study. Selenium was measured by total reflection X-ray fluorescence, and SePP was determined by a colorimetric sandwich ELISA. Multivariable ORs and 95% CIs were calculated by using conditional logistic regression. HCC and GBTC cases, but not IHBC cases, showed significantly lower circulating selenium and SePP concentrations than their matched controls. Higher circulating selenium was associated with a significantly lower HCC risk (OR per 20-μg/L increase: 0.41; 95% CI: 0.23, 0.72) but not with the risk of GBTC or IHBC. Similarly, higher SePP concentrations were associated with lowered HCC risk only in both the categorical and continuous analyses (HCC: P-trend ≤ 0.0001; OR per 1.5-mg/L increase: 0.37; 95% CI: 0.21, 0.63). These findings from a large prospective cohort provide evidence that suboptimal selenium status in Europeans may be associated with an appreciably increased risk of HCC development. © 2016 American Society for Nutrition.

  19. Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice.

    PubMed

    Cao, Lei; Zhang, Li; Zeng, Huawei; Wu, Ryan Ty; Wu, Tung-Lung; Cheng, Wen-Hsing

    2017-10-01

    Background: The hierarchies of tissue selenium distribution and selenotranscriptomes are thought to critically affect healthspan and longevity. Objective: We determined selenium status and selenotranscriptomes in response to long-term dietary selenium deficiency and age in tissues of male and female mice. Methods: Weanling telomerase RNA component knockout C57BL/6 mice were fed a selenium-deficient (0.03 mg Se/kg) Torula yeast-based AIN-93G diet or a diet supplemented with sodium selenate (0.15 mg Se/kg) until age 18 or 24 mo. Plasma, hearts, kidneys, livers, and testes were collected to assay for selenotranscriptomes, selected selenoproteins, and tissue selenium concentrations. Data were analyzed with the use of 2-factor ANOVA (diet × age) in both sexes. Results: Dietary selenium deficiency decreased ( P ≤ 0.05) selenium concentrations (65-72%) and glutathione peroxidase (GPX) 3 (82-94%) and selenoprotein P (SELENOP) (17-41%) levels in the plasma of both sexes of mice and mRNA levels (9-68%) of 4, 4, and 12 selenoproteins in the heart, kidney, and liver of males, respectively, and 5, 16, and 14 selenoproteins, respectively, in females. Age increased selenium concentrations and SELENOP levels (27% and 30%, respectively; P ≤ 0.05) in the plasma of males only but decreased (12-46%; P < 0.05) mRNA levels of 1, 5, and 13 selenoproteins in the heart, kidney, and liver of males, respectively, and 6, 5, and 0 selenoproteins, respectively, in females. Among these mRNAs, selenoprotein H ( Selenoh ), selenoprotein M ( Selenom ), selenoprotein W ( Selenow ), methionine- R -sulfoxide reductase 1 ( MsrB1 ), Gpx1 , Gpx3 , thioredoxin reductase 1 ( Txnrd1 ), Txnrd2 , selenoprotein S ( Selenos ), selenoprotein F ( Selenof ), and selenoprotein O ( Selenoo ) responded in parallel to dietary selenium deficiency and age in ≥1 tissue or sex, or both. Dietary selenium deficiency upregulated (40-160%; P ≤ 0.05) iodothyronine deiodinase 2 ( Dio2 ) and selenoprotein N ( Selenon ) in the kidneys of males. Age upregulated (11-44%; P < 0.05) Selenon in the kidneys of males, selenoprotein K ( Selenok ) and selenoprotein I ( Selenoi ) in the kidneys of females, and Selenof and Selenok in the testes. Conclusions: These results illustrate tissue-specific sexual dimorphisms of selenium status and selenotranscriptomes because of dietary selenium deficiency and age. © 2017 American Society for Nutrition.

  20. Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women1

    PubMed Central

    Mao, Jinyuan; Vanderlelie, Jessica J; Perkins, Anthony V; Redman, Christopher WG; Ahmadi, Kourosh R; Rayman, Margaret P

    2016-01-01

    Background: Low selenium status in pregnancy has been associated with a number of adverse conditions. In nonpregnant populations, the selenium status or response to supplementation has been associated with polymorphisms in dimethylglycine dehydrogenase (DMGDH), selenoprotein P (SEPP1) and the glutathione peroxidases [cytosolic glutathione peroxidase (GPx1) and phospholipid glutathione peroxidase (GPx4)]. Objective: We hypothesized that, in pregnant women, these candidate polymorphisms would be associated with selenium status in early pregnancy, its longitudinal change, and the interindividual response to selenium supplementation at 60 μg/d. Design: With the use of stored samples and data from the United Kingdom Selenium in Pregnancy Intervention (SPRINT) study in 227 pregnant women, we carried out genetic-association studies, testing for associations between selenium status, its longitudinal change, and response to supplementation and common genetic variation in DMGDH (rs921943), SEPP1 (rs3877899 and rs7579), GPx1 (rs1050450) and GPx4 (rs713041). Selenium status was represented by the concentration of whole-blood selenium at 12 and 35 wk of gestation, the concentration of toenail selenium at 16 wk of gestation, and plasma glutathione peroxidase (GPx3) activity at 12 and 35 wk of gestation. Results: Our results showed that DMGDH rs921943 was significantly associated with the whole-blood selenium concentration at 12 wk of gestation (P = 0.032), which explained ≤2.0% of the variance. This association was replicated with the use of toenail selenium (P = 0.043). In unsupplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in whole-blood selenium from 12 to 35 wk of gestation (P = 0.005), which explained 8% of the variance. In supplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in GPx3 activity from 12 to 35 wk of gestation (P = 0.01), which explained 5.3% of the variance. Selenium status was not associated with GPx1, GPx4, or SEPP1 rs7579. Conclusions: In agreement with previous studies, we show that the genetic variant rs921943 in DMGDH is significantly associated with selenium status in United Kingdom pregnant women. Notably, our study shows that women who carry the SEPP1 rs3877899 A allele are better able to maintain selenium status during pregnancy, and their GPx3 activity increases more with supplementation, which suggests better protection from low selenium status. The SPRINT study was registered at www.isrctn.com as ISRCTN37927591. PMID:26675765

  1. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Vermejo Project area and the Maxwell National Wildlife Refuge, Colfax County, northeastern New Mexico, 1993

    USGS Publications Warehouse

    Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.

    1996-01-01

    Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other invertebrates. Concentrations of other elements were below their respective toxicity levels. Plants, invertebrates, fish, and fish fillets were collected and analyzed. These analyses were compared to diagnostic criteria and to each other to determine the extent of bioaccumulation of trace elements. Plants contained larger dry weight concentrations of aluminum, arsenic, boron, chromium, iron, lead, magnesium, manganese, nickel, and vanadium than invertebrates and fish. Adult brine flies, gathered from playas, contained larger geometric mean dry weight concentrations of boron, magnesium, and selenium than other invertebrates. Of all samples collected, the largest mercury concentrations were found in fish fillets, although these concentrations were below levels of concern. Mercury and selenium bioaccumulation was evident in various habitats of the study area. Biological samples from Natural playa, an endemic wetland, and Half playa, a playa that receives additional water through seepage and irrigation delivery canals, generally had elevated concentrations of boron, iron, magnesium, and selenium than samples from reservoir and river sites. Selenium concentrations were lowest in biota from the two reservoir sites, although a wetland immediately downstream from the dam impounding Lake No. 13 (created by seepage from the reservoir) had elevated concentrations of selenium in biota. The geometric mean selenium concentration of whole-fish samples, except those from Lakes No. 13 and No. 14, exceeded the 5-mg/g dry weight selenium concentration that demarcates the approximate lower limit of the threshold range of concentrations that have been associated with adverse effects on piscine reproduction. Biota collected on and in the area around Maxwell National Wildlife Refuge contained concentrations of selenium that are in the low

  2. Effect of L-arginine and selenium added to a hypocaloric diet enriched with legumes on cardiovascular disease risk factors in women with central obesity: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Alizadeh, Mohammad; Safaeiyan, Abdolrasoul; Ostadrahimi, Alireza; Estakhri, Rassul; Daneghian, Sevana; Ghaffari, Aida; Gargari, Bahram Pourghassem

    2012-01-01

    We aimed to discover if L-arginine and selenium alone or together can increase the effect of a hypocaloric diet enriched in legumes (HDEL) on central obesity and cardiovascular risk factors in women with central obesity. This randomized, double-blind, placebo-controlled trial was undertaken in 84 premenopausal women with central obesity. After a 2-week run-in period on an isocaloric diet, participants were randomly assigned to a control diet (HDEL), L-arginine (5 g/day) and HDEL, selenium (200 μg/day) and HDEL or L-arginine, selenium and HDEL for 6 weeks. Cardiovascular risk factors were assessed before intervention and 3 and 6 weeks afterwards. After 6 weeks, L-arginine had significantly reduced waist circumference (WC); selenium had significantly lowered fasting concentrations of serum insulin and the homeostasis model assessment of insulin resistance index; the interaction between L-arginine and selenium significantly reduced the fasting concentration of nitric oxides (NO(x)), and HDEL lowered triglycerides (TG) and WC and significantly increased the fasting concentration of NO(x). HDEL reduced high-sensitivity C-reactive protein levels in the first half of the study and returned them to basal levels in the second half. These data indicate the beneficial effects of L-arginine on central obesity, selenium on insulin resistance and HDEL on serum concentrations of NO(x) and TG. Copyright © 2012 S. Karger AG, Basel.

  3. Data on surface-water, streambed-interstitial water, and bed-sediment quality for selected locations in the small arms impact area of central Fort Gordon, Georgia, September 4-6, 2001

    USGS Publications Warehouse

    Priest, Sheryln; Stamey, Timothy C.; Lawrence, Stephen J.

    2002-01-01

    In September 2001, the U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon (U.S. Department of the Army), conducted a chemical assessment of surface water, streambed-interstitial water, and bed sediments within the small arms impact area of Fort Gordon Military Installation. The study was conducted in support of the development of an Integrated Natural Resources Management Plan (INRMP) for Fort Gordon, Georgia. An effective INRMP ensures that natural resources conservation measures and U.S. Army activities on the military base are integrated and consistent with Federal requirements to manage military installations on an ecosystem basis. Filtered water samples were collected from five sites along South Prong Creek and three sites along Marcum Branch Creek for chemical analyses of major ions, nutrients, and selected trace elements. On-site measurements of pH, temperature, specific conductance, and dissolved oxygen were made at the eight sites. Filtered water collected showed varying concentrations in both surface- and streambed-interstitial water. Bed-sediment samples collected from South Prong Creek contain elevated levels of arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, vanadium, and total organic carbon relative to previous concentrations (McConnell and others, 2000). Bed-sediment samples collected from Marcum Branch Creek contain elevated levels of beryllium, copper, lead, manganese, mercury, selenium, and total organic carbon relative to previous concentrations (McConnell and others, 2000).

  4. Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Fujii, Roger

    1990-01-01

    Methods to determine soluble concentrations of selenite, selenate, and organic Se were evaluated on saturation extracts of soil samples collected from three sites on the Panoche Creek alluvial fan in the western San Joaquin Valley, California. The methods were used in combination with hydride-generation atomic-absorption spectrometry for detection of Se, and included a selective chemical-digestion method and three chromatographic methods using XAD-8 resin, Sep-Pak C18 cartridge, and a combination of XAD-8 resin and activated charcoal. The chromatography methods isolate dissolved organic matter that can inhibit Se detection by hydride-generation atomic-absorption spectrometry. Isolation of hydrophobic organic matter with XAD-8 did not affect concentrations of selenite and selenate, and the isolated organic matter represents a minimal estimation of organic Se. Ninety-eight percent of the Se in the extracts was selenate and about 100% of the isolated organic Se was associated with the humic acid fraction of dissolved organic matter. The depth distribution of Se species in the soil saturation extracts support a hypothesis that the distribution of soluble Se and salinity in these soils is the result of evaporation from a shallow water table and leaching by irrigation water low in Se and salinity.

  5. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se 4+ ∙L -1 ) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis ,irrespective of the concentration. The highest amount of selenium (1841 μg∙g d.w. -1 ) was obtained after a 48-h culture in media containing 30 mg Se 4+ ∙L -1 . The highest content of selenomethionine (238.8 μg∙g d.w. -1 ) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se 4+ ∙L -1 . Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L -1 . The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  6. Impaired reproduction of mallards fed an organic form of selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1989-01-01

    We fed mallards (Anas platyrhynchos) diets supplemented with 0-, 1-, 2-, 4-, 8-, or 16-ppm selenium in the form of selenomethionine. We fed another group of mallards a diet containing 16-ppm selenium as selenocystine. Females fed the control diet produced a mean of 8.1 ducklings that survived to 6 days of age, which was significantly greater than the 4.6 young produced by females fed 8-ppm selenium as selenomethionine and the zero surviving young of females fed 16-ppm selenium as selenomethionine. Selenocystine did not impair reproduction. Diets containing 8- and 16-ppm selenium as selenomethionine caused malformations in 6.8 and 67.9%, respectively, of unhatched eggs compared with 0.6% for controls. The most common malformations were of eyes, bill, legs, and feet. Selenium did not affect the onset or frequency of egg laying, egg size, shell thickness, fertility of eggs, or sex ratio of ducklings. Reduced survival and growth occurred in ducklings hatched from groups whose parents had received 8- or 16-ppm selenium as selenomethionine, even though all ducklings were fed a control diet. Concentrations of selenium in eggs and liver of adults could be predicted from dietary concentrations. We conclude that the dietary threshold of selenium as selenomethionine necessary to impair reproduction is between 4 and 8 ppm. It is difficult to identify 1 level of selenium in eggs that will be diagnostic of reproductive impairment in the field because different chemical forms of selenium appear to have different toxicities in eggs. However, when eggs from a wild population contain .gtoreq. 1-ppm selenium on a wet-weight basis, reproductive impairment may be possible and should be evaluated in that population. At 5-ppm selenium in eggs, reproductive impairment is much more likely to occur.

  7. Quality of ground water in Routt County, northwestern Colorado

    USGS Publications Warehouse

    Covay, Kenneth J.; Tobin, R.L.

    1980-01-01

    Chemical and bacteriological data were collected to describe the quality of water from selected geologic units in Routt County, Colo. Calcium bicarbonate was the dominant water-chemistry type; magnesium, sodium, and sulfate frequently occurred as codominant ions. Specific conductance values ranged from 50 to 6,000 micromhos. Mean values of specific conductance, dissolved solids , and hardness from the sampled aquifers were generally greatest in waters from the older sedimentary rocks of the Lance Formation, Lewis Shale, Mesaverde Group, and Mancos Shale, and least in the ground waters from the alluvial deposits, Browns Park Formation, and the basement complex. Correlations of specific conductance with dissolved solids and specific conductance with hardness were found within specified concentration ranges. On the basis of water-quality analyses, water from the alluvial desposits, Browns Park Formation, and the basement complex generally is the most suitable for domestic uses. Chemical constituents in water from wells or springs exceeded State and Federal standards for public-water supplies or State criteria for agricultural uses were pH, arsenic, boron, chloride, iron, fluoride, manganese, nitrite plus nitrate, selenium, sulfate, or dissolved solids. Total-coliform bacteria were detected in water from 29 sites and fecal-coliform bacteria were detected in water from 6 of the 29 sites. (USGS)

  8. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata).

    PubMed

    Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J

    2015-12-01

    Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.

  9. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  10. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  11. Hair mercury association with selenium, serum lipid spectrum, and gamma-glutamyl transferase activity in adults.

    PubMed

    Tinkov, Alexey A; Skalnaya, Margarita G; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2014-12-01

    The primary objective of the research is to estimate the dependence between hair mercury content, hair selenium, mercury-to-selenium ratio, serum lipid spectrum, and gamma-glutamyl transferase (GGT) activity in 63 adults (40 men and 23 women). Serum triglyceride (TG) concentration in the high-mercury group significantly exceeded the values obtained for low- and medium-mercury groups by 72 and 42 %, respectively. Serum GGT activity in the examinees from high-Hg group significantly exceeded the values of the first and the second groups by 75 and 28 %, respectively. Statistical analysis of the male sample revealed similar dependences. Surprisingly, no significant changes in the parameters analyzed were detected in the female sample. In all analyzed samples, hair mercury was not associated with hair selenium concentrations. Significant correlation between hair mercury content and serum TG concentration (r = 0.531) and GGT activity (r = 0.524) in the general sample of the examinees was detected. The respective correlations were observed in the male sample. Hair mercury-to-selenium ratios significantly correlated with body weight (r = 0.310), body mass index (r = 0.250), serum TG (r = 0.389), atherogenic index (r = 0.257), and GGT activity (r = 0.393). The same correlations were observed in the male sample. Hg/Se ratio in women did not correlate with the analyzed parameters. Generally, the results of the current study show the following: (1) hair mercury is associated with serum TG concentration and GGT activity in men, (2) hair selenium content is not related to hair mercury concentration, and (3) mercury-to-selenium ratio correlates with lipid spectrum parameters and GGT activity.

  12. Evaluation of selenium in dietary supplements using elemental speciation.

    PubMed

    Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2017-03-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. Published by Elsevier Ltd.

  13. Evaluation of selenium in dietary supplements using elemental speciation

    PubMed Central

    Kubachka, Kevin M.; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A.; Falconer, Travis M.; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2016-01-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common “seleno-amino acids” and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. PMID:27719915

  14. Mercury, cadmium, lead, and selenium in three waterbird species nesting in Galveston Bay, Texas, USA

    USGS Publications Warehouse

    King, K.A.; Cromartie, E.

    1986-01-01

    Heavy metal and selenium concentrations were determined in Olivaceous Cormorants (Phalacrocorax olivaceus ), Laughing gulls (Larus atricilla ), and Black Skimmers (Rynchops niger ) nesting in Galveston Bay, Texas, during 1980-81. Lead was detected at low levels in a small proportion of the liver samples. Mercury was present in all livers sampled, the highest levels being found in cormorants (7.8 ppm) and skimmers (16 ppm). Concentrations were considerably lower than those reported in birds from mercury-contaminated lakes in northern United States and Canada. Cadmium and selenium were detected in 93 and 95% of the kidneys. Cadmium was highest in gulls and skimmers with a maximum value of 16 ppm. Selenium levels were similar among species except for higher concentrations in gulls collected in 1981.

  15. Dietary incorporation of feedstuffs naturally high in organic selenium for racing pigeons (Columba livia): effects on plasma antioxidant markers after a standardised simulation of a flying effort.

    PubMed

    Schoonheere, N; Dotreppe, O; Pincemail, J; Istasse, L; Hornick, J L

    2009-06-01

    Selenium is a trace element of importance for animal health. It is essential for adequate functioning of many enzymes such as, the antioxidant enzyme, glutathione peroxidase, which protects the cell against free radicals. A muscular effort induces a rise in reactive oxygen species production which, in turn, can generate an oxidative stress. Two groups of eight racing pigeons were fed respectively with a diet containing 30.3 (control group) and 195.3 (selenium group) microg selenium/kg diet. The pigeons were submitted to a standardised simulation of a flying effort during 2 h. Blood was taken before and after the effort to measure antioxidant markers and blood parameters related to muscle metabolism. Plasma selenium concentration and glutathione peroxidase activity were significantly higher in the selenium group. There were no significant differences for the other measured parameters. As a consequence of the effort, the pigeons of the selenium group showed a higher increase of glutathione peroxidase activity and a smaller increase of plasma lactate concentration. Variations because of the effort in the other markers were not significantly different between the two groups. It is concluded that the selenium status was improved with the feeding of feedstuffs high in Selenium.

  16. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer.

    PubMed

    Hsueh, Yu-Mei; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Pu, Yeong-Shiau; Lin, Ying-Chin; Tsai, Cheng-Shiuan; Huang, Chao-Yuan

    2017-09-01

    This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Selenium and Preeclampsia: a Systematic Review and Meta-analysis.

    PubMed

    Xu, Min; Guo, Dan; Gu, Hao; Zhang, Li; Lv, Shuyan

    2016-06-01

    Conflicting results exist between selenium concentration and preeclampsia. The role of selenium in the development of preeclampsia is unclear. We conducted a meta-analysis to compare the blood selenium level in patients with preeclampsia and healthy pregnant women, and to determine the effectiveness of selenium supplementation in preventing preeclampsia. We searched PubMed, ScienceDirect, the Cochrane Library, and relevant references for English language literature up to November 25, 2014. Mean difference from observational studies and relative risk from randomized controlled trials were meta-analyzed by a random-effect model. Thirteen observational studies with 1515 participants and 3 randomized controlled trials with 439 participants were included in the meta-analysis. Using a random-effect model, a statistically significant difference in blood selenium concentration of -6.47 μg/l (95 % confidence interval (CI) -11.24 to -1.7, p = 0.008) was seen after comparing the mean difference of observational studies. In randomized controlled trials, using a random-effect model, the relative risk for preeclampsia was 0.28 (0.09 to 0.84) for selenium supplementation (p = 0.02). Evidence from observational studies indicates an inverse association of blood selenium level and the risk of preeclampsia. Supplementation with selenium significantly reduces the incidence of preeclampsia. However, more prospective clinical trials are required to assess the association between selenium supplementation and preeclampsia and to determine the dose, beginning time, and duration of selenium supplementation.

  18. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    USGS Publications Warehouse

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  19. Characterization of streamflow, salinity, and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2013

    USGS Publications Warehouse

    Richards, Rodney J.; Moore, Jennifer L.

    2015-01-01

    Land use was characterized for 1992, 2002, and 2009 for site MA3. The common land-use change in the MA3 subwatershed was a conversion from previously irrigated agricultural land to urban land use. The MA3 subwatershed had 124 acres of irrigated land use converted to urban land use and 27.1 acres of unirrigated desert converted to urban land use from 1992 to 2009. Consistent with findings in previous land-use change reports, salinity and dissolved-selenium loading at site MA3 showed significant decreases as irrigated land was converted to urban land use.

  20. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Effects of vitamin E and selenium supplementation on blood lipid peroxidation and cortisol concentration in dairy cows undergoing omentopexy.

    PubMed

    Mudron, P; Rehage, J

    2018-04-11

    Twenty dairy cows with left abomasal displacement were used to investigate the effects of vitamin E and selenium treatment on thiobarbituric acid reactive substances (TBARS) and blood cortisol in dairy cows stressed by omentopexy. The cows were randomly divided into two groups. Ten hours before surgery 6 g of DL-α-tocopheryl acetate (6 mg/kg) and 67 mg of natrium selenite (0.1 mg/kg) in volume of 40 ml (Vitaselen ® ) were administered subcutaneously to 10 cows; the control animals (n = 10) received an equivalent volume of injectable water (40 ml). The injection of vitamin E and selenium produced a rapid rise (p < .05) in blood α-tocopherol and selenium concentrations. The serum vitamin E increased several times 10 hr after vitamin E and Se injection and raised continuously to the highest average concentration 21.6 mg/L at hr 24 after the surgery. The highest selenium concentration was seen 10 hr after selenium administration with holding the increased concentrations in comparison with initial ones during the whole study. Two-way ANOVA did not show significant treatment effect on plasma concentrations TBARS in the study. The plasma concentrations of thiobarbituric acid reactive substances reached the maximum value of 0.18 μmol/L in the control group 5 hr after the surgery. Twenty-four hours after the surgery, the TBARS values returned to the initial ones. Serum cortisol increased in both groups after surgery. The highest cortisol concentrations were reached at 1 hr after surgery in the experimental and control group (56.7 ± 28.8 and 65.3 ± 26.1 μg/L respectively). A return to the levels similar to the initial ones was recognized 24 hr after the surgery. The ANOVA revealed a significant effect of vitamin E and selenium injection on plasma cortisol (p < .05). In conclusion, we have demonstrated that abdominal surgery resulted in typical stress changes with no significant effects of a single vitamin E/Se injection on blood lipid peroxidation. In addition, a weaker cortisol response to the abdominal surgery was recognized in animals treated with vitamin E and selenium. © 2018 Blackwell Verlag GmbH.

  2. Selenium metabolites in urine of cancer patients receiving L-selenomethionine at high doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehnelt, Doris; Juresa, Dijana; Francesconi, Kevin A.

    2007-04-15

    We investigated, with quantitative HPLC/mass spectrometry, the selenium metabolites in urine from five cancer patients receiving high doses of L-selenomethionine over an extended period (2 x 4000 {mu}g Se/day for 7 days, then 4000 {mu}g Se/day for 21 days) as an adjunct to their normal cancer chemotherapy. Urine samples were collected at day 0 (all 5 patients), and at 2-3 additional collection times ranging from 1 to 33 days. The background selenium concentrations ranged from 12 to 55 {mu}g Se/L and increased to 870 to 4420 {mu}g Se/L for the five patients during the study. All five patients had appreciablemore » levels of selenosugars in their background urine sample, and the concentrations increased dramatically after selenium intake. Trimethylselenonium ion (TMSe), on the other hand, was generally present as only a trace metabolite in background urine, and, although the concentration of TMSe increased following selenium exposure, it became a less significant proportion relative to selenosugars. These data refute the currently accepted role of TMSe as the preferred excretion metabolite when selenium exposure is high.« less

  3. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  4. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    PubMed

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  5. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con

  6. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  7. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  8. Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study.

    PubMed

    Tonelli, Marcello; Wiebe, Natasha; Bello, Aminu; Field, Catherine J; Gill, John S; Hemmelgarn, Brenda R; Holmes, Daniel T; Jindal, Kailash; Klarenbach, Scott W; Manns, Braden J; Thadhani, Ravi; Kinniburgh, David

    2017-11-01

    Low concentrations and excessive concentrations of trace elements have been commonly reported in hemodialysis patients, but available studies have several important limitations. Random sample of patients drawn from a prospective cohort. 198 incident hemodialysis patients treated in 3 Canadian centers. We used mass spectrometry to measure plasma concentrations of the 25 elements at baseline, 6 months, 1 year, and 2 years following enrollment in the cohort. We focused on low concentrations of zinc, selenium, and manganese and excessive concentrations of lead, arsenic, and mercury; low and excessive concentrations of the other 19 trace elements were treated as exploratory analyses. Low and excessive concentrations were based on the 5th and 95th percentile plasma concentrations from healthy reference populations. At all 4 occasions, low zinc, selenium, and manganese concentrations were uncommon in study participants (≤5.1%, ≤1.8%, and ≤0.9% for zinc, selenium, and manganese, respectively) and a substantial proportion of participants had concentrations that exceeded the 95th percentile (≥65.2%, ≥74.2%, and ≥19.7%, respectively). Almost all participants had plasma lead concentrations above the 95th percentile at all time points. The proportion of participants with plasma arsenic concentrations exceeding the 95th percentile was relatively constant over time (9.1%-9.8%); the proportion with plasma mercury concentrations that exceeded the 95th percentile varied between 15.2% and 29.3%. Low arsenic, platinum, tungsten, and beryllium concentrations were common (>50%), as were excessive cobalt, manganese, zinc, vanadium, cadmium, selenium, barium, antimony, nickel, molybdenum, lead, and chromium concentrations. There was no evidence that low zinc, selenium, or manganese concentrations exist in most contemporary Canadian hemodialysis patients. Some patients have excessive plasma arsenic and mercury concentrations, and excessive lead concentrations were common. These findings require further investigation. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE

    EPA Science Inventory

    Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...

  10. Pre-Antiretroviral Therapy Serum Selenium Concentrations Predict WHO Stages 3, 4 or Death but not Virologic Failure Post-Antiretroviral Therapy

    PubMed Central

    Shivakoti, Rupak; Gupte, Nikhil; Yang, Wei-Teng; Mwelase, Noluthando; Kanyama, Cecilia; Tang, Alice M.; Pillay, Sandy; Samaneka, Wadzanai; Riviere, Cynthia; Berendes, Sima; Lama, Javier R.; Cardoso, Sandra W.; Sugandhavesa, Patcharaphan; Semba, Richard D.; Christian, Parul; Campbell, Thomas B.; Gupta, Amita

    2014-01-01

    A case-cohort study, within a multi-country trial of antiretroviral therapy (ART) efficacy (Prospective Evaluation of Antiretrovirals in Resource Limited Settings (PEARLS)), was conducted to determine if pre-ART serum selenium deficiency is independently associated with human immunodeficiency virus (HIV) disease progression after ART initiation. Cases were HIV-1 infected adults with either clinical failure (incident World Health Organization (WHO) stage 3, 4 or death by 96 weeks) or virologic failure by 24 months. Risk factors for serum selenium deficiency (<85 μg/L) pre-ART and its association with outcomes were examined. Median serum selenium concentration was 82.04 μg/L (Interquartile range (IQR): 57.28–99.89) and serum selenium deficiency was 53%, varying widely by country from 0% to 100%. In multivariable models, risk factors for serum selenium deficiency were country, previous tuberculosis, anemia, and elevated C-reactive protein. Serum selenium deficiency was not associated with either clinical failure or virologic failure in multivariable models. However, relative to people in the third quartile (74.86–95.10 μg/L) of serum selenium, we observed increased hazards (adjusted hazards ratio (HR): 3.50; 95% confidence intervals (CI): 1.30–9.42) of clinical failure but not virologic failure for people in the highest quartile. If future studies confirm this relationship of high serum selenium with increased clinical failure, a cautious approach to selenium supplementation might be needed, especially in HIV-infected populations with sufficient or unknown levels of selenium. PMID:25401501

  11. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Percutaneous absorption of selenium sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do notmore » indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.« less

  13. A gene-environment interaction analysis of plasma selenium with prevalent and incident diabetes: The Hortega study.

    PubMed

    Galan-Chilet, Inmaculada; Grau-Perez, Maria; De Marco, Griselda; Guallar, Eliseo; Martin-Escudero, Juan Carlos; Dominguez-Lucas, Alejandro; Gonzalez-Manzano, Isabel; Lopez-Izquierdo, Raul; Briongos-Figuero, Laisa Socorro; Redon, Josep; Chaves, Felipe Javier; Tellez-Plaza, Maria

    2017-08-01

    Selenium and single-nucleotide-polymorphisms in selenoprotein genes have been associated to diabetes. However, the interaction of selenium with genetic variation in diabetes and oxidative stress-related genes has not been evaluated as a potential determinant of diabetes risk. We evaluated the cross-sectional and prospective associations of plasma selenium concentrations with type 2 diabetes, and the interaction of selenium concentrations with genetic variation in candidate polymorphisms, in a representative sample of 1452 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.2µg/L. 120 participants had diabetes at baseline. Among diabetes-free participants who were not lost during the follow-up (N=1234), 75 developed diabetes over time. The multivariable adjusted odds ratios (95% confidence interval) for diabetes prevalence comparing the second and third to the first tertiles of plasma selenium levels were 1.80 (1.03, 3.14) and 1.97 (1.14, 3.41), respectively. The corresponding hazard ratios (95% CI) for diabetes incidence were 1.76 (0.96, 3.22) and 1.80 (0.98, 3.31), respectively. In addition, we observed significant interactions between selenium and polymorphisms in PPARGC1A, and in genes encoding mitochondrial proteins, such as BCS1L and SDHA, and suggestive interactions of selenium with other genes related to selenoproteins and redox metabolism. Plasma selenium was positively associated with prevalent and incident diabetes. While the statistical interactions of selenium with polymorphisms involved in regulation of redox and insulin signaling pathways provide biological plausibility to the positive associations of selenium with diabetes, further research is needed to elucidate the causal pathways underlying these associations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment.

    PubMed

    Vinceti, Marco; Chiari, Annalisa; Eichmüller, Marcel; Rothman, Kenneth J; Filippini, Tommaso; Malagoli, Carlotta; Weuve, Jennifer; Tondelli, Manuela; Zamboni, Giovanna; Nichelli, Paolo F; Michalke, Bernhard

    2017-12-19

    Little is known about factors influencing progression from mild cognitive impairment to Alzheimer's dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer's dementia. Twenty-one out of the 56 subjects developed Alzheimer's dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer's dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0-9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer's dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer's dementia at the beginning of the follow-up. These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer's dementia.

  15. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  16. Abbe's number and Cauchy's constant of iodine and selenium doped poly (methylmethacrylate) and polystyrene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Sheetal, E-mail: smehta-29@yahoo.com; Das, Kallol, E-mail: smehta-29@yahoo.com; Keller, Jag Mohan, E-mail: smehta-29@yahoo.com

    2014-04-24

    Poly (methyl methacrylate) / Polystyrene and iodine / selenium hybrid matrixes have been prepared and characterized. Refractive index measurements were done at 390, 535, 590, 635 nm wavelengths. Abbe's number and Cauchy's constants of the iodine / selenium doped poly (methylmethacrylate) and polystyrene samples are being reported. The results also showed that the refractive index of the composite varies non-monotonically with the doping concentration at low iodine concentration or in the region of nanoparticles formation and is also dependent on thermal annealing.

