Geology and ground-water resources of Winkler County, Texas
Garza, Sergio; Wesselman, John B.
1963-01-01
The chemical quality of the water in the principal aquifers is generally acceptable for industry and for public supply. About two-thirds of the samples collected from fresh-water wells had a dissolved-solids content of less than 1,000 ppm (parts per million) ; however, some samples in a few areas were hard and were high in fluoride and silica. Samples from wells in polluted areas contained dissolved solids ranging from about 1,400 to 71,100 ppm. Two comprehensive analyses of water samples from the Rustler formation showed a dissolved-solids content of 18,400 ppm. and 157,000 ppm. In most of the water produced with the oil in the Hendrick oil field, the content of dissolved solids ranged from about 4,000 to about 10,000 ppm. The water produced with the oil in the rest of the oil fields in Winkler County was mainly brine.
Application and evaluation of scale dissolver treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielder, G.D.
1994-12-31
In order to provide an improved basis for the design of barium sulfate scale dissolver treatments both laboratory testing and monitoring of field applications were carried out. The deleterious effects of mixing produced water with dissolver prior to contacting scale are shown. Increasing total dissolved solids (TDS) levels can reduce dissolution depending upon temperature. Precomplexation with divalent cations reduces the capacity of the dissolver to solubilize solid scales. Magnesium may adversely affect dissolver performance at elevated temperatures. Several oil and gas wells were closely monitored during initial flowback after treatment. Samples were collected on a frequent basis and analyzed formore » pH, dissolver content, chlorides and various cations. The resulting data were used to construct flowback profiles for evaluation of the treatments. Evidence of scale dissolution is presented. The presence of an incompatible flush brine was discovered in one case and possible reverse order of addition of preflush and dissolver in another. The importance of establishing and following treatment procedures is briefly discussed.« less
Hydrology of Crater, East and Davis Lakes, Oregon; with section on Chemistry of the Lakes
Phillips, Kenneth N.; Van Denburgh, A.S.
1968-01-01
Crater, East, and Davis Lakes are small bodies of fresh water that occupy topographically closed basins in Holocene volcanic terrane. Because the annual water supply exceeds annual evaporation, water must be lost by seepage from each lake. The seepage rates vary widely both in volume and in percentage of the total water supply. Crater Lake loses about 89 cfs (cubic feet per second), equivalent to about 72 percent of its average annual supply. East Lake loses about 2.3 cfs, or about 44 percent of its estimated supply. Davis Lake seepage varies greatly with lake level, but the average loss is about 150 cfs, more than 90 percent of its total supply. The destination of the seepage loss is not definitely known for any of the lakes. An approximate water budget was computed for stationary level for each lake, by using estimates 'by the writer to supplement the hydrologic data available. The three lake waters are dilute. Crater Lake contains about 80 ppm, (parts per million) of dissolved solids---mostly silica, sodium, and bicarbonate, and lesser amounts of calcium, sulfate, and chloride. Much of the dissolved-solids content of Crater Lake---especially the sulfate and chloride---may be related to fumarole and thermal-spring activity that presumably followed the collapse of Mount Mazama. Although Grater Lake loses an estimated 7,000 tons of its 1.5million-ton salt content each year by leakage, the chemical character of the lake did not change appreciably between 1912 and 1964. East Lake contains 200 ppm of dissolved solids, which includes major proportions of calcium, sodium, bicarbonate, and sulfate, but almost no chloride. The lake apparently receives much of its dissolved solids from subsurface thermal springs. Annual solute loss from East Lake by leakage is about 450 tons, or 3 percent of the lake's 15,000-ton estimated solute content. Davis Lake contains only 48 ppm of dissolved solids, much of which is silica and bicarbonate; chloride is almost completely absent. Approximate physical and hydrologic data for the lakes are summarized in the following table. [Table
Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger
2008-02-01
A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.
NASA Technical Reports Server (NTRS)
Suemoto, S. H.; Mathias, K. E.
1974-01-01
The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage.
Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph
2008-01-01
Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.
Geohydrology and ground-water quality at selected sites in Meade County, Kentucky, 1987-88
Mull, D.S.; Alexander, A.G.; Schultz, P.E.
1989-01-01
Meade County in north-central Kentucky is about 305 sq mi in size, and is underlain by thick beds of limestone and dolomite which are the principal sources of drinking water for about 8 ,500 residents. About half the area contains mature, karst terrain with abundant sinkholes, springs, and caves. Because of this karst terrain, groundwater is susceptible to rapid changes in water quality and contamination from human sources. Thirty-seven wells and 12 springs were selected as sampling points to characterize groundwater quality in the area. Water was analyzed for major anions and cations, nitrates, trace elements, and organic compounds. Water from selected sites was also analyzed for fecal species of coliform streptococci bacteria and total coliform content. Except for fluoride and lead, the water quality was within the range expected for carbonate aquifers.The fluoride content was significantly higher in water from wells than in water from springs. Concentrations of detectable lead ranged from 10 to 50 micrograms/L and had a median value of 7.5 microg/L. Dissolved solids ranged from 100 to 2,200 mg/L and the median value was 512 mg/L. Hardness ranged from 20 to 1,100 mg/L and the median value was 290 mg/L. Organic compounds detected by the gas chromatographic/flame ionization detection scans, did not indicate evidence of concentrations in excess of the current Federal drinking water standards. Analysis for specific organic compounds indicated that the presence of these compounds was associated with agricultural chemicals, usually pesticides. Total coliform content exceeded drinking water standards in water from all 12 springs and in 18 wells. Statistical analysis of the groundwater quality data indicates that the variance of the concentrations of fluoride and chloride may be attributed to the site type. There was strong correlation between hardness and dissolved solids, hardness and sulfate, and sulfate and dissolved solids. No apparent relations were detected between water quality and the geographic location of sampling sites. However, seasonal variations were detected in the concentrations of dissolved solids, hardness, and iron. (Lantz-PTT)
Quality of Delaware River water at Trenton, New Jersey
McCarthy, Leo T.; Keighton, Walter B.
1964-01-01
Water in the Delaware River at Trenton, NJ, is a mixture of several types--water from the mountainous headwater region, water from the coal-mining regions, and water from the limestone valleys. The quantities of these types of water, in relation to the total quantity of water at Trenton, vary with changes in season and reservoir releases. The chemical quality of the water during the 17-year period 1945-61 was excellent, and the water was suitable for most uses after little or no treatment. The average concentration of dissolved solids was 86 ppm (parts per million), and 90 percent of the time it ranged from 57 to 126 ppm. Usually the pH of the water was close to 7.0 (considered to be a neutral point-neither acid nor alkaline). The hardness was less than 86 ppm 95 percent of the time. The general composition of the dissolved-solids content, in terms of equivalents, is 28 percent calcium, 14 percent magnesium, 8 percent sodium plus potassium, 43 percent bicarbonate plus sulfate, 5 percent chloride, and 2 percent nitrate. Concentrations of minerals in the river water are lowest during March, April and May (median concentration of dissolved solids 66 PPM) and are highest during August and September (median, 107 PPM). Each year an average of 880,000 tons of dissolved solids and 932,000 tons of suspended solids are carried past Trenton by the Delaware River. The greatest monthly loads of dissolved solids are in March and April, and the smallest are from July to October. Suspended-solids loads are greater when the streamflow is high but small the rest of the time. Concentration of suspended solids exceeds 100 PPM only 5 percent of the time. The headwaters in the Delaware River basin are the source of water of excellent quality. Much of this water is stored in reservoirs, and when released during August and September, it improves the quality of the water at Trenton. These releases to augment low flow have the effect of narrowing the range of concentrations of dissolved constituents. In 1952 and 1962, 6 and 19 percent, respectively, of the drainage area above Trenton was regulated by reservoirs. After proposed construction, 60 percent will be regulated by 1975. Thus, it may be that the high concentrations of dissolved constituents observed in the 1945-61 period will not occur again. It is possible that the water quality observed during the period 1945-61 (dissolved solids 57-126 PPM 90 percent of the time, pH close to 7.0, hardness less than 86 PPM 95 percent of the time) is representative of what can be expected in the future, for a variety of hydrologic conditions were experienced in the 17-year period.