  17. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach.

    PubMed

    Hammad, Ghania; Legrain, Yona; Touat-Hamici, Zahia; Duhieu, Stéphane; Cornu, David; Bulteau, Anne-Laure; Chavatte, Laurent

    2018-01-20

    Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.

  18. Blood selenium status in normal Punjabi population of Pakistan.

    PubMed

    Alvi, Farrakh M; Chaudhri, Mohammad Anwar; Watling, John; Hasnain, Shahida

    2011-10-01

    Selenium concentrations in the blood of 112 (56 females and 56 males) normal subjects, from different regions of the Punjab (Pakistan), have been determined using the technique of inductively coupled plasma-mass spectrometry. The whole blood selenium concentrations were found to be 452 ± 12 ppb (parts per billion or nano-gram of Se per gram freeze-dried blood or 96 ± 3 μg/L ), with 470 ± 16 ppb (or 100 ± 4 μg/L) in female and 435 ± 16 ppb (or 92 ± 4 μg/L) in male population. Compared with other populations of the world [corrected] these levels are similar with the exception of the low-selenium-region of China. [corrected].

  19. Influence of processing in mercury and selenium vapor on the electrical properties of Cd /SUB x/ Hg /SUB 1-x/ Se, Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavaleshko, N.P.; Khomyak, V.V.; Makogonenko, V.N.

    1985-12-01

    In order to determine the predominant intrinsic point defects in Cd /SUB x/ Hg /SUB 1-x/ Se and Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions, the authors study the influence of annealing in mercury and selenium vapor on the carrier concentration and mobility. When the specimens are annealed in selenium vapor the electron concentration at first increases and then becomes constant. A theoretical analysis of the results obtained indicate that selenium vacancies are the predominant point defects in the solutions, and that the process of defect formation itself is quasiepitaxial.

  20. Plasma selenium concentrations are sufficient and associated with protease inhibitor use in treated HIV-infected adults

    USDA-ARS?s Scientific Manuscript database

    Background: Selenium (Se) is an essential constituent of selenoproteins which play significant roles in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation including cardiovascular disease (CVD). While HIV infection has b...

  1. Reproduction of mallards following overwinter exposure to selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Forty pairs of mallards (Anas platyrhynchos) were fed 15 ppm selenium as selenomethionine for about 21 weeks during winter. Twenty pairs served as controls. At the end of 21 weeks, which coincided with the onset of the reproductive season, selenium treatment was ended. Four birds died while on selenium treatment. Treated females lost weight, and their egg-laying was delayed. Hatching success of some of the first eggs laid by selenium-treated females was lower than that of controls, and a few of these early eggs contained deformed embryos, but, after a period of about two weeks off the selenium-treated diet, reproductive success returned to a level comparable with that of controls. The return to normal reproductive success was the result of a corresponding decrease in selenium concentrations in eggs once selenium treatment ended.

  2. Plasma Selenium Biomarkers in Low Income Black and White Americans from the Southeastern United States

    PubMed Central

    Hargreaves, Margaret K.; Liu, Jianguo; Buchowski, Maciej S.; Patel, Kushal A.; Larson, Celia O.; Schlundt, David G.; Kenerson, Donna M.; Hill, Kristina E.; Burk, Raymond F.; Blot, William J.

    2014-01-01

    Biomarkers of selenium are necessary for assessing selenium status in humans, since soil variation hinders estimation of selenium intake from foods. In this study, we measured the concentration of plasma selenium, selenoprotein P (SEPP1), and glutathione peroxidase (GPX3) activity and their interindividual differences in 383 low-income blacks and whites selected from a stratified random sample of adults aged 40–79 years, who were participating in a long-term cohort study in the southeastern United States (US). We assessed the utility of these biomarkers to determine differences in selenium status and their association with demographic, socio-economic, dietary, and other indicators. Dietary selenium intake was assessed using a validated food frequency questionnaire designed for the cohort, matched with region-specific food selenium content, and compared with the US Recommended Dietary Allowances (RDA) set at 55 µg/day. We found that SEPP1, a sensitive biomarker of selenium nutritional status, was significantly lower among blacks than whites (mean 4.4±1.1 vs. 4.7±1.0 mg/L, p = 0.006), with blacks less than half as likely to have highest vs. lowest quartile SEPP1 concentration (Odds Ratio (OR) 0.4, 95% Confidence Interval (CI) 0.2–0.8). The trend in a similar direction was observed for plasma selenium among blacks and whites, (mean 115±15.1 vs. 118±17.7 µg/L, p = 0.08), while GPX3 activity did not differ between blacks and whites (136±33.3 vs. 132±33.5 U/L, p = 0.320). Levels of the three biomarkers were not correlated with estimated dietary selenium intake, except for SEPP1 among 10% of participants with the lowest selenium intake (≤57 µg/day). The findings suggest that SEPP1 may be an effective biomarker of selenium status and disease risk in adults and that low selenium status may disproportionately affect black and white cohort participants. PMID:24465457

  3. Iodine and Selenium Intakes of Postmenopausal Women in New Zealand.

    PubMed

    Brough, Louise; Gunn, Caroline A; Weber, Janet L; Coad, Jane; Jin, Ying; Thomson, Jasmine S; Mauze, Mathilde; Kruger, Marlena C

    2017-03-09

    Iodine and selenium are required for thyroid function. This study investigated iodine and selenium intakes in healthy, women aged 50-70 years ( n = 97) from three cities in the North Island of New Zealand, after mandatory fortification of bread with iodised salt. Iodine and selenium concentrations were determined in 24-h urine samples; daily intakes were extrapolated from amounts in urine (90% and 55% of daily intake, respectively). Three day diet diaries (3DDD) also estimated selenium and iodine (excluding iodised salt) intake. Median urinary iodine concentration (UIC) was 57 (41, 78) µg/L, indicating mild iodine deficiency. Estimated median iodine intake based on urine was 138 (100, 172) µg/day, below Recommended Dietary Intake (RDI) (150 µg/day) with 25% below Estimated Average Requirement (EAR) (100 µg/day). Estimated median selenium intake was 50 (36, 71) µg/day based on urine and 45 (36, 68) µg/day using 3DDD, below RDI (60 µg/day) with 49%-55% below EAR (50 µg/day). Median bread intakes were low at 1.8 (1.1, 2.7) serves/day; 25% consumed ≤1 serve/day. Although population iodine intakes improved following mandatory fortification, some had low intakes. Selenium intakes remain low. Further research should investigate thyroid function of low consumers of iodine fortified bread and/or selenium in New Zealand.

  4. Regression models for estimating salinity and selenium concentrations at selected sites in the Upper Colorado River Basin, Colorado, 2009-2012

    USGS Publications Warehouse

    Linard, Joshua I.; Schaffrath, Keelin R.

    2014-01-01

    Elevated concentrations of salinity and selenium in the tributaries and main-stem reaches of the Colorado River are a water-quality concern and have been the focus of remediation efforts for many years. Land-management practices with the objective of limiting the amount of salt and selenium that reaches the stream have focused on improving the methods by which irrigation water is conveyed and distributed. Federal land managers implement improvements in accordance with the Colorado River Basin Salinity Control Act of 1974, which directs Federal land managers to enhance and protect the quality of water available in the Colorado River. In an effort to assist in evaluating and mitigating the detrimental effects of salinity and selenium, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, the Colorado River Water Resources District, and the Bureau of Land Management, analyzed salinity and selenium data collected at sites to develop regression models. The study area and sites are on the Colorado River or in one of three small basins in Western Colorado: the White River Basin, the Lower Gunnison River Basin, and the Dolores River Basin. By using data collected from water years 2009 through 2011, regression models able to estimate concentrations were developed for salinity at six sites and selenium at six sites. At a minimum, data from discrete measurement of salinity or selenium concentration, streamflow, and specific conductance at each of the sites were needed for model development. Comparison of the Adjusted R2 and standard error statistics of the two salinity models developed at each site indicated the models using specific conductance as the explanatory variable performed better than those using streamflow. The addition of multiple explanatory variables improved the ability to estimate selenium concentration at several sites compared with use of solely streamflow or specific conductance. The error associated with the log-transformed salinity and selenium estimates is consistent in log space; however, when the estimates are transformed into non-log values, the error increases as the estimates decrease. Continuous streamflow and specific conductance data collected at study sites provide the means to examine temporal variability in constituent concentration and load. The regression models can estimate continuous concentrations or loads on the basis of continuous specific conductance or streamflow data. Similar estimates are available for other sites at the USGS National Real-Time Water Quality Web page (http://nrtwq.usgs.gov) and provide water-resource managers with a means of improving their general understanding of how constituent concentration or load can change annually, seasonally, or in real time.

  5. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    PubMed

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  6. Increase in serum concentrations of IgG2 and IgG4 by selenium supplementation in children with Down's syndrome.

    PubMed Central

    Annerén, G; Magnusson, C G; Nordvall, S L

    1990-01-01

    In a previous study on children with Down's syndrome a reduced rate of infections was reported by their parents after the children had received six months' treatment with selenium supplements. In the present study the concentrations of the four IgG subclasses were measured in 29 of these children in samples of serum obtained before and immediately after the period of supplementation and one year after it had finished. Selenium had a significant augmentative effect on the serum concentrations of IgG2 and IgG4, but not of IgG1 and IgG3. This effect was not related to age, as among children over the age of 6 years the serum concentrations of IgG2 and IgG4 had decreased significantly one year after the treatment had been stopped. This study suggests that selenium has an immunoregulatory effect, which might be of importance in both basic research and clinical practice. PMID:2148668

  7. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  8. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    USGS Publications Warehouse

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  9. Simple method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer.

    PubMed

    Ishizaki, M

    1978-03-01

    A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.

  10. Lead poisoning and trace elements in common eiders Somateria mollissima from Finland

    USGS Publications Warehouse

    Hollmén, Tuula E.; Franson, J.C.; Poppenga, R.H.; Hario, Martti; Kilpi, Mikael

    1998-01-01

    We collected carcasses of 52 common eider Somateria mollissima adults and ducklings and blood samples from 11 nesting eider hens in the Gulf of Finland near Helsinki in 1994, 1995 and 1996. Samples of liver tissue were analysed for arsenic, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, selenium and zinc. Blood was analysed for lead, mercury and selenium. Most of the 21 adults examined at necropsy were emaciated with empty gizzards, and no ingested shotgun pellets or other metal were found in any of the birds. Three adult females had a combination of lesions and tissue lead residues characteristic of lead poisoning. Two of these birds had acid-fast intranuclear inclusion bodies in renal epithelial cells and high concentrations of lead (73.4 and 73.3 ppm; all liver residues reported on dry weight basis) in their livers. The third was emaciated with a liver lead concentration of 47.9 ppm. An adult male had a liver lead concentration of 81.7 ppm, which is consistent with severe clinical poisoning. Two other adults, one male and one female, had liver lead concentrations of 14.2 and 8.03 ppm, respectively. Lead concentrations in the blood of hens ranged from 0.11 to 0.63 ppm wet weight. Selenium residues of A?60 ppm were found in the livers of five adult males. Selenium concentrations in the blood of hens ranged from 1.18 to 3.39 ppm wet weight. Arsenic concentrations of 27.5-38.5 ppm were detected in the livers of four adult females. Detectable concentrations of selenium, mercury and molybdenum were found more frequently in the livers of adult males arriving on the breeding grounds than in incubating females, while the reverse was true for arsenic, lead and chromium. Mean concentrations of selenium, copper and molybdenum were higher in the livers of arriving males than in the livers of incubating hens, but hens had greater concentrations of iron and magnesium. Concentrations of trace elements were lower in the livers of ducklings than in the livers of adults.

  11. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project statewide.Groundwater resources used for public drinking water in the WSJV study unit are among the most saline and most affected by high concentrations of inorganic constituents of all groundwater resources used for public drinking water that have been assessed by the GAMA Priority Basin Project statewide. Among the 82 GAMA Priority Basin Project study areas statewide, the Delta–Mendota study area ranked above the 90th percentile for aquifer-scale proportions of groundwater resources having concentrations of total dissolved solids (TDS), sulfate, chloride, manganese, boron, chromium(VI), selenium, and strontium above benchmarks, and the Westside study area ranked above the 90th percentile for TDS, sulfate, manganese, and boron.In the WSJV study unit as a whole, one or more inorganic constituents with regulatory or non-regulatory, health-based benchmarks were present at concentrations above benchmarks in about 53 percent of the groundwater resources used for public drinking water, and one or more organic constituents with regulatory health-based benchmarks were detected at concentrations above benchmarks in about 3 percent of the resource. Individual constituents present at concentrations greater than health-based benchmarks in greater than 2 percent of groundwater resources used for public drinking water included: boron (51 percent, SWRCB-DDW notification level), chromium(VI) (25 percent, SWRCB-DDW maximum contaminant level (MCL)), arsenic (10 percent, EPA MCL), strontium (5.1 percent, EPA Lifetime health advisory level (HAL)), nitrate (3.9 percent, EPA MCL), molybdenum (3.8 percent, EPA HAL), selenium (2.6 percent, EPA MCL), and benzene (2.6 percent, SWRCB-DDW MCL). In addition, 50 percent of the resource had TDS concentrations greater than non-regulatory, aesthetic-based SWRCB-DDW upper secondary maximum contaminant level (SMCL), and 44 percent had manganese concentrations greater than the SWRCB-DDW SMCL.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors, inferences from geochemical and age-dating tracer results, and by considering the water-quality results in the context of the hydrogeologic setting of the WSJV study unit.Natural factors, particularly the lithologies of the source areas for groundwater recharge and of the aquifers, were the dominant factors affecting groundwater quality in most of the WSJV study unit. However, where groundwater resources used for public supply included groundwater recharged in the modern era, mobilization of constituents by recharge of water used for irrigation also affected groundwater quality. Public-supply wells in the Westside study area had a median depth of 305 m and primarily tapped groundwater recharged hundreds to thousands of years ago, whereas public-supply wells in the Delta–Mendota study area had a median depth of 85 m and primarily tapped either groundwater recharged within the last 60 years or groundwater consisting of mixtures of this modern recharge and older recharge.Public-supply wells in the WSJV study unit are screened in the Tulare Formation and zones above and below the Corcoran Clay Member are used. The Tulare Formation primarily consists of alluvial sediments derived from the Coast Ranges to the west, except along the valley trough at the eastern margin of the WSJV study unit where the Tulare Formation consists of fluvial sands derived from the Sierra Nevada to the east. Groundwater from wells screened in the Sierra Nevada sands had manganese-reducing or manganese- and iron-reducing oxidation-reduction (redox) conditions. These redox conditions commonly were associated with elevated arsenic or molybdenum concentrations, and the dominance of arsenic(III) in the dissolved arsenic supports reductive dissolution of iron and manganese oxyhydroxides as the mechanism. In addition, groundwater from many wells screened in Sierra Nevada sands contained low concentrations of nitrite or ammonium, indicating reduction of nitrate by denitrification or dissimilatory processes, respectively.Geology of the Coast Ranges westward of the study unit strongly affects groundwater quality in the WSJV. Elevated concentrations of TDS, sulfate, boron, selenium and strontium in groundwater were primarily associated with aquifer sediments and recharge derived from areas of the Coast Ranges dominated by Cretaceous-to-Miocene age, organic-rich, reduced marine shales, known as the source of selenium in WSJV soils, surface water, and groundwater. Low sulfur-isotopic values (δ34S) of dissolved sulfate indicate that the sulfate was largely derived from oxidation of biogenic pyrite from the shales, and correlations with trace element concentrations, geologic setting, and groundwater geochemical modeling indicated that distributions of sulfate, strontium, and selenium in groundwater were controlled by dissolution of secondary sulfate minerals in soils and sediments.Elevated concentrations of chromium(VI) were primarily associated with aquifer sediments and recharge derived from areas of the Coast Ranges dominated by the Franciscan Complex and ultramafic rocks. The Franciscan Complex also has boron-rich, sodium-chloride dominated hydrothermal fluids that contribute to elevated concentrations of boron and TDS.Groundwater from wells screened in Coast Ranges alluvium was primarily oxic and relatively alkaline (median pH value of 7.55) in the Delta–Mendota study area, and primarily nitrate-reducing or suboxic and alkaline (median pH value of 8.4) in the Westside study area. Many groundwater samples from those wells have elevated concentrations of arsenic(V), molybdenum, selenium, or chromium(VI), consistent with desorption of metal oxyanions from mineral surfaces under those geochemical conditions.High concentrations of benzene were associated with deep wells located in the vicinity of petroleum deposits at the southern end of the Westside study area. Groundwater from these wells had premodern age and anoxic geochemical conditions, and the ratios among concentrations of hydrocarbon constituents were different from ratios found in fuels and combustion products, which is consistent with a geogenic source for the benzene rather than contamination from anthropogenic sources.Water stable-isotope compositions, groundwater recharge temperatures, and groundwater ages were used to infer four types of groundwater: (1) groundwater derived from natural recharge of water from major rivers draining the Sierra Nevada; (2) groundwater primarily derived from natural recharge of water from Coast Ranges runoff; (3) groundwater derived from recharge of pumped groundwater applied to the land surface for irrigation; and (4) groundwater derived from recharge during a period of much cooler paleoclimate. Water previously used for irrigation was found both above and below the Corcoran Clay, supporting earlier inferences that this clay member is no longer a robust confining unit.Recharge of water used for irrigation has direct and indirect effects on groundwater quality. Elevated nitrate concentrations and detections of herbicides and fumigants in the Delta–Mendota study area generally were associated with greater agricultural land use near the well and with water recharged during the last 60 years. However, the extent of the groundwater resource affected by agricultural sources of nitrate was limited by groundwater redox conditions sufficient to reduce nitrate. The detection frequency of perchlorate in Delta–Mendota groundwater was greater than expected for natural conditions. Perchlorate, nitrate, selenium, and strontium concentrations were correlated with one another and were greater in groundwater inferred to be recharge of previously pumped groundwater used for irrigation. The source of the perchlorate, selenium, and strontium appears to be salts deposited in the soils and sediments of the arid WSJV that are dissolved and flushed into groundwater by the increased amount of recharge caused by irrigation. In the Delta–Mendota study area, the groundwater with elevated concentrations of selenium was found deeper in the aquifer system than it was reported by a previous study 25 years earlier, suggesting that this transient front of groundwater with elevated concentrations of constituents derived from dissolution of soil salts by irrigation recharge is moving down through the aquifer system and is now reaching the depth zone used for public drinking water supply.

  12. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  13. Association Between Selenium and Malondialdehyde as an Efficient Biomarker of Oxidative Stress in Infantile Cardiac Surgery.

    PubMed

    de Oliveira Ulbrecht, Marlice Oliveira; Gonçalves, Daniel Araujo; Zanoni, Lourdes Zélia Garcia; do Nascimento, Valter Aragão

    2018-05-12

    The present work describes a method to quantify the level of oxidative stress in infantile cardiac surgery. Fifteen patients, 6 girls and 9 boys, aged between 3 months and 16 years were divided into three groups. The first group sought to quantify the oxidative stress from differing concentrations of selenium. The second group used malondialdehyde as an indicator of oxidative stress. Finally, the third group quantified oxidative stress by normalizing the selenium concentration via malondialdehyde. Blood aliquots of 1.50 ml, drawn from the radial artery, were collected and centrifuged for quantification of Se and MDA in plasma. The statistical method ANOVA was used with a 95% confidence interval to indicate significant statistical differences between the post- and pre-operative stage for each group. The concentrations of malondialdehyde were measured by using UV-Vis following the thiobarbituric acid reaction method. For quantification of selenium, the samples were submitted to assisted microwave digestion and measured by ICP OES. In the first two groups, it was not possible to affirm that selenium and malondialdehyde could be biomarkers of oxidative stress, so a statistic test (ANOVA) was performed. However, the selenium/malondialdehyde ratios in the pre-operative and post-operative stage were 2.10 ± 0.70 and 3.20 ± 0.40, respectively. The ANOVA test confirmed a statistically significant difference between the pre- and post-operative stages with p value = 0.004. Here, the ratio of selenium concentration by malondialdehyde was confirmed to be an effective parameter for demonstration and quantification of oxidative stress activity at the post-operative stage.

  14. T-2 toxin contamination in grains and selenium concentration in drinking water and grains in Kaschin-Beck disease endemic areas of Qinghai Province.

    PubMed

    Sun, Li-Yan; Li, Qiang; Meng, Fan-Gang; Fu, Ying; Zhao, Zhi-Jun; Wang, Li-Hua

    2012-12-01

    It has been strongly suggested that two factors are involved in the development of Kaschin-Beck Disease (KBD), namely grains contamination with T-2 toxin and selenium deficiency. So our team undertook a survey about grains and drinking water in three rural KBD endemic villages and one non-KBD village in Qinghai Province. The level of T-2 toxin contamination in 364 grain samples was assayed using an ELISA kit. The selenium concentration in these grains and 15 drinking water samples from three KBD endemic villages were determined using the 2,3-diaminonaphthalene fluorometric assay. The results revealed that the level of T-2 toxin contamination in the samples from three KBD endemic villages was relatively high with an average level of 78.91 ng/g in wheat and 47.47 ng/g in flour. The T-2 toxin level in samples from the non-KBD village (12.23 ng/g) was significantly lower than that of local grains from the three KBD endemic villages. The average selenium content in wheat and flour from KBD areas was 0.0045 and 0.0067 μg/g, respectively. The selenium concentration in local grain samples was significantly lower than that in samples from the non-KBD village (0.0604 μg/g). In addition, the selenium concentration in drinking water from three KBD endemic villages was also low (0.156 μg/L). These results support a potential role of T-2 toxin contamination and selenium deficiency in KBD. Compared with non-KBD endemic areas, health hazards in grains and in the environment of KBD endemic areas were observed.

  15. Determination of selenium in fish from designated critical habitat of the Gunnison River, Colorado, summer 2011

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.

    2012-01-01

    This report presents results for the summer 2011 sampling of muscle plugs from common carps (Cyprinus Linnaeus), roundtail chub (Gila robusta), and bonytail chub (Gila elegans) inhabiting critical habitat in the Gunnison River in Western Colorado. Total selenium in fish muscle plugs was determined by instrumental neutron activation analysis. Total selenium concentrations (range and mean ± standard deviation) in micrograms per gram dry weight for each species were as follows: common carp: 8.5 to 35, 13 ± 7.8; roundtail chub: 5.5 to 11.2, 7.3 ± 1.6; bonytail chub: 0.8 to 8.6, 3.9 ± 4.2. Selenium concentrations in muscle plugs from 4 out of 15 roundtail chub, all 15 common carp, and 2 out of 5 bonytail chub exceeded the 8 micrograms per gram dry weight toxicity guideline for selenium in fish muscle tissue.

  16. Selenium and stable isotopes of carbon and nitrogen in the benthic clam Corbula amurensis from Northern San Francisco Bay, California: May 1995-February 2010

    USGS Publications Warehouse

    Kleckner, Amy E.; Stewart, A. Robin; Luoma, Samuel N.

    2010-01-01

    The clam-based food webs of San Francisco Bay, California efficiently bioaccumlate selenium and thus provide pathways for exposure to predators important to the estuary. This study documents changes in monthly selenium concentrations for the clam Corbula amurensis, a keystone species of the estuary, at five locations in northern San Francisco Bay from 1995 through 2010. Samples were collected from designated U.S. Geological Survey stations and prepared and analyzed by U.S. Geological Survey methods. Stable isotopes of carbon and nitrogen in soft tissues of clams also were measured as an indicator of sources of selenium for the clams. These monitoring data indicate that clam selenium concentrations ranged from a low of 2 to a high of 22 micrograms per gram dry weight with strong spatial and seasonal variation over the period of study.

  17. Toxicity of organic selenium in the diet to chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Buhl, Kevin J.; Faerber, Neil L.; Bullard, Fern A.; Wiedmeyer, Raymond H.

    1990-01-01

    The toxicity of two organoselenium diets was evaluated in 90- to 120-d partial life cycle tests with two life stages of chinook salmon (Oncorhynchus tshawytscha Walbaum). One of the diets contained fish meal made from high-selenium mosquitofish (Gambusia affinis Baird and Girard) collected from the selenium-laden San Luis Drain, California (here termed SLD diet) and the other contained meal made from low-selenium mosquitofish (collected from a reference site) fortified with selenomethionine. A 90-d study was conducted with swim-up larvae in a water-simulating dilution of San Luis Drain water in a standardized fresh water; and a 120-d study was conducted with fingerlings 70-mm long in a water of similar quality but prepared with a standardized brackish water. After 90 d of exposure in the freshwater study, survival was reduced in fish fed ≥9.6 μg Se/g of either diet, and growth was reduced in fish fed ≥5.3 μg Se/g of SLD diet or ≥18.2 μg Se/g of selenomethionine diet. Reduced fish growth, whole-body concentrations of selenium and survival were strongly correlated to concentrations of selenium in both diets. After 120 d of exposure in the brackish-water study, survival was unaffected but growth was reduced in fish fed ≥18.2 μg Se/g of SLD diet or 35.4 μg Se/g of selenomethionine diet. After 120 d of dietary exposure, survival during a 10-d seawater challenge test was reduced in fish fed 35.4 μg Se/g of either diet. In this second dietary study, concentration—response relations were observed in both dietary treatments between the dietary concentrations of selenium and all three characteristics — fish growth, whole-body concentrations of selenium and survival in seawater.

  18. [FEATURES OF THE CONTENT OF MOVABLE FORMS OF HEAVY METALS AND SELENIUM IN SOILS OF THE YAROSLAVL REGION].

    PubMed

    Bakaeva, E A; Eremeyshvili, A V

    2016-01-01

    With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.

  19. Dietary Selenium Deficiency or Excess Reduces Sperm Quality and Testicular mRNA Abundance of Nuclear Glutathione Peroxidase 4 in Rats.

    PubMed

    Zhou, Ji-Chang; Zheng, Shijie; Mo, Junluan; Liang, Xiongshun; Xu, Yuanfei; Zhang, Huimin; Gong, Chunmei; Liu, Xiao-Li; Lei, Xin Gen

    2017-10-01

    Background: Glutathione peroxidase (GPX) 4 and selenoprotein P (SELENOP) are abundant, and several variants are expressed in the testis. Objective: We determined the effects of dietary selenium deficiency or excess on sperm quality and expressions of GPX4 and SELENOP variants in rat testis and liver. Methods: After weaning, male Sprague-Dawley rats were fed a Se-deficient basal diet (BD) for 5 wk until they were 9 wk old [mean ± SEM body weight (BW) = 256 ± 5 g]. They were then fed the BD diet alone (deficient) or with 0.25 (adequate), 3 (excess), or 5 (excess) mg Se/kg for 4 wk. Testis, liver, blood, and semen were collected to assay for selenoprotein mRNA and protein abundances, selenium concentration, GPX activity, 8-hydroxy-deoxyguanosine concentration, and sperm quality. Results: Dietary selenium supplementations elevated ( P < 0.05) tissue selenium concentrations and GPX activities. Compared with those fed BD + 0.25 mg Se/kg, rats fed BD showed lower ( P < 0.05) BW gain (86%) and sperm density (57%) but higher ( P < 0.05) plasma 8-hydroxy-deoxyguanosine concentrations (189%), and nonprogressive sperm motility (4.4-fold). Likewise, rats fed BD + 5 mg Se/kg had ( P = 0.06) lower BW gain and higher (1.9-fold) sperm deformity rates than those in the selenium-adequate group. Compared with the selenium-adequate group, dietary selenium deficiency (BD) or excess (BD + 3 or 5 mg Se/kg) resulted in 45-77% lower ( P < 0.05) nuclear Gpx4 ( nGpx4 ) mRNA abundance in the testis. Rats fed BD had lower ( P < 0.05) mRNA levels of 2 Selenop variants in both testis and liver than those in the other groups. Testicular SELENOP was 155-170% higher ( P < 0.05) in rats fed BD + 5 mg Se/kg and hepatic c/mGPX4 was 13-15% lower ( P < 0.05) in rats fed BD than in the other groups. Conclusions: The mRNA abundance of rat testicular nGPX4 responded to dietary selenium concentrations in similar ways to sperm parameters and may be used as a sensitive marker to assess appropriate Se status for male function. © 2017 American Society for Nutrition.

  20. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  1. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    USGS Publications Warehouse

    Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median concentrations of dissolved nitrite plus nitrate ranged from 5.1 to 6.1 mg/L and were 4 to 7 times larger than concentrations at the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). The source of these larger dissolved nitrite plus nitrate concentrations has not been identified, but the fact that all measurements had elevated dissolved nitrite plus nitrate concentrations indicates a relatively constant source. Most stormflow concentrations of dissolved trace elements were smaller than concentrations from base-flow or normal-flow samples. However, median concentrations of total arsenic, copper, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during base flow or normal flow. Concentrations of dissolved and total copper, total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc ranged from 3 to 27 times larger at site 07103707 (FoCr_8th) than site 07103700 (FoCr_Manitou) during base flow, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek. The likely source area is Gold Hill Mesa, a former tailings pile for a gold refinery located just upstream from the confluence with Monument Creek, and upstream from site 07103707 (FoCr_8th). Farther downstream in Fountain Creek, stormflow samples for total copper, manganese, lead, nickel, and zinc were larger at the downstream site near the city of Security, site 07105800 (FoCr_Security), than at the upstream site near Janitell Road, site 07105530 (FoCr_Janitell), compared with other main-stem sites and indicated a relatively large source of these metals between the two sites. Nitrogen, phosphorus, and trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with normal flow. The Apr

  2. Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta

    USGS Publications Warehouse

    Garcia-Hernandez, J.; King, K.A.; Velasco, A.L.; Shumilin, E.; Mora, M.A.; Glenn, E.P.

    2001-01-01

    Concentrations of selenium (Se) in bottom material ranged from 0.6 to 5.0 μg g−1, and from 0.5 to 18.3 μg g−1in biota; 23% of samples exceeded the toxic threshold. Concentrations of DDE in biota exceeded the toxic threshold in 30% of the samples. Greater concentrations of selenium in biota were found at sites with strongly reducing conditions, no output, alternating periods of drying and flooding or dredging activities, and at sites that received water directly from the Colorado River. The smallest Se concentrations in biota were found at sites where an outflow and exposure or physical disturbance of the bottom material were uncommon.

  3. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may play a role in the occurrence of arsenic in ground-water. Under oxidizing conditions in Arizona, arsenic in ground-water appears to be controlled in part by sorption or desorption of HAsO4???2 on active ferric oxyhydroxide surfaces. ?? 1989 Sciences and Technology Letters.

  4. Addition of high concentration of inorganic selenium in orchardgrass (Dactylis glomerata L.) hay diet does not interfere with microbial fermentation in mixed ruminal microorganisms in continuous cultures

    USDA-ARS?s Scientific Manuscript database

    The current literature lacks information on ruminal microbial metabolism in response to high selenium (Se) concentration in the diet. We investigated changes in ruminal fermentation when high concentration of Se was administered in mixed ruminal cultures in fermentors. Two mature beef cows, 'tted wi...

  5. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thavarajah, D.; Vandenberg, A.; George, G.N.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentilsmore » is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.« less

  6. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony. Copyright © 2016. Published by Elsevier Inc.

  7. Multicenter, Phase 3 Trial Comparing Selenium Supplementation With Observation in Gynecologic Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muecke, Ralph; Schomburg, Lutz; Glatzel, Michael

    Purpose: We assessed whether adjuvant supplementation with selenium improves the selenium status and reduces side effects of patients treated by radiotherapy (RT) for cervical and uterine cancer. Methods and Materials: Whole-blood selenium concentrations were measured in patients with cervical cancer (n = 11) and uterine cancer (n = 70) after surgical treatment, during RT, at the end of RT, and 6 weeks after RT. Patients with initial selenium concentrations of less than 84{mu}g/L were randomized before RT either to receive 500 {mu}g of selenium (in the form of sodium selenite [selenase (registered) , biosyn Arzneimittel GmbH, Fellbach, Germany]) by mouthmore » on the days of RT and 300 {mu}g of selenium on the days without RT or to receive no supplement during RT. The primary endpoint of this multicenter Phase 3 study was to assess the efficiency of selenium supplementation during RT; the secondary endpoint was to decrease radiation-induced diarrhea and other RT-dependent side effects. Results: A total of 81 patients were randomized. We enrolled 39 in the selenium group (SG) and 42 in the control group (CG). Selenium levels did not differ between the SG and CG upon study initiation but were significantly higher in the SG at the end of RT. The actuarial incidence of diarrhea of Grade 2 or higher according to Common Toxicity Criteria (version 2) in the SG was 20.5% compared with 44.5% in the CG (p = 0.04). Other blood parameters, Eastern Cooperative Oncology Group performance status, and self-reported quality of life were not different between the groups. Conclusions: Selenium supplementation during RT is effective in improving blood selenium status in selenium-deficient cervical and uterine cancer patients and reduces the number of episodes and severity of RT-induced diarrhea.« less

  8. A systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer's disease: A metal meta-analysis (AMMA study-I).

    PubMed

    Reddy, Varikasuvu Seshadri; Bukke, Suman; Dutt, Naveen; Rana, Puneet; Pandey, Arun Kumar

    2017-07-01

    Available studies in the literature on the selenium levels in Alzheimer's disease (AD) are inconsistent with some studies reporting its decrease in the circulation, while others reported an increase or no change as compared to controls. The objective of this study was to perform a meta-analysis of circulatory (plasma/serum and blood), erythrocyte and cerebrospinal fluid (CSF) selenium levels in AD compared controls. We also performed a meta-analysis of the correlation coefficients (r) to demonstrate the associations between selenium and glutathione peroxidase (GPx) in AD patients. All major databases were searched for eligible studies. We included 12 case-control/observational studies reporting selenium concentrations in AD and controls. Pooled-overall effect size as standardized mean difference (SMD) and pooled r-values were generated using Review Manager 5.3 and MedCalc 15.8 software. Random-effects meta-analysis indicated a decrease in circulatory (SMD=-0.44), erythrocellular (SMD=-0.52) and CSF (SMD=-0.14) selenium levels in AD patients compared to controls. Stratified meta-analysis demonstrated that the selenium levels were decreased in both the subgroups with (SMD=-0.55) and without (SMD=-0.37) age matching between AD and controls. Our results also demonstrated a direct association between decreased selenium levels and GPx in AD. This meta-analysis suggests that circulatory selenium concentration is significantly lower in AD patients compared to controls and this decrease in selenium is directly correlated with an important antioxidant enzyme, the GPx, in AD. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Elk (Cervus elaphus canadensis) preference for feeds varying in selenium concentration

    USDA-ARS?s Scientific Manuscript database

    Selenium-accumulator plants are reputed to be unpalatable to large ungulates. Elk (Cervus elaphus canadensis) populations in south-eastern Idaho overlap with populations of Se-rich plants, but there is no information on the influence of plant Se concentration on elk dietary preferences. The objecti...

  10. Selenium deficiency and the effects of supplementation on preterm infants

    PubMed Central

    Freitas, Renata Germano B. O. N.; Nogueira, Roberto José N.; Antonio, Maria Ângela R. G. M.; Barros-Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: This study aimed to review the literature about blood concentrations of selenium associated with gestational age, feeding, supplementation and related clinical features in preterm infants. Data sources: Systematic review in the following databases: MEDLINE, PubMed, Google academics, SciELO. org, ScienceDirect (Elsevier) and CINAHL-Plus with Full Text (EBSCO). Articles published up to January 2013 with the keywords "selenium deficiency", "selenium supplementation", "neonates", "infants", "newborn" and "preterm infants" were selected. Data synthesis: The studies reported that low blood selenium levels are associated with increased risk of respiratory diseases. Preterm infants, especially with low birth weight, presented lower selenium levels. Selenium deficiency has also been associated with the use of oral infant formula, enteral and parenteral nutrition (with or without selenium addition). The optimal dose and length of selenium supplementation is not well-established, since they are based only on age group and selenium ingestion by breastfed children. Furthermore, the clinical status of the infant affected by conditions that may increase oxidative stress, and consequently, selenium requirements is not taken into account. Conclusions: Prematurity and low birth weight can contribute to low blood selenium in premature infants. Selenium supplementation seems to minimize or prevent clinical complications caused by prematurity. PMID:24676200

  11. An evaluation of the results of alluvial groundwater sampling from 1987--1990 at the Durango disposal site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    This evaluation was conducted to determine if surface discharges of contaminated water from a retention pond and seepage of tailings pore water from the disposal cell have affected ground I water quality in the alluvial deposits east and northeast of the Bodo Canyon disposal cell. The question of whether corrective remedial action is needed for the alluvial groundwater downgradient of the disposal cell is also addressed. Maximum observed concentrations of seven hazardous constituents equalled or exceeded proposed US Environmental Protection Agency (EPA) maximum concentration limits (MCLs) in the alluvial groundwater downgradient of the disposal cell. These constituents include chromium, lead,more » molybdenum, net gross alpha, radium-226 and -228, selenium, and uranium. Concentrations greater than MCLs for molybdenum, net gross alpha, and radium-226 and -228 may be naturally occurring in the alluvial groundwater. There is no statistical evidence that these hazardous constituents are groundwater contaminants with concentrations that exceed the MCLs in alluvial groundwater. However, the median selenium concentration in monitor well 608 exceeds the MCL. Therefore, selenium contamination in the alluvial groundwater in the area of monitor well 608 is possible. Selenium concentrations show no definite increasing or decreasing trend. Since groundwater contamination by selenium is possible in one monitor well, but concentrations are not increasing, corrective action is not warranted at this time. Alluvial groundwater quality will continue to be monitored quarterly and the discharge from the retention pond should be sampled after treatment to ascertain its potential affects on groundwater quality.« less

  12. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia.

    PubMed

    Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina

    2017-03-01

    The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L -1 ) in comparison to the control group (1.054 ± 0.174 mg L -1 ). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L -1 ) compared with that in the control group (46.00 ± 12.25 μg L -1 ). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

  13. Partitioning of Total Dissolved Salts, Boron and Selenium in Pariette Wetland Water, Sediments and Benthic Organisms

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Jones, C. P.; Vasudeva, P.; Powelson, D.; Grossl, P.

    2014-12-01

    The Pariette Wetlands located in the Uinta Basin, UT, were developed by the BLM in part to mitigate salinity associated with irrigation drainage and runoff from flowing to the Green River, a tributary of the Colorado River. The wetlands are fed by runoff from upstream agricultural irrigation, and natural subsurface and overland flow through the Uintah formation, which is seleniferous, and saline. Concentrations of Total Dissolved Salts (TDS), boron (B) and selenium (Se) in the wetlands exceed the total maximum daily loads developed to meet the US EPA's water quality planning and management regulations (40CFR 130). This is of concern because the wetlands are home to populations of migratory birds, waterfowl, raptors, and numerous small mammals. A mass balance of the Se concentrations of water flowing into and out of the wetlands indicates that 80% of the Se is stored or lost within the system. Additional data suggest that the majority of the Se is associated with the sediments. Little information is available regarding the TDS and B. Therefore we will determine the whether B and other salts are accumulating in the wetland systems, and if so where. We sampled water, sediment, benthic organisms, and wetland plants, in 4 of the 23 ponds from the flood control inlet to water flowing out to the Green River. Sediments were collected at 3 depths (0-2 cm, 2-7 cm, and 7+ cm) at 3-4 locations within each pond including the inlet, outlet and at least one site near a major wetland plant community. Benthic organisms were sampled from the 0-2 cm and 2-7 cm sediment layers. Sediment and organism samples were digested with HNO3 and HClO4 prior to analysis of total Se by HGAAS. Hot water extractable B and DPTA extractable B were analyzed by ICP-AES. TDS was estimated from EC in the sediment and organisms extracts and direct analysis in the water. Preliminary results found that Se in the sediments decreases with depth. Se concentrations in the benthic organisms is approximately 4 times higher than in the associated sediments. Data from this study will contribute to a water quality risk assessment to the wetland fish and birds.

  14. Analytical determination of selenium in medical samples, staple food and dietary supplements by means of total reflection X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Stosnach, Hagen

    2010-09-01

    Selenium is essential for many aspects of human health and, thus, the object of intensive medical research. This demands the use of analytical techniques capable of analysing selenium at low concentrations with high accuracy in widespread matrices and sometimes smallest sample amounts. In connection with the increasing importance of selenium, there is a need for rapid and simple on-site (or near-to-site) selenium analysis in food basics like wheat at processing and production sites, as well as for the analysis of this element in dietary supplements. Common analytical techniques like electrothermal atomic absorption spectroscopy (ETAAS) and inductively-coupled plasma mass spectrometry (ICP-MS) are capable of analysing selenium in medical samples with detection limits in the range from 0.02 to 0.7 μg/l. Since in many cases less complicated and expensive analytical techniques are required, TXRF has been tested regarding its suitability for selenium analysis in different medical, food basics and dietary supplement samples applying most simple sample preparation techniques. The reported results indicate that the accurate analysis of selenium in all sample types is possible. The detection limits of TXRF are in the range from 7 to 12 μg/l for medical samples and 0.1 to 0.2 mg/kg for food basics and dietary supplements. Although this sensitivity is low compared to established techniques, it is sufficient for the physiological concentrations of selenium in the investigated samples.

  15. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  16. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  17. Relationships between selenium and mercury in the fruiting bodies of some mushrooms growing in Poland

    NASA Astrophysics Data System (ADS)

    Falandysz, J.; Kubotal, R.; Kunito, T.; Bielawski, L.; Brzostowski, A.; Gucia, M.; Jedrusiak, A.; Lipka, K.; Tanabe, S.

    2003-05-01

    The relationships between concentrations of total selenium and mercury were investigated for the whole fruiting bodies, caps and/or stalks of King bolete (Boletus edulis), Brown birch scaber stalk (Leccinum scabrum), Parasol mushroom (Macrolepiota procera), Poison pax (Paxillus involutus) and Fly agaric (Amatiita niuscaria) collected from the various sites in Poland. The mushroom species examined varied largely due to the contents and proportions between the total selenium and mercury concentrations, what seems to indicate on species-dependent strategy of co-uptake and accumulation of these elements.

  18. Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation.

    PubMed

    Moreno-Jiménez, Eduardo; Clemente, Rafael; Mestrot, Adrien; Meharg, Andrew A

    2013-02-01

    Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Combined effect of selenium and ascorbic acid on alcohol induced hyperlipidemia in male guinea pigs.

    PubMed

    Asha, G S; Indira, M

    2004-02-01

    Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.

  1. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles.

    PubMed

    Zinicovscaia, I; Chiriac, T; Cepoi, L; Rudi, L; Culicov, O; Frontasyeva, M; Rudic, V

    2017-01-01

    The process of selenium uptake by biomass of the cyanobacterium Arthrospira (Spirulina) platensis was investigated by neutron activation analysis at different selenium concentrations in solution and at different contact times. Experimental data showed good fit with the Freundlich adsorption isotherm model, with a regression coefficient value of 0.99. In terms of absorption dependence on time, the maximal selenium content was adsorbed in the first 5 min of interaction without significant further changes. It was also found that A. platensis biomass forms spherical selenium nanoparticles. Biochemical analysis was used to assess the changes in the main components of spirulina biomass (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation.

  2. [The selenium content of food products and the blood of inhabitants of Norilsk].

    PubMed

    Golubkina, N A; Shagova, M V; Spirichev, V B; Khristenko, P P; Alftan, D; Laaksonen, P; Muratov, Iu M; Vachaeva, N N

    1992-01-01

    The intake of trace element selenium by Norilsk citizens was assessed by its levels in the serum, food and soil. It was found that soil and food made in the Norilsk region are rich in selenium, its serum concentration in the population is normal (102 micrograms/l). References to such values for the Moscow and Zaporoje (Ukraine) regions are made. Low selenium levels in the serum may be indicative of pulmonary diseases.

  3. Environmental implications of excessive selenium: a review.

    PubMed

    Lemly, A D

    1997-12-01

    Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.

  4. Selenium, fluorine, and arsenic in surficial materials of the conterminous United States

    USGS Publications Warehouse

    Shacklette, Hansford T.; Boerngen, Josephine G.; Keith, John R.

    1974-01-01

    Concentrations of selenium, fluorine, and arsenic in 912, 911, and 910 samples, respectively, of soils and other regoliths from sites approximately 50 miles (80 km) apart throughout the United States are represented on maps by symbols showing five ranges of values. Histograms of the concentrations of these elements are also given. The geometric-mean concentrations (ppm) in the samples, grouped by area, are as follows: Selenium-- Entire United States, 0.31; Western United States, 0.25; and Eastern United States, 0.39. Fluorine-- Entire United States, 180; Western United States, 250; and Eastern United States, 115. Arsenic-- Entire United States, 5.8; Western United States, 6.1; and Eastern United States, 5.4.

  5. Potential reproduction and response of selenium and zinc mineral supplementation on quality of goat samosir semen

    NASA Astrophysics Data System (ADS)

    Siswoyo, P.; Tafsin, M.; Handarini, R.

    2018-02-01

    The present study was conducted to investigate the effect of suppllementattion of selenium and zinc on semen quality and growth of samosir goat. The experimental design used latin square design (4x4). The treatment supplementation mineral on multi nutrient block (MNB) composed of without sipplementation (p0), +10ppm selenium (p1), +10ppm zinc (p2), +10ppm selenium and +10ppm zinc (p3). The result showed that supplementation mineral selenium and zinc increased significantly (p<0.05) average daily growth, feed consumtion, and lower feed convertion ratio. Semen quality of goat were supplemented by selenium and zinc influenced motility, viability, volume concentration, and responding hypo osmotic swelling (HOS). Combination supplementation selenium and zinc significanly had higher semen quality than ither treatment. It is concluded that supplementation selenium and zinc improve growth and semen quality of samosir goat.

  6. Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

    PubMed Central

    Netto, Arlindo Saran; Zanetti, Marcus Antônio; Claro, Gustavo Ribeiro Del; de Melo, Mariza Pires; Vilela, Flávio Garcia; Correa, Lisia Bertonha

    2014-01-01

    Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat. PMID:25049978

  7. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Selenium Status in Patients with Turner Syndrome: a Biochemical Assessment Related with Body Composition.

    PubMed

    Pires, Liliane Viana; Siviero-Miachon, Adriana Aparecida; Spinola-Castro, Angela Maria; Pimentel, José Alexandre Coelho; Nishimura, Luciana Sigueta; Maia, Carla Soraya Costa; Cozzolino, Silvia Maria Franciscato

    2017-04-01

    Studies about selenium status in patients with Turner syndrome (TS) are non-existent in the literature. The aim of this study was to evaluate selenium status in patients with TS, while considering the different ages of the studied population and the relation with body composition. In total, 33 patients with TS were evaluated and grouped according to their developmental stages (children, adolescents, and adults). Selenium concentrations in their plasma, erythrocytes, urine, and nails were determined by using hydride generation atomic absorption spectrometry and erythrocyte glutathione peroxidase activity were measured by using Randox commercial kits. Additionally, height, weight, body fat percentage, waist circumference, and waist-height ratio were measured to characterize the patients. No differences in the selenium concentrations in the plasma, erythrocyte, urine, and nails or in the glutathione peroxidase activity were observed among the age groups (p > 0.05). The evaluated selenium levels were less than the established normal ones. The patients with larger waist circumference, body fat percentage, body mass index, and waist-height ratio showed lower glutathione peroxidase enzyme activity (p = 0.023). The present study shows that most patients with TS are deficient in selenium and that those with a greater accumulation of body fat have a lower GPx activity.

  9. Relationships between serum selenium and zinc concentrations versus profibrotic and proangiogenic cytokines (FGF-19 and endoglin) in patients with alcoholic liver cirrhosis.

    PubMed

    Prystupa, Andrzej; Kiciński, Paweł; Luchowska-Kocot, Dorota; Błażewicz, Anna; Kurys-Denis, Ewa; Niedziałek, Jarosław; Sak, Jarosław; Panasiuk, Lech

    2017-09-21

    Liver cirrhosis is a disease involving the liver parenchyma, which is characterised by fibrosis and impaired architectonics of the parenchyma with regenerative nodules. The aim of the study was to determine the relationship between stage of alcoholic liver cirrhosis, concentrations of selenium, zinc and profibrotic and proangiogenic cytokines (FGF-19, ENG). The study included 99 patients with alcoholic cirrhosis and 20 healthy subjects. Ion chromatography with UV/VIS detection was used for determination of zinc ions in the previously mineralized serum samples. The measurements of selenium were performed with the ContrAA700 high-resolution continuum source graphite tube atomic absorption spectrometer. ELISA was used to determine concentration of FGF-19 and ENG in serum samples. Concentrations of zinc and selenium were significantly decreased in cirrhotic patients (p<0.001 for both). The highest concentration of FGF-19 was found in Child-Pugh stage C liver cirrhosis patients (806.9±650.3 pg/ml), and was significantly higher than observed in controls (p=0.005) and stage A patients (compensated cirrhosis) (p=0.02). The highest concentration of ENG was demonstrated in the control group (3.24±148 ng/ml) while the lowest in patients with decompensated cirrhosis (7.32±5.39 ng/ml and 7.92±4.18 ng/ml for stage B and C; p=0.03 and p=0.02, respectively). The use of the multiple-variable model demonstrated that the independent factors affecting the concentration of ENG were the concentration of bilirubin (p=0.02), INR (p=0.01) and duration of alcohol abuse (p=0.02). The independent determinants of FGF-19 concentrations were found to be the stage (severity) of liver cirrhosis (p=0.04) and INR (p=0.03). Concentrations of zinc and selenium in serum of patients with alcoholic liver cirrhosis are not independently related to concentrations of FGF-19 and ENG.

  10. Water-Sediment Controversy in Setting Environmental Standards for Selenium

    Treesearch

    Steven J. Hamilton; A. Dennis Lemly

    1999-01-01

    A substantial amount of laboratory and field research on selenium effects to biota has been accomplished since the national water quality criterion was published for selenium in 1987. Many articles have documented adverse effects on biota at concentrations below the current chronic criterion of 5 µg/L. This commentary will present information to support a national...

  11. Toxicity and bioaccumulation of waterborne and dietary selenium in juvenile bluegill (Lepomis macrochirus)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Buckler, Denny R.; Wiedmeyer, Raymond H.

    1993-01-01

    Juvenile bluegill (Lepomis macrochirus) were exposed to waterborne selenium as a 6:1 mixture of selenate to selenite (as Se) for 60 d and to dietary seleno-l-methionine for 90 d. Measured concentrations of total selenium in the waterborne exposure ranged from 0.16 to 2.8 mg/l, and concentrations of seleno-l-methionine in the test diet ranged from 2.3 to 25.0 mg/kg wet weight. Mortality, body weight, condition factor, swimming and feeding behavior, aggression, and selenium tissue residues were monitored during the tests. Increased mortality at measured concentrations of 0.64 mg Se/l and greater was the primary adverse effect of waterborne selenium on the juvenile bluegill. Bluegill exposed to 2.8 mg/l of waterborne Se for 30 d exhibited a significant reduction in condition factor (K), whereas dietary exposure of bluegill to 25 mg Se/kg for 30 d and 13 mg Se/kg or greater for 90 d elicited significant reductions in K. Mortality and swimming activity of bluegill were not affected in the dietary exposure. Net accumulation of Se from both water and diet was directly related to exposure concentration. Bioconcentration factors ranged from 5 to 7 for bluegill exposed to waterborne Se and from 0.5 to 1.0 for fish exposed to dietary Se. Results of these laboratory tests indicate that survival of bluegill may be impaired in natural waters with elevated Se concentrations.

  12. [Trend of the selenium supply of cattle in Germany, Austria, Switzerland, and Denmark. Retrospective analysis of serum samples of the years 2006-2015].

    PubMed

    Müller, A; Freude, B

    2016-01-01

    An optimal selenium supply of cattle is essential, because an insufficiency can lead to health disorders and reduced performance. The aim of the study was to retrospectively evaluate the selenium supply of cattle in Germany, Austria, Switzerland, and Denmark. Serum samples from 45  068 cattle with unknown clinical status originating from countries all across Europe, which had been sent by veterinarians to the IDEXX Laboratory Ludwigsburg, Germany, between January 1st, 2006 and June 30th, 2015, were routinely analyzed for the selenium concentration by means of Inductively Coupled Plasma Mass Spectrometry. A total of 40  949 samples (30  462 from Germany, 4004 from Austria, 3232 from Switzerland, 3251 from Denmark) were included in the evaluation. Results were categorized as follows: 50-150 µg/l: sufficient supply, < 50 µg/l: supply too low, > 150 µg/l: supply too high. During the observation period, a generalized trend towards a decreasing selenium supply was clear. Denmark showed the best selenium supply (77.4% of samples indicating a sufficient supply); however, even in this country a tendency towards a deterioration was seen. A very poor situation with a strongly decreasing selenium supply was observed in Austria, followed by Germany (38% and 30% of samples, respectively, indicating an undersupply). For Switzerland, a constantly poor selenium supply was found (49% of samples indicating an undersupply). Due to the ongoing trend of a selenium undersupply in cattle herds, it is recommended to control the serum selenium concentration annually and supplement this trace element via mineral food when necessary.

  13. Ecologic study of serum selenium and upper gastrointestinal cancers in Iran.

    PubMed

    Nouarie, Mehdi; Pourshams, Akram; Kamangar, Farin; Sotoudeh, Masood; Derakhshan, Mohammad Hossein; Akbari, Mohammad Reza; Fakheri, Hafez; Zahedi, Mohammad Javad; Caldwell, Kathleen; Abnet, Christian C; Taylor, Philip R; Malekzadeh, Reza; Dawsey, Sanford M

    2004-09-01

    Both observational and experimental studies have shown that higher selenium status reduces the risk of upper gastrointestinal cancers in selenium deficient populations. Recent cancer registry data have shown very different rates of esophageal cancer (EC) and gastric cancer (GC) in four Provinces of Iran, namely Ardabil, Mazandaran, Golestan, and Kerman. The aim of this study was to have a preliminary assessment of the hypothesis that high rates of EC in Golestan and high rates of GC in Ardabil may be partly attributable to selenium deficiency. We measured serum selenium in 300 healthy adults from Ardabil (n = 100), Mazandaran (n = 50), Golestan (n = 100), and Kerman (n = 50), using inductively coupled plasma, with dynamic reaction cell, mass spectrometry (ICP-DRC-MS) at the US Centers for Disease Control (Atlanta, Georgia). The median serum selenium concentrations were very different in the four Provinces. The medians (IQR) for selenium in Ardabil, Mazandarn, Golestan, and Kerman were 82 (75-94), 123 (111-132), 155 (141-173), and 119 (110-128) microg/L, respectively (P<0.001). The results of linear regression showed that the Province variable, by itself, explained 76% of the variance in log selenium (r2 = 0.76). The proportion of the populations with a serum selenium more than 90 microg/L (the concentration at which serum selenoproteins are saturated) was 100% in Golestan, Kerman, and Mazandaran but only 29% in Ardabil. Our findings suggest that selenium deficiency is not a major contributor to the high incidence of EC seen in northeastern Iran, but it may play a role in the high incidence of GC in Ardabil Province. Copyright 2004 The WJG Press ISSN

  14. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis.

    PubMed

    Burk, Raymond F; Hill, Kristina E

    2005-01-01

    Selenoprotein P is an abundant extracellular glycoprotein that is rich in selenocysteine. It has two domains with respect to selenium content. The N-terminal domain of the rat protein contains one selenocysteine residue in a UxxC redox motif. This domain also has a pH-sensitive heparin-binding site and two histidine-rich amino acid stretches. The smaller C-terminal domain contains nine selenocysteine and ten cysteine residues. Four isoforms of selenoprotein P are present in rat plasma. They share the same N terminus and amino acid sequence. One isoform is full length and the three others terminate at the positions of the second, third, and seventh selenocysteine residues. Selenoprotein P turns over rapidly in rat plasma with the consequence that approximately 25% of the amount of whole-body selenium passes through it each day. Evidence supports functions of the protein in selenium homeostasis and oxidant defense. Selenoprotein P knockout mice have very low selenium concentrations in the brain, the testis, and the fetus, with severe pathophysiological consequences in each tissue. In addition, those mice waste moderate amounts of selenium in the urine. Selenoprotein P binds to endothelial cells in the rat, and plasma levels of the protein correlate with prevention of diquat-induced lipid peroxidation and hepatic endothelial cell injury. The mechanisms of these apparent functions remain speculative and much work on the mechanism of selenoprotein P function lies ahead. Measurement of selenoprotein P in human plasma has shown that it is depressed by selenium deficiency and by cirrhosis. Selenium supplementation of selenium-deficient human subjects showed that glutathione peroxidase activity was optimized before selenoprotein P concentration was optimized, indicating that plasma selenoprotein P is the better index of human selenium nutritional status.

  15. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens.

    PubMed

    Gobler, Christopher J; Lobanov, Alexei V; Tang, Ying-Zhong; Turanov, Anton A; Zhang, Yan; Doblin, Martina; Taylor, Gordon T; Sañudo-Wilhelmy, Sergio A; Grigoriev, Igor V; Gladyshev, Vadim N

    2013-07-01

    The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.

  16. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobler, Christopher J.; Lobanov, Alexei V.; Tang, Ying-Zhong

    The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated bymore » the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95percent during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.« less

  17. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  18. Selenium biomineralization for biotechnological applications.

    PubMed

    Nancharaiah, Yarlagadda V; Lens, Piet N L

    2015-06-01

    Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Selenium in soils of the Lower Wasatch Formation, Campbell County, Wyoming: Geochemistry, distribution, and environmental hazards

    NASA Technical Reports Server (NTRS)

    Kolm, K. E.

    1975-01-01

    The author has identified the following significant results. Seleniferous Shingle series soils and sandstone outcrops of section 27, T 48 N, R 71 W, Wyoming are mapped on aerial photography by their association with Astragalus bisulcatus. Chemical leachate analyses and atomic absorption methods reveal all studied Samsil and Shingle soils to contain acid, base, and water soluble selenium compounds, and that water extractions showed varied concentration behavior due to soil pH. Acid-soluble selenium is found to be associated with smectite. Statistical analyses confirm that A. bisulcatus presence has a weak influence on soil-lens organic selenium concentration, and determine the importance of other geobotanical factors for convertor presence. Environmental procedures of high selenium lens burial, convertor plant eradication, and revegetated site monitoring are recommended. Usage of density analysis and photographic enlargement are used to successfully produce both a control area and a Campbell County, Wyoming regional map of A. bisulcatus supportive soils and outcrops using Skylab photography.

  20. Selenium and mercury concentrations in sweet and dry bottled wines from the Canary Islands, Spain.

    PubMed

    Frías, S; Díaz, C; Conde, J E; Pérez Trujillo, J P

    2003-03-01

    The concentrations of selenium and mercury were determined by atomic absorption spectrophotometry in sweet and dry bottled wines from the Canary Islands, Spain. The concentrations of mercury ranged from 2.6 to 4.9 microg x l(-1) for sweet wines, and from 1.5 to 2.6 microg x l(-1) for dry wines, differences (p < 0.05) being observed according to the island of production and type of wine, but not with respect to vintage. The concentration of selenium varied between 1.0 and 2.0 microg x l(-1) for sweet wines, and between 0.6 and 1.6 microg x l(-1) for dry wines. Differences were found in the mean concentrations according to the type of wine. Dry wines produced in La Palma presented a higher (p < 0.05) mean content than those observed in the wines of El Hierro and Lanzarote.

  1. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  2. Mitochondrial Protein Profile in Mice with Low or Excessive Selenium Diets

    PubMed Central

    Hu, Lianmei; Wang, Congcong; Zhang, Qin; Yan, Hao; Li, Ying; Pan, Jiaqiang; Tang, Zhaoxin

    2016-01-01

    Dietary selenium putatively prevents oxidative damage, whereas excessive selenium may lead to animal disorder. In this study, we investigated the effects of low and excessive levels of dietary selenium on oxidative stress and mitochondrial proteins in mouse liver. Six to eight week old mice were fed a diet with low, excessive, or moderate (control) levels of selenium (sodium selenite). The selenium concentration and oxidative stress-related parameters in hepatic mitochondria were evaluated. Two-dimensional electrophoresis and mass spectrometry were applied to identify the differentially-expressed proteins associated with dietary selenium. The selenium content of the livers in mice with the low selenium diet was significantly lower than that of the control, while that of mice fed excessive levels was significantly higher. In both groups oxidative stress in hepatic mitochondria was found; accompanied by lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) levels and higher malondialdehyde (MDA) content, compared with the control group. Furthermore, ten proteins in the hepatic mitochondria of the selenium-low or -excessive groups with more than two-fold differences in abundance compared with the control group were identified. The differentially-expressed proteins in hepatic mitochondria may be associated with dietary (low or excessive) selenium-induced oxidative stress. PMID:27428959

  3. Arsenic and selenium in soils and shallow ground water in the Turtle Lake, New Rockford, Harvey Pumping, Lincoln Valley, and LaMoure irrigation areas of the Garrison Diversion Unit, North Dakota

    USGS Publications Warehouse

    Berkas, W.R.; Komor, S.C.

    1996-01-01

    The Garrison Diversion Unit project was authorized as part of the Pick-Sloan Missouri River Basin program to divert water from Lake Sakakawea to irrigation areas in North Dakota. A special Garrison Commission was created to evaluate an environmental concern that return flow from the irrigation areas might contain metals in toxic concentrations. This report summarizes the results of detailed investigations of the Turtle Lake, New Rockford, Harvey Pumping, Lincoln Valley, and LaMoure irrigation areas. A total of 223 soil samples were collected from the irrigation areas and analyzed for elemental composition. Water extractions were done on 40 of the 223 soil samples using a 1:5 soil-to-water extraction method, and the solution from the extraction was analyzed for elemental composition. A total of 52 ground-water samples were collected and analyzed for inorganic constituents and organic carbon.Average arsenic concentrations in the entire soil column ranged from 1.0 milligram per kilogram in the Harvey Pumping irrigation area to 70 milligrams per kilogram in the New Rockford irrigation area. Average selenium concentrations ranged from less than 0.1 milligram per kilogram in the Turtle Lake, New Rockford, Harvey Pumping, and Lincoln Valley irrigation areas to 6.0 milligrams per kilogram in the Turtle Lake irrigation area. In the Turtle Lake irrigation area, average arsenic and selenium concentrations generally increased with depth through the topsoil, oxidized soil, and transition soil but decreased in the reduced soil at the bottom of the sampled horizons. Average arsenic concentrations in the New Rockford irrigation area follow the same pattern as in the Turtle Lake irrigation area, but selenium concentrations do not show a clear pattern of variation with depth. In the Harvey Pumping and Lincoln Valley irrigation areas, arsenic and selenium concentrations do not appear to vary systematically with depth. No correlation is shown between the concentrations in soils and soil extracts, indicating that, based on conditions of laboratory soil-water extraction experiments, trace-element concentrations in soils are not good predictors of trace-element concentrations in irrigation return flow. Arsenic concentrations in the aquifers ranged from less than 1 microgram per liter to 27 micrograms per liter. Arsenic concentrations generally were larger in the deep part of the aquifers underlying the Turtle Lake and New Rockford irrigation areas than in the shallow part of the aquifers. In the shallow part of the aquifers, where oxidizing conditions prevail, arsenic is strongly adsorbed to soil particles. In the deep part of the aquifers, where reducing conditions prevail, arsenic is more mobile.Selenium concentrations in the aquifers ranged from less than 1 microgram per liter to 4 micrograms per liter. Little difference existed between the selenium concentrations in the shallow part of the aquifers underlying the irrigation areas and the concentrations in the deep part of the aquifers.

  4. Selenium in particulates and gaseous fractions of smoke from cigarettes prepared from tobacco grown on fly-ash-amended soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutemann, W.H.; Lisk, D.J.; Hoffman, D.

    Cigarettes prepared from tobacco grown in pots of soils amended with soft coal fly ash were smoked, and the mainstream and gaseous fractions were analyzed for total selenium concentration. Fly-ash-grown and control (soil-grown) tobaccos contained, respectively, 0.79 and 0.03 ppm selenium. The quantities of selenium (ng per cigarette) found in the mainstream particulate and gaseous fractions were, respectively, 62.4 and 246.0 for the fly-ash-grown and 8.6 and 12.0 for the control treatments. Studies of the absorption, retention, effects, metabolism, and excretion of selenium in the body are reviewed.

  5. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.

  6. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.