Thiros, Susan A.; Gerner, Steven J.
2015-01-01
Irrigation improvements began to be implemented in 2007 to reduce dissolved-solids loads discharged from the MWSP area. The theoretical annual net dissolved-solids load where the cumulative NRCS calculated dissolved-solids load reduction is added to the net MWSP dissolved-solids load is what would be expected if there was no irrigation improvement in the area associated with the MWSP. The theoretical data points lie very near the baseline representing the pre-MWSP dissolved-solids load to canal streamflow relation. The proximity of the theoretical data points to the baseline shows that the NRCS calculations of reduction in dissolved-solids load are generally supported by the data collected during this study.
Dissolved-solids transport in surface water of the Muddy Creek Basin, Utah
Gerner, Steven J.
2008-01-01
Muddy Creek is located in the southeastern part of central Utah and is a tributary of the Dirty Devil River, which, in turn, is a tributary of the Colorado River. Dissolved solids transported from the Muddy Creek Basin may be stored in the lower Dirty Devil River Basin, but are eventually discharged to the Colorado River and impact downstream water users. This study used selected dissolved-solids measurements made by various local, State, and Federal agencies from the 1970s through 2006, and additional dissolved-solids data that were collected by the U.S. Geological Survey during April 2004 through November 2006, to compute dissolved-solids loads, determine the distribution of dissolved-solids concentrations, and identify trends in dissolved-solids concentration in surface water of the Muddy Creek Basin. The dissolved-solids concentration values measured in water samples collected from Muddy Creek during April 2004 through October 2006 ranged from 385 milligrams per liter (mg/L) to 5,950 mg/L. The highest dissolved-solids concentration values measured in the study area were in water samples collected at sites in South Salt Wash (27,000 mg/L) and Salt Wash (4,940 to 6,780 mg/L). The mean annual dissolved-solids load in Muddy Creek for the periods October 1976 to September 1980 and October 2005 to September 2006 was smallest at a site near the headwaters (9,670 tons per year [tons/yr]) and largest at a site at the mouth (68,700 tons/yr). For this period, the mean annual yield of dissolved solids from the Muddy Creek Basin was 44 tons per square mile. During October 2005 to September 2006, direct runoff transported as much as 45 percent of the annual dissolved-solids load at the mouth of Muddy Creek. A storm that occurred during October 5?7, 2006 resulted in a peak streamflow at the mouth of Muddy Creek of 7,150 cubic feet per second (ft3/s) and the transport of an estimated 35,000 tons of dissolved solids, which is about 51 percent of the average annual dissolved-solids load at the mouth of Muddy Creek. A significant downward trend in dissolved-solids concentrations from 1973 to 2006 was determined for Muddy Creek at a site just downstream of that portion of the basin containing agricultural land. Dissolved-solids concentrations decreased about 2.1 percent per year; however, the rate of change was a decrease of 1.8 percent per year when dissolved-solids concentrations were adjusted for flow.
Moyer, Douglas; Anderholm, Scott K.; Hogan, James F.; Phillips, Fred M.; Hibbs, Barry J.; Witcher, James C.; Matherne, Anne Marie; Falk, Sarah E.
2013-01-01
-Focused Hydrogeology Studies at Inflow Sources: Map dissolved-solids concentrations in the Rio Grande and underlying alluvial aquifer; perform hydrogeologic characterization of subsurface areas containing unusually high concentrations of dissolved solids. -Modeling of Dissolved Solids: Develop models to simulate the transport and storage of dissolved solids in both surface-water and groundwater systems.
Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas
Playton, Stephen J.; Davis, Robert Ellis; McClaflin, Roger G.
1978-01-01
Onsite measurements of pH, specific conductance, and water temperature show that water temperatures in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total, and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less-dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.Correlation analysis showed that several chemical constituents and properties of mine-shaft water, including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium, are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study - September 1975 to June 1977 - the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month. Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall.Water in the mine shafts is unsuited for most uses without treatment. The inability of current domestic water treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.
NASA Astrophysics Data System (ADS)
Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar
2016-04-01
Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.
Clark, Melanie L.; Davidson, Seth L.
2009-01-01
Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy Creek reflect the different basin characteristics. Relations between specific conductance and dissolved-solids concentrations were statistically significant for the Green River (p-value less than 0.001) and Muddy Creek (p-value less than 0.001); therefore, specific conductance can be used to estimate dissolved-solids concentrations. Using continuous specific conductance values to estimate dissolved solids in real-time on the World Wide Web increases the amount and improves the timeliness of data available to water managers for assessing dissolved-solids concentrations in the Colorado River Basin.
Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.
1998-01-01
Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.
Jiang, Jian-Guo; Zhao, Zhen-Zhen; Du, Xue-Juan; Sui, Ji-Chao; Wu, Shi-Yao
2007-04-01
The straw contains a high content of lignin, which cannot be well utilized by anaerobic bacteria in high solid anaerobic digestion process. This paper presents the experimental investigation of the straw pre-treatment, which aims to destroy the complex structure of the lignin to enhance its high solid anaerobic digestion. The straw is pre-treated in different solutions including NaOH, ammonia, H2SO4, and carbamide. The pre-treating effects are expressed by COD concentration dissolved in the solutions and the 14-day biogas generation in the enhanced aerogenic experiment. Different affecting factors, such as the concentration of the chemical solution, the species of the straw, the pre-treatment reaction time, the reaction temperature and the size of the straw, are investigated. The results show that NaOH solution is the most effective pre-treatment chemical among the four different solutions. The experimental results still indicate that the accumulative biogas production can be 1 500 mL (10 g straw) in 14 days after pre-treatment in 4 mg/L NaOH solution and the dissolved COD in the solution reaches 39 000 mg/L after 24 hours. In addition, the experiment shows that the lignin content in the straw is reduced from 28% to 19% after pre-treatment in 1.5% (in weight) NaOH solution, and it can improve the straw treatment efficiency using high solid anaerobic digestion process.
Avigliano, Esteban; Schenone, Nahuel
2016-08-01
The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.
Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.; Spangler, Lawrence E.