  7. Selenium analysis in waters. Part 2: Speciation methods.

    PubMed

    LeBlanc, Kelly L; Kumkrong, Paramee; Mercier, Patrick H J; Mester, Zoltán

    2018-06-21

    In aquatic ecosystems, there is often no correlation between the total concentration of selenium present in the water column and the toxic effects observed in that environment. This is due, in part, to the variation in the bioavailability of different selenium species to organisms at the base of the aquatic food chain. The first part of this review (Kumkrong et al., 2018) discusses regulatory framework and standard methodologies for selenium analysis in waters. In this second article, we are reviewing the state of speciation analysis and importance of speciation data for decision makers in industry and regulators. We look in detail at fractionation methods for speciation, including the popular selective sequential hydride generation. We examine advantages and limitations of these methods, in terms of achievable detection limits and interferences from other matrix species, as well as the potential to over- or under-estimate operationally-defined fractions based on the various conversion steps involved in fractionation processes. Additionally, we discuss methods of discrete speciation (through separation methods), their importance in analyzing individual selenium species, difficulties associated with their implementation, as well as ways to overcome these difficulties. We also provide a brief overview of biological treatment methods for the remediation of selenium-contaminated waters. We discuss the importance of selenium speciation in the application of these methods and their potential to actually increase the bioavailability of selenium despite decreasing its total waterborne concentration. Copyright © 2018. Published by Elsevier B.V.

  8. Acute selenium toxicosis in polo ponies.

    PubMed

    Desta, Belainesh; Maldonado, Gizela; Reid, Herman; Puschner, Birgit; Maxwell, James; Agasan, Alice; Humphreys, Leigh; Holt, Thomas

    2011-05-01

    Just prior to an international polo event, 21 horses from one team exhibited clinical signs of central nervous system disturbance, hyperexcitability, sweating, ataxia, tachycardia, dyspnea, pyrexia, and rapid death. The suspected cause of this peracute onset of illness and death included intentional contamination of feed or iatrogenic administration of performance-enhancing drugs resulting in a severe adverse reaction. Six horses were submitted to the Bronson Animal Disease Diagnostic Laboratory for necropsy and toxicological examination. The clinical signs and sudden death, the similarity to earlier work by the lead author of selenium toxicosis in calves, as well as published reports, prompted investigators to focus on selenium testing. Sixty-four hours following receipt, the laboratory detected toxic selenium concentrations in the tissues of these animals. Following further investigation of the case by regulatory officials, it was determined that all affected horses had received an intravenous injection of a compounded "vitamin/mineral" supplement just prior to the onset of signs. The compounded supplement contained toxic levels of selenium. The present report illustrates the in-depth laboratory investigation of the cause of acute death in 6 polo ponies due to selenium toxicosis. In addition to solving this high profile case, the toxic levels of selenium found in livers (6.13 ± 0.31 mg/kg wet weight), kidneys (6.25 ± 0.3 mg/kg wet weight), and sera (1.50 ± 0.11 µg/ml) of these affected animals may provide important diagnostic criteria for future interpretations of selenium concentrations in tissues of horses. © 2011 The Author(s)

  9. Combined selenium and vitamin C deficiency causes cell death in guinea pig skeletal muscle.

    PubMed

    Hill, Kristina E; Motley, Amy K; May, James M; Burk, Raymond F

    2009-03-01

    Combined antioxidant deficiencies of selenium and vitamin E or vitamin E and vitamin C in guinea pigs result in clinical illness. We hypothesized that combined selenium and vitamin C deficiency would have clinical consequences because in vitro interactions of these antioxidant nutrients have been reported. Because guinea pigs are dependent on dietary vitamin C, weanling male guinea pigs were fed selenium-deficient or control diet for 15 weeks before imposing vitamin C deficiency. Four dietary groups were formed and studied 3 weeks later: controls, vitamin C deficient, selenium deficient, and doubly deficient. Deficiencies were confirmed by determinations of glutathione peroxidase activity and vitamin C concentration in liver and skeletal muscle. Plasma creatine phosphokinase activity and liver, kidney, heart, and quadriceps histopathology were determined. Doubly deficient animals had moderately severe skeletal muscle cell death as judged by histopathology and plasma creatine phosphokinase activity of 6630 +/- 4400 IU/L (control, 70 + or - 5; vitamin C deficient, 95 + or - 110; selenium deficient, 280 + or - 250). Liver, kidney, and heart histology was normal in all groups. Muscle alpha-tocopherol levels were not depressed in the doubly deficient group, but muscle F2 isoprostane concentrations were elevated in them and correlated with markers of cell death. We conclude that combining selenium and vitamin C deficiencies in the guinea pig causes cell death in skeletal muscle that is more severe than the injury caused by selenium deficiency. The elevation of muscle F2 isoprostanes is compatible with the cell death being caused by oxidative stress.

  10. Selenium Level and Dyslipidemia in Rural Elderly Chinese

    PubMed Central

    Su, Liqin; Gao, Sujuan; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Xin, Pengju; Chen, Chen; Liu, Jingyi; Ma, Feng; Bian, Jianchao; Li, Ping; Jin, Yinlong

    2015-01-01

    Objective Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status. Methods A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDLC) and low-density lipoprotein-cholesterol (LDLC), nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and <1.04 mmol/L for Low-HDLC according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. Logistic models adjusting for age, gender, APOE genotype, body mass index, alcohol consumption, smoking, physical activity, medication use for cardiovascular diseases were used to examine the relationship between selenium levels and the risk of dyslipidemia. Results Mean nail selenium concentration was 0.465μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p < 0.0001). Compared with the lowest selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of dyslipidemia. Conclusions Our results suggest long-term selenium exposure level may be associated with the risk of dyslipidemia in elderly population. Future studies are needed to examine the underlying mechanism of the association. PMID:26380972

  11. Pathology of selenium poisoning in fish

    Treesearch

    A. Dennis Lemly

    1998-01-01

    Selenium presents an interesting paradox in the field of aquatic toxicology because it is both a nutrient and a poison. As a nutrient, it is required in the diet of fish at concentrations of about 0. 1 to 0. 5 Fg/g dry weight. Selenium is necessary for proper formation and functioning of glutathione peroxidase, which is a major cellular antioxidant enzyme. This enzyme...

  12. A procedure for developing ecosystem loading limits (TMDLs) for selenium in Wastersheds affected by gold mining in Northern Argentina

    Treesearch

    Dennis A. Lemly

    2001-01-01

    The Argentina Federal Secretary of Natural Resources oversees a wide array of mining operations conducted on public lands. Recently, selenium has emerged as a contaminant issue associated with several gold mines in the northern mountain ranges. The Secretary's Office contacted me and requested assistance interpreting selenium concentrations and possible impacts on...

  13. Analyses of selenotranscriptomes and selenium concentrations in response to dietary selenium deficiency and age reveal common and distinct patterns by tissue and sex in telomere-dysfunctional mice

    USDA-ARS?s Scientific Manuscript database

    Background: While sex and aging are known to impact mRNA abundance of several selenoproteins, this has not been examined comprehensively or in aged mice. By employing telomerase RNA component knockout (Terc-/-) mice carrying humanized telomeres, long-term dietary selenium (Se) deprivation has recent...

  14. Estuarine water-quality and sediment data, and surface-water and ground-water-quality data, Naval Submarine Base Kings Bay, Camden County, Georgia, January 1999

    USGS Publications Warehouse

    Leeth, David C.; Holloway, Owen G.

    2000-01-01

    In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).

  15. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    USGS Publications Warehouse

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within the ERW. Exceedances of State water-quality standards (nitrite, nitrate, and un-ionized ammonia) and levels higher than U.S. Environmental Protection Agency recommendations (total phosphorus) occur in several areas within the ERW. The majority of the exceedances are from comparisons to the U.S. Environmental Protection Agency total phosphorus recommendations. A positive correlation was observed between suspended sediment and total phosphorus. An upward trend in total dissolved solids in Gore Creek may be the result of increases in chloride salts. Highly significant trends were detected in sodium, potassium, and chloride with a significant upward trend in magnesium and a weakly significant upward trend in calcium. A quantitative analysis of the relative abundance of calcium, magnesium, sodium, and potassium to the available anions suggests that chloride salts likely are the source for the detected upward trends because chloride is the only commonly occurring anion with a trend in Gore Greek. A potential source for the observed chloride salts may be the chemical anti-icing and deicing products used during winter road maintenance in municipal areas and on Interstate-70. A downward trend in dissolved solids in the Eagle River between Gypsum and Avon may be contributing to the detected trend on the Eagle River at Gypsum. Significant downward trends were detected in specific ions such as calcium, magnesium, sulfate, and silica. Measures of total dissolved solids as well as comparisons to specific ions show that in water-quality samples within the ERW concentrations generally are lower in the headwaters, with increases downstream from Wolcott. Differences in concentrations likely result from increased abundance of salt-bearing geologic units downstream from Avon. Few sites had measured concentrations that exceeded the State standards for chloride.

  16. Background hydrologic information in potential lignite mining areas in north-central Mississippi, August 1984

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Natural Resources, Bureau of Geology, is conducting a hydrologic data collection program in potential lignite-producing areas in Mississippi. During the last two weeks of August 1984, hydrologic data were collected at 15 stream sites that drain potential lignite mining areas in Lafayette, Calhoun, and Yalobusha Counties. Main channel widths ranged from approximately 60 feet at three streams (Coon Creek near Toccopula, Muckaloon Creek near Tula, and Hurricane Creek near Velma) to approximately 120 feet at two streams (Potlockney Creek near Tula, and Savannah Creek near Bruce). Maximum water depths ranged from less than 1.0 foot at most streams to over 5.0 feet at sites on Potlockney Creek near Tula and McGill Creek near Sarepta. Stream discharge ranged from 0.32 cubic feet per second in Persimmon Creek near Bruce to 18.5 cubic feet per second in Puskus Creek near Etta. The specific conductance of stream water ranged from 25 to 160 microsiemens and dissolved solids concentrations ranged from 22 to 91 mg/L (milligrams per liter). Most major ion concentrations were less than 10 mg/L with the exception of calcium (11 mg/L), sodium (12 mg/L) and sulfate (18 mg/L) in the water of Persimmon Creek near Bruce. Dissolved oxygen concentrations were greater than 5.0 mg/L at all but one site. Turbidity values were generally less than 50 units. Nitrate plus nitrite concentrations were equal to or less than 0.10 mg/L in all streams except in Potlockney Creek near Tula where the concentration was 0.11 mg/L. Copper and selenium concentrations in the water at all sampling sites ranged from below the detection limits (1 microgram/g) to 4 micrograms/g (micrograms per gram) and mercury concentrations in bottom material samples ranged from less than 0.01 microgram/g to 0.15 microgram/g. (USGS)

  17. The effect of the systemic inflammatory response on plasma zinc and selenium adjusted for albumin.

    PubMed

    Ghashut, Rawia A; McMillan, Donald C; Kinsella, John; Vasilaki, Aikaterini T; Talwar, Dinesh; Duncan, Andrew

    2016-04-01

    The magnitude of systemic inflammatory response, as evidenced by C-reactive protein (CRP), is a major factor associated with lower zinc and selenium. They may also be influenced by their binding proteins, such as albumin. The aim of the present study was to examine the relationships between plasma zinc, selenium and the systemic inflammatory response in a large cohort of patients referred for nutritional screen and also to examine these relationships in patients with critical illness. Patients referred for nutritional assessment of zinc (n = 743) and selenium (n = 833) and 114 patients with critical illness were examined. Intra-assay imprecision was <10% for these analytes. In the nutritional screen cohort, plasma zinc was significantly associated with CRP (rs = -0.404, p < 0.001) and albumin (rs = 0.588, p < 0.001). For each CRP category (≤10, 11-80, >80 mg/l) the zinc/albumin ratio x100 was similar (31, 33 and 32 respectively, p = 0.029). Plasma selenium was significantly associated with CRP (rs = -0.489, p < 0.001) and albumin (rs = 0.600, p < 0.001). With increasing CRP category (≤10, 11-80, >80 mg/l) the selenium/albumin ratio ×100 was lower (2.3, 2.1 and 1.8 respectively, p < 0.001). Similar relationships were also observed in the cohort of patients with critical illness. Plasma zinc was associated with both CRP and albumin. The impact of the systemic inflammatory response could be largely adjusted by albumin concentrations. Plasma selenium was associated with both CRP and albumin. The impact of the systemic inflammatory response on plasma selenium concentrations could not be reasonably adjusted by albumin concentrations. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  19. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  20. The Hypolipidemic and Pleiotropic Effects of Rosuvastatin Are Not Enhanced by Its Association with Zinc and Selenium Supplementation in Coronary Artery Disease Patients: A Double Blind Randomized Controlled Study

    PubMed Central

    Sena-Evangelista, Karine Cavalcanti Maurício; Pedrosa, Lucia Fatima Campos; Paiva, Maria Sanali Moura Oliveira; Dias, Paula Cristina Silveira; Ferreira, Diana Quitéria Cabral; Cozzolino, Sílvia Maria Franciscato; Faulin, Tanize Espírito Santo; Abdalla, Dulcinéia Saes Parra

    2015-01-01

    Objective Statins treatment may modify the levels of zinc and selenium, minerals that can improve vascular function and reduce oxidative damage and inflammation in atherosclerotic patients. This study aimed to evaluate the effects of rosuvastatin, alone or associated with zinc and selenium supplementation, on lipid profile, antioxidant enzymes and mineral status in coronary artery disease patients. Material and Methods A double-blind randomized clinical trial was performed in which patients (n = 76) were treated with 10 mg rosuvastatin over 4 months associated or not with zinc (30 mg/d) and selenium (150 μg/d) supplementation. The following parameters were analyzed before and after the intervention: anthropometric measurements, lipid profile, high sensitivity C-reactive protein (hs-CRP), electronegative low density lipoprotein (LDL(-)) concentrations, activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), zinc and selenium concentrations in blood plasma and erythocytes. Significance was determined using an α of 5% (two-tailed). Results We found that rosuvastatin therapy was efficient in reducing total cholesterol, LDL-cholesterol, non-HDL cholesterol, triglycerides, and hs-CRP independently of mineral supplementation. Neither treatment was associated with significant changes in LDL(-). Similarly, the antioxidant enzymes GPx and SOD activity were unchanged by treatments. Neither treatment was associated with significant differences in concentrations of zinc or selenium in blood plasma and erythocytes of studied groups. Conclusion Rosuvastatin treatment did not affect zinc and selenium levels in coronary artery disease patients. The zinc and selenium supplementation at doses used in this study did not change lipid profile or SOD and GPx activity in patients receiving rosuvastatin. Further studies should be focused on testing alternative doses and supplements in different populations to contribute for a consensus on the ideal choice of antioxidants to be used as possible complementary therapies in atherosclerotic patients. Trial Registration ClinicalTrials.gov NCT01547377 PMID:25785441

  1. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    PubMed

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  2. Selenium in blood, semen, seminal plasma and spermatozoa of stallions and its relationship to sperm quality.

    PubMed

    Bertelsmann, H; Keppler, S; Höltershinken, M; Bollwein, H; Behne, D; Alber, D; Bukalis, G; Kyriakopoulos, A; Sieme, H

    2010-01-01

    The essential trace element selenium is indispensable for male fertility in mammals. Until now, little data existed regarding the relationship between selenium and sperm quality in the stallion. Selenium, or selenium-dependent glutathione peroxidase activity, was determined in red blood cells, semen, seminal plasma and spermatozoa, and the percentages of spermatozoa with progressive motility (PMS), intact membranes (PMI), altered (positive) acrosomal status (PAS) and detectable DNA damage, determined by the sperm chromatin structure assay, were evaluated in 41 healthy stallions (three samples each). The pregnancy rate per oestrus cycle (PRC) served as an estimation of fertility. An adverse effect on stallion fertility caused by low dietary selenium intake was excluded, as all stallions had sufficient selenium levels in their blood. Interestingly, no significant correlations (P > 0.05) between the selenium level in blood and the selenium level in seminal plasma or spermatozoa were found, suggesting that the selenium level in blood is no indicator of an adequate selenium supply for spermatogenesis. The selenium level in spermatozoa (nmol billion(-1)) was correlated with PMI, PMS and PAS (r = 0.40, r = 0.31 and r = -0.42, respectively; P

  3. Impact of fetal and childhood mercury exposure on immune status in children.

    PubMed

    Hui, Lai Ling; Chan, Michael Ho Ming; Lam, Hugh Simon; Chan, Peggy Hiu Ying; Kwok, Ka Ming; Chan, Iris Hiu Shuen; Li, Albert Martin; Fok, Tai Fai

    2016-01-01

    Mercury exposure have been shown to affect immune status in animals as reflected by cytokine expression. It is unclear whether low levels of exposure during fetal and/or childhood periods could impact on immune status in humans. To test the hypothesis that fetal and childhood mercury exposure is associated with childhood cytokine profiles and to investigate whether childhood selenium levels interact with any of the associations found. Children were recruited from a previously established birth cohort between the ages of 6-9 years for assessment and measurement of blood mercury, selenium and cytokine profile (interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13 and TNF-alpha). Multivariable linear regression models were used to assess the adjusted association of cord blood mercury concentration and current mercury concentrations with levels of the cytokine levels. We tested whether the association with current mercury level varied by current selenium level and cord blood mercury level. IL-10 was negatively associated with current blood mercury concentration. The effect was greatest in cases with low cord blood mercury and low current selenium concentrations. None of the other cytokine levels were associated with either cord blood or current blood mercury concentrations, except that cord blood mercury was negatively associated with IL-6. Childhood mercury exposure was negatively associated with childhood IL-10 levels. It is postulated that while selenium is protective, low levels of fetal mercury exposure may increase the degree of this negative association during childhood. Further studies into the clinical significance of these findings are required. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.

    1993-01-01

    Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.

  5. Selenium in San Francisco Bay zooplankton: Potential effects of hydrodynamics and food web interactions

    USGS Publications Warehouse

    Purkerson, D.G.; Doblin, M.A.; Bollens, S.M.; Luoma, S.N.; Cutter, G.A.

    2003-01-01

    The potential toxicity of elevated selenium (Se) concentrations in aquatic ecosystems has stimulated efforts to measure Se concentrations in benthos, nekton, and waterfowl in San Francisco Bay (SF Bay). In September 1998, we initiated a 14 mo field study to determine the concentration of Se in SF Bay zooplankton, which play a major role in the Bay food web, but which have not previously been studied with respect to Se. Monthly vertical plankton tows were collected at several stations throughout SF Bay, and zooplankton were separated into two operationally defined size classes for Se analyses: 73-2,000 ??m, and ???2,000 ??m. Selenium values ranged 1.02-6.07 ??g Se g-1 dry weight. No spatial differences in zooplankton Se concentrations were found. However, there were inter- and intra-annual differences. Zooplankton Se concentrations were enriched in the North Bay in Fall 1999 when compared to other seasons and locations within and outside SF Bay. The abundance and biovolume of the zooplankton community varied spatially between stations, but not seasonally within each station. Smaller herbivorous-omnivorous zooplankton had higher Se concentrations than larger omnivorous-carnivorous zooplankton. Selenium concentrations in zooplankton were negatively correlated with the proportion of total copepod biovolume comprising the large carnivorous copepod Tortanus dextrilobatus, but positively correlated with the proportion of copepod biovolume comprising smaller copepods of the family Oithonidae, suggesting an important role of trophic level and size in regulating zooplankton Se concentrations.

  6. Plasma and breastmilk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementations: Breastfeeding, Antiretrovirals, and Nutrition Study

    USDA-ARS?s Scientific Manuscript database

    Background: Low dietary selenium (Se) intake coupled with low plasma Se concentrations in HIV infection could result in inadequate breastmilk Se intake by exclusively breastfed infants of HIV-infected women. Objective: To test the effect of lipid-based nutrient supplements (LNS) containing 1.3 R...

  7. Review: A Position Paper on Selenium in Ecotoxicology: A Procedure for Deriving Site-Specific Water Quality Criteria

    Treesearch

    A. Dennis Lemly

    1997-01-01

    This paper describes a method for deriving site-specific water quality criteria for selenium using a two-step process: (1) gather information on selenium residues and biological effects at the site and in down-gradient systems and (2) examine criteria based on the degree of bioaccumulation, the relationship between mea-sured residues and threshold concentrations for...

  8. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  9. Prostatic Response to Supranutritional Selenium Supplementation: Comparison of the Target Tissue Potency of Selenomethionine vs. Selenium-Yeast on Markers of Prostatic Homeostasis

    PubMed Central

    Waters, David J.; Shen, Shuren; Kengeri, Seema S.; Chiang, Emily C.; Combs, Gerald F.; Morris, J. Steven; Bostwick, David G.

    2012-01-01

    Prostate cancer is the product of dysregulated homeostasis within the aging prostate. Supplementation with selenium in the form of selenized yeast (Se-yeast) significantly reduced prostate cancer incidence in the Nutritional Prevention of Cancer Trial. Conversely, the Selenium and Vitamin E Cancer Prevention Trial (SELECT) showed no such cancer-protective advantage using selenomethionine (SeMet). The possibility that SeMet and Se-yeast are not equipotent in promoting homeostasis and cancer risk reduction in the aging prostate has not been adequately investigated; no direct comparison has ever been reported in man or animals. Here, we analyzed data on prostatic responses to SeMet or Se-yeast from a controlled feeding trial of 49 elderly beagle dogs—the only non-human species to frequently develop prostate cancer during aging—randomized to one of five groups: control; low-dose SeMet, low-dose Se-yeast (3 μg/kg); high-dose SeMet, high-dose Se-yeast (6 μg/kg). After seven months of supplementation, we found no significant selenium form-dependent differences in toenail or intraprostatic selenium concentration. Next, we determined whether SeMet or Se-yeast acts with different potency on six markers of prostatic homeostasis that likely contribute to prostate cancer risk reduction—intraprostatic dihydrotestosterone (DHT), testosterone (T), DHT:T, and epithelial cell DNA damage, proliferation, and apoptosis. By analyzing dogs supplemented with SeMet or Se-yeast that achieved equivalent intraprostatic selenium concentration after supplementation, we showed no significant differences in potency of either selenium form on any of the six parameters over three different ranges of target tissue selenium concentration. Our findings, which represent the first direct comparison of SeMet and Se-yeast on a suite of readouts in the aging prostate that reflect flux through multiple gene networks, do not further support the notion that the null results of SELECT are attributable to differences in prostatic consequences achievable through daily supplementation with SeMet, rather than Se-yeast. PMID:23201838

  10. Selenium supplementation does not decrease thyroid peroxidase antibody concentration in children and adolescents with autoimmune thyroiditis.

    PubMed

    Bonfig, W; Gärtner, R; Schmidt, H

    2010-06-01

    In adults, selenium supplementation decreases thyroid peroxidase antibody (TPO Ab) concentrations in patients with autoimmune thyroiditis (AIT). Our aim in this study was to investigate if selenium supplementation decreased TPO Ab and thyroglobulin antibody (Tg Ab) concentrations in children with AIT. Forty-nine patients (33 females) with newly diagnosed AIT and hypothyroidism were randomized to daily oral therapy with levothyroxine alone (group A, n=18), levothyroxine plus 100 microg sodium-selenite (group B, n=13), or levothyroxine plus 200 microg sodium-selenite (group C, n=18). Mean age at diagnosis was 12.2+/-2.2 years. All 49 patients needed a mean levothyroxine dose of 1.6+/-0.5 microg/kg body weight to lower TSH to the treatment goal of 1-2 microU/ml, with no significant difference between groups. At study entry and after 12 months, TPO Ab concentrations were comparable in all three groups. Tg Ab concentrations decreased significantly after 12 months in group A and group C (p=0.03 and p=0.01), but not in group B (p=0.06). It is our conclusion that selenium supplementation with sodium-selenite does not decrease TPO Ab concentrations in children and adolescents, neither given in the reduced dose of 100 microg daily nor given in the "adult" supplementation dose of 200 microg daily.

  11. Selenium status and fungi in the protein-losing enteropathy of persistent diarrhea.

    PubMed

    Dwipoerwantoro, Pramita G; Lukito, Widjaja; Aulia, Diana; Arnaud, Josiane; Roussel, Anne-Marie

    2017-06-01

    A vicious cycle of infection, malabsorption, and malnutrition has been implicated in the perpetuation of diarrheal disease. This study examined whether persistent diarrhea is associated with changes in selenium status and stool alpha-1 antitrypsin (AAT) concentration. This cross-sectional study included 30 children aged 1-12 years with persistent diarrhea who were hospitalized in Cipto Mangunkusumo Hospital and Fatmawati Hospital, Jakarta, and 30 apparently healthy children who were matched by age and sex and lived in a rural area of Jakarta. Clinical examinations, blood routine tests, erythrocyte glutathione peroxidase (GPX) activity and plasma selenium levels as well as AAT in fresh stool samples were performed in all the subjects. Of 30 children with persistent diarrhea, 17 had moderate malnutrition and 13 had severe malnutrition. The mean plasma selenium was significantly lower in children with persistent diarrhea than in children without diarrhea (86.0 μg/L [95% CI: 76.1-95.9] vs 110 μg/L [95% CI: 104-116, p<0.0001). The mean stool AAT concentration was significantly higher in children with persistent diarrhea than in those without diarrhea (115 mg/dL [95% CI: 38.5-191] vs 16 mg/dL [95% CI: 4.0-13.5, p<0.0001]). Selenium correlated with AAT (p=0.05). Fecal fungi were persistently present. Although selenium status in both groups was optimal for the obtained plasma GPX activity, children with persistent diarrhea exhibited lower plasma selenium levels. This study suggests that the decrease in the plasma selenium level may be the consequence of protein loss and that fungi may be involved.

  12. Adiposity and Serum Selenium in U.S. Adults.

    PubMed

    Zhong, Qiuan; Lin, Ruoxi; Nong, Qingjiao

    2018-06-05

    Requirements for selenium and other antioxidant nutrients are increased in pro-oxidant and pro-inflammatory conditions such as excess adiposity. Data concerning the association of excess general and central adiposity with circulating selenium concentrations, however, are limited. We examined the cross-sectional associations of body mass index (BMI), percent body fat (%BF), and waist circumference (WC) with serum selenium concentrations in 6440 men and 6849 women aged ≥20 years who participated in the U.S. Third National Health and Nutrition Examination Survey. In multivariable analyses, the average difference (95% confidence interval (CI)) in serum selenium comparing the highest with the lowest quartiles of BMI was -4.0 (-5.5, -1.6) ng/mL in both men and women. These inverse associations were evident after further adjustment for WC. For %BF, the average differences (95% CI) in serum selenium between the highest and the lowest quartiles of %BF were -1.7 (-4.2, 0.7) ng/mL in men and -4.5 (-7.0, -1.9) ng/mL in women. The inverse association in women persisted after adjusting for WC. For WC, the average differences (95% CI) in serum selenium between the highest and the lowest quartiles were -1.9 (-3.8, -0.1) ng/mL in men and -3.9 (-5.8, -2.0) ng/mL in women. After further adjustment for BMI, the inverse association became positive in men and null in women. Our findings suggest that general and central adiposity have different associations with serum selenium levels and that these associations may depend on gender.

  13. Content and chemical form of mercury and selenium in Lake Ontario salmon and trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappon, C.J.

    1984-01-01

    The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On amore » molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.« less

  14. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    USGS Publications Warehouse

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    For the annual spring synoptic samples collected by the IDEQ along the main stem Blackfoot River and major tributaries, selenium concentrations ranged from less than 2 to 870 μg/L in 176 samples. In most years, the synoptic sampling showed that the majority of the selenium loads passing the USGS streamgage at the outlet of the watershed could be attributed to a single tributary, East Mill Creek, which enters the Blackfoot River through Spring Creek. Selenium loads decreased by about half from East Mill Creek before reaching the Blackfoot River, suggesting that much selenium is at least temporarily removed from the water column by uptake by aquatic vegetation or by losses to sediment. Similar decreases in selenium loads occurred through the main stem Blackfoot River before reaching the outlet in low flow years, but not in high flow years.

  16. Relationship between serum selenium, sociodemographic variables, other trace elements and lipid profile in an adult Spanish population.

    PubMed

    González-Estecha, Montserrat; Palazón-Bru, Irene; Bodas-Pinedo, Andrés; Trasobares, Elena; Palazón-Bru, Antonio; Fuentes, Manuel; Cuadrado-Cenzual, M Ángeles; Calvo-Manuel, Elpidio

    2017-09-01

    Several studies have shown an inverse relationship between selenium status and cardiovascular health, although epidemiologic evidence yielded by the randomized trials did not find a beneficial effect of selenium administration. The aim of this study was to analyze the association between serum selenium levels and lipid profile adjusted by age, sex and other associated factors among a general adult population in Spain. We recruited 372 hospital employee volunteers (60 men and 312 women) with a mean age of 47 (SD: 10.9), whom were given a standardized questionnaire. Serum selenium concentration was measured by electrothermal atomization atomic absorption spectrometry. Serum copper and zinc concentrations were measured using flame atomic absorption spectrometry. The mean of serum selenium was 79.5μg/L (SD: 11.7) with no sex-dependent differences. In the multivariate linear regression analysis, the associated factors with the mean levels of selenium were: age (β=0.223; CI 95%: 0.101-0.345), p<0.001; widowhood (β=-9.668; CI 95%: -17.234 to -2.102), p=0.012; calcium supplements (β=3.949; CI 95%: 0.059-7.838), p=0.047; zinc (β=0.126; CI 95%: 0.013-0.238), p=0.028 and glucose (β=0.172; CI 95%: 0.062- 0.281), p=0.002; Participants with serum selenium≥79.5μg/L were 1.98 (OR=1.98; CI 95% 1.17-3.35; p=0.011) and 2.04 times (OR=2.04; CI 95% 1.06-3.97; p=0.034) more likely to have cholesterol ≥200mg/dL and LDL-c ≥100mg/dL respectively than those with serum selenium <79.5μg/L. Higher selenium was positively associated with increased total and LDL cholesterol but not with HDL-c and triglycerides. More studies are needed in order to confirm the lower serum selenium findings in widows. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Using on-site bioassays to determine selenium risk to propagated endangered fishes

    USGS Publications Warehouse

    Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Sappington, Linda C.; Darnall, N.; Wilson, M.

    2006-01-01

    The Utah Reclamation, Mitigation and Conservation Commission is determining the feasibility of establishing a hatchery and grow-out facility for endangered June suckers Chasmistes liorus at Goshen Warm Springs, Utah. A survey of water quality indicated that selenium and other contaminants may be of concern at Goshen Warm Springs. We conducted an ecotoxicological study with three objectives: (1) to determine the growth rates of juvenile June suckers in two ponds (Lily Pond and North Pond) at Goshen Warm Springs and in Utah Lake, (2) to determine the uptake and depuration rates of selenium in juvenile June suckers, and (3) to evaluate limnological factors that may influence growth and selenium accumulation in June suckers. Fish growth was significantly greater at Utah Lake and North Pond than at Lily Pond or under current hatchery conditions. At the end of the uptake phase of the study (day 87), selenium concentrations in June suckers from Lily Pond, North Pond, and Utah Lake were 1.62, 1.90, and 1.32 μg/g of dry weight, respectively. Selenium uptake in June suckers was statistically significant at Lily Pond (0.005 μg·g−1 ·d−1), North Pond (0.010 μg·g−1 ·d−1), and Utah Lake (0.003 μg·g−1 ·d−1). At day 87, the fish were transferred to well water for selenium depuration. Significant selenium depuration occurred after the transfer of June suckers to clean water. Results indicated that selenium bioaccumulated to statistically significant levels at both Lily and North ponds. However, these concentrations are not likely to be of concern because they are not known to cause chronic toxicity. Depuration experiments indicated that June suckers stocked into Utah Lake would eliminate accumulated selenium residues within 3 months. Results indicated that Goshen Warm Springs could be used for fish propagation. In addition, further evaluation of Utah Lake as an interim hatchery site for June suckers should be considered.

  18. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.

    PubMed

    Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H

    1999-10-01

    In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.

  19. Characterization of salinity and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2010

    USGS Publications Warehouse

    Moore, Jennifer L.

    2011-01-01

    Salinity and selenium are naturally occurring and perva-sive in the lower Gunnison River Basin of Colorado, includ-ing the watershed of Montrose Arroyo. Although some of the salinity and selenium loading in the Montrose Arroyo study area is from natural sources, additional loading has resulted from the introduction of intensive irrigation in the water-shed. With increasing land-use change and the conversion from irrigated agricultural to urban land, land managers and stakeholders need information about the long-term effects of land-use change on salinity and selenium loading. In response to the need to advance salinity and selenium science, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, Colorado River Basin Salinity Control Forum, and Colorado River Water Conservation District, developed a study to characterize salinity and selenium loading and how salinity and selenium sources may relate to land-use change in Montrose Arroyo. This report characterizes changes in salinity and selenium loading to Montrose Arroyo from March 1992 to February 2010 and the magnitude of land-use change between unirrigated desert, irrigated agricultural, and urban land-use/land-cover types, and discusses how the respective loads may relate to land-use change. Montrose Arroyo is an approximately 8-square-mile watershed in Montrose County in western Colorado. Salinity and selenium were studied in Montrose Arroyo in a 2001 study as part of a salinity- and selenium-control lateral project. The robust nature of the historical dataset indicated that Montrose Arroyo was a prime watershed for a follow-up study. Two sites from the 2001 study were used to monitor salinity and selenium loads in Montrose Arroyo in the follow-up study. Over the period of 2 water years and respective irrigation seasons (2008-2010), 27 water-quality samples were collected and streamflow measurements were made at the historical sites MA2 and MA4. Salinity and selenium concen-trations, loads, and streamflow were compared between the pre-lateral-project and post-growth periods and between the post-lateral-project and post-growth periods. No significant differences in streamflow, salinity (concen-tration and load), or selenium (concentration and load) were found at MA4 between the pre-lateral project and post-growth periods or between the post-lateral-project and post-growth periods. The statistical analysis indicated no significant dif-ferences in streamflow or salinity (both concentration and load) between the pre-lateral-project and post-growth periods or between the post-lateral-project and post-growth periods at MA2; however, selenium concentrations and loads were significantly greater between the pre-lateral-project and post-growth periods and between the post-lateral-project and post-growth periods at MA2. Land-use change between MA4 and MA2 may have contributed to the determined differences in selenium values, but the specific mechanisms causing the increases between periods are unknown. The size of the urbanized area in Montrose Arroyo was quantified for 1993, 2002, and 2009 by using a geographic information system (GIS) with imagery from the specified years. The greatest change in land use from 1993 to 2009 was the increase of urban land due to conversion from irrigated agricultural land. The conversion of previously unirrigated desert to urban land or irrigated agriculture could become more common if urbanization and development expands into the eastern part of the watershed because a majority of the un-urbanized land in eastern Montrose Arroyo is unirrigated desert. By applying GIS to the City of Montrose 2008 com-prehensive growth plan, it was estimated that approximately 786 acres of previously irrigated agricultural land will be converted to urban land and 689 acres of unirrigated desert will be converted to urban land under the plan scenario. New development on previously unirrigated land in shale areas would likely increase the potential for mobilization of sele-nium and salinity from new sources to Montrose Arroyo and the Lower Gunnison River Basin.

  20. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses: II. Nutrient excretion and potential environmental impact.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated mineral sources, organic Se yeast, DFM, and Yucca schidigera extract did not decrease most nutrient concentrations excreted. Horses consuming organic selenium as part of the additive diet had lower fecal and urine Se concentrations, as well as greater fecal K concentrations.

  1. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation.

    PubMed

    Radenkovic, Filip; Holland, Olivia; Vanderlelie, Jessica J; Perkins, Anthony V

    2017-12-15

    Auranofin is a thiol-reactive gold (I)-containing compound with potential asa chemotherapeutic. Auranofin has the capacity to selectively inhibit endogenous antioxidant enzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx), resulting in oxidative stress and the initiation of a pro-apoptotic cascade. The effect of Auranofin exposure on TrxR and GPx, and the potential for cellular protection through selenium supplementation was examined in the non-cancerous human cell line Swan-71. Auranofin exposure resulted in a concentration dependent differential inhibition of selenoprotein antioxidants. Significant inhibition of TrxR was observed at 20nM Auranofin with inhibition of GPx from 10µM. Significant increases in reactive oxygen species (ROS) were associated with antioxidant inhibition at Auranofin concentrations of 100nM (TrxR inhibition) and 10µM (TrxR and GPx inhibition), respectively. Evaluation of mitochondrial respiration demonstrated significant reductions in routine and maximal respiration at both 100nM and 10μM Auranofin. Auranofin treatment at concentrations of 10μM and higher concentrations resulted in a ∼68% decrease in cellular viability and was associated with elevations in pro-apoptotic markers cytochrome c flux control factor (FCFc) at concentration of 100nM and mitochondrial Bax at 10μM. The supplementation of selenium (100nM) prior to treatment had a generalized protective affect through the restoration of antioxidant activity with a significant increase in TrxR and GPx activity, a significant reduction in ROS and associated improvement in mitochondrial respiration and cellular viability (10µM ∼48% increase). Selenium supplementation reduced the FCFc at low doses of Auranofin (<10μM) however no effect was noted on either FCFc or Bax at concentrations above 10μM. The inhibition of antioxidant systems in non-cancerous cells by Auranofin is strongly dose dependent, and this inhibition can be altered by selenium exposure. Therefore, Auranofin dose and the selenium status of patients are important considerations in the therapeutic use of Auranofin as an agent of chemosensitization. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  2. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Selenium impacts on razorback sucker, Colorado River, Colorado I. Adults.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Ken Weston, L; McDonald, Susan F

    2005-05-01

    Adult razorback sucker (Xyrauchen texanus) were exposed to various selenium concentrations in ponds and isolated river channels of the Colorado River near Grand Junction, CO, to determine effects on their growth and residue accumulation over an 11-month period. Adults at Horsethief ponds were fed a commercial diet, whereas fish at Adobe Creek channel and North Pond foraged on natural food items. Selenium concentrations at Horsethief were 2.2 microg/L in water, 0.1-1.4 microg/g in sediment, and 2.3-3.1 microg/g in food organisms (1.1 microg/g in commercial fish food), at Adobe Creek were 3.8 microg/L in water, 0.5-2.1 microg/g in sediment, and 4-56 microg/g in food organisms, and at North Pond were 9.5 microg/L in water, 7-55 microg/g in sediment, and 20-81 microg/g in food organisms. The selenium concentrations in muscle plugs from adults at Adobe Creek (11.7 microg/g, SD = 0.4, n = 6) and North Pond (16.6 microg/g, SD = 1.0, n = 6) were greater than at Horsethief (4.5 microg/g, SD = 0.2, n = 6). During a depuration period adults from Adobe Creek and North Pond lost 1-2% of their selenium burden in 32 days and 14-19% in 66 days. Selenium accumulated in razorback sucker above toxic thresholds reported in other studies, yet those residues were less than those reported in muscle plugs of 40% of wild razorback sucker caught in the Green River, Utah.

  4. The Roles of the Interaction of BCL2-Antagonist/Killer 1, Apoptotic Peptidase Activating Factor 1 and Selenium in the Pathogenesis of Kashin-Beck Disease.

    PubMed

    Wang, Sen; Duan, Chen; Zhang, Feng; Wang, Xi; Guo, Xiong

    2016-03-01

    BCL2-antagonist/killer 1 (BAK1) and apoptotic peptidase activating factor 1 (APAF1) are significant genes in apoptosis signalling pathway of Kashin-Beck disease (KBD). We aimed to verify the protein expression levels of BAK1 and APAF1 in the cartilage and chondrocytes of patients with KBD. Additionally, we explored the relationship between the levels of these proteins and selenium concentration. Chondrocytes was cultured and treated with sodium selenite in vitro. Immunohistochemistry and Western blotting were used to verify the expression levels of BAK1 and APAF1. Compared with the control samples, APAF1 was upregulated and BAK1 was downregulated in the cartilage and chondrocytes of KBD patients. APAF1 expression was higher in the middle and deep zone in the KBD cartilage. APAF1 levels decreased gradually with the increasing selenium concentration (0.05, 0.10 and 0.25 mg/L). BAK1 expression in the 0.25 mg/L selenium group was lower than that of the control group. Different selenium concentrations had varying effects on BAK1 and APAF1 levels. APAF1 may play an important role in the pathogenesis of KBD. APAF1-related apoptosis was more pronounced in the middle and deep zones of the KBD cartilage. APAF may represent a potentially novel molecular target, which may be a biomarker of the role of selenium on the prevention and treatment of KBD. The role of BAK1 in the pathogenesis of KBD requires further study.

  5. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.

    PubMed

    Shaheen, Sabry M; Frohne, Tina; White, John R; DeLaune, Ron D; Rinklebe, Jörg

    2017-01-15

    Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (E H ), pH, iron (Fe), manganese (Mn), sulfate (SO 4 2- ), chloride (Cl - ), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu 2+ to Cu 1+ . Mobilization of Se was high under low E H in both soils. Release of Se was positively correlated with DOC, Fe, Mn, and SO 4 2- in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with E H and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into account due to increased mobilization and the potential environmental risks associated with food security in utilizing these soils for flooded agricultural and fisheries systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Data from synoptic water-quality studies on the Colorado River in the Grand Canyon, Arizona, November 1990 and June 1991

    USGS Publications Warehouse

    Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.

    1996-01-01

    Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.

  7. Sorption and diffusion of selenium oxyanions in granitic rock

    NASA Astrophysics Data System (ADS)

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0 ± 2.0) × 10- 3 m3/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5 ± 0.3) × 10- 3 m3/kg and (1.0 ± 0.6) × 10- 4 m3/kg. The De of selenium was significantly higher for GG; De = (2.5 ± 1.5) × 10- 12 m2/s than for KGG; De = (7 ± 2) × 10- 13 m2/s due to the higher permeability of GG compared with KGG.

  8. Sorption and diffusion of selenium oxyanions in granitic rock.

    PubMed

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0±2.0)×10(-3)m(3)/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5±0.3)×10(-3)m(3)/kg and (1.0±0.6)×10(-4)m(3)/kg. The De of selenium was significantly higher for GG; De=(2.5±1.5)×10(-12)m(2)/s than for KGG; De=(7±2)×10(-13)m(2)/s due to the higher permeability of GG compared with KGG. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Feasibility of measuring selenium in humans using in vivo neutron activation analysis.

    PubMed

    Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V

    2015-11-01

    Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.

  10. Effect of Selenium Supplementation on Glycemic Control and Lipid Profiles in Patients with Diabetic Nephropathy.

    PubMed

    Bahmani, Fereshteh; Kia, Mahsa; Soleimani, Alireza; Asemi, Zatollah; Esmaillzadeh, Ahmad

    2016-08-01

    To our knowledge, data on the effects of selenium supplementation on glycemic control and lipid concentrations in patients with diabetic nephropathy (DN) are scarce. The current study was done to determine the effects of selenium supplementation on glycemic control and lipid concentrations in patients with DN. This was a randomized double-blind placebo-controlled clinical trial in which 60 patients with DN were randomly allocated into two groups to receive either 200 μg of selenium supplements (n = 30) or placebo (n = 30) daily for 12 weeks. Blood sampling was performed for the quantification of glycemic indicators and lipid profiles at the onset of the study and after 12 weeks of intervention. Selenium supplementation for 12 weeks resulted in a significant decrease in serum insulin levels (P = 0.01), homeostasis model of assessment-estimated insulin resistance (HOMA-IR) (P = 0.02), homeostasis model of assessment-estimated B cell function (HOMA-B) (P = 0.009) and a significant rise in plasma glutathione peroxidase (GPx) (P = 0.001) compared with the placebo. Taking selenium supplements had no significant effects on fasting plasma glucose (FPG), quantitative insulin sensitivity check index (QUICKI) and lipid profiles compared with the placebo. Overall, our study demonstrated that selenium supplementation for 12 weeks among patients with DN had beneficial effects on plasma GPx, serum insulin levels, HOMA-IR, and HOMA-B, while it did not affect FPG, QUICKI, and lipid profiles.

  11. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements.

    PubMed

    Duncan, Andrew; Talwar, Dinesh; McMillan, Donald C; Stefanowicz, Fiona; O'Reilly, Denis St J

    2012-01-01

    Plasma concentrations of several trace elements and vitamins decrease because of the systemic inflammatory response. Thus, low values do not necessarily indicate deficiency. The magnitude of this effect on plasma micronutrient concentrations was investigated to provide guidance on the interpretation of routine clinical results. Between 2001 and 2011, the results (2217 blood samples from 1303 patients) of routine micronutrient screens (plasma zinc, copper, selenium, and vitamins A, B-6, C, and E) and all vitamin D results (4327 blood samples from 3677 patients) were extracted from the laboratory database. C-reactive protein concentrations were measured as a marker of the severity of inflammation and categorized into 6 groups; for each group, plasma micronutrient concentrations and percentage changes were calculated. Except for copper and vitamin E, all plasma micronutrient concentrations decreased with increasing severities of the acute inflammatory response. For selenium and vitamins B-6 and C, this occurred with only slightly increased C-reactive protein concentrations of 5 to 10 mg/L. For each micronutrient, the change in plasma concentrations varied markedly from patient to patient. The magnitude of the effect was greatest for selenium and vitamins A, B-6, C, and D, for which the median plasma concentrations decreased by >40%. The clinical interpretation of plasma micronutrients can be made only with knowledge of the degree of inflammatory response. A reliable clinical interpretation can be made only if the C-reactive protein is <20 mg/L (plasma zinc), <10 mg/L (plasma selenium and vitamins A and D), or <5 mg/L (vitamins B-6 and C).

  12. Water-resources appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado

    USGS Publications Warehouse

    Crouch, T.M.; Cain, Doug; Abbott, P.O.; Penley, R.D.; Hurr, R.T.

    1984-01-01

    Water used for agriculture and stock and municipal supplies in the upper Arkansas River basin is derived mostly from the Arkansas River and its tributaries. The flow regime of the river has been altered by increased reservoir capacities and importation of 69,200 acre-feet per year from the Colorado River drainage through transmountain diversions. An estimated 10.2 million acre-feet of hydrologically recoverable water is present in the first 200 feet of basin-fill alluvium. Well yields of 300 gallons per minute have been reported for the Dakota-Purgatoire aquifer aquifer located east of Canon City. Water quality of ground- and surface-water resources are generally acceptable for agriculture and stock watering, but concentrations of iron, manganese, sulfate, pH, and hardness may exceed recommended drinking-water criteria during periods of river low flow. Concentrations of mercury, selenium, and select radiochemical constituents also were high in the Dakota-Purgatoire aquifer. Dissolved solids increased downstream and in local areas as a result of water use and in the Leadville area because of mine drainage. (USGS)

  13. Status and understanding of groundwater quality in the Monterey-Salinas Shallow Aquifer Study Unit, 2012–13: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen; Wright, Michael

    2018-05-30

    Groundwater quality in the approximately 7,820-square-kilometer (km2) Monterey-Salinas Shallow Aquifer (MS-SA) study unit was investigated from October 2012 to May 2013 as part of the second phase of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in the central coast region of California in the counties of Santa Cruz, Monterey, and San Luis Obispo. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in cooperation with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.The MS-SA study was designed to provide a statistically robust assessment of untreated-groundwater quality in the shallow aquifer systems. The assessment was based on water-quality samples collected by the U.S. Geological Survey from 100 groundwater sites and 70 household tap sites, along with ancillary data such as land use and well-construction information. The shallow aquifer systems were defined by the depth interval of wells associated with domestic supply. The MS-SA study unit consisted of four study areas—Santa Cruz (210 km2), Pajaro Valley (360 km2), Salinas Valley (2,000 km2), and Highlands (5,250 km2).This study had two primary components: the status assessment and the understanding assessment. The first primary component of this study—the status assessment—assessed the quality of the groundwater resource indicated by data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally present inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources in the shallow aquifer system of the MS-SA study unit, not the treated drinking water delivered to consumers by water purveyors. As opposed to the public wells, however, water from private wells, which often tap the shallow aquifer, is usually consumed without any treatment. The second component of this study—the understanding assessment—identified the natural and human factors that potentially affect groundwater quality by evaluating land-use characteristics, measures of location, geologic factors, groundwater age, and geochemical conditions of the shallow aquifer. An additional component of this study was a comparison of MS-SA water-quality results to those of the GAMA Monterey Bay and Salinas Valley Groundwater Basins study unit. This study unit covered much of the same areal extent as the MS-SA, but assessed the deeper, public drinking-water aquifer system.Relative concentrations (sample concentration divided by the benchmark concentration) were used to evaluate concentrations of constituents in groundwater samples relative to water-quality benchmarks for those constituents that have Federal or California benchmarks, such as maximum contaminant levels. For organic and special-interest constituents, relative concentrations were classified as high, greater than 1.0; moderate, greater than 0.1 and less than or equal to 1.0; or low, less than or equal to 0.1. For inorganic constituents, relative concentrations were classified as high, greater than 1.0; moderate, greater than 0.5 and less than or equal to 1.0; or low, less than or equal to 0.5. A relative concentration greater than 1.0 indicates that the concentration was greater than a benchmark. Aquifer-scale proportions were used to quantify regional-scale groundwater quality. The aquifer-scale proportions are the areal percentages of the shallow aquifer system where relative concentrations for a given constituent or class of constituents were high, moderate, or low.Inorganic constituents were measured at high and moderate relative concentrations more frequently than organic constituents. In the MS-SA study unit, inorganic constituents with benchmarks were detected at high relative concentrations in 51 percent of the study unit. The greatest proportions of high relative concentrations of trace elements and radioactive constituents were in the Highlands and Santa Cruz study areas, whereas high relative concentrations of nutrients were most often detected in the Salinas Valley and Pajaro Valley study areas and salinity indicators were most often detected in the Highlands and Salinas Valley study areas. The trace elements detected at high relative concentrations were arsenic, boron, iron, manganese, molybdenum, selenium, and strontium. The radioactive constituents detected at high relative concentrations were adjusted gross alpha radioactivity and uranium. The nutrient detected at high relative concentrations was nitrate plus nitrite. The salinity indicators detected at high relative concentrations were chloride, sulfate, and total dissolved solids.Organic constituents (VOCs and pesticides) were not detected at high relative concentrations in any of the study areas. The fumigant 1,2-dichloropropane was detected at moderate relative concentrations. The VOC chloroform and the pesticide simazine were the only organic constituents detected in more than 10 percent of samples. The constituents of special interest NDMA (N-nitrosodimethylamine) and perchlorate were detected at high relative concentrations in the MS-SA study unit.Selected constituents were evaluated with explanatory factors to identify potential sources or processes that could explain their presence and distribution. Trace elements and radioactive constituents came from natural sources and were not elevated by anthropogenic sources or processes, except for selenium and the radioactive constituent uranium. Arsenic, manganese, iron, selenium, and uranium concentrations were all influenced by oxidation-reduction conditions.Unlike other trace elements and radioactive constituents, uranium and selenium can be affected by agricultural practices. Uranium and selenium can be released from aquifer sediments as a result of irrigation recharge water interacting with bicarbonate systems.Nitrate can be strongly affected by anthropogenic sources. Nitrate concentrations were significantly higher in modern groundwater, indicating recent inputs of nitrate to the shallow aquifer system. Nitrate was positively correlated with agricultural land use, indicating that irrigation-return water could be leaching nitrogen fertilizer and naturally present nitrate to elevate nitrate concentrations in shallow groundwater.The salinity indicators total dissolved solids, chloride, and sulfate all had natural sources in the MS-SA study unit, primarily marine sediments. Concentrations of the constituents were elevated as a result of evaporative concentration of irrigation water or precipitation. Sulfate concentrations were significantly correlated to agricultural land use, indicating that agricultural land-use practices are a contributing source of sulfate to groundwater.The samples with most of the detections of VOCs were from sites in the Pajaro Valley and northern part of the Salinas Valley. Most of the samples with pesticide detections were from sites in the Salinas Valley study area. The herbicide simazine was positively correlated to the percentage of agricultural land use, and its concentrations were higher in modern groundwater than in pre-modern groundwater.Perchlorate, similar to nitrate, has natural and anthropogenic sources. Correlations of perchlorate to dissolved oxygen, nitrate, and percentage of agricultural land use indicated that the irrigation-return water could be leaching naturally present perchlorate, as well as perchlorate from historical applications of Chilean nitrate fertilizer, to increase perchlorate concentrations in groundwater.The quality of the water in the shallow aquifer system from this study was compared with the quality of water in the public drinking-water aquifer in a previous GAMA (MS-PA) study in the same area. The shallow system was more oxic and had more sites with modern groundwater than the public drinking-water aquifer, which was more anoxic and had sites with more pre-modern groundwater. Arsenic and selenium were found at high relative concentrations in a greater proportion of the shallow system. Manganese and iron were found at high relative concentrations in a greater proportion of the public drinking-water aquifer. Uranium was found at higher relative concentrations in a greater proportion of the shallow system. Concentrations of arsenic, iron, manganese, and molybdenum are not likely to change much as groundwater percolates from the shallow system to the public drinking-water aquifer because there are no anthropogenic sources affecting these constituents. Uranium and selenium concentrations in the public drinking-water aquifer could be affected by the higher concentrations in the shallow system because of irrigation-return water, however.Nitrate and salinity indicators had concentrations that were much higher in the shallow system than the deeper public drinking-water aquifer. High concentrations of these constituents in the shallow system could lead to increased concentrations in the public drinking-water aquifer in parts of the study units because of land-use practices, such as irrigated agriculture.Organic constituents were detected more frequently in the public drinking-water aquifer than in the shallow system, possibly because more of the sites sampled in the public drinking-water aquifer were in urban areas compared to the sites sampled for the shallow system or because sources of contamination have decreased as a result of changes in use at the land surface.

  14. A technical framework for implementing aquatic ecosystem loading limits (TMDLs) to reduce selenium pollution from phosphate mining wastes on Caribou National Forest, Idaho

    Treesearch

    A. Dennis Lemly

    2001-01-01

    Beginning in 1996, selenium associated with phosphate mining on Caribou National Forest (CNF) was implicated as the cause of death to horses and sheep grazing on private land adjacent to the national forest. In response to these concerns, the Forest Service began a monitoring study to determine selenium concentrations in and around the mine sites. By 1998, the study...

  15. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid

    NASA Astrophysics Data System (ADS)

    Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2010-09-01

    The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.

  16. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P).

    PubMed

    Ekoue, Dede N; Zaichick, Sofia; Valyi-Nagy, Klara; Picklo, Matthew; Lacher, Craig; Hoskins, Kent; Warso, Michael A; Bonini, Marcelo G; Diamond, Alan M

    2017-01-01

    Selenium supplementation of the diets of rodents has consistently been shown to suppress mammary carcinogenesis and some, albeit not all, human epidemiological studies have indicated an inverse association between selenium and breast cancer risk. In order to better understand the role selenium plays in breast cancer, 30 samples of tumor tissue were obtained from women with breast cancer and analyzed for selenium concentration, the levels of several selenium-containing proteins and the levels of the MnSOD anti-oxidant protein. Polymorphisms within the genes for these same proteins were determined from DNA isolated from the tissue samples. There was a wide range of selenium in these tissues, ranging from 24 to 854ng/gm. The selenium levels in the tissues were correlated to the genotype of the SELENOP selenium carrier protein, but not to other proteins whose levels have been reported to be responsive to selenium availability, including GPX1, SELENOF and SBP1. There was an association between a polymorphism in the gene for MnSOD and the levels of the encoded protein. These studies were the first to examine the relationship between selenium levels, genotypes and protein levels in human tissues. Furthermore, the obtained data provide evidence for the need to obtain data about the effects of selenium in breast cancer by examining samples from that particular tissue type. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Water quality of streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    USGS Publications Warehouse

    Tornes, Lan H.

    2005-01-01

    Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination.  For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less than 1,000 microsiemens per centimeter.  Concentrations of pesticides that were detected and that had regulatory limits were less than the cited water-quality guidelines, standards, and criteria. Concentrations of compounds that were detected generally were less than the sediment- quality standards and criteria. The data considered in this report generally provide a good baseline from which to evaluate changes in water-quality conditions. However, because many of the trace elements detected, including lead and mercury, may have been the result of sample contamination, additional data are needed to confirm that trace-element concentrations generally are low. Concentrations of major ions, including sulfate, and specific conductance may continue to approach drinking-water standards during periods of low flow because the streams, particularly those in the western part of the basin, are sustained mostly by ground-water discharge that generally has large dissolved-solids concentrations.

  18. Selenium status in pregnancy influences children's cognitive function at 1.5 years of age.

    PubMed

    Skröder, Helena M; Hamadani, Jena D; Tofail, Fahmida; Persson, Lars Åke; Vahter, Marie E; Kippler, Maria J

    2015-10-01

    Selenium deficiency has been shown to affect the neurological development in animals, but human research in this area is scarce. We aimed to assess the impact of selenium status during pregnancy on child development at 1.5 years of age. This prospective cohort study was nested into a food and micronutrient supplementation trial (MINIMat) conducted in rural Bangladesh. Using inductively coupled plasma mass spectrometry, we measured selenium concentrations in erythrocyte fraction of blood collected from 750 mothers at gestational week 30, and calculated μg per g hemoglobin. A revised version of Bayley Scales of Infant Development was used to assess children's mental and psychomotor development. A Bangladeshi version of MacArthur's Communicative Development Inventory was used to assess language comprehension and expression. Linear regression analyses adjusted for multiple covariates were used to assess the associations. Maternal erythrocyte selenium concentrations varied considerably, from 0.19 to 0.87 μg/g hemoglobin (median 0.46 μg/g hemoglobin), and were associated with developmental measures. An increase in erythrocyte selenium by 0.50 μg/g hemoglobin was associated with an increase in children's language comprehension by 3.7 points (0.5 standard deviations; 95% confidence interval: 0.40, 7.1; p = 0.028). The same increase in erythrocyte selenium corresponded to an increase in the girls' psychomotor development by 12 points (0.9 standard deviation; 95% confidence interval: 4.3, 19; p = 0.002), but much less in boys. Low prenatal selenium status seems to be disadvantageous for children's psychomotor and language development. Further studies are needed to elucidate the underlying mechanisms of these effects. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Bioaccumulation of selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado.

    PubMed

    Herrmann, S J; Turner, J A; Carsella, J S; Lehmpuhl, D W; Nimmo, D R

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 10(3) at Green Mountain Falls and 1.5 × 10(4) at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R (2) = 0.84) and fall (R (2) = 0.95) and dissolved Se and total hardness in the spring and fall (R (2) = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  20. Assessment of two nonnative poeciliid fishes for monitoring selenium exposure in the endangered desert pupfish

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Brumbaugh, William G.

    2012-01-01

    We assessed the suitability of two nonnative poeciliid fishes—western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna)—for monitoring selenium exposure in desert pupfish (Cyprinodon macularius). Our investigation was prompted by a need to avoid lethal take of an endangered species (pupfish) when sampling fish for chemical analysis. Total selenium (SeTot) concentrations in both poeciliids were highly correlated with SeTot concentrations in pupfish. However, mean SeTot concentrations varied among fish species, with higher concentrations measured in mosquitofish than in mollies and pupfish from one of three sampled agricultural drains. Moreover, regression equations describing the relationship of selenomethionine to SeTot differed between mosquitofish and pupfish, but not between mollies and pupfish. Because selenium accumulates in animals primarily through dietary exposure, we examined fish trophic relationships by measuring stable isotopes (δ13C and δ15N) and gut contents. According to δ13C measurements, the trophic pathway leading to mosquitofish was more carbon-depleted than trophic pathways leading to mollies and pupfish, suggesting that energy flow to mosquitofish originated from allochthonous sources (terrestrial vegetation, emergent macrophytes, or both), whereas energy flow to mollies and pupfish originated from autochthonous sources (filamentous algae, submerged macrophytes, or both). The δ15N measurements indicated that mosquitofish and mollies occupied similar trophic levels, whereas pupfish occupied a slightly higher trophic level. Analysis of gut contents showed that mosquitofish consumed mostly winged insects (an indication of terrestrial taxa), whereas mollies and pupfish consumed mostly organic detritus. Judging from our results, only mollies (not mosquitofish) are suitable for monitoring selenium exposure in pupfish.

  1. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  2. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    PubMed Central

    Haug, Anna; Graham, Robin D.; Christophersen, Olav A.; Lyons, Graham H.

    2007-01-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations. PMID:18833333

  3. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  4. Impact of the Nationwide Intravenous Selenium Product Shortage on the Development of Selenium Deficiency in Infants Dependent on Long-Term Parenteral Nutrition.

    PubMed

    Chen, Connie H; Harris, Mary Beth; Partipilo, M Luisa; Welch, Kathleen B; Teitelbaum, Daniel H; Blackmer, Allison B

    2016-08-01

    For patients dependent on parenteral nutrition (PN), selenium must be supplemented intravenously. A nationwide intravenous selenium shortage began in April 2011. The impact of this shortage on PN-dependent infants was evaluated by examining the provision of selenium, development of biochemical deficiency, and costs associated with the shortage. This single-center, retrospective study included PN-dependent infants aged ≤1 year who weighed ≤30 kg, received PN for ≥1 month, and had ≥1 serum selenium measurement. The primary outcome was the incidence of biochemical selenium deficiency. Secondary outcomes included severity of biochemical deficiency, clinical manifestations, costs, and relationship between serum selenium levels and selenium dose. The average selenium dose decreased 2-fold during the shortage (2.1 ± 1.2 µg/kg/d; range, 0.2-4.6 µg/kg/d) versus the nonshortage period (3.8 ± 1 µg/kg/d; range, 2.4-6 µg/kg/d; P < .001). A linear relationship between serum selenium concentration and selenium dose was observed (r(2) = 0.42), with a dose of 6 µg/kg/d expected to result in normal serum levels in most cases. Similar proportions of patients developed biochemical deficiency in both groups: shortage period, 59.1%; nonshortage, 66.7%; P = .13. The severity of biochemical deficiency was similar between groups. A significant increase in incremental cost during the shortage was observed. This is the first study examining the impact of the intravenous selenium shortage on PN-dependent infants. Both groups exhibited similarly high incidences of biochemical selenium deficiency, suggesting higher empiric doses may benefit this population. However, ongoing shortages limit the ability to provide supplementation. © 2015 American Society for Parenteral and Enteral Nutrition.

  5. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  6. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY...

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporou...

  7. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    NASA Astrophysics Data System (ADS)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-05-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado's Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%-450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  8. Transport of chromium and selenium in a pristine sand and gravel aquifer: Role of adsorption processes

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.

    1995-01-01

    Field transport experiments were conducted in an oxic sand and gravel aquifer using Br (bromide ion), Cr (chromium, injected as Cr(VI)), Se (selenium, injected as Se(VI)), and other tracers. The aquifer has mildly acidic pH values and low concentrations of dissolved salts. Within analytical errors, all mobile Cr was present as Cr(VI). All mobile Se was probably present as Se(VI). Adsorption of Cr and Se onto aquifer sediments caused retardation of both tracers. Breakthrough curves for Cr and Se had extensive tails, which caused large decreases in their maximum concentrations relative to the nonreactive Br tracer after only 2.0 m of transport. A surface complexation model was applied to the results of laboratory studies of Cr(VI) adsorption on aquifer solids from the site based on adsorption onto hydrous ferric oxide. The modeling results suggested that the dominant adsorbents in the aquifer solids have lower affinities for anion adsorption than pure hydrous ferric oxide. The steep rising limbs and extensive tails observed in most of the breakthrough curves are qualitatively consistent with the equilibrium surface complexation model; however, slow rates of adsorption and desorption may have contributed to these features. Variations during transport in the concentrations of Cr, Se, and other anions competing for adsorption sites likely gave rise to variations in the extent of adsorption. Adequate description of the observed retardation of Cr and Se would require a coupled transport-adsorption model that can account for these effects. Companion experiments in the mildly reducing zone of the aquifer (Kent et al., 1994) showed a loss of Cr mass, probably resulting from reduction to Cr(III), and little retardation of mobile Cr and Se during transport; this contrast illustrates the influence of aquifer chemistry on the transport of redox-sensitive solutes.

  9. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    USGS Publications Warehouse

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-01-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado’s Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%–450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  10. Selenium toxicity to honey bee (Apis mellifera L.) pollinators: effects on behaviors and survival.

    PubMed

    Hladun, Kristen R; Smith, Brian H; Mustard, Julie A; Morton, Ray R; Trumble, John T

    2012-01-01

    We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.

  11. Selenium Toxicity to Honey Bee (Apis mellifera L.) Pollinators: Effects on Behaviors and Survival

    PubMed Central

    Hladun, Kristen R.; Smith, Brian H.; Mustard, Julie A.; Morton, Ray R.; Trumble, John T.

    2012-01-01

    We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds. PMID:22514621

  12. Selenium toxicity: cause and effects in aquatic birds

    USGS Publications Warehouse

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  13. Selenium(IV) and (VI) sorption by soils surrounding fly ash management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, S.; Burns, P.E.; Murarka, I.