2009-01-01
The Upper Colorado River Basin (UCRB) discharges more than 6 million tons of dissolved solids annually, about 40 to 45 percent of which are attributed to agricultural activities. The U.S. Department of the Interior estimates economic damages related to salinity in excess of $330 million annually in the Colorado River Basin. Salinity in the UCRB, as measured by dissolved-solids load and concentration, has been studied extensively during the past century. Over this period, a solid conceptual understanding of the sources and transport mechanisms of dissolved solids in the basin has been developed. This conceptual understanding was incorporated into the U.S. Geological Survey Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model to examine statistically the dissolved-solids supply and transport within the UCRB. Geologic and agricultural sources of dissolved solids in the UCRB were defined and represented in the model. On the basis of climatic and hydrologic conditions along with data availability, water year 1991 was selected for examination with SPARROW. Dissolved-solids loads for 218 monitoring sites were used to calibrate a dissolved-solids SPARROW model for the UCRB. The calibrated model generally captures the transport mechanisms that deliver dissolved solids to streams of the UCRB as evidenced by R2 and yield R2 values of 0.98 and 0.71, respectively. Model prediction error is approximated at 51 percent. Model results indicate that of the seven geologic source groups, the high-yield sedimentary Mesozoic rocks have the largest yield of dissolved solids, about 41.9 tons per square mile (tons/mi2). Irrigated sedimentary-clastic Mesozoic lands have an estimated yield of 1,180 tons/mi2, and irrigated sedimentary-clastic Tertiary lands have an estimated yield of 662 tons/mi2. Coefficients estimated for the seven landscape transport characteristics seem to agree well with the conceptual understanding of the role they play in the delivery of dissolved solids to streams in the UCRB. Predictions of dissolved-solids loads were generated for more than 10,000 stream reaches of the stream network defined in the UCRB. From these estimates, the downstream accumulation of dissolved solids, including natural and agricultural components, were examined in selected rivers. Contributions from each of the 11 dissolved-solids sources were also examined at select locations in the Grand, Green, and San Juan Divisions of the UCRB. At the downstream boundary of the UCRB, the Colorado River at Lees Ferry, Arizona, monitoring site, the dissolved-solids contribution of irrigated agricultural lands and natural sources were about 45 and 57 percent, respectively. Finally, model predictions, including the contributions of natural and agricultural sources for selected locations in the UCRB, were compared with results from two previous studies.
Foster, Katharine; Kenney, Terry A.
2010-01-01
Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.
Dissolved solids in basin-fill aquifers and streams in the southwestern United States
Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.
2007-01-01
The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.
Parker, R.S.; Litke, D.W.
1987-01-01
The cumulative effects of changes in dissolved solids from a number of coal mines are needed to evaluate effects on downstream water use. A model for determining cumulative effects of streamflow, dissolved-solids concentration, and dissolved-solids load was calibrated for the Yampa River and its tributaries in northwestern Colorado. The model uses accounting principles. It establishes nodes on the stream system and sums water quantity and quality from node to node in the downstream direction. The model operates on a monthly time step for the study period that includes water years 1976 through 1981. Output is monthly mean streamflow, dissolved-solids concentration, and dissolved-solids load. Streamflow and dissolved-solids data from streamflow-gaging stations and other data-collection sites were used to define input data sets to initiate and to calibrate the model. The model was calibrated at four nodes and generally was within 10 percent of the observed values. The calibrated model can compute changes in dissolved-solids concentration or load resulting from the cumulative effects of new coal mines or the expansion of old coal mines in the Yampa River basin. (USGS)
Process for desulfurizing petroleum feedstocks
Gordon, John Howard; Alvare, Javier
2014-06-10
A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.
Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.
2006-01-01
Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos Shale. The boron concentration and δ11B value for the water sample from Antelope Wash, being distinctly different from water samples from other sites, is evidence that water in Antelope Wash may contain a substantial component of regional ground-water flow.
The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.
2017-12-01
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are decreasing salinity in groundwater transported to streams.
Liebermann, Timothy D.; Mueller, David K.; Kircher, James E.; Choquette, Anne F.
1989-01-01
Annual and monthly concentrations and loads of dissolved solids and major constituents were estimated for 70 streamflow-gaging stations in the Upper Colorado River Basin. Trends in streamflow, dissolved-solids concentrations, and dissolved-solids loads were identified. Nonparametric trend-analysis techniques were used to determine step trends resulting from human activities upstream and long-term monotonic trends. Results were compared with physical characteristics of the basin and historical water-resource development in the basin to determine source areas of dissolved solids and possible cause of trends. Mean annual dissolved-solids concentration increases from less than 100 milligrams per liter in the headwater streams to more than 500 milligrams per liter in the outflow from the Upper Colorado River Basin. All the major tributaries that have high concentrations of dissolved solids are downstream from extensive areas of irrigated agriculture. However, irrigation predated the period of record for most sites and was not a factor in many identified trends. Significant annual trends were identified for 30 sites. Most of these trends were related to transbasin exports, changes in land use, salinity-control practices, or reservoir development. The primary factor affecting streamflow and dissolved-solids concentration and load has been the construction of large reservoirs. Reservoirs have decreased the seasonal and annual variability of streamflow and dissolved solids in streams that drain the Gunnison and San Juan River basins. Fontenelle and Flaming Gorge Reservoirs have increased the dissolved-solids load in the Green River because of dissolution of mineral salts from the bank material. The largest trends occurred downstream from Lake Powell. However, the period of record since the completion of filling was too short to estimate the long-term effects of that reservoir.
Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey
Anderson, Peter W.; Faust, Samuel Denton
1973-01-01
The findings of a problem-oriented river-system investigation of the water-quality and streamflow characteristics of the Passaic River above Little Falls, N.J. (drainage area 762 sq mi) are described. Information on streamflow duration, time-of-travel measurements, and analyses of chemical, biochemical, and physical water quality are summarized. This information is used to define relations between water quality, streamflow, geology, and environmental development in the basin's hydrologic system. The existence, nature, and magnitude of long-term trends in stream quality--as measured by dissolved solids, chloride, dissolved oxygen, biochemical oxygen demand, ammonia, nitrate, and turbidity--and in streamflow toward either improvement or deterioration are appraised at selected sites within the river system. The quality of streams in the upper Passaic River basin in northeastern New Jersey is shown to be deteriorating with time. For example, biochemical oxygen demand, an indirect measure of organic matter in a stream, is increasing at most stream-quality sampling sites. Similarly, the dissolved-solids content, a measure of inorganic matter, also is increasing. These observations suggest that the Passaic River system is being used more and more as a medium for the disposal of industrial and municipal waste waters. Dissolved oxygen, an essential ingredient for the natural purification of streams receiving waste discharges, is undersaturated (that is, below theoretical solubility levels) at all sampling sites and is decreasing with time at most sites. This is another indication of the general deterioration of stream quality in the upper basin. It also indicates that the ability of the river system to receive, transport, and assimilate wastes, although exceeded now only for short periods during the summer months, may be exceeded more continually in the future if present trends hold. Decreasing ratios of ammonia to nitrate in a downstream direction on the main stem Passaic River suggests that nitrification (the biochemical conversion of ammonia to nitrate) as well as microbiological decomposition of organic matter (waste waters) is contributing to the continued and increasing undersaturation of dissolved oxygen in the river system. Passaic River streams are grouped into five general regions of isochemical quality on the basis of predominant constituents and dissolved-solids content during low flows. The predominant cations in all but one region are calcium and magnesium (exceeding 50 percent of total cations) ; in that region, where man's activities probably have altered the natural stream waters, the percentage of sodium and potassium equals that of calcium and magnesium. In two of the five regions, the predominant anion is bicarbonate; a combination of sulfate, chloride, and nitrate is predominant in the other three regions. Dissolved-solids content during low flows generally ranges from 100 to 600 milligrams per liter. Several time-of-travel measurements within the basin are reported. These data provide reasonable estimates of the time required for soluble contaminants to pass through particular parts of the river system. For example, the peak concentration of a contaminant injected into the river system at Chatham during extreme low flow would be expected to travel to Little Falls, about 31 miles, in about 13 days; but at medium flow, in about 5 days.