    2006-11-15

    Leachate derived from unlined coal ash disposal facilities is one of the most significant anthropogenic sources of selenium to the environment. To establish a practical framework for predicting transport of selenium in ash leachate, sorption of Se(IV) and Se(VI) from 1 mM CaSO{sub 4} was measured for 18 soils obtained down-gradient from three ash landfill sites and evaluated with respect to several soil properties. Furthermore, soil attenuation from lab-generated ash leachate and the effect of Ca{sup 2+} and SO{sub 4}{sup 2-} concentrations as well as pH on both Se(IV) and Se(VI) was quantified for a subset of soils. For bothmore » Se(IV) and Se(VI), pH combined with either percentage clay or dithionite-citrate-bicarbonate (DCB)-extractable Fe described {gt} 80% of the differences in sorption across all soils, yielding an easy approach for making initial predictions regarding site-specific selenium transport to sensitive water bodies. Se(IV) consistently exhibited an order of magnitude greater sorption than Se(VI). Selenium sorption was highest at lower pH values, with Se(IV) sorption decreasing at pH values above 6, whereas Se(VI) decreased over the entire pH range (2.5-10). Using these pH adsorption envelopes, the likely effect of ash leachate-induced changes in soil pore water pH with time on selenium attenuation by down gradient soils can be predicted. Selenium sorption increased with increasing Ca{sup 2+} concentrations while SO{sub 4}2- suppressed sorption well above enhancements by Ca{sup 2+}. Soil attenuation of selenium from ash leachates agreed well with sorption measured from 1 mM CaSO{sub 4}, indicating that 1 mM CaSO{sub 4} is a reasonable synthetic leachate for assessing selenium behavior at ash landfill sites.« less

  14. Indirect spectrophotometric determination of ultra trace amounts of selenium based on dispersive liquid-liquid microextraction-solidified floating organic drop.

    PubMed

    Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz

    2013-12-01

    A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I(-) to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I(-) ions in acidic media to give triiodide ions. The I3(-) is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L(-1) and a linear dynamic range of 40.0-1000.0 μg L(-1). The relative standard deviation was found to be 2.1% (n=7) at 100.0 μg L(-1) concentration level. The method was successfully applied to th e determination of selenium in water samples and selenium plus tablet. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Selenium impacts on razorback sucker, Colorado River, Colorado: I. Adults

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.; Weston, L.K.; McDonald, S.F.

    2005-01-01

    Adult razorback sucker (Xyrauchen texanus) were exposed to various selenium concentrations in ponds and isolated river channels of the Colorado River near Grand Junction, CO, to determine effects on their growth and residue accumulation over an 11-month period. Adults at Horsethief ponds were fed a commercial diet, whereas fish at Adobe Creek channel and North Pond foraged on natural food items. Selenium concentrations at Horsethief were 2.2 μg/L in water, 0.1–1.4 μg/g in sediment, and 2.3–3.1 μg/g in food organisms (1.1 μg/g in commercial fish food), at Adobe Creek were 3.8 μg/L in water, 0.5–2.1 μg/g in sediment, and 4–56 μg/g in food organisms, and at North Pond were 9.5 μg/L in water, 7–55 μg/g in sediment, and 20–81 μg/g in food organisms. The selenium concentrations in muscle plugs from adults at Adobe Creek (11.7 μg/g, SD=0.4, n=6) and North Pond (16.6 μg/g, SD=1.0, n=6) were greater than at Horsethief (4.5 μg/g, SD=0.2, n=6). During a depuration period adults from Adobe Creek and North Pond lost 1–2% of their selenium burden in 32 days and 14–19% in 66 days. Selenium accumulated in razorback sucker above toxic thresholds reported in other studies, yet those residues were less than those reported in muscle plugs of 40% of wild razorback sucker caught in the Green River, Utah.

  16. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish.

    PubMed

    Kumar, Neeraj; Krishnani, Kishore Kumar; Singh, Narendra Pratap

    2018-03-01

    Recent studies have demonstrated that selenium (Se) and selenium nanoparticles (Se-NPs) exhibited toxicity at a higher concentration. The lethal concentration of Se and Se-NPs was estimated as 5.29 and 3.97 mg/L at 96 h in Pangasius hypophthalmus. However, the effect of different definite concentration of Se (4.5, 5.0, 5.5, and 6.0 mg/L) and Se-NPs (2.5, 3.0, 3.5, and 4.0 mg/L) was decided for acute experiment. Selenium and Se-NPs alter the biochemical attributes such as anti-oxidative status [catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities], neurotransmitter enzyme, cellular metabolic enzymes, stress marker, and histopathology of P. hypophthalmus in a dose- and time-dependent manner. CAT, SOD, and GST were significantly elevated (p < 0.01) when exposed to Se and Se-NPs, and similarly, a neurotransmitter enzyme (acetylcholine esterase (AChE)) was significantly inhibited in a time- and dose-dependent manner. Further, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and malate hydrogenase were noticeably (p < 0.01) affected by Se and Se-NPs from higher concentration to lower concentration. Stress markers such as cortisol and HSP 70 were drastically enhanced by exposure to Se and Se-NPs. All the cellular metabolic and stress marker parameters were elevated which might be due to hyperaccumulation of Se and Se-NPs in the vital organ and target tissues. The histopathology of liver and gill was also altered such as large vacuole, cloudy swelling, focal necrosis, interstitial edema, necrosis in liver, and thickening of primary lamellae epithelium and curling of secondary lamellae due to Se and Se-NP exposure. The study suggested that essential trace element in both forms (inorganic and nano) at higher concentration in acute exposure of Se and Se-NPs led to pronounced deleterious alteration on histopathology and cellular and metabolic activities of P. hypophthalmus.

  17. Using Sulfur Stable Isotopes to Understand Feeding Behavior and Selenium Concentrations in Yellow Perch (Perca flavescens).

    PubMed

    Ponton, Dominic E; Hare, Landis

    2015-07-07

    We measured selenium (Se) concentrations in yellow perch (Perca flavescens) muscle and their prey collected from four Se-contaminated lakes located near metal smelters in the eastern Canadian cities of Sudbury and Rouyn-Noranda. Yellow perch Se concentrations were related to their weight in two of the four lakes. Measurements of sulfur stable isotopes (δ(34)S) in yellow perch muscle and stomach contents showed that larger fish tended to feed less on zooplankton and more on benthic invertebrates than did smaller fish. Because Se concentrations are lower and δ(34)S signatures are higher in zooplankton than in sediment-feeding invertebrates, there was an inverse relationship between animal Se concentrations and δ(34)S signatures in all of our study lakes. δ(34)S signatures were highly effective in characterizing these food web relationships. Selenium concentrations in yellow perch were 1.6 times those of its prey, which indicates that Se is biomagnified by this fish in our study lakes. Estimated Se concentrations in yellow perch gonads suggest that in two of our study lakes one-third of fish are at risk of reproductive toxicity.

  18. Vicia root-mirconucleus and sister chromatid exchange assays on the genotoxicity of selenium compounds.

    PubMed

    Yi, Huilan; Si, Liangyan

    2007-06-15

    Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0mg/L, induced a 1.9-3.9-fold increase in MN frequency and a 1.5-1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P<0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15-80% decrease in mitotic indices (MI), but at the lowest concentration (0.005mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.

  19. Reproduction in mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Krynitsky, A.J.; Weller, D.M.G.

    1987-01-01

    Mallards (Anas platyrhynchos) were fed diets containing 1, 5, 10, 25 or 100 ppm selenium as sodium selenite, a diet containing 10 ppm selenium as seleno-DL-methionine or a control diet. There were no effects of 1, 5 or 10 ppm selenium as sodium selenite on either weight or survival of adults or on reproductive success, and there did not appear to be a dose-response relationship at these lower levels. The 100 ppm selenium diet killed 11 of 12 adults; one adult male fed 25 ppm selenium died. Selenium at 25 and 100 ppm caused weight loss in adults. Females fed 25 ppm selenium took longer to begin laying eggs and intervals between eggs were longer than in females in other treatment groups. Hatching success appeared to be reduced in birds fed 10 ppm selenium at selenomethionine, but the reduction was not statistically significant. The survival of ducklings and the mean number of 21-d-old ducklings produced per female were reduced in the 25 ppm selenium as sodium selenite group and the 10 ppm selenium as selenomethionine group. Egg weights were not affected by any selenium treatment, but 25 ppm selenium lowered the Ratcliffe Index. Duckling weights at hatching and at 21 d of age were reduced 28 and 36%, respectively, in birds fed 25 ppm selenium, as compared with controls. Body weights measured on day 21 were lower for ducklings fed 10 ppm selenium as selenomethionine than in some other groups. Selenium in concentrations of 10 and 25 ppm as sodium selenite caused mainly embryotoxic effects, whereas 10 ppm as selenomethionine was more teratogenic, causing hydrocephaly, bill defects, eye defects (microphthalmia and anophthalmia) and foot and toe defects, including ectrodactyly. Selenomethionine was much more readily taken up by mallards and passed into their eggs than was sodium selenite, and a greater proportion of the selenium in the eggs ended up in the white when selenomethionine was fed. Adult males accumulated more selenium than did females, probably because of the females' ability to eliminate selenium in their eggs.

  20. Protective effects of meat from lambs on selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity.

    PubMed

    Ungvári, Éva; Monori, István; Megyeri, Attila; Csiki, Zoltán; Prokisch, József; Sztrik, Attila; Jávor, András; Benkő, Ilona

    2014-02-01

    Increased environmental oxidative stress caused primarily by chemicals like polycyclic aromatic hydrocarbons, plays significant role in human diseases. A representative compound, 7,12-dimethylbenz(a)anthracene (DMBA), was used for modeling oxidative damages including the significant decrease of the antioxidant capacity of the blood. Selenium has antioxidant effects but with a narrow therapeutic window. In our current studies to avoid accidental overdose and toxicity selenium was given to meat-producing animals. The standard rodent diet of mice was replaced by meat from lambs either on standard or selenium-enriched diet. Selenium concentration of lamb meat was enhanced three times by nano-selenium administration and an increase in the antioxidant capacity of the blood of mice was measured after the indirect selenium supplementation. Protective effects were also observed against DMBA-induced immunotoxicity. Twice the amount of white blood cells and among them three times more phagocytes survived. Similarly, in their renewal system in bone marrow twice the amount of cells survived and regenerative capacity of granulopoiesis was four times higher than in control DMBA-damaged mice. Our findings suggest functional dietary benefits of lamb meat enriched with selenium by feeding lambs with nanoparticle selenium supplements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Association between Hantavirus Infection and Selenium Deficiency in Mainland China

    PubMed Central

    Fang, Li-Qun; Goeijenbier, Marco; Zuo, Shu-Qing; Wang, Li-Ping; Liang, Song; Klein, Sabra L.; Li, Xin-Lou; Liu, Kun; Liang, Lu; Gong, Peng; Glass, Gregory E.; van Gorp, Eric; Richardus, Jan H.; Ma, Jia-Qi; Cao, Wu-Chun; de Vlas, Sake J.

    2015-01-01

    Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses and transmitted by rodents is a significant public health problem in China, and occurs more frequently in selenium-deficient regions. To study the role of selenium concentration in HFRS incidence we used a multidisciplinary approach combining ecological analysis with preliminary experimental data. The incidence of HFRS in humans was about six times higher in severe selenium-deficient and double in moderate deficient areas compared to non-deficient areas. This association became statistically stronger after correction for other significant environment-related factors (low elevation, few grasslands, or an abundance of forests) and was independent of geographical scale by separate analyses for different climate regions. A case-control study of HFRS patients admitted to the hospital revealed increased activity and plasma levels of selenium binding proteins while selenium supplementation in vitro decreased viral replication in an endothelial cell model after infection with a low multiplicity of infection (MOI). Viral replication with a higher MOI was not affected by selenium supplementation. Our findings indicate that selenium deficiency may contribute to an increased prevalence of hantavirus infections in both humans and rodents. Future studies are needed to further examine the exact mechanism behind this observation before selenium supplementation in deficient areas could be implemented for HFRS prevention. PMID:25609306

  2. Hepatic metabolite profiles in mice with a suboptimal selenium status.

    PubMed

    Geillinger, Kerstin E; Rathmann, Daniel; Köhrle, Josef; Fiamoncini, Jarlei; Daniel, Hannelore; Kipp, Anna P

    2014-09-01

    Selenium is an essential trace element and mediates its functions via various selenoproteins such as glutathione peroxidases or thioredoxin reductases. A suboptimal selenium supply causes metabolic disturbances and is associated with an increased risk to develop different disorders, including cancer or cardiovascular diseases. This study aimed to assess the impact of a suboptimal selenium status on the hepatic metabolome of male mice analyzed by a targeted liquid chromatography/tandem mass spectrometry and a method based on non-targeted gas chromatography hyphenated with mass spectrometry. Feeding animals a diet with about half of the recommended selenium content supplied as selenomethionine caused liver glutathione peroxidase and thioredoxin reductase activities to decline and lipid peroxidation to increase. Serum T3 thyroid hormone concentration also declined via a reduced hepatic deiodinase activity. Metabolite profiling revealed predominantly changes in cysteine and carbon-1 metabolism as well as in selected lipid subclasses. In particular the concentrations of palmitoylcarnitines and oleoylcarnitines (C18:1 and C16:1) and various phosphatidylcholine species containing saturated fatty acids were elevated. Increased taurine levels suggested an enhanced cysteine flux through the salvage pathway whereas increased homocysteine levels appeared to be a consequence of a massive down-regulation of cystathionine β lyase (cystathionine β synthase) and a reduced flux through the transsulfuration pathway. The findings demonstrate that a suboptimal selenium status causes alterations in lipid and carbon-1 metabolism in mouse liver. These changes may contribute to the development of diseases associated with a suboptimal selenium status. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Influence of selenium supplementation on patients with inflammation: A pilot double blind randomized study.

    PubMed

    Freitas, Renata Germano Borges de Oliveira Nascimento; Nogueira, Roberto José Negrão; Cozzolino, Silvia Maria Franciscato; Vasques, Ana Carolina Junqueira; Hessel, Gabriel

    2017-09-01

    The aim of the study was to analyze the effect of selenium supplementation on patients with inflammation receiving PN. This double-blind randomized study included 20 hospitalized patients experiencing an inflammatory process while being fed by PN, who were monitored in three stages: first 72 h (0), day 7 (1), and day 14 (2) of PN. The supplemented patients group (G+S) received 60 μg/d (0.75 μmol) of selenium as selenious acid which was added to the PN bag. The nonsupplemented group (G-S) did not receive selenium. The concentration range of 84 to 100 μg/L (1.07-1.27 μmol/L) was used as a reference of plasma selenium. The study included 20 patients (8 G+S and 12 G-S) mainly diagnosed with cancer and/or sepsis. Most of them were hospitalized in the intensive care unit and were receiving PN for clinical reasons. Plasma selenium was greater in the G+S than in the G-S (P = 0.05) in two stages (0 and 1). Since the start of assessment, C-reactive protein (CRP) levels were elevated; however, there was no statistical difference in CRP values between groups (P > 0.05). There was no significant change of glutathione peroxidase over time or between groups (P > 0.05). The selenium concentration was greater in the G+S than in the G-S, acting independently from CRP behavior. However, supplementation was not enough to reach the reference values. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey

    PubMed Central

    Gochfeld, Michael; Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    We examined total mercury and selenium levels in muscle of striped bass (Morone saxatilis) collected from 2005 to 2008 from coastal New Jersey. Of primary interest was whether there were differences in mercury and selenium levels as a function of size and location, and whether the legal size limits increased the exposure of bass consumers to mercury. We obtained samples mainly from recreational anglers, but also by seine and trawl. For the entire sample (n = 178 individual fish), the mean (± standard error) for total mercury was 0.39 ± 0.02 μg/g (= 0.39 ppm, wet weight basis) with a maximum of 1.3 μg/g (= 1.3 ppm wet weight). Mean selenium level was 0.30 ± 0.01 μg/g (w/w) with a maximum of 0.9 μg/g). Angler-caught fish (n = 122) were constrained by legal size limits to exceed 61 cm (24 in.) and averaged 72.6 ± 1.3 cm long; total mercury averaged 0.48 ± 0.021 μg/g and selenium averaged 0.29 ± 0.01 μg/g. For comparable sizes, angler-caught fish had significantly higher mercury levels (0.3 vs 0.21 μg/g) than trawled fish. In both the total and angler-only samples, mercury was strongly correlated with length (Kendall tau = 0.37; p < 0.0001) and weight (0.38; p < 0.0001), but was not correlated with condition or with selenium. In the whole sample and all subsamples, total length yielded the highest r2 (up to 0.42) of any variable for both mercury and selenium concentrations. Trawled fish from Long Branch in August and Sandy Hook in October were the same size (68.9 vs 70.1 cm) and had the same mercury concentrations (0.22 vs 0.21 ppm), but different selenium levels (0.11 vs 0.28 ppm). The seined fish (all from Delaware Bay) had the same mercury concentration as the trawled fish from the Atlantic coast despite being smaller. Angler-caught fish from the North (Sandy Hook) were larger but had significantly lower mercury than fish from the South (mainly Cape May). Selenium levels were high in small fish, low in medium-sized fish, and increased again in larger fish, but overall selenium was correlated with length (tau = 0.14; p = 0.006) and weight (tau = 0.27; p < 0.0001). Length-squared contributed significantly to selenium models, reflecting the non-linear relationship. Inter-year differences were explained partly by differences in sizes. The selenium:mercury molar ratio was below 1:1 in 20% of the fish and 25% of the angler-caught fish. Frequent consumption of large striped bass can result in exposure above the EPA’s reference dose, a problem particularly for fetal development. PMID:22226733

  5. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate.

    PubMed

    Larsen, Erik H; Lobinski, Ryszard; Burger-Meÿer, Karin; Hansen, Marianne; Ruzik, Rafal; Mazurowska, Lena; Rasmussen, Peter Have; Sloth, Jens J; Scholten, Olga; Kik, Chris

    2006-07-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 microg g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma-glutamyl-Se-methyl-selenocysteine and gamma-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.

  6. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    PubMed Central

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  7. Infiltration and quality of water for two arroyo channels, Albuquerque, New Mexico, 1988-92

    USGS Publications Warehouse

    Thomas, Carole L.

    1995-01-01

    Selected reaches of Grant Line Arroyo and Tijeras Arroyo in Albuquerque, New Mexico, were studied to collect information about the amount and quality of infiltration through arroyo channels. Infiltration rate was calculated for selected reaches of Grant Line Arroyo and Tijeras Arroyo based on instantaneous streamflow-loss volumes, wetted channel area, and instantaneous evaporation rates measured during 1988-92. Infiltration rates at Grant Line Arroyo ranged from 0.0 to 0.6 foot per day, and at Tijeras Arroyo from 2.28 to 30 feet per day. The evaporation rate ranged from one-tenth of 1 percent to 2 percent of the infiltration rate. Infiltration rates differed with the location of the reach isolated for measurement and with the time of day of the infiltration-rate measurement. Differences in intrinsic permeability of the sediments may be the most important factor affecting spatial variations in infiltration. The most important factor affecting temporal variations in infiltration may be the temperature of the water and sediment where infiltration occurs. Annual evaporation rates were greatest over saturated stream sediments and ranged from 802 to 1,025 millimeters per year or from 31.57 to 40.35 inches per year. Annual evaporation rates were least over unsaturated, unvegetated soil and ranged from 174 to 291 millimeters per year or from 6.85 to 11.46 inches per year. Annual evapotranspiration rates over grasses or shrubs or both were about one-half the rates over saturated stream sediments. Rates were similar for Grant Line and Tijeras Arroyos. The land- surface vegetation, availability of water at the land surface, availability of energy to enable a change of state from water to vapor, existence of a vapor concentration gradient, and a turbulent atmosphere to carry the vapor away may be the factors that determine the amount of evaporation and evapotranspiration. Water in Grant Line Arroyo and Tijeras Arroyo met U. S. Environmental Protection Agency drinking-water regulations for nitrate, volatile organic compounds, dissolved lead, and dissolved and total arsenic, barium, cadmium, chromium, copper, iron, silver, zinc, selenium, chloride, and sulfate concentrations. Total lead concentration in one sample from Tramway Floodway Channel, a tributary to Tijeras Arroyo, was 55 micrograms per liter, exceeding the Environmental Protection Agency drinking-water regulation of 50 micrograms per liter. Dissolved-solids concentrations calculated from the sum of cations and anions usually exceeded the Environmental Protection Agency drinking-water dissolved-solids regulation of 500 milligrams per liter at Tijeras Arroyo above Four Hills Bridge.

  8. Suitability of ponds formed by strip mining in eastern Oklahoma for public water supply, aquatic life, waterfowl habitat, livestock watering, irrigation, and recreation

    USGS Publications Warehouse

    Parkhurst, Renee S.

    1994-01-01

    A study of coal ponds formed by strip mining in eastern Oklahoma included 25 ponds formed by strip mining from the Croweburg, McAlester, and Iron Post coal seams and 6 noncoal-mine ponds in the coal-mining area. Water-quality samples were collected in the spring and summer of 1985 to determine the suitability of the ponds for public water supply, aquatic life, waterfowl habitat, livestock watering, irrigation, and recreation. The rationale for water-quality criteria and the criteria used for each proposed use are discussed. The ponds were grouped by the coal seam mined or as noncoal-mine ponds, and the number of ponds from each group containing water that exceeded a given criterion is noted. Water in many of the ponds can be used for public water supplies if other sources are not available. Water in most of these ponds exceeds one or more secondary standards, but meets all primary standards. Water samples from the epilimnion (shallow strata as determined by temperature) of six ponds exceeded one or more primary standards, which are criteria protective of human health. Water samples from five of eight Iron Post ponds exceeded the selenium criterion. Water samples from all 31 ponds exceeded one or more secondary standards, which are for the protection of human welfare. The criteria most often exceeded were iron, manganese, dissolved solids, and sulfate, which are secondary standards. The criteria for iron and manganese were exceeded more frequently in the noncoal-mine ponds, whereas ponds formed by strip mining were more likely to exceed the criteria for dissolved solids and sulfate. The ponds are marginally suited for aquatic life. Water samples from the epilimnion of 18 ponds exceeded criteria protective of aquatic life. The criteria for mercury and iron were exceeded most often. Little difference was detected between mine ponds and noncoal-mine ponds. Dissolved oxygen concentrations in the hypolimnion (deepest strata) of all the ponds were less than the minimum criterion during the summer. This decreases available fish habitat and affects the type and number of benthic invertebrates. The ponds are generally well suited for use by wintering and migrating waterfowl. Thirteen of the ponds contained water that exceeded the pH, alkalinity, and selenium criteria. The noncoal-mine ponds had the largest percentage of ponds exceeding pH and alkalinity criteria. Water samples from five of eight Iron Post ponds exceeded the selenium criterion. All ponds are generally unsuitable as waterfowl habitat during the summer because of high temperatures and low dissolved oxygen. Most of the ponds are well suited for livestock watering. Water samples from the epilimnion of 29 ponds met all chemical and physical criteria. Water samples from five ponds exceeded the criteria in the hypolimnion. Mine ponds exceeded chemical and physical criteria more often than noncoal-mine ponds. All the ponds contained phytoplankton species potentially toxic to livestock. Water from most of the ponds is marginally suitable for irrigation of sensitive crops, but is more suitable for irrigation of semitolerant and tolerant crops. Most major cash crops grown in eastern Oklahoma are semitolerant and tolerant crops. Water from the epilimnion of 14 ponds was suitable for irrigation under almost all conditions. Water from the epilimnion of 20 ponds was suitable for irrigation of semitolerant crops, and water from the epilimnion of 25 ponds is suitable for irrigation of tolerant crops. The dissolved solids criterion was exceeded the most often. Most of the ponds would not be suitable for swimming. The pH criterion was exceeded in 17 ponds and turbidity restricts visibility needed for diving in 23 ponds. Little difference was detected between mine ponds and noncoal-mine ponds. Many of the ponds formed by strip mining have steep banks that may be dangerous to swimmers.

  9. Selenium fractionation and cycling in the intertidal zone of the Carquinez Strait. Annual report, October 1, 1995--December 31,1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawislanski, P.T.; McGrath, A.E.; Benson, S.M.

    1997-10-01

    Selenium geochemistry in tidal wetlands is a topic of continuing study at Lawrence Berkeley National Laboratory. The program of studies described in this report was initiated in the fall of 1994 in response to concerns about elevated Se concentrations in waters, sediments, and biota in the Carquinez Strait. Processes by which selenium is introduced and potentially released from the sediment system have been the focus of research in 1996.

  10. Selenium biofortification

    USDA-ARS?s Scientific Manuscript database

    Plant foods are the major dietary sources of selenium (Se) in most countries around the world, followed by meats and seafood. For this reason, it is vital to increase Se uptake by plants and to produce crops with higher Se concentrations and bioavailability in their edible tissues. One of the most p...

  11. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize.

    PubMed

    Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Laplanche, Christophe; Pierart, Antoine; Longchamp, Mélanie; Besson, Philippe; Castrec-Rouelle, Maryse

    2016-06-01

    Selenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (Se(IV) and Se(VI)) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L(-1) of selenium (Se(IV), Se(VI), Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility.

  12. Effect of Georgetown Lake on the water quality of Clear Creek, Georgetown, Colorado, 1997-98

    USGS Publications Warehouse

    Cuffin, Sally M.; Chafin, Daniel T.

    2000-01-01

    Georgetown Lake is a recreational reservoir located in the upper Clear Creek Basin, a designated Superfund site because of extensive metal mining in the past. Metals concentrations in Clear Creek increase as the stream receives runoff from mining-affected areas. In 1997, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, began a study to determine the effect of the reservoir on the transport of metals in Clear Creek. A bathymetric survey determined the capacity of the reservoir to be about 440 acre-feet of water, which remained constant during the study. Average water residence time in the reservoir is about 1?3 days during high flow. During low flow (10 cubic feet per second), average residence is about 22 days without ice cover and about 15 days with a 3-foot-thick ice cover. Sediment samples collected from the bottom of Georgetown Lake contained substantial concentrations of iron (average 25,500 milligrams per kilogram), aluminum (average 12,300 milligrams per kilogram), zinc (2,830 milligrams per kilogram), lead (618 milligrams per kilogram), manganese (548 milligrams per kilogram), and sulfide minerals (average 602 milligrams per kilogram as S). Sediment also contained abundant sulfate-reducing bacteria, indicating anoxic conditions. Algae and diatoms common to cold-water lakes were identified in sediment samples; one genus of algae is known to adapt to low-light conditions such as exist beneath ice cover. Vertical profiles of temperature, specific conductance, pH, and dissolved-oxygen concentrations were measured in the reservoir on July 28, 1997, when inflow to the reservoir was about 170 cubic feet per second and average residence time of water was about 1.3 days, and on February 13, 1998, when the reservoir was covered with about 3 feet of ice, inflow was about 15 cubic feet per second, and average residence time was about 12 days. The measurements on July 28, 1997, showed that the reservoir water was well mixed, although pH and dissolved oxygen concentrations were increased by photosynthesis near the bottom of the reservoir. Measurements on February 13, 1998, indicated thermal and chemical stratification with warmer water (about 4 degrees Celsius) beneath colder water and increases in pH and dissolved oxygen concentrations generally occurring near the top of the warmer layer. Concentrations of dissolved oxygen were saturated to oversaturated throughout the water column on both dates, although the concentrations were greater on February 13, 1998, because of colder temperature and photosynthesis. Median pH was about 0.5 unit higher on February 13, 1998, than on July 28, 1997, largely because the longer residence time on February 13, 1998, allowed greater cumulative effects of photosynthesis. Samples of inflow and outflow water were collected from August 1997 to August 1998. Dissolved cadmium and dissolved lead in inflow and outflow samples exceeded acute and chronic water-quality standards during some of the sampling period, whereas dissolved zinc exceeded both standards in inflow and outflow samples during the entire sampling period. Chromium, nickel, and silver were detected in a few samples at small concentrations. Arsenic, selenium, and thallium were not reported in any water samples. Georgetown Lake removes some metals from inflow water and releases others to outflow water. From August 1997 to August 1998, Georgetown Lake estimated outflow loads were about 21 percent less than the inflow load of cadmium and about 11 percent less than the inflow load of zinc. Estimated inflow loads were about 18 percent less than the outflow load of copper, about 13 percent less than the outflow load of iron, and about 27 percent less than the outflow load of manganese. Inflow and outflow loads of lead were essentially balanced. The outflow load of nitrite plus nitrate was about 14 percent less than the inflow load, probably because of plant uptake.

  13. Organochlorine pesticide, polychlorinated biphenyl, trace element and metal residues in bird eggs from Salton Sea, California, 2004

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, T.W.; Crayon, J.J.

    2008-01-01

    The Salton Sea is a highly eutrophic, hypersaline terminal lake that receives inflows primarily from agricultural drainages in the Imperial and Coachella valleys. Impending reductions in water inflow at Salton Sea may concentrate existing contaminants which have been a concern for many years, and result in higher exposure to birds. Thus, waterbird eggs were collected and analyzed in 2004 and compared with residue concentrations from earlier years; these data provide a base for future comparisons. Eggs from four waterbird species (black-crowned night-heron [Nycticorax nycticorax], great egret [Ardea alba], black-necked stilt [Himantopus mexicanus], and American avocet [Recurvirostra Americana]) were collected. Eggs were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), metals, and trace elements, with current results compared to those reported for eggs collected from the same species and others during 1985a??1993. The two contaminants of primary concern were p,pa??-DDE (DDE) and selenium. DDE concentrations in night-heron and great egret eggs collected from the northwest corner of Salton Sea (Whitewater River delta) decreased 91 and 95%, respectively, by 2004, with a concomitant increase in eggshell thickness for both species. Decreases in bird egg DDE levels paralleled those in tissues of tilapia (Oreochromis mossambicus ?? O. urolepis), an important prey species for herons and egrets. Despite most nests of night-herons and great egrets failing in 2004 due to predation, predicted reproductive effects based on DDE concentrations in eggs were low or negligible for these species. The 2004 DDE findings were in dramatic contrast to those in the past decade, and included an 81% decrease in black-necked stilt eggs, although concentrations were lower historically than those reported in night-herons and egrets. Selenium concentrations in black-necked stilt eggs from the southeast corner of Salton Sea (Davis Road) were similar in 1993 and 2004, with 4.5a??7.6% of the clutches estimated to be selenium impaired during both time periods. Because of present selenium concentrations and future reduced water inflow, the stilt population is of special concern. Between 1992 and 1993 and 2004 selenium in night-heron and great egret eggs from the Whitewater River delta at the north end of the Sea decreased by 81 and 55%, respectively. None of the night-heron or egret eggs collected in 2004 contained selenium concentrations above the lowest reported effect concentration (6.0 I?g/g dw). Reasons for selenium decreases in night-heron and egret eggs are unknown. Other contaminants evaluated in 2004 were all below known effect concentrations. However, in spite of generally low contaminant levels in 2004, the nesting populations of night-herons and great egrets at Salton Sea were greatly reduced from earlier years and snowy egrets (Egretta thula) were not found nesting. Other factors that include predation, reduced water level, diminished roost and nest sites, increased salinity, eutrophication, and reduced fish populations can certainly influence avian populations. Future monitoring, to validate predicted responses by birds, other organisms, and contaminant loadings associated with reduced water inflows, together with adaptive management should be the operational framework at the Salton Sea.

  14. Chemical characteristics of water in the surficial aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Howie, Barbara

    1987-01-01

    Water quality data was collected in 1981 and 1982 during the drilling of test holes at 27 sites throughout Broward County, Florida. Determinations were made for the following physical properties and chemical constituents: pH, alkalinity, specific conductance, major ions, selected nutrients and dissolved iron, aluminum, and manganese. Determinations for the trace elements-arsenic, barium, cadmium, chromium, lead, zinc, selenium, and mercury-were made at 14 wells. Water in the surficial aquifer system between the coastal ridge and the conservation areas is potable and usually is a calcium bicarbonate type for the first 140 ft or more below land surface. Between depths of 140 and 230 ft, groundwater generally grades into a mixed-ion water type. In some areas, diluted seawater occurs beneath the mixed water zone. Dissolved iron concentrations between the coastal ridge and the conservation areas are variable but generally exceed 1,000 micrograms/L. Beneath the conservation areas and the western edge of Broward County, groundwater in the first 100 ft below land surface generally is either a calcium bicarbonate type or a mixed-ion type. At depths between 100 and 200 ft, diluted residual seawater occurs, except along the far western edge of the county. Residual seawater is least diluted in the north. Dissolved iron concentrations generally are between 300 and 1 ,000 micrograms/L but increase to the east of the conservation areas. Other findings of the investigation include: (1) groundwater in some areas west of the coastal ridge probably would be suitable for most domestic, agricultural, and industrial uses if it were treated for carbonate hardness; (2) groundwater in much of Broward County is chemically altered by natural softening and magnesium enrichment (natural softening increases to the west and is very pronounced beneath the far western edge of the county); and (3) there is evidence of mineralized water from the conservation areas mixing with groundwater east of the levees. (Lantz-PTT)

  15. Ecotoxicological assessment of bluegill sunfish inhabiting a selenium-enriched fly ash stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reash, R.J.; Lohner, T.W.; Wood, K.V.

    1999-07-01

    Little Scary Creek (LSC), a 2nd-order tributary of the Kanawha River in West Virginia, receives treated fly ash produced during coal combustion. Selenium and other trace metals were determined in water column and sediment samples, caddisflies, and bluegill sunfish liver and gonads during 1995--96 to estimate pathways of selenium exposure and assess the likelihood of toxic effects. Selenium levels in LSC water and sediment samples, and in caddisflies were elevated compared to reference sites. Mean dry weight selenium concentrations in bluegill liver, ovary, and tested tissue equaled or exceeded published toxic thresholds. Other trace metals were significantly higher in LSCmore » bluegill. Leukopenia, elevated serum salts, and lowered liver weight were found in LSC bluegill. Fewer older bluegill were found in LSC. Sunfish in LSC are experiencing various kinds of sublethal stress, presumably due to metals exposure. However, major toxic effects that would be predicted to occur based on tissue selenium levels (complete reproductive failure or mortality) have not been observed in this population.« less

  16. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chetan P.; Singh, Krishan K.; Kumar, Manmohan, E-mail: manmoku@barc.gov.in

    2010-01-15

    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy,more » X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.« less

  17. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main streammore » cigarette smoke, obtained by destructive neutron activation analysis.« less

  18. Dimethylselenide and Dimethyltelluride Formation by a Strain of Penicillium

    PubMed Central

    Fleming, R. W.; Alexander, M.

    1972-01-01

    A strain of Penicillium which produced dimethylselenide from inorganic selenium compounds was isolated from raw sewage. Sulfate and methionine enhanced growth of the fungus and its production of dimethylselenide in media containing selenite. In solutions containing selenate, methionine inhibited dimethylselenide formation while stimulating proliferation of the fungus. Dimethylselenide was also generated from inorganic selenide. Alkylation did not appear to be a significant mechanism of selenium detoxication by this organism. Dimethyltelluride was also produced by the organism from several tellurium compounds, but this product was synthesized only in the presence of both tellurium and selenium. The yields of dimethylselenide and dimethyltelluride varied with the relative concentrations of selenium and tellurium in the medium. PMID:5079352

  19. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element concentrations. Strontium and barium were the most frequently detected and usually were present in the highest concentrations. Iron and manganese were the next most commonly detected and next highest in concentrations. Iron concentrations were the most variable with respect to the range of variations (both within local networks and aquifer-wide) and with respect to the disparity between magnitude of concentrations (detections) and the frequency of samples below reporting limits (nondetections). Antimony, beryllium, cadmium, silver, and thallium were detected too infrequently for substantial interpretation of their occurrence or distributions or potential human-health implications. For those elements that were more frequently detected, there are some geographic patterns in their occurrence that primarily reflect climate effects. The highest concentrations of several elements were found in the West-Central glacial framework area (High Plains and northern Plains areas). There are few important patterns for any element in relation to land use, well type, or network type. Shallow land-use (monitor) wells had iron concentrations generally lower than the glacial aquifer system wells overall and much lower than major-aquifer survey wells, which comprise mostly private- and public-supply wells. Unlike those for iron, concentration patterns for manganese were similar among shallow land-use wells and major-aquifer survey wells. An apparent relation between low pH and relatively low concentrations of many elements, except lead, may be more indicative of the relatively low dissolved-solids content in wells in the Northeastern United States that comprise the majority of low pH wells, than of a pH dependent pattern. Iron and manganese have higher concentrations and larger ranges of concentrations especially under more reducing conditions. Dissolved oxygen and well depth were related to iron and manganese concentrations. Redox conditions also affect several trace elements such

  20. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Sun River area, west-central Montana, 1986-87

    USGS Publications Warehouse

    Knapton, J.R.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    The Sun River area was selected for a reconnaissance investigation of irrigation drainage because sufficient information existed to indicate that potential problems of a toxic nature might exist. The area of study included the Sun River Irrigation Project, Freeze-out Lake Game Management Area, and Benton Lake National Wildlife Refuge. Water, bottom sediment , and biota were sampled at selected sites and analyzed for inorganic and organic constituents that could be toxic at large concentrations. Although selenium was of primary concern, other trace elements and selected pesticides were also analyzed. Some water quality problems have been prevalent for many years in the Sun River Irrigation Projects, including the Sun River and Muddy Creek. However, during this study, most sampling sites were free of concentrations of toxic constituents that are in excess of established criteria and standards. There was little change in arsenic, boron, mercury, and selenium concentrations in fish and invertebrates at Sun River sampling sites upstream and downstream from the irrigation project. Presently, the most serious threat within the irrigation project appears to be from nitrate in groundwater. Water from some wells contains nitrate concentration in excess of drinking water standards (10 mg/L) established for the State of Montana. The largest selenium concentrations in water and bottom sediment were from seeps that surround Benton Lake, with maximum concentrations of 580 mg/L in water and biological samples. Several eared-grebe livers from Freezeout Lake and several coot livers and eggs from Benton Lake had selenium concentrations indicative of contamination. (See also W89-07064) (Author 's abstract)

  1. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2013-01-15

    A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effect of Drought on Streamflow and Stream-Water Quality in Colorado, July through September 2002

    USGS Publications Warehouse

    Chafin, Daniel T.; Druliner, A. Douglas

    2007-01-01

    During 2002, Colorado experienced the State's worst drought since 1977. In 2003, the U.S. Geological Survey entered into cooperative agreement with the Colorado Department of Public Health and Environment to evaluate the general effects of drought on the water quality of streams in Colorado during summer 2002 by analyzing a water-quality data set obtained during summer 2002 in cooperation with a variety of State and local governments. Water samples were collected at 148 stream sites in Colorado and were measured or analyzed for field properties, major ions, nutrients, organic carbon, bacteria, and dissolved and total recoverable metals. Mean annual streamflow was analyzed at 134 sites in Colorado, and mean summer (July-September) streamflow for 2002 was determined for 146 sites for water years 1978-2002. Mean annual streamflow for 2002 had an average percentile of 29.4 and mean summer streamflow for 2002 had an average percentile of 7.6 relative to 1978-2002. These results indicate that streamflow in Colorado was substantially less than median streamflow for the period and that the effect of drought on streamflow was greater during summer 2002 than during water year 2002 (October 1, 2001, through September 30, 2002). Few measured constituent concentrations or values were elevated or depressed on a widespread basis during summer 2002. Specific conductance was elevated (in the upper quartile relative to historical data) in five of the seven basins that had sufficient data for characterization, indicating that specific conductance likely was affected by drought in those basins. Chloride concentrations were elevated in three of five basins with sufficient data and indicate that chloride concentration generally was affected by drought in those basins. Sulfate concentration was elevated in four of six basins with sufficient data. The widespread elevation of specific conductance and concentrations of chloride and sulfate indicates that salinity generally was affected by drought in Colorado streams during July-September 2002, likely because streamflow at most sites was dominated by base flow of ground water, which usually has substantially greater salinity compared to runoff from precipitation. Total-recoverable iron and manganese concentrations were depressed (in the lower quartile of historical data) in the Arkansas River Basin, which likely was due to reduced land-surface washoff of sediment containing oxyhydroxides of these metals. Of the 246 water samples collected at 148 sites during the summer of 2002, constituents in 115 exceeded Colorado water-quality standards. Constituents that exceeded water-quality standards were pH (all 9.0 standard unit exceedances; 9 samples), chloride (1 sample), sulfate (9 samples), dissolved ammonia (10 samples), dissolved nitrite nitrogen (3 samples), E. coli (Escherichia coli) bacteria (34 samples, 20 in Arkansas River Basin), fecal-coliform bacteria (18 samples, all in Arkansas River Basin), dissolved copper (1 sample), dissolved iron (3 samples), total-recoverable iron (3 samples), dissolved manganese (13 samples), dissolved selenium (10 samples), and dissolved zinc (1 sample). Of these 115 exceedances, historical data were sufficient to conclude that 21 probably were affected by drought, that 39 probably were not affected by drought, and that 55 were of indeterminate nature. Specific conductance indicates that the San Juan River Basin (average percentile 95.2) experienced the greatest effects of drought on water quality during summer 2002 compared to other basins in Colorado, followed by the Upper Colorado (90.0) and Dolores River (85.7) Basins. The South Platte River Basin (70.9) experienced the least effect of drought, and the Yampa and White River Basin group (73.7) had the second smallest effect. The Gunnison River (82.1) and Arkansas River (81.2) Basins had intermediate drought effects. The Rio Grande had insufficient data to rank the relative effect of drought on salinity.

  3. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part B, Effect on biota in Stillwater and Fernley Wildlife Management Areas and other nearby wetlands

    USGS Publications Warehouse

    Hallock, Robert J.; Hallock, Linda L.

    1993-01-01

    A water-quality reconnaissance study during 1986-87 found high concentrations of several potentially toxic elements in water, bottom sediment, and biota in and near Stillwater Wildlife Management Area (WMA). This study prompted the U.S. Department of the Interior to initiate a more detailed study to determine the hydrogeochemical processes that control water quality in the Stillwater WMA, and other nearby wetlands, and the resulting effects on biota, especially migratory birds. Present wetland size is about 10% of historical size; the dissolved- solids load in the water in these now-isolated wetlands has increased only moderately, but the dissolved-solids concentration has increased more than seven-fold. Wetland vegetation has diminished and species composition in flow water has shifted to predominant salt-tolerant species in many areas. Decreased vegetative cover for nesting is implicated in declining waterfowl production. Decreases in numbers or virtual absence of several wildlife species are attributed to degraded water quality. Results of toxicity tests indicate that water in some drains and wetland areas is acutely toxic to some fish and invertebrates. Toxicity is attributed to the combined presence of arsenic, boron, lithium, and molybdenum. Biological pathways are involved in the transport of mercury and selenium from agricultural drains to wetlands. Hatch success of both artificially incubated and field-reared duck eggs was greater than/= 90 percent; no teratogenesis was observed. Mercury in muscle tissue of waterfowl harvested from Carson Lake in October 1987 exceeded the human health criterion six-fold.

  4. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens

    PubMed Central

    Johansson, Peter; Aaseth, Jan; Alexander, Jan; Brismar, Kerstin

    2017-01-01

    Background Insulin-like growth factor-1(IGF-1) has a multitude of effects besides cell growth and metabolism. Reports also indicate anti-inflammatory and antioxidative effects. The concentrations of IGF-1 decrease with age and during inflammation. As selenium and coenzyme Q10 are involved in both the antioxidative defense and the inflammatory response, the present study aimed to examine the effects of supplementation with selenium and coenzyme Q10 on concentrations of IGF-1 and its binding protein IGFBP-1 in a population showing reduced cardiovascular mortality following such supplementation. Methods 215 elderly individuals were included and given the intervention for four years. A clinical examination was performed and blood samples were taken at the start and after 48 months. Evaluations of IGF-1, the age adjusted IGF-1 SD score and IGFBP-1 were performed using group mean values, and repeated measures of variance. Findings After supplementation with selenium and coenzyme Q10, applying group mean evaluations, significantly higher IGF-1 and IGF-1 SD scores could be seen in the active treatment group, whereas a decrease in concentration could be seen of the same biomarkers in the placebo group. Applying the repeated measures of variance evaluations, the same significant increase in concentrations of IGF-1 (F = 68; P>0.0001), IGF-1 SD score (F = 29; P<0.0001) and of IGFBP-1 (F = 6.88; P = 0.009) could be seen, indicating the effect of selenium and coenzyme Q10 also on the expression of IGF-1 as one of the mechanistic effects of the intervention. Conclusion Supplementation with selenium and coenzyme Q10 over four years resulted in increased levels of IGF-1 and the postprandial IGFBP-1, and an increase in the age-corrected IGF-1 SD score, compared with placebo. The effects could be part of the mechanistic explanation behind the surprisingly positive clinical effects on cardiovascular morbidity and mortality reported earlier. However, as the effects of IGF-1 are complex, more research on the result of intervention with selenium and coenzyme Q10 is needed. PMID:28609475

  5. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    PubMed

    Alehagen, Urban; Johansson, Peter; Aaseth, Jan; Alexander, Jan; Brismar, Kerstin

    2017-01-01

    Insulin-like growth factor-1(IGF-1) has a multitude of effects besides cell growth and metabolism. Reports also indicate anti-inflammatory and antioxidative effects. The concentrations of IGF-1 decrease with age and during inflammation. As selenium and coenzyme Q10 are involved in both the antioxidative defense and the inflammatory response, the present study aimed to examine the effects of supplementation with selenium and coenzyme Q10 on concentrations of IGF-1 and its binding protein IGFBP-1 in a population showing reduced cardiovascular mortality following such supplementation. 215 elderly individuals were included and given the intervention for four years. A clinical examination was performed and blood samples were taken at the start and after 48 months. Evaluations of IGF-1, the age adjusted IGF-1 SD score and IGFBP-1 were performed using group mean values, and repeated measures of variance. After supplementation with selenium and coenzyme Q10, applying group mean evaluations, significantly higher IGF-1 and IGF-1 SD scores could be seen in the active treatment group, whereas a decrease in concentration could be seen of the same biomarkers in the placebo group. Applying the repeated measures of variance evaluations, the same significant increase in concentrations of IGF-1 (F = 68; P>0.0001), IGF-1 SD score (F = 29; P<0.0001) and of IGFBP-1 (F = 6.88; P = 0.009) could be seen, indicating the effect of selenium and coenzyme Q10 also on the expression of IGF-1 as one of the mechanistic effects of the intervention. Supplementation with selenium and coenzyme Q10 over four years resulted in increased levels of IGF-1 and the postprandial IGFBP-1, and an increase in the age-corrected IGF-1 SD score, compared with placebo. The effects could be part of the mechanistic explanation behind the surprisingly positive clinical effects on cardiovascular morbidity and mortality reported earlier. However, as the effects of IGF-1 are complex, more research on the result of intervention with selenium and coenzyme Q10 is needed.

  6. Effect of Selenium Supplementation on Recurrent Hyperthyroidism Caused by Graves' Disease: A Prospective Pilot Study.

    PubMed

    Wang, L; Wang, B; Chen, S R; Hou, X; Wang, X F; Zhao, S H; Song, J Q; Wang, Y G

    2016-09-01

    The effect of selenium supplementation on recurrent hyperthyroidism caused by Graves' disease is unclear. Our study aimed to assess the efficacy of selenium supplementation therapy on recurrent Graves' disease. Forty-one patients with recurrent Graves' disease were enrolled in this study. All patients received the routine treatment using methimazole (MMI), while patients allocated to the selenium group received additional selenium therapy for 6 months. The influence of selenium supplementation on the concentrations of thyroid stimulating hormone (TSH), anti-TSH-receptor antibodies (TRAb), free thyroxine (FT4), and free triiodothyronine (FT3) were assessed. The remission rate was also compared between 2 groups. There was no obvious difference in the demographic data and the levels of serum FT4, FT3, TSH, and TRAb between the 2 groups at baseline. Both FT4 and FT3 decreased more at 2 months in the selenium group than the controls, while the TSH level increased more in patients receiving selenium supplementation (p<0.05). The TRAb level was significantly lower in patients receiving selenium supplementation (2.4 IU/l vs. 5.6 IU/l, p=0.04). The percentages of patients with normal TRAb level at 6 months was also significantly higher in the selenium group (19.0 vs. 0%, p=0.016). Kaplan-Meier survival curve showed patients receiving selenium supplementation had a significantly higher rate of remission than controls (Log-rank test p=0.008). In conclusion, selenium supplementation can enhance the effect of antithyroid drugs in patients with recurrent Graves' disease. Randomized trials with large number of participants are needed to validate the finding above. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Role of Selenium from Different Sources in Prevention of Pulmonary Arterial Hypertension Syndrome in Broiler Chickens.

    PubMed

    Zamani Moghaddam, A K; Mehraei Hamzekolaei, M H; Khajali, F; Hassanpour, H

    2017-11-01

    Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.

  8. Selenium in water, sediment, plants, invertebrates, and fish in the Blackfoot River drainage

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2004-01-01

    Nine stream sites in the Blackfoot River watershed in southeastern Idaho were sampled in September 2000 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites examined. Selenium was elevated in water, sediment, aquatic plants, aquatic invertebrates, and fish from several sites suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in water at eight sites (>5 ??g/L), sediment at three sites (>2 ??g/g), aquatic plants at four sites (>4 ??g/g), aquatic invertebrates at five sites (>3 ??g/g), and fish at seven sites (>4 ??g/g in whole body). The hazard assessment of selenium in the aquatic environment suggested low hazard at Sheep Creek, moderate hazard at Trail Creek, upper Slug Creek, lower Slug Creek, and lower Blackfoot River, and high hazard at Angus Creek, upper East Mill Creek, lower East Mill Creek, and Dry Valley Creek. The results of this study are consistent with results of a previous investigation and indicate that selenium concentrations from the phosphate mining area of southeastern Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in the Blackfoot River watershed. ?? 2004 Kluwer Academic Publishers.

  9. Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N

    PubMed Central

    Li, Baozhen; Liu, Na; Li, Yongquan; Jing, Weixin; Fan, Jinhua; Li, Dan; Zhang, Longyan; Zhang, Xiaofeng; Zhang, Zhaoming; Wang, Lan

    2014-01-01

    The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO3 −2) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO3 −2 and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO3 −2 to red elemental selenium. The diameters of particles were 80–200 nm. The bacteria exhibited significant tolerance to SeO3 −2 up to 8.0 m mol/L concentration with an EC50 value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO3 2− up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO3 −2 was observed at 2.0, 4.0 and 8.0 m mol/L SeO3 2− concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO3 −2. The finding of this work will contribute to the application of selenium to human health. PMID:24759917

  10. The need for a reassessment of the safe upper limit of selenium in drinking water.

    PubMed

    Vinceti, Marco; Crespi, Catherine M; Bonvicini, Francesca; Malagoli, Carlotta; Ferrante, Margherita; Marmiroli, Sandra; Stranges, Saverio

    2013-01-15

    Results of recent epidemiologic studies suggest the need to reassess the safe upper limit in drinking water of selenium, a metalloid with both toxicological and nutritional properties. Observational and experimental human studies on health effects of organic selenium compounds consumed through diet or supplements, and of inorganic selenium consumed through drinking water, have shown that human toxicity may occur at much lower levels than previously surmised. Evidence indicates that the chemical form of selenium strongly influences its toxicity, and that its biological activity may differ in different species, emphasizing the importance of the few human studies on health effects of the specific selenium compounds found in drinking water. Epidemiologic studies that investigated the effects of selenate, an inorganic selenium species commonly found in drinking water, together with evidence of toxicity of inorganic selenium at low levels in from in vitro and animal studies, indicate that health risks may occur at exposures below the current European Union and World Health Organization upper limit and guideline of 10 and 40 μg/l, respectively, and suggest reduction to 1 μg/l in order to adequately protect human health. Although few drinking waters are currently known to have selenium concentrations exceeding this level, the public health importance of this issue should not be overlooked, and further epidemiologic research is critically needed in this area. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Erythremia: the activity of erythrocyte antioxidant enzymes and the association with iron deficiency].

    PubMed

    Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A

    1997-01-01

    Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.

  12. Selenium impacts on razorback sucker, Colorado River, Colorado II. Eggs.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-05-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 microg/g from Horsethief, 46 microg/g from Adobe Creek, 38 microg/g from North Pond, and 6.0 microg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  13. Selenium impacts on razorback sucker, Colorado River, Colorado: II. Eggs

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.

    2005-01-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 μg/g from Horsethief, 46 μg/g from Adobe Creek, 38 μg/g from North Pond, and 6.0 μg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  14. Early-Life Selenium Status and Cognitive Function at 5 and 10 Years of Age in Bangladeshi Children.

    PubMed

    Skröder, Helena; Kippler, Maria; Tofail, Fahmida; Vahter, Marie

    2017-11-07

    In older adults, selenium status has been positively associated with cognitive function. We recently reported a positive association between maternal selenium status in pregnancy and children's cognitive function at 1.5 y. We followed up the children to assess if prenatal and childhood selenium status was associated with cognitive abilities at 5 and 10 y. This longitudinal cohort study was nested in Maternal and Infant Nutrition Interventions in Matlab (MINIMat), a population-based, randomized supplementation trial in pregnancy in rural Bangladesh. Selenium in maternal blood [erythrocyte fraction (Ery-Se) at baseline] and in child hair and urine was measured using inductively coupled plasma mass spectrometry. Children's cognition at 5 and 10 y was assessed using the Wechsler Preschool and Primary Scale of Intelligence™ and the Wechsler Intelligence Scale for Children ® , respectively. In total, 1,408 children were included. Multivariable-adjusted linear regression analyses showed that prenatal selenium status was positively associated with children's cognitive function at 5 and 10 y. An increase in maternal Ery-Se from the fifth to the 95th percentile [median: 0.44μg/g hemoglobin (Hb)] was associated with an increase in full developmental score of 3.5 [95% confidence interval (CI): 0.1, 7.0], corresponding to 0.16 standard deviation (SD) at 5 y, and 8.1 (95% CI: 3.8, 13), corresponding to 0.24 SD at 10 y. In addition, urine and hair selenium concentrations at 5 and 10 y of age were positively associated with cognitive function at 10 y, although associations were inverse for concentrations ≥98th percentile. Some associations were slightly stronger for girls than for boys. Measures of prenatal and childhood (below the 98th percentile) selenium status were associated with higher cognitive function scores at 5 and 10 y of age. https://doi.org/10.1289/EHP1691.

  15. Early-Life Selenium Status and Cognitive Function at 5 and 10 Years of Age in Bangladeshi Children

    PubMed Central

    Skröder, Helena; Tofail, Fahmida; Vahter, Marie

    2017-01-01

    Background: In older adults, selenium status has been positively associated with cognitive function. We recently reported a positive association between maternal selenium status in pregnancy and children’s cognitive function at 1.5 y. Objective: We followed up the children to assess if prenatal and childhood selenium status was associated with cognitive abilities at 5 and 10 y. Methods: This longitudinal cohort study was nested in Maternal and Infant Nutrition Interventions in Matlab (MINIMat), a population-based, randomized supplementation trial in pregnancy in rural Bangladesh. Selenium in maternal blood [erythrocyte fraction (Ery-Se) at baseline] and in child hair and urine was measured using inductively coupled plasma mass spectrometry. Children’s cognition at 5 and 10 y was assessed using the Wechsler Preschool and Primary Scale of Intelligence™ and the Wechsler Intelligence Scale for Children®, respectively. In total, 1,408 children were included. Results: Multivariable-adjusted linear regression analyses showed that prenatal selenium status was positively associated with children’s cognitive function at 5 and 10 y. An increase in maternal Ery-Se from the fifth to the 95th percentile [median: 0.44μg/g hemoglobin (Hb)] was associated with an increase in full developmental score of 3.5 [95% confidence interval (CI): 0.1, 7.0], corresponding to 0.16 standard deviation (SD) at 5 y, and 8.1 (95% CI: 3.8, 13), corresponding to 0.24 SD at 10 y. In addition, urine and hair selenium concentrations at 5 and 10 y of age were positively associated with cognitive function at 10 y, although associations were inverse for concentrations ≥98th percentile. Some associations were slightly stronger for girls than for boys. Conclusions: Measures of prenatal and childhood (below the 98th percentile) selenium status were associated with higher cognitive function scores at 5 and 10 y of age. https://doi.org/10.1289/EHP1691 PMID:29116931

  16. Selenium toxicosis in wild aquatic birds

    USGS Publications Warehouse

    Ohlendorf, H.M.; Kilness, A.W.; Simmons, J.L.; Stroud, R.K.; Hoffman, D.J.; Moore, John F.

    1988-01-01

    Severe gross and microscopic lesions and other changes were found in adult aquatic birds and in embryos from Kesterson Reservoir (a portion of Kesterson National Wildlife Refuge), Merced County, Calif., during 1984. Adult birds from that area were emaciated, had subacute to extensive chronic hepatic lesions, and had excess fluid and fibrin in the peritoneal cavity. Biochemical changes in their livers included elevated glycogen and non-protein-bound sulfhydryl concentrations and glutathione peroxidase activity but lowered protein, total sulfhydryl, and protein-bound sulfhydryl concentrations. Congenital malformations observed grossly in embryos were often multiple and included anophthalmia, microphthalmia, abnormal beaks, amelia, micromelia, ectrodactyly, and hydrocephaly. Mean concentrations of selenium in livers (94.4 ppm, dry weight) and kidneys (96.6 ppm) of birds collected at the Kesterson ponds were about 10 times those found at a nearby control area (8.3 and 12.2 ppm). We conclude that selenium present in the agricultural drainage water supplied to the Kesterson ponds accumulated in the food chain of aquatic birds to toxic concentrations and caused the lesion and other changes observed.

  17. Relationships for mercury and selenium in muscle and ova of gravid freshwater fish.

    PubMed

    Donald, David B

    2016-10-01

    At high concentrations, mercury (Hg) is toxic to vertebrates, causing neurological, behavioral, and teratological dysfunction. Selenium (Se) not only is an essential element but also has a high affinity for Hg, binding to organic methyl mercury at a molar ratio of Se/Hg of 1:1. Ratios of <1 increase risk of Hg toxicity. For gravid fish, low concentrations of Se in ova could increase potential for Hg toxicity, compromising embryonic development and fitness of fry. Mercury and selenium concentrations and ratios were investigated in the muscle and ovaries of six species from five families of fish to assess potential for risk to ecological fitness. Molar ratios of Se/Hg in muscle were typically >18 for lower trophic level species but ≤2 for piscivores. For all species combined, the concentrations of Hg in ova were significantly related to concentrations of Hg in muscle. Concentrations of Se in ova versus muscle showed a similar significant relationship that was independent of muscle Hg concentration. Mean ova molar Se/Hg ratios were high, ranging from 69 to 955 for the 6 species. However, a declining relationship between the ova Se/Hg molar ratio and the muscle concentration of Hg for all species combined suggests that development of ova and fry might be compromised for those piscivores with the highest muscle Hg concentrations because of Hg-related Se deficiency.

  18. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    USGS Publications Warehouse

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.

  19. An epizootic of common loons in coastal waters of North Carolina: Concentrations of elemental contaminants and results of necropsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augspurger, T.; Franson, J.C.; Converse, K.A.

    1998-02-01

    A 1993 die-off of common loons (Gavia immer) in the coastal waters of North Carolina was investigated with emphasis on comparing mercury, selenium, arsenic, and lead between birds from the epizootic and reference specimens. Die-off specimens were emaciated but contained no ingested foreign bodies and no lesions suggestive of infectious disease. Results of bacteriology, virology, parasitology, and botulism testing were unremarkable. The geometric mean concentrations (wet weight) of liver mercury and arsenic did not differ between specimens from the die-off and reference loons from the same area that died of other causes. The geometric mean liver selenium concentration of die-offmore » specimens was significantly higher than that of reference loons. Liver lead concentrations were < 0.20 ppm in all but one sample (5.83 ppm). The geometric mean mercury concentration in the primary remiges of die-off specimens was significantly lower than in reference birds. Liver mercury significantly correlated with liver selenium on a molar concentration basis. The authors interpret the range of liver mercury concentrations in birds from the epizootic, similar liver mercury concentrations in reference loons, and higher mercury concentrations in reference loon feathers as evidence that factors other than mercury were primarily responsible for the emaciation diagnosed as the cause of mortality.« less

  20. An epizootic of common loons in coastal waters of North Carolina: Concentrations of elemental contaminants and results of necropsies

    USGS Publications Warehouse

    Augspurger, Tom; Franson, J. Christian; Converse, Kathryn A.; Spitzer, P.; Miller, E.A.

    1998-01-01

    A 1993 die-off of common loons (Gavia immer) in the coastal waters of North Carolina was investigated with emphasis on comparing mercury, selenium, arsenic, and lead between birds from the epizootic and reference specimens. Die-off specimens were emaciated but contained no ingested foreign bodies and no lesions suggestive of infectious disease. Results of bacteriology, virology, parasitology, and botulism testing were unremarkable. The geometric mean concentrations (wet weight) of liver mercury (10.9 ppm), and arsenic (0.96 ppm) did not differ between specimens from the die-off and reference loons from the same area that died of other causes. The geometric mean liver selenium concentration of die-off specimens (10.4 ppm) was significantly higher than that of reference loons. Liver lead concentrations were < 0.20 ppm in all but one sample (5.83 ppm). The geometric mean mercury concentration in the primary remiges of die-off specimens (5.44 ppm dry weight) was significantly lower than in reference birds. Liver mercury significantly correlated with liver selenium on a molar concentration basis. We interpret the range of liver mercury concentrations in birds from the epizootic, similar liver mercury concentrations in reference loons, and higher mercury concentrations in reference loon feathers as evidence that factors other than mercury were primarily responsible for the emaciation diagnosed as the cause of mortality.

  1. Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Jamilian, Mehri; Razavi, Maryamalsadat; Fakhrie Kashan, Zohreh; Ghandi, Yasser; Bagherian, Tayebeh; Asemi, Zatollah

    2015-06-01

    We are aware of no study examining the effects of selenium supplementation on metabolic profiles of patients with polycystic ovary syndrome (PCOS). This study was conducted to evaluate the effects of selenium supplementation on glucose homeostasis parameters and lipid concentrations in women with PCOS. This randomized, double-blind, placebo-controlled trial was conducted among 70 women diagnosed with PCOS and aged 18-40 years old. Participants were randomly divided into two groups to receive 200 μg per day selenium supplements (N = 35) or placebo (N = 35) for 8 weeks. Fasting blood samples were taken at baseline and after 8 weeks intervention to quantify glucose, insulin and lipid concentrations. After 8 weeks of intervention, subjects who received selenium supplements had significantly decreased serum insulin levels (-29·83 ± 47·29 vs +9·07 ± 77·12 pmol/l, P = 0·013), homeostasis model of assessment-insulin resistance (HOMA-IR) (-1·15 ± 1·81 vs +0·42 ± 3·09, P = 0·011), homeostatic model assessment-beta-cell function (HOMA-B) (-19·06 ± 30·95 vs +4·55 ± 47·99, P = 0·017) and increased quantitative insulin sensitivity check index (QUICKI) (+0·03 ± 0·04 vs +0·0009 ± 0·05, P = 0·032) compared with placebo. In addition, supplementation with selenium resulted in a significant reduction in serum triglycerides (-0·14 ± 0·55 vs +0·11 ± 0·30 mmol/l, P = 0·025) and VLDL-C concentrations (-0·03 ± 0·11 vs +0·02 ± 0·06 mmol/l, P = 0·025) compared with placebo. In conclusion, 200 microgram per day selenium supplementation for 8 weeks among PCOS women had beneficial effects on insulin metabolism parameters, triglycerides and VLDL-C levels; however, it did not affect FPG and other lipid profiles. © 2014 John Wiley & Sons Ltd.

  2. Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.

    PubMed

    Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M

    2015-12-15

    Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations.

  3. Selenium poisoning of fish by coal ash wastewater in Herrington Lake, Kentucky.

    PubMed

    Lemly, A Dennis

    2018-04-15

    Selenium pollution from the E.W. Brown Electric Generating Station was investigated in Herrington Lake, KY. Coal ash wastewater is discharged as surface water overflow from ash disposal ponds into the lake via a National Pollutant Discharge Elimination System permit issued by the Kentucky Division of Water, but the permit does not restrict or limit the amount of selenium released. Unpermitted discharges occur from seeps and drainage through leaks in ash pond dams. Together, these discharges have resulted in selenium concentrations in water, sediment, benthic macroinvertebrates, and fish that are 2-9 times the level that is toxic for fish reproduction and survival. A large proportion (12.2%, or 25 times background) of juvenile largemouth bass (Micropterus salmoides, the only species examined) exhibited spinal and/or craniofacial malformations that are consistent with selenium poisoning. Teratogenic Deformity Index values indicated a 3.05% population-level impact on the bass fishery, with total selenium-induced mortality (including pre-swimup mortality) estimated to be in excess of 25% per year. These findings confirm that coal ash discharges into Herrington Lake are contributing selenium to the Lake that is poisoning fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200.