Several anthropogenic activities cause excess total dissolved solids (TDS) content and its correlate, specific conductivity, in surface waters due to increases in the major geochemical ions (e.g., Na, Ca, Cl, SO4). However, the relative concentrations of major ions varies with t...
Osako, Masahiro; Kim, Yong-Jin; Lee, Dong-Hoon
2002-09-01
A field investigation by boring was carried out in a landfill site primarily with municipal solid waste incineration residue. From the collected core samples, vertical profiles of homologous content of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) in the landfill layer were traced and the behavior of PCDDs/PCDFs was examined. In addition, a pilot-scale study was conducted on the PCDDs/PCDFs leached from incineration fly ash and the treated one using large landfill simulation columns (lysimeters) and the leaching behavior of PCDDs/PCDFs was examined. As a result, it was found that the coexistence of dissolved coloring constituents (DCCs), which might be composed of constituents like dissolved humic matters having strong affinity for hydrophobic organic pollutants, could enhance the leachability of PCDDs/PCDFs, thus contributing to the vertical movement and leaching behavior of PCDDs/PCDFs in the landfill layers of the incineration residue. Moreover, it is highly probable that DCCs derive from the unburned carbon in the bottom ash mixed and buried with the fly ash containing a high content of PCDDs/PCDFs.
NASA Astrophysics Data System (ADS)
Parnanto, N. H. R.; Yudhistira, B.; Pertiwi, S. R.; Pangestika, A.
2018-03-01
The aims of this study were to determine the effect of the combination of CMC and Arabic Gum stabilizer toward the soursop velva characteristics and to determine the best stabilizer combination of soursop velva. This study was performed using Completely Randomized Design (CRD) with one factor: combination of CMC and Arabic Gum stabilizer using two sample replications and the analysis was repeated three times. The result showed that the use of the combination of CMC and Arabic Gum stabilizer gave a significant effect on the overrun value, melting power, total dissolved solids, moisture content, dietary fiber, taste, texture and overalls. Moreover, there were no significant effect on color and flavor of the soursop velva. The experiment showed that soursop velva F4 (3:1) was the best formula with overrun value 9.93%, the melting power was 22 minutes 52 seconds, the total dissolved solids 19,10°Brix, the moisture content 71.508%, dietary fiber 3.301% and it has sensory values of color, taste, flavor, texture, overall at 3.66, 3.267, 3.33, 4.06, 3.10 respectively.
Documentation of a dissolved-solids model of the Tongue River, southeastern Montana
Woods, Paul F.
1981-01-01
A model has been developed for assessing potential increases in dissolved solids of the Tongue River as a result of leaching of overburden materials used to backfill pits in surface coal-mining operations. The model allows spatial and temporal simulation of streamflow and dissolved-solids loads and concentrations under user-defined scenarios of surface coal mining and agricultural development. The model routes an input quantity of streamflow and dissolved solids from the upstream end to the downstream end of a stream reach while algebraically accounting for gains and losses of streamflow and dissolved solids within the stream reach. Input data needed to operate the model include the following: simulation number, designation of hydrologic conditions for each simulated month, either user-defined or regression-defined concentrations of dissolved solids input by the Tongue River Reservoir, number of irrigated acres, number of mined acres, dissolved-solids concentration of mine leachates and quantity of other water losses. A listing of the Fortran computer program, definitions of all variables in the model, and an example output permit use of the model by interested persons. (USGS)
Surface-water availability, Tuscaloosa County, Alabama
Knight, Alfred L.; Davis, Marvin E.
1975-01-01
The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.
Sources of variability in livestock water quality over 5 years in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Mineral content of livestock water grazing rangelands can be a source of minerals affecting health and drinkability. To estimate yearly variation in water mineral concentrations, 11 indicators of quality were measured (Ca, Cl, Fe, Fl, Mg, Mn, Na, NO3-N, pH, SO4, total dissolved solids (TDS) and temp...
Tillman, Fred D.; Anning, David W.
2014-01-01
The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.
Rosen, Michael R.
2003-01-01
Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.
Significance of dissolved methane in effluents of anaerobically ...
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro
Anning, David W.
2008-01-01
The U.S. Geological Survey (USGS) recently completed a regional study in the Southwestern United States to characterize dissolved-solids conditions in major water supplies, including important rivers and aquifers. High concentrations of dissolved solids can degrade a water supply's suitability for important uses, such as drinking water or crop irrigation. In an effort to ensure the continued availability of clean surface and groundwater, USGS scientists identified areas where there have been both increasing and decreasing trends in dissolved-solids concentrations.
Geology and ground-water resources of Hays County, Texas
DeCook, Kenneth James
1963-01-01
Ground water from wells in the Pearsall formation generally contains less than 500 parts per million of dissolved solids. Water from the Glen Rose limestone in some places contains more than 500 parts per million of sulfate and more than 1,000 parts per million of dissolved solids; locally it is high in nitrate also. Except in the southeastern part of the county, water from the Edwards limestone is commonly very hard but is otherwise of good quality for most uses. Analyses of two water samples from the Austin chalk indicate a high content of bicarbonate. Water from the Taylor marl and from Quaternary sediments generally is hard, and locally it contains excessive nitrate. Most wells in Hays County are used for domestic and stock supplies. About 20 wells, most of them in the Edwards limestone, yield water in relatively large amounts for industrial use, irrigation, or public supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaofei Guan; Peter A. Zink; Uday B. Pal
2012-01-01
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less
Mueller, Julia S.; Grabowski, Timothy B.; Brewer, Shannon K.; Worthington, Thomas A.
2017-01-01
Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies.
Chemical character of streams in the Delaware River basin
Anderson, Peter W.; McCarthy, Leo T.
1963-01-01
The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.
Isotopic Clues on Factors Controlling Geochemical Fluxes From Large Watersheds in Eastern Canada
NASA Astrophysics Data System (ADS)
Rosa, E.; Helie, J.; Ghaleb, B.; Hillaire-Marcel, C.; Gaillardet, J.
2008-12-01
A monitoring and monthly sampling program of the Nelson, Ottawa, St. Lawrence, La Grande and Great Whale rivers was started in September 2007. It provides information on the seasonality and sources of geochemical fluxes into the Hudson Bay and the North Atlantic from watersheds covering more than 2.6 106 km2 of the eastern Canadian boreal domain. Measurements of pH and alkalinity, analyses of major ions, strontium and dissolved silica, 2H and 18O of water, concentrations and isotopic properties of dissolved organic and inorganic carbon (13C) and uranium (234U/238U) were performed. Lithology more than latitudinal climatic gradients controls the river geochemistry. Rivers draining silicate terrains show lower dissolved U concentrations but greater 234U/238U disequilibria than rivers draining carbonates (average of 1.38 vs. 1.23). Groundwater supplies might exert some control on these U- isotope signatures. No clear seasonality is observed in 234U/238U ratios, but U concentrations are correlated to dissolved organic carbon (DOC) concentrations in most rivers. Rivers draining carbonates present higher total dissolved carbon concentrations and higher 13C-contents in dissolved inorganic carbon (DIC), in response to the dissolution of soil carbonates. DOC/DIC ratios above 2.4 are observed in rivers draining silicates; their lower 13C-DIC content directly reflects the organic matter oxidation in soils. Total dissolved solids are one order of magnitude or more greater in rivers draining carbonates, showing the strong difference in chemical weathering rates according to the geological setting. The stability in chemical fluxes and water isotopic compositions in the La Grande River, which hosts hydroelectric reservoirs covering more than 12 000 km2, indicates that it is the most buffered hydrological system among the investigated watersheds. Seasonal fluctuations are observed elsewhere, with maximum geochemical fluxes during the spring snowmelt. 2H-18O content of river water appears to be the only parameter presenting a strong latitudinal and climatic gradient (independent of lithology).
Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M
2016-11-01
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Antunes, P. C.; Boutt, D. F.; Martini, A. M.; Ferstad, J.; Rodrigues, F. C.
2012-12-01
Fogo Volcano is located at central part of São Miguel Island and corresponds to a polygenetic volcano with a caldera made by an intercalated accumulation of volcaniclastic deposits and lava flows. São Miguel Island is one of the nine volcanic islands that form the Azores Archipelago. The volcano is 950 meters high, with a caldera diameter of 3.2 Km, which holds a lake inside. The last eruption occurred in 1563-1564, as one of a group of seven traquitic eruptions occurring within the last 5000 years. The volcanic activity is related to hydrothermal activity in a geothermal field located in the volcanoes North flank. The hydrology of Fogo Volcano is characterized by a series of perched-water bodies drained by a large number of springs grouped at different altitudes on the volcano flanks. It is possible to identify three types of water (1) Fresh water, cold temperature (12 - 17 C) with low dissolved solids contents (average conductivity of 179 μS/cm), pH range between 6.60 and 7.82, dominated by the major ions Na, K, HCO3, and Cl, and correspond mainly to sodium bicarbonate type water. (2) Mineral water, cold temperature (12.5 - 19.4 C) with low dissolved solids contents (average conductivity of 261 μS/cm), acid pH range between 4.62 and 6.79, and correspond mainly to sodium bicarbonate type water. (3) Thermal water, with temperature of 32 C, high dissolved solids content (4.62 mS/cm), with a pH around 4.50 and belongs to sodium sulfate type water. South Fogo volcano have only fresh water springs and at high elevation, springs drained from pumice fall deposits near 700 m of altitude. Water dissolved solids contents increased slightly with springs at lower altitude due to water-rock interaction. Springs sampled around 700 m high have a conductivity average of 85 μS/cm, at 520 m an average of 129 μS/cm, at 430 m an average of 182 μS/cm, at 200 m an average of 192 μS/cm and at 12 m high sea level and average of 472 μS/cm. This trend is observed at North Fogo volcano flank for fresh water springs. Mineral and thermal waters show an influence of magmatic input, a natural water pollution source in areas with volcanic activity. Rainwater isotopic composition showed elevation effect variation with lighter δ18O and δD values and recharge appear to be at highest altitudes with influence of sea salt from atmospheric contamination. Evaporation is clearly associated with mineral and thermal waters. Hydrogeochemistry differentiates the low altitude springs at South volcano flank where they are separated by ultramafic intrusions supporting the existence of dike impounded aquifers as Peterson (1972) proposed with the Hawaiian conceptual model for volcanic islands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Torres, M.; Verba, C.
The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop themore » capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.« less
Miller, Matthew P.; Buto, Susan G.; Lambert, Patrick M.; Rumsey, Christine A.
2017-03-07
Approximately 6.4 million tons of dissolved solids are discharged from the Upper Colorado River Basin (UCRB) to the Lower Colorado River Basin each year. This results in substantial economic damages, and tens of millions of dollars are spent annually on salinity control projects designed to reduce salinity loads in surface waters of the UCRB. Dissolved solids in surface water and groundwater have been studied extensively over the past century, and these studies have contributed to a conceptual understanding of sources and transport of dissolved solids. This conceptual understanding was incorporated into a Spatially Referenced Regressions on Watershed Attributes (SPARROW) model to examine sources and transport of dissolved solids in the UCRB. The results of this model were published in 2009. The present report documents the methods and data used to develop an updated dissolved-solids SPARROW model for the UCRB, and incorporates data defining current basin attributes not available in the previous model, including delineation of irrigated lands by irrigation type (sprinkler or flood irrigation), and calibration data from additional monitoring sites.Dissolved-solids loads estimated for 312 monitoring sites were used to calibrate the SPARROW model, which predicted loads for each of 10,789 stream reaches in the UCRB. The calibrated model provided a good fit to the calibration data as evidenced by R2 and yield R2 values of 0.96 and 0.73, respectively, and a root-mean-square error of 0.47. The model included seven geologic sources that have estimated dissolved-solids yields ranging from approximately 1 to 45 tons per square mile (tons/mi2). Yields generated from irrigated agricultural lands are substantially greater than those from geologic sources, with sprinkler irrigated lands generating an average of approximately 150 tons/mi2 and flood irrigated lands generating between 770 and 2,300 tons/mi2 depending on underlying lithology. The coefficients estimated for six landscape transport characteristics that influence the delivery of dissolved solids from sources to streams, are consistent with the process understanding of dissolved-solids loading to streams in the UCRB.Dissolved-solids loads and the proportion of those loads among sources in the entire UCRB as well as in major tributaries in the basin are reported, as are loads generated from irrigated lands, rangelands, Bureau of Land Management (BLM) lands, and grazing allotments on BLM lands. Model-predicted loads also are compared with load estimates from 1957 and 1991 at selected locations in three divisions of the UCRB. At the basin scale, the model estimates that 32 percent of the dissolved-solids loads are from irrigated agricultural land sources that compose less than 2 percent of the land area in the UCRB. This estimate is less than previously reported estimates of 40 to 45 percent of basin-scale dissolved-solids loads from irrigated agricultural land sources. This discrepancy could be a result of the implementation of salinity control projects in the basin. Notably, results indicate that the conversion of flood irrigated agricultural lands to sprinkler irrigated agricultural lands is a likely process contributing to the temporal decrease in dissolved-solids loads from irrigated lands.
Tillman, Fred D.; Anning, David W.
2014-01-01
The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.
Preunkert, S; Legrand, M; Stricker, P; Bulat, S; Alekhina, I; Petit, J R; Hoffmann, H; May, B; Jourdain, B
2011-01-15
The study of chemical impurities trapped in solid precipitation and accumulated in polar ice sheets and high-elevation, midlatitude cold glaciers over the last several hundreds of years provides a unique way to reconstruct our changing atmosphere from the preindustrial era to the present day. Numerous ice core studies of inorganic species have already evaluated the effects of growing anthropogenic emissions of SO(2) or NO(x) on the chemical composition of the atmosphere in various regions of the world. While it was recently shown that organic species dominate the atmospheric aerosol mass, the contribution of anthropogenic emissions to their budget remains poorly understood. The study of organics in ice is at the infancy stage, and it still is difficult to draw a consistent picture of the organic content of polar ice from sparse available data. A UV oxidation method and IR quantification of CO(2) was optimized to obtain measurements of dissolved organic carbon content as low as a few ppbC. Stringent working conditions were defined to prevent contamination during the cleaning of ice. Measurements in various ice cores corresponding to preindustrial times revealed dissolved organic carbon content of less than 10 ppbC in Antarctica and up to 75 ppbC in alpine ice.