    PubMed

    Jiang, Shenghua; Ho, Cuong Tu; Lee, Ji-Hoon; Duong, Hieu Van; Han, Seunghee; Hur, Hor-Gil

    2012-05-01

    Shewanella putrefaciens 200, resistant to high concentration of Hg(II), was selected for co-removal of mercury and selenium from aqueous medium. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 was captured into extracellular amorphous selenium nanospheres, resulting in the formation of stable HgSe nanoparticles. This bacterial reduction could be a new strategy for mercury removal from aquatic environments without secondary pollution of mercury methylation or Hg(0) volatilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Selenium and Zinc Status in Chronic Myofascial Pain: Serum and Erythrocyte Concentrations and Food Intake

    PubMed Central

    Barros-Neto, João Araújo; Souza-Machado, Adelmir; Kraychete, Durval Campos; de Jesus, Rosangela Passos; Cortes, Matheus Lopes; Lima, Michele dos Santos; Freitas, Mariana Carvalho; Santos, Tascya Morganna de Morais; Viana, Gustavo Freitas de Sousa; Menezes-Filho, José Antonio

    2016-01-01

    Introduction Nutritional disorders have been reported to be important causal factors that can intensify or cause a painful response in individuals with chronic musculoskeletal pain. Aim To assess the habitual intake of and the serum and erythrocyte levels of selenium and zinc in patients with chronic myofascial pain. Materials and Methods A case-control study of 31 patients with chronic myofascial pain (group I) and 31 subjects without pain (group II). Dietary record in five days for assessing food intake were used. The serum and erythrocyte concentrations of selenium and zinc were analyzed using an atomic absorption spectrophotometry. Pain intensity was assessed using a visual analog scale. Results The group of patients with chronic myofascial pain, compared with the control group, showed a lower erythrocyte concentration of selenium (79.46 ± 19.79 μg/L vs. 90.80 ± 23.12 μg/L; p = 0.041) and zinc (30.56 ± 7.74 μgZn/gHb vs. 38.48 ± 14.86 μgZn/gHb, respectively; p = 0.004). In this study, a compromised food intake of zinc was observed in the majority of the subjects in both groups. The selenium intake was considered to be safe in 80% of the subjects in both groups; however, the likelihood of inadequate intake of this mineral was twice as high in group I (49.5% vs. 24.4%, respectively). In the logistic regression analysis, the erythrocyte concentration of zinc was associated with the presence of pain. In each additional 1 mg of Zn2+ per gram of hemoglobin, a reduction of 12.5% was observed in the risk of the individual having chronic myofascial pain (B = -0.133; adjusted OR = 0.875, 95% CI = 0.803 to 0.954, Wald = 9.187, standard error = 0.044, p = 0.002). Physical inactivity and obesity were noted more commonly in group I compared with the control group. Conclusion In this study, patients with chronic myofascial pain showed lower intracellular stores of zinc and selenium and inadequate food intake of these nutrients. PMID:27755562

  6. Effect of forms of selenium on the accumulation of selenium, sulfur, and forms of nitrogen and phosphorus in forage cowpea (Vigna sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Singh, N.

    1979-05-01

    The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less

  7. Environmental contaminants in fish and their associated risk to piscivorous wildlife in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Hinck, J.E.; Schmitt, C.J.; Echols, K.R.; May, T.W.; Orazio, C.E.; Tillitt, D.E.

    2006-01-01

    Organochlorine chemical residues and elemental contaminants were measured in northern pike (Esox lucius), longnose sucker (Catostomus catostomus), and burbot (Lota lota) from 10 sites in the Yukon River Basin (YRB) during 2002. Contaminant concentrations were compared to historical YRB data and to toxicity thresholds for fish and piscivorous wildlife from the scientific literature. A risk analysis was conducted to screen for potential hazards to piscivorous wildlife for contaminants that exceeded literature-based toxicity thresholds. Concentrations of total DDT (sum of p,p???-homologs; 1.09-13.6 ng/g), total chlordane (0.67-7.5 ng/g), dieldrin (<0.16-0.6 ng/g), toxaphene (<11-34 ng/g), total PCBs (<20-87 ng/g), TCDD-EQ (???1.7 pg/g), arsenic (0.03-1.95 ??g/g), cadmium (<0.02-0.12 ??g/g), copper (0.41-1.49 ??g/g), and lead (<0.21-0.27 ??g/g) did not exceed toxicity thresholds for growth and reproduction in YRB fish. Concentrations of mercury (0.08-0.65 ??g/g), selenium (0.23-0.85 ??g/g), and zinc (11-56 ??g/g) exceeded toxicity thresholds in one or more samples and were included in the risk analysis for piscivorous wildlife. No effect hazard concentrations (NEHCs) and low effect hazard concentrations (LEHCs), derived from literature-based toxicity reference values and avian and mammalian life history parameters, were calculated for mercury, selenium, and zinc. Mercury concentrations in YRB fish exceeded the NEHCs for all bird and small mammal models, which indicated that mercury concentrations in fish may represent a risk to piscivorous wildlife throughout the YRB. Low risk to piscivorous wildlife was associated with selenium and zinc concentrations in YRB fish. Selenium and zinc concentrations exceeded the NEHCs and LEHCs for only the small bird model. These results indicate that mercury should continue to be monitored and assessed in Alaskan fish and wildlife. ?? 2006 Springer Science+Business Media, Inc.

  8. Selenium Speciation and Management in Wet FGD Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Richardson, M; Blythe, G

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less

  9. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. strain CA5

    USDA-ARS?s Scientific Manuscript database

    A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Cell of the strain removed 1....

  10. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    PubMed

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  11. Biosynthesis of Se-methyl-seleno-l-cysteine in Basidiomycetes fungus Lentinula edodes (Berk.) Pegler.

    PubMed

    Klimaszewska, M; Górska, S; Dawidowski, M; Podsadni, P; Turło, J

    2016-01-01

    The aim of the current study was to investigate whether the Basidiomycetes fungus Lentinula edodes can biosynthesize Se-methyl-seleno-l-cysteine, a seleno-amino acid with strong anticancer activity, and to optimize the culture conditions for its biosynthesis. We hypothesize that preparations obtained from Se-methyl-seleno-l-cysteine-enriched mycelia from this medicinal mushroom would possess stronger cancer-preventive properties than current preparations. By optimizing the concentration of selenium in the culture medium, we increased the mycelial concentration of Se-methyl-seleno-l-cysteine from essentially non-detectable levels to 120 µg/g dry weight. Significantly elevated levels of this amino acid also correlated with significant (twofold) inhibition of mycelial growth. Increases in the concentration of mycelial Se-methyl-seleno-l-cysteine appeared to be highly correlated with the enhanced biosynthesis of selenomethionine and total selenium content in mycelium. We have demonstrated that in L. edodes, enhanced biosynthesis of this non-protein amino acid eliminates excess selenium.

  12. Irrigation-induced contamination of water, sediment, and biota in the western United States-synthesis of data from the National Irrigation Water Quality Program

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas

    2003-01-01

    In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life. Data collected by the NIWQP studies indicated that, in surface water, filtered and unfiltered samples had nearly the same concentrations of arsenic, boron, molybdenum, and selenium for concentrations greater than about 10 micrograms per liter. Therefore, in this concentration range, filtered concentrations can be directly compared to biological-effect levels developed for unfiltered samples. In the range of 1 to 10 micrograms per liter there may be a tendency for unfiltered arsenic concentrations to be greater than filtered concentrations. For selenium, however, the data suggest differences from equality in that range result from analytical imprecision and not a general tendency for unfiltered concentrations to be greater than filtered concentrations. This relation may not be true in lentic, nutrient-rich waters because in such settings algae can bioaccumulate large amounts of selenium and other trace elements. Selenium was the trace element in surface water that most commonly exceeded chronic criteria for the protection of freshwater aquatic life; more than 40 percent of the selenium concentrations in surface-water samples exceeded the U.S. Environmental Protection Agency (USEPA) aquatic-life chronic criterion (5 micrograms per liter). In 12 of the 26 areas at least 25 percent of the surface water-samples had selenium concentrations that either equaled or exceeded the chronic criterion (5 micrograms per liter). More than 28 percent of boron concentrations and almost 17 percent of the molybdenum concentrations exceeded the aquatic life criteria established by the State of California (550 and 19 micrograms per liter, respectively). In ground water, more than 22 percent of the arsenic concentrations and more than 35 percent of the selenium concentrations exceeded the MCL (10 and 50 micrograms per liter, respectively). Few samples of uranium in surface water exceeded a criterion for the protection of aquatic life (300 micrograms per liter), but 44 percent

  13. Pattern recognition analysis and classification modeling of selenium-producing areas

    USGS Publications Warehouse

    Naftz, D.L.

    1996-01-01

    Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.

  14. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: Potential protection on mercury toxicity by selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant inter-specific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios. PMID:22664537

  15. Selenium modulates MMP2 expression through the TGFβ1/Smad signalling pathway in human umbilical vein endothelial cells and rabbits following lipid disturbance.

    PubMed

    Xu, Chenggui; Lu, Guihua; Li, Qinglang; Zhang, Juhong; Huang, Zhibin; Gao, Xiuren

    2017-07-01

    A high-fat diet is a major risk factor for coronary heart diseases. Matrix metalloprotease (MMP) expression is changed in many cardiovascular diseases. Selenium, which is an important trace element in animals, has a close relationship with cardiovascular diseases. The TGFβ1/Smad signalling pathway is ubiquitous in diverse tissues and cells, and it is also associated with the occurrence and development of cardiovascular diseases. Therefore, in this study, we aimed to determine selenium's effect on lipid metabolism, atherosclerotic plaque formation, and MMP2 expression, as well as the underlying functional mechanism. In vivo tests: 24 male New Zealand white rabbits were randomly divided into 4 groups: regular diet, high-fat diet, high-fat diet+selenium and regular diet+selenium groups. The high-fat diet induced the lipid disturbances of rabbits at week 12. Selenium supplementation lowered total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels (p<0.01). Selenium supplementation also suppressed MMP2 over-expression in thoracic aortas. In vitro tests: Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of selenium or ox-LDL. Ox-LDL promoted MMP2 expression by increasing TGFβ1, pSmad2, pSmad3 and Smad3 expression (p<0.01). Selenium attenuated MMP2 over-expression by regulating the TGFβ1/Smad signalling pathway. Selenium suppressed high-fat diet-induced MMP2 over-expression in vivo by improving lipid metabolism. In vitro, selenium attenuated MMP2 over-expression through the TGFβ1/Smad signalling pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. High serum selenium levels are associated with impaired fasting glucose and elevated fasting serum glucose in Linyi, China.

    PubMed

    Li, Zhe; Li, Xia; Ju, Wen; Wu, Guanrui; Yang, Xiaomei; Fu, Xiaofeng; Gao, Xibao

    2018-01-01

    The relationship between selenium level and impaired fasting glucose or elevated fasting serum glucose remains controversial. This study aimed to evaluate these associations in China. This observational population study adopted a cluster sampling approach to enroll participants. Baseline information on selenium categories was tested using one-way analysis of variance and Kruskal-Wallis equality-of-populations rank tests. Multivariable logistic regression was used to investigate the association between serum selenium level and impaired fasting glucose or elevated fasting serum glucose. The mean serum selenium concentration was 121.5μg/L which in a relatively high baseline Se status. Differences were observed among individuals with normal, impaired fasting glucose and elevated fasting serum glucose levels in their basic information, physical examination results and laboratory findings. After adjusting for their basic information, physical examination results and laboratory findings, compared with the low-selenium group, the high-selenium groups (124.9-143.9 and above 143.9μg/L) had ORs for elevated fasting serum glucose of 2.31 (1.37-3.90) and 2.67 (1.59-4.48), respectively (both P<0.05). A sex-difference was observed, and a significant association between selenium levels and impaired fasting glucose was observed for males but not for females. The findings of this observational study suggest that relatively high selenium levels might be positively associated with elevated fasting serum glucose and relatively high selenium levels might be positively associated with impaired fasting glucose in men. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Analysis of Annual Changes in the Concentrations of Selected Macro- and Microelements, Thyroxine, and Testosterone in the Serum of Red Deer (Cervus elaphus) Stags.

    PubMed

    Kuba, J; Błaszczyk, B; Stankiewicz, T; Skuratko, A; Udała, J

    2015-12-01

    The aim of the study was to analyze seasonal changes in the concentrations of calcium, phosphorus, magnesium, and selenium as well as thyroxine and testosterone in adult red deer stags. The highest testosterone concentrations (mean 6.29±4.36 ng/ml) were observed from the end of August to November, confirming an increase in testicular secretory activity during the mating season. The changes in thyroxine concentration show circannual rhythms, most likely related to changes in the air temperature. The highest mean level of thyroxine was observed in spring (55.69±10.99 ng/ml). The concentration of selenium also reached the highest level during this season (0.107±0.027 μg/ml). In the case of the studied macroelements, the concentrations were stable from spring to summer but then decreased to the lowest mean values in autumn in both years of the experiment (Ca, 61.17±10.60; P, 47.08±9.59; Mg, 15.96±2.39 μg/ml). The dynamics of thyroxine secretion does not seem to affect directly the metabolism of calcium, phosphorus, and magnesium. In turn, sexual activity, manifested in the increase in secretion of testosterone, may affect changes in the concentration of calcium. Additionally, we cannot exclude a connection between changes in the concentrations of testosterone and selenium.

  18. Environmental impact and bioremediation of seleniferous soils and sediments.

    PubMed

    Wadgaonkar, Shrutika L; Nancharaiah, Yarlagadda V; Esposito, Giovanni; Lens, Piet N L

    2018-01-05

    Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.

  19. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  20. Assessment of selenium effects in lotic ecosystems

    USGS Publications Warehouse

    Hamilton, Steven J.; Palace, Vince

    2001-01-01

    The selenium literature has grown substantially in recent years to encompass new information in a variety of areas. Correspondingly, several different approaches to establishing a new water quality criterion for selenium have been proposed since establishment of the national water quality criterion in 1987. Diverging viewpoints and interpretations of the selenium literature have lead to opposing perspectives on issues such as establishing a national criterion based on a sediment-based model, using hydrologic units to set criteria for stream reaches, and applying lentic-derived effects to lotic environments. This Commentary presents information on the lotic verse lentic controversy. Recently, an article was published that concluded that no adverse effects were occurring in a cutthroat trout population in a coldwater river with elevated selenium concentrations (C. J. Kennedy, L. E. McDonald, R. Loveridge, and M. M. Strosher, 2000, Arch. Environ. Contam. Toxicol. 39, 46–52). This article has added to the controversy rather than provided further insight into selenium toxicology. Information, or rather missing information, in the article has been critically reviewed and problems in the interpretations are discussed.

  1. [Selenium deficiency in an organic extensive water buffalo farm].

    PubMed

    Große, Reinhard; Binici, Cagri; Pieper, Robert; Müller, Kerstin E

    2018-06-01

    This case report presents investigations of muscle problems in three male water buffaloes (1-2 years) kept extensively (loose housing, pasture). The bulls were presented because of listlessness and increased lying periods. They displayed difficulties to stand up, a stilted gait, and tremor in the legs. The determination of the selenium concentration by the measurement of glutathione peroxidase activity in whole blood samples (EDTA) demonstrated selenium deficiency in all three buffaloes. This confirmed the tentative diagnosis of nutritive myodystrophy due to selenium deficiency. Following a single injection of 1500 mg all-rac-alpha-tocopherol acetate and 11 mg sodium selenite, the bulls recovered clinically. The whole blood samples taken subsequently from seven adult water buffaloes on the farm showed selenium deficiency in all animals. Consequently, slow-release multi-trace element boluses were administered once orally - as far as possible - to all adult animals of the herd. After 1 year, a good to very good selenium supply was observed in all these buffaloes, except for one cow, in which bolus application had failed. Schattauer GmbH.

  2. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animalsmore » fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with methylmercury or mercury exposures, mercury-selenium ratios appear to be far more accurate and effective in identifying risk and protecting human and environmental health. This study also finds that methylmercury toxicity can be effectively treated by dietary selenium, preventing the death and progressive disabilities that otherwise occur in methylmercury-treated subjects. Remarkably, the positive response to selenium therapy was essentially equivalent regardless of whether or not toxic amounts of methylmercury were still administered. The findings of the Physiologically Oriented Integration of Nutrients and Toxins (POINT) models of the effects of mercury and selenium developed in this project are consistent with the hypothesis that mercury toxicity arises because of mercury-dependent inhibition of selenium availability in brain and endocrine tissues. This appears to occur through synergistic effects of mercury-dependent inhibition of selenium transport to these tissues and selective sequestration of the selenium present in the tissues. Compromised transport of selenium to the brain and endocrine tissues would be particularly hazardous to the developing fetus because the rapidly growing tissues of the child have no selenium reserves. Therefore, maternal consumption of foods with high mercury-selenium ratios is hazardous. In summation, methylmercury exposure is unlikely to cause harm in populations that eat selenium-rich diets but may cause harm among populations that consume certain foods that have methylmercury present in excess of selenium.« less

  3. Association of Plasma Selenium Concentrations with Total IGF-1 Among Older Community-Dwelling Adults: the InCHIANTI Study

    PubMed Central

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M.; Paolisso, Giuseppe; Semba, Richard D.; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi

    2011-01-01

    Background and Aims Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Methods Selenium and total IGF-1 were measured in 951 men and women ≥65 years from the InCHIANTI study, Tuscany, Italy. Results Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) µmol/L and 113.4 (31.2) ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (ß ± SE: 43.76±11.2, p=0.0001).After further adjustment for total energy and alcohol intake, serum alanine amino transferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β ± SE: 36.7 ± 12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β ± SE: 40.1 ± 12.0, p=0.0008). Conclusions We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. PMID:20416996

  4. Prenatal exposure to selenium may protect against wheezing in children by the age of 3.

    PubMed

    Baïz, Nour; Chastang, Julie; Ibanez, Gladys; Annesi-Maesano, Isabella

    2017-03-01

    It has been suggested that human in utero exposure to heavy metals such as selenium can reduce the prevalence of childhood asthma and allergic diseases. However, data on this topic are scarce. The objective of the present study was to assess the putative associations between maternal selenium level during pregnancy and the risk of asthma, wheezing, allergic rhinitis, and atopic dermatitis in children from the EDEN birth cohort by the age of 1 and 3 years. Plasma selenium concentrations were measured in maternal blood during mid-pregnancy (24-28 weeks of gestation) in 861 mothers. Cohort children were followed up from birth to 3 years using health questionnaires filled out by the parents for asthma, wheezing, allergic rhinitis, and atopic dermatitis. Maternal plasma selenium was related to the childhood outcomes by the age of 1 and 3 years. Our results showed a significant negative association between a high maternal plasma selenium level during pregnancy and the risk of wheezing in the child by the age of 1 and 3 years. However, maternal plasma selenium during pregnancy was not associated with the prevalence of asthma, allergic rhinitis or atopic dermatitis. The results of this study suggest that the level of fetal exposure to maternal selenium could have an influence on the risk of wheezing in infancy and potentially on the risk of developing asthma later in life.

  5. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  6. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Herbst, R Scott [Idaho Falls, ID; Mann, Nicholas R [Blackfoot, ID; Todd, Terry A [Aberdeen, ID

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  7. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Reconnaissance of chemical and biological quality in the Owyhee River from the Oregon State line to the Owyhee Reservoir, Oregon, 2001–02

    USGS Publications Warehouse

    Hardy, Mark A.; Maret, Terry R.; George, David L.

    2004-01-01

    The Owyhee River drains an extremely rugged and sparsely populated landscape in northern Nevada, southwestern Idaho, and eastern Oregon. Most of the segment between the Oregon State line and Lake Owyhee is part of the National Wild and Scenic Rivers System, and few water-quality data exist for evaluating environmental impacts. As a result, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, assessed this river segment to characterize chemical and biological quality of the river, identify where designated beneficial uses are met and where changes in stream quality occur, and provide data needed to address activities related to environmental impact assessments and Total Maximum Daily Loads. Water-quality issues identified at one or more sites were water temperature, suspended sediment, dissolved oxygen, pH, nutrients, trace elements, fecal bacteria, benthic invertebrate communities, and periphyton communities. Generally, summer water temperatures routinely exceeded Oregon's maximum 7-day average criteria of 17.8 degrees Celsius. The presence of few coldwater taxa in benthic invertebrate communities supports this observation. Suspended-sediment concentrations during summer base flow were less than 10 milligrams per liter (mg/L). Dissolved solids concentrations ranged from 46 to 222 mg/L, were highest during base flow, and tended to increase in a downstream direction. Chemical compositions of water samples indicated that large proportions of upland-derived water extend to the lower reaches of the study area during spring runoff. Dissolved fluoride and arsenic concentrations were highest during base flow and may be a result of geothermal springs discharging to the river. No dissolved selenium was detected. Upstream from the Rome area, spring runoff concentrations of suspended sediment ranged from 0 to 52 mg/L, and all except at the Three Forks site were typically below 20 mg/L. Stream-bottom materials from the North Fork Owyhee River, an area with no mines, were enriched with nine trace elements, which indicates that this basin may be a natural source of these elements. Near Rome, the part of the study area not included in the National Wild and Scenic Rivers System, land-use impacts resulted in elevated populations of Escherichia coli bacteria (E. coli) during base flow and elevated concentrations of nitrogen and phosphorus during spring runoff. Sites in this area had the highest numbers of benthic invertebrates; the fewest Ephemeroptera, Plecoptera, and Trichoptera taxa; and the highest Hilsenhoff Biotic Index scores. These results suggest degraded stream quality. Periphyton communities at sites in this area approached nuisance levels and could cause significant dissolved oxygen depletions and pH values that exceed Oregon's recommended criteria. Stream-bottom materials from Jordan Creek were enriched with mercury and manganese, which probably were ultimately caused by past mining in that basin. Below Crooked Creek, elevated suspended sediment concentrations (142 mg/L), phosphorus concentrations (0.23 mg/L), and E. coli populations (370 most probable number per 100 milliliters) during the largest spring runoff event could be the result of inputs at the lower end of Jordan Valley and (or) inputs from Crooked Creek. The New Zealand Mud Snail, a highly competitive gastropod introduced to the Snake River in the 1980s, was collected just downstream from the Crooked Creek confluence.

  9. Composition of tobaccos from countries with high and low incidences of lung cancer. I. Selenium, polonium-210, Alternaria, tar, and nicotine.

    PubMed

    Bogden, J D; Kemp, F W; Buse, M; Thind, I S; Louria, D B; Forgacs, J; Llanos, G; Moncoya Terrones, I

    1981-01-01

    Tobaccos from countries with high and low incidences of lung cancer were analyzed. Tobacco concentrations of polonium-210 were similar in cigarettes from high- and low-incidence countries, as were levels of cigarette smoke tar and nicotine. Tobaccos from low-incidence countries had significantly lower Alternaria spore counts. Mean selenium concentrations of tobaccos from the high-incidence countries (0.16 +/- 0.05 micrograms/g) were significantly lower than those of tobaccos from the low-incidence countries (0.49 +/- 0.22 micrograms/g).

  10. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration

    PubMed Central

    Burk, Raymond F.; Hill, Kristina E.; Motley, Amy K.; Winfrey, Virginia P.; Kurokawa, Suguru; Mitchell, Stuart L.; Zhang, Wanqi

    2014-01-01

    Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1−/− or apoER2−/− mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.—Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., Zhang, W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. PMID:24760755

  11. Effects of piping irrigation laterals on selenium and salt loads, Montrose Arroyo Basin, western Colorado

    USGS Publications Warehouse

    Butler, D.L.

    2001-01-01

    Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.

  12. Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status.

    PubMed

    Wang, Y; Yang, H M; Cao, W; Li, Y B

    2017-09-01

    The effects of dietary supplementation of sodium selenite (SS) on the reproductive performance and the concentration of selenium, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined, and expression of glutathione peroxidase 4 (GPx4) and bone morphogenic protein 15 (BMP15) was evaluated. Paired pigeons (n = 864) were fed: T1 received no SS, while T2, T3, and T4 received 0.5, 1.0, and 1.5 mg of SS/kg of dry matter (DM), respectively. Treatments were performed in triplicate with 72 pairs in each replicate. The results showed that selenium supplementation significantly affected pigeon reproductive performance. Birds fed 1.0 mg of SS/kg displayed higher egg production (P > 0.05), higher birth rate, and lower dead sperm rate than the control group (P < 0.05). Selenium and biochemical analyses revealed a higher selenium concentration in the 1.5 mg of SS/kg group than in the control group (P < 0.05), while GSH-Px was higher in the 0.5 mg of SS/kg group than in the control group (P < 0.05). Neither the MDA nor the SOD content were affected significantly in liver, chest muscle, or leg muscle (P > 0.05); however, in plasma, MDA was lower in the control group (P < 0.05), while SOD was higher in the control group (P < 0.05). qRT-PCR results revealed up-regulation of GPx4 in hypothalamus, pituitary and testis tissues in supplemented groups (P < 0.05). However, expression in ovary differed; GPx4 mRNA levels were lower in the 1.5 mg of SS/kg and control groups than in the 1.0 or 0.5 mg of SS/kg groups (P < 0.05). Expression of BMP15 in the hypothalamus, pituitary, and testis tissues was unaffected (P > 0.05), while in ovary, BMP15 was down-regulated in the 1.5 mg of SS/kg group (P < 0.05). These results suggest pigeons supplemented with SS up-regulated GPx4, 1.0 mg of SS/kg exhibited superior reproductive performance, while 1.5 mg of SS/kg increased the selenium concentration, and 0.5 mg of SS/kg up-regulated GSH-Px activity. © 2017 Poultry Science Association Inc.

  13. Natural establishment and selenium accumulation of herbaceous plant species in soils with elevated concentrations of selenium and salinity under irrigation and tillage practices.

    PubMed

    Wu, L; Enberg, A; Tanji, K K

    1993-04-01

    The effects of irrigation and tillage practices were studied on species richness, biomass, and selenium accumulation of naturally established herbaceous plants in soils with elevated levels of selenium (Se) and salinity at Kesterson Reservoir, Merced County, California. The four different irrigation-tillage practice combinations were (1) no irrigation, no tillage; (2) irrigation, no tillage; (3) no irrigation, tillage; and (4) irrigation, tillage. The fields were allowed to become colonized naturally by herbaceous plant species. For the Mediterranean climate in the study site, irrigation was conducted biweekly through the summer months, and tillage was done in 3-month intervals. Biomass and Se accumulation of Atriplex patula L, Bassia hyssopifolia Kuntze, Rev. Gen. Pl., Melilotus indica (L.) All., and Salsola kali L. were substantially affected by irrigation. The degree and direction of the effects were found to be species dependent. The field plots which were tilled at 3-month intervals remained bare throughout the experiment. The total soil Se concentrations in the top 15 cm soil horizon were found to be in the range of 40 to 70 mg kg-1 dry wt. Soil Se concentrations below 25 cm soil depth were much lower and within a range of 2 to 4 mg kg-1. Less than 1/10th of the total soil Se inventory in the top soil horizon was water extractable, and the distribution of the Se inventory did not change significantly over the period of 1990 and 1991 despite the irrigation and tillage practices suggesting that a large portion of the Se inventory was not remobilized. The water-extractable soil Se concentration was found to be significantly lower in soils with the greatest biomass production suggesting an effective bioextraction of soil selenium by the native herbaceous plants.

  14. Accumulation and distribution of selenium in mussel and shrimp tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, S.W.; Benayoun, G.

    1976-09-01

    The tissue distribution of selenium in mussels and shrimp was examined and the bioaccumulation kinetics in the various tissues was elucidated with the aid of radio selenium. Mussels (Mytilus galloprovincialis) and shrimp (Lysmata seticaudata) collected near the Monaco port, were apportioned into several groups. One group of mussels and shrimp was maintained in sea water containing 0.8 ..mu..Ci/liter high specific activity Se-75. Three to four individuals were dissected and their tissues monitored for Se-75 content periodically. Another group of shrimp, maintained in flowing sea water, were fed ad libitum mussels that had previously accumulated Se-75 from sea water for severalmore » days. Shrimp were periodically dissected to follow tissue accumulation of ingested selenium. The highest concentrations of selenium were found in the exoskeleton, presumably due, in part, to the relatively large amount of isotope sorbed to its outer surface. Molts, cast by shrimp at various times throughout uptake, contained from 60 to 90% of the total Se-75 body burden. Direct uptake of water led to initially small fractions in internal tissues such as muscle and viscera compared to the relatively large fraction associated with the exoskeleton. With time percentages in internal tissues gradually increased relative to that in the exoskeleton. When Se-75 was accumulated through the food chain an opposite trend was noted with the Se-75 fraction in exoskeleton slowly increasing and that in viscera decreasing during the course of the experiment. All tissues examined readily accumulated the isotope and, in general, did not appear to have reached a steady state concentration after 63 days. The highest Se-75 concentrations were found in the visceral mass with lesser amounts in gills, muscle and mantle, in that order.« less

  15. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    PubMed

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  16. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.

    PubMed

    Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N

    2014-09-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.

  17. Mercury-Selenium Relationships in Liver of Guiana Dolphin: The Possible Role of Kupffer Cells in the Detoxification Process by Tiemannite Formation

    PubMed Central

    Lailson-Brito, José; Dorneles, Paulo Renato; Andrade, Leonardo; Azevedo, Alexandre de Freitas; Fragoso, Ana Bernadete; Vidal, Lara Gama; Costa, Marianna Badini; Bisi, Tatiana Lemos; Almeida, Ronaldo; Carvalho, Dario Pires; Bastos, Wanderley Rodrigues; Malm, Olaf

    2012-01-01

    Top marine predators present high mercury concentrations in their tissues as consequence of biomagnification of the most toxic form of this metal, methylmercury (MeHg). The present study concerns mercury accumulation by Guiana dolphins (Sotalia guianensis), highlighting the selenium-mediated methylmercury detoxification process. Liver samples from 19 dolphins incidentally captured within Guanabara Bay (Rio de Janeiro State, Brazil) from 1994 to 2006 were analyzed for total mercury (THg), methylmercury (MeHg), total organic mercury (TOrgHg) and selenium (Se). X-ray microanalyses were also performed. The specimens, including from fetuses to 30-year-old dolphins, comprising 8 females and 11 males, presented high THg (0.53–132 µg/g wet wt.) and Se concentrations (0.17–74.8 µg/g wet wt.). Correlations between THg, MeHg, TOrgHg and Se were verified with age (p<0.05), as well as a high and positive correlation was observed between molar concentrations of Hg and Se (p<0.05). Negative correlations were observed between THg and the percentage of MeHg contribution to THg (p<0.05), which represents a consequence of the selenium-mediated methylmercury detoxification process. Accumulation of Se-Hg amorphous crystals in Kupffer Cells was demonstrated through ultra-structural analysis, which shows that Guiana dolphin is capable of carrying out the demethylation process via mercury selenide formation. PMID:22860072

  18. Fat-soluble vitamin and mineral comparisons between zoo-based and free-ranging koalas (Phascolarctos cinereus).

    PubMed

    Schmidt, Debra A; Pye, Geoffrey W; Hamlin-Andrus, Chris C; Ellis, William A; Bercovitch, Fred B; Ellersieck, Mark R; Chen, Tai C; Holick, Michael F

    2013-12-01

    As part of a health investigation on koalas at San Diego Zoo, serum samples were analyzed from 18 free-ranging and 22 zoo-based koalas, Phascolarctos cinereus. Serum concentrations of calcium, chloride, cobalt, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, selenium, sodium, zinc, and vitamins A, E, and 25(OH)D3 were quantified. Calcium, chloride, molybdenum, selenium, and vitamin E concentrations were significantly higher in zoo-based koalas than in free-ranging koalas, whereas magnesium, manganese, phosphorus, and zinc concentrations were significantly higher in the free-ranging koalas. No significant differences were found between genders. The results from this study will help to establish a starting point for determining target circulating nutrient concentrations in koalas.

  19. Occurrence, distribution, and transport of pesticides, trace elements, and selected inorganic constituents into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.

    2004-01-01

    A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the rivers. Seasonal trends in pesticide concentration were similar to those for dissolved concentrations in fall 2001 and spring 2002, but not in fall 2002. Generally, the pesticides detected in the suspended sediments were the same pesticides detected in the bed sediments, and concentrations were similar, especially at the Alamo River outlet site in spring 2002 and fall 2002. Pesticides generally were not detected in sediments from the off-shore sites; however, the samples from these sites also had greater incidences of matrix interference during analysis. Sediment-associated pesticide concentrations were above equilibrium in water, suggesting a bound fraction of sediment-associated pesticides that are resistant to desorption. Concentrations of trace elements and other inorganic constituents in suspended sediments collected during the fall 2001 followed expected trends with dilution of river-derived minerals owing to highly organic autochthonous production within the Salton Sea Basin. However, calculation of enrichment ratios provided evidence for the bioconcentration of several trace elements, notably selenium in the off-shore biota.

  20. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.

    PubMed

    Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna

    2018-01-01

    Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

Top