Geology and ground water of the Luke area, Maricopa County, Arizona
Stulik, Ronald S.; Twenter, F.R.
1964-01-01
Luke Air Force Base, in the Salt River Valley in central Arizona. is within an intermontane basin--the Phoenix basin--in the Basin and Range lowlands province. The Luke area, the subject of this study, extends beyond the limits of the base. Ground-water resources of the Luke area were studied to determine the possibility of developing a water supply of optimum quantity and quality to supplement the base supply. Several wells drilled for this purpose, prior to the study, either produced an inadequate supply of water or produced ware-that had a high dissolved-solids content. The Phoenix basin is filled with unconsolidated to semiconsolidated Tertiary and Quaternary sedimentary rocks that are referred to as valley fill. Although its total thickness is unknown, 2,784 feet of valley fill--primarily consisting of clay, silt, sand, and gravel--has been penetrated. Percentage-distribution maps of fine-grained materials indicate a gross-facies pattern and a selective depositional area of the valley-fill materials. The maps also indicate that the areal distribution of fine-grained materials increases with depth. In general, the better producing wells, regardless of depth, are in areas where tee valley fill is composed of less than 60 percent fine-grained materials. The water table in the area is declining because large quantities of water are withdrawn and recharge is negligible. The decline near Luke Air Force Base during the period 1941-61 was about 150 feet. Ground water was moving generally southwest in the spring of 1961. Locally, changes in the direction of movement indicate diversion toward two major depressions. The dissolved-solids content of the ground water ranged from about 190 to 6,300 ppm. The highest concentration of dissolved solids is in water from the southern part of the area and seems to come from relatively shallow depths; wells in the northern part generally yield water of good quality. After a reconnaissance of the area, the U.S. Geological Survey located and supervised the drilling of two test wells--wells (B-2-1) 9bcb and (B-2-1) 5abc?on Luke Air Force Base. The quantity of water produced by the wells was adequate. The dissolved-solids content of water from the wells was low, and the overall quality of water from well (B-2-1) 5abc was good. When well (B-2-1) 9bcb was perforated between 907 and 977 feet, the water had a fluoride concentration of 4.4 ppm; however, the fluoride concentration decreased to 2.8 ppm when new perforations were cut at a shallower depth, and it was decided that dilution with other base water supplies probably would alleviate any possible fluoride problem.
Westenburg, C.L.
1995-01-01
The Bureau of Land Management administers about 9,300 square miles of public lands in southeastern Nevada that are part of the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, began a 5-year program in October 1988 to assess the contribution of dissolved solids to the fiver from those lands. About 6,200 square miles of public lands are in the Muddy River subbasin in Nevada. The estimated average dissolved-solids load contributed to the Colorado River from those lands was 28,000 tons per year from October 1988 through September 1993. Subsurface flow contributed about 86 percent (24,000 tons per year) of that load. About 730 square miles of public lands in the Las Vegas Wash subbasin contribute dissolved-solids load to the Colorado River. (About 120 square miles of public lands do not contribute to the river.) The estimated average dissolved-solids load contributed to the river from those lands was about 1,300 tons per year from October 1988 through September 1993. Subsurface flow contributed almost all of that load. About 1,100 square miles of public lands are in the Virgin River subbasin in Nevada. The estimated average dissolved- solids load contributed to the Colorado River from Nevada public lands in the subbasin was 8,700 tons per year. Subsurface flow contributed almost the entire load. About 1,200 square miles of Nevada public lands are in ephemeral tributaries that drain direcfly to the Colorado River or its impoundments (Lake Mead and Lake Mobave). The estimated average dissolved-solids load contributed to the river from those lands was 50 tons per year from surface runoff; however, the dissolved-solids load contributed by subsurface flow was not estimated. From October 1992 to September 1993, the Colorado River carried about 6,600,000 tons of dissolved solids past a streamflow gaging station 0.3 mile downstream from Hoover Dam. In contrast, surface runoff and subsurface flow contribute an estimated average dissolved-solids load of 38,000 tons per year from public lands in southeastern Nevada to the Colorado River. Land-management practices probably would not substantially reduce this contribution.
Thermodynamics of phenanthrene partition into solid organic matter from water.
Chen, Bao-liang; Zhu, Li-zhong; Tao, Shu
2005-01-01
The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids(three soils and a bentonite) from water were investigated. The thermodynamics parameters (deltaH, deltaG degrees, deltaS degrees) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from -7.93 to -17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid (i.e., -18.6 kJ/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2 kJ/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene (i.e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i.e., 18.6 kJ/mol). The standard free energy changes, deltaG degrees, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes, deltaS degrees, show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene, the partition coefficients normalized by organic carbon contents decrease with increasing system temperature (i.e., ln Koc = -0.284 ln S + 9.82 (n = 4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.
Arsenic in ground-water under oxidizing conditions, south-west United States
Robertson, F.N.
1989-01-01
Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may play a role in the occurrence of arsenic in ground-water. Under oxidizing conditions in Arizona, arsenic in ground-water appears to be controlled in part by sorption or desorption of HAsO4???2 on active ferric oxyhydroxide surfaces. ?? 1989 Sciences and Technology Letters.
Majerik, Viktor; Horváth, Géza; Szokonya, László; Charbit, Gérard; Badens, Elisabeth; Bosc, Nathalie; Teillaud, Eric
2007-09-01
The objective of this work was to improve the dissolution rate and aqueous solubility of oxeglitazar. Solid dispersions of oxeglitazar in PVP K17 (polyvinilpyrrolidone) and poloxamer 407 (polyoxyethylene-polyoxypropylene block copolymer) were prepared by supercritical antisolvent (SAS) and coevaporation (CoE) methods. Drug-carrier formulations were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, gas chromatography, UV/VIS spectroscopy and in vitro dissolution tests. The highest dissolution rate (nearly 3-fold higher than raw drug) was achieved by preparation of drug/PVP K17 coevaporate. Oxeglitazar/PVP K17 solid dispersions were stabilized by hydrogen bonding but contained higher amount of residual dichloromethane (DCM) than poloxamer 407 formulations regardless of the method of preparation. SAS prepared oxeglitazar/poloxamer 407 dissolved more than two times faster than raw drug. However, unlike PVP K17, poloxamer 407 did not form a single phase amorphous solid solution with oxeglitazar which has been manifested in higher degrees of crystallinity, too. Among the two techniques, evaluated in this work, conventional coevaporation resulted in higher amorphous content but SAS reduced residual solvent content more efficiently.
Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone.
Sonwai, Sopark; Rungprasertphol, Poonyawee; Nantipipat, Nantinee; Tungvongcharoan, Satinee; Laiyangkoon, Nantikan
2017-09-01
This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10°C for 0.5, 1 and 2 h and at 12°C for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12°C for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO. The crystallization duration exhibited strong influence on the solid fractions. There was no effect on the crystal polymorphic structure possibly because CNO has β'-2 as a stable polymorph. The enhanced SFC of the solid fractions would allow them to find use in food applications where a specific melting temperature is desired such as sophisticated confectionery fats, and the decreased SFC of the liquid fractions would provide them with a higher cold stability which would be useful during extended storage time.
Effect of scandium on the phase composition and mechanical properties of ABM alloys
NASA Astrophysics Data System (ADS)
Molchanova, L. V.
2010-09-01
The effect of scandium on the composition and mechanical properties of ABM-1 alloys (Al-30% Be-5% Mg) is studied. The scandium content is varied from 0.1 to 0.5 wt %. It is established that, in the studied part of the Al-Be-Mg-Sc system, an aluminum solid solution (Al) and the ScBe13 compound are in equilibrium with a beryllium solid solution (Be). Magnesium dissolves in both the aluminum component and the ScBe13 compound. The strengthening effect related to the decomposition of the solid solution and the precipitation of Al3Sc cannot be extended to the strengthening of ABM-type alloys. Additions of 0.1-0.15 wt % Sc only weakly improve the mechanical properties of the alloys due to the refinement of beryllium-component grains. At high scandium contents, the strength increases insignificantly due to primary precipitation of ScBe13 and the plasticity decreases simultaneously.
Tillman, Fred D.; Flynn, Marilyn E.; Anning, David W.
2015-01-01
In 2009, the U.S. Geological Survey (USGS) developed a Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model for the Upper Colorado River Basin (UCRB) relating dissolved-solids sources and transport in the 1991 water year to upstream catchment characteristics. The SPARROW model focused on geologic and agricultural sources of dissolved solids in the UCRB and was calibrated using water-year 1991 dissolved-solids loads from 218 monitoring sites. A new UCRB SPARROW model is planned that will update the investigation of dissolved-solids sources and transport in the basin to circa 2010 conditions and will improve upon the 2009 model by incorporating more detailed information about agricultural-irrigation and rangeland-management practices, among other improvements. Geospatial datasets relating to circa 2010 rangeland conditions are required for the new UCRB SPARROW modeling effort. This study compiled geospatial datasets for the UCRB that relate to the biotic alterations and rangeland conditions of grazing, fire and other land disturbance, and vegetation type and cover. Datasets representing abiotic alterations of access control (off-highway vehicles) and sediment generation and transport in general, were also compiled. These geospatial datasets may be tested in the upcoming SPARROW model to better understand the potential contribution of rangelands to dissolved-solids loading in UCRB streams.
NASA Astrophysics Data System (ADS)
Ayoko, Godwin A.; Singh, Kirpal; Balerea, Steven; Kokot, Serge
2007-03-01
SummaryPhysico-chemical properties of surface water and groundwater samples from some developing countries have been subjected to multivariate analyses by the non-parametric multi-criteria decision-making methods, PROMETHEE and GAIA. Complete ranking information necessary to select one source of water in preference to all others was obtained, and this enabled relationships between the physico-chemical properties and water quality to be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, manganese and zinc composition showed the least influence in differentiating the water bodies. To model and predict the water quality influencing parameters, partial least squares analyses were carried out on a matrix made up of the results of water quality assessment studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents can be used to predict a wide range of physico-chemical characteristics of water. The potential implications of these observations on the financial and opportunity costs associated with elaborate water quality monitoring are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaofei; Zink, Peter; Pal, Uday
2012-03-11
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less
Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.
2014-01-01
The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches in the Virgin River Gorge containing known fault zones accounted for about 48 percent of this total seepage loss. An additional seepage loss of 6.7 ft3/s was calculated for the reach of the Virgin River between Bloomington, Utah, and the Utah/Arizona State line. This loss in flow is small compared to total flow in the river and is comparable to the rated error in streamflow measurements in this reach; consequently, it should be used with caution. Littlefield Springs were studied to determine the fraction of its discharge that originates as upstream seepage from the Virgin River and residence time of this water in the subsurface. Geochemical and environmental tracer data from groundwater and surface-water sites in the Virgin River Gorge area suggest that discharge from Littlefield Springs is a mixture of modern (post-1950s) seepage from the Virgin River upstream of the springs and older groundwater from a regional carbonate aquifer. Concentrations of the chlorofluorocarbons (CFCs) CFC-12 and CFC-113, chloride/fluoride and chloride/bromide ratios, and the stable isotope deuterium indicate that water discharging from Littlefield Springs is about 60 percent seepage from the Virgin River and about 40 percent discharge from the regional carbonate aquifer. The river seepage component was determined to have an average subsurface traveltime of about 26 ±1.6 years before discharging at Littlefield Springs. Radiocarbon data for Littlefield Springs suggest groundwater ages from 1,000 to 9,000 years. Because these are mixed waters, the component of discharge from the carbonate aquifer is likely much older than the groundwater ages suggested by the Littlefield Springs samples. If the dissolved-solids load from Dixie Hot Springs to the Virgin River were reduced, the irrigation water subsequently applied to agricultural fields in the St. George and Washington areas, which originates as water from the Virgin River downstream of Dixie Hot Springs, would have a lower dissolved-solids concentration. Dissolved-solids concentrations in excess irrigation water draining from the agricultural fields are about 1,700 mg/L higher than the concentrations in the Virgin River water that is currently (2014) used for irrigation that contains inflow from Dixie Hot Springs; this increase results from evaporative concentration and dissolution of mineral salts in the irrigated agricultural fields. The water samples collected from drains downgradient from the irrigated areas are assumed to include the dissolution of all available minerals precipitated in the soil during the previous irrigation season. Based on this assumption, a change to more dilute irrigation water will not dissolve additional minerals and increase the dissolved-solids load in the drain discharge. Following the hypothetical reduction of salts from Dixie Hot Springs, which would result in more dilute Virgin River irrigation water than is currently used, the dissolution of minerals left in the soil from the previous irrigation season would result in a net increase in dissolved-solids concentrations in the drain discharge, but this increase should only last one irrigation season. After one (or several) seasons of irrigating with more dilute irrigation water, mineral precipitation and subsequent re-dissolution beneath the agricultural fields should be greatly reduced, leading to a reduction in dissolved-solids load to the Virgin River below the agricultural drains. A mass-balance model was used to predict changes in the dissolved-solids load in the Virgin River if the salt discharging from Dixie Hot Springs were reduced or removed. Assuming that 33.4 or 26.7 ft3/s of water seeps from the Virgin River to the groundwater system upstream of the Virgin River Gorge Narrows, the immediate hypothetical reduction in dissolved-solids load in the Virgin River at Littlefield, Arizona is estimated to be 67,700 or 71,500 ton/yr, respectively. The decrease in dissolved-solids load in seepage from the Virgin River to the groundwater system is expected to reduce the load discharging from Littlefield Springs in approximately 26 years, the estimated time lag between seepage from the river and discharge of the seepage water, after subsurface transport, from Littlefield Springs. At that time, the entire reduction in dissolved solids seeping from the Virgin River is expected to be realized as a reduction in dissolved solids discharging from Littlefield Springs, resulting in an additional reduction of 24,700 ton/yr (based on 33.4 ft3/s of seepage loss) or 21,000 ton/yr (based on 26.7 ft3/s of seepage loss) in the river’s dissolved-solids load at Littlefield.
Anning, David W
2011-10-01
Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km(2) for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km(2) for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km(2) for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km(2) for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km(2) for the Salton Sea accounting unit.
Anning, David W
2011-01-01
Abstract Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit. PMID:22457583
Pawar, Prabhakar R
2013-10-15
Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anning, David W.; Flynn, Marilyn E.
2014-01-01
Results from the trend analysis and from the SPARROW model indicate that, compared to monitoring stations with no trends or decreasing trends, stations with increasing trends are associated with a smaller percentage of the predicted dissolved-solids load originating from geologic sources, and a larger percentage originating from urban lands and road deicers. Conversely, compared to stations with increasing trends or no trends, stations with decreasing trends have a larger percentage of the predicted dissolved-solids load originating from geologic sources and a smaller percentage originating from urban lands and road deicers. Stations with decreasing trends also have larger percentages of predicted dissolved-solids load originating from cultivated lands and pasture lands, compared to stations with increasing trends or no trends.
Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi
2006-07-01
We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.
Ju, Lu-Kwang; Huang, Lin; Trivedi, Hiren
2007-08-01
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.
Dissolved Solids in Streams of the Conterminous United States
NASA Astrophysics Data System (ADS)
Anning, D. W.; Flynn, M.
2014-12-01
Studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey's National Water-Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model to improve the understanding of dissolved solids in streams of the United States. Using the SPARROW model, annual dissolved-solids loads from 2,560 water-quality monitoring stations were statistically related to several spatial datasets serving as surrogates for dissolved-solids sources and transport processes. Sources investigated in the model included geologic materials, road de-icers, urban lands, cultivated lands, and pasture lands. Factors affecting transport from these sources to streams in the model included climate, soil, vegetation, terrain, population, irrigation, and artificial-drainage characteristics. The SPARROW model was used to predict long-term mean annual conditions for dissolved-solids sources, loads, yields, and concentrations in about 66,000 stream reaches and corresponding incremental catchments nationwide. The estimated total amount of dissolved solids delivered to the Nation's streams is 272 million metric tons (Mt) annually, of which 194 million Mt (71%) are from geologic sources, 38 million Mt (14%) are from road de-icers, 18 million Mt (7%) are from pasture lands, 14 million Mt (5 %) are from urban lands, and 8 million Mt (3%) are from cultivated lands. The median incremental-catchment yield delivered to local streams is 26 metric tons per year per square kilometer [(Mt/yr)/km2]. Ten percent of the incremental catchments yield less than 4 (Mt/yr)/km2, and 10 percent yield more than 90 (Mt/yr)/km2. In 13% of the reaches, predicted flow-weighted concentrations exceed 500 mg/L—the U.S. Environmental Protection Agency secondary non-enforceable drinking-water standard.
Narendranath, Neelakantam V.; Power, Ronan
2005-01-01
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306
Cannon, M.R.
1989-01-01
Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)
Buono, Anthony; Packard, E.M.
1982-01-01
Increases in dissolved solids have been monitored in two observation wells near Stovepipe Wells Hotel, Death Valley National Monument, California. One of the hotel 's supply wells delivers water to a reverse-osmosis treatment plant that produces the area 's potable water supply. Should water with increased dissolved solids reach the supply well, the costs of production of potable water will increase. The reverse-osmosis plant supply well is located about 0.4 mile south of one of the wells where increases have been monitored, and 0.8 mile southwest of the well where the most significant increases have been monitored. The direction of local ground-water movement is eastward, which reduces the probability of the supply well being affected. Honey mesquite, a phreatophyte located about 1.5 miles downgradient from the well where the most significant increases have been monitored, might be adversely affected should water with increased dissolved solids extend that far. Available data and data collected during this investigation do not indicate the source of the dissolved-solids increases. Continued ground-water-quality monitoring of existing wells and the installation of additional wells for water-quality monitoring would be necessary before the area affected by the increases, and the source and direction of movement of the water with increased dissolved solids, can be determined. (USGS)
System and process for dissolution of solids
Liezers, Martin; Farmer, III, Orville T.
2017-10-10
A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.
Anning, D.W.
2011-01-01
Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10(kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000(kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000(kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000(kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000(kg/year)/km2 for the Salton Sea accounting unit. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D
2015-01-01
The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device
Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.
1999-01-01
This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.
Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F
2014-01-01
In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 μg L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively.
Bobo, Linda L.; Renn, Danny E.
1980-01-01
Water type in the 241-square mile Porter County watershed in Indiana, was calcium bicarbonate or mixed calcium bicarbonate and calcium sulfate. Concentrations of dissolved chemical constituents in surface water and contents of chlorinated hydrocarbons in streambed samples in the watershed were generally less than water-quality alert limits set by the U.S. Environmental Protection Agency, except in Crooked Creek. During sampling, this stream was affected by sewage, chlorinated hydrocarbons, and two chemical spills. Ranges of on-site field measurements were: specific conductance, from 102 to 1,060 micromhos per centimeter at 25 Celcius; water temperature, from 7.0 to 31.8 Celsius; pH, from 6.8 to 8.9; dissolved oxygen, from 2.5 to 14.9 milligrams per liter and from 27 to 148% saturation; and instantaneous discharge from 0 to 101 cubic feet per second. Concentrations of most dissolved-inorganic constituents (heavy metals and major ions) and dissolved solids did not vary significantly from one sampling period to the next at each site. Dissolved constituents whose concentrations varied significantly were iron, manganese, organic carbon, ammonia, nitrate plus nitrite, organic nitrogen, Kjeldahl nitrogen, and phosphorus. Concentrations of dissolved manganese, organic carbon, dissolved nitrite plus nitrate, and suspended sediment varied seasonally at most sites. Populations and identification of bacteria, phytoplankton, periphyton, and benthic invertebrates indicate a well-balanced environment at most sites, except in Crooked Creek.
Thiros, Susan A.
2017-03-23
The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).
Development of a Moisture-in-Solid-Insulation Sensor for Power Transformers
García, Belén; García, Diego; Robles, Guillermo
2015-01-01
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements. PMID:25658393
Development of a moisture-in-solid-insulation sensor for power transformers.
García, Belén; García, Diego; Robles, Guillermo
2015-02-04
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements.
Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo
2012-12-01
In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Waters, Laura E.; Lange, Rebecca A.
2017-06-01
The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+-Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785-850 °C and 80-185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni-NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+-Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...
Method for dissolving plutonium oxide with HI and separating plutonium
Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.
1979-01-01
PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.
Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare
NASA Astrophysics Data System (ADS)
Abudu, S.; Ahn, S. R.; Sheng, Z.
2017-12-01
Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.
NASA Astrophysics Data System (ADS)
Balakrishnan, S.; Chelladurai, G.; Mohanraj, J.; Poongodi, J.
2017-07-01
Physico-chemical parameters were determined along the Vellapatti, Tharuvaikulam and Threspuram coastal waters, southeast coast of India. All the physico-chemical parameters such as sea surface temperature, salinity, pH, total alkalinity, total suspended solids, dissolved oxygen and nutrients like nitrate, nitrite, inorganic phosphate and reactive silicate were studied for a period of 12 months (June 2014-May 2015). Sea surface temperature varied from 26.4 to 29.7 °C. Salinity varied from 26.1 and 36.2 ‰, hydrogen ion concentration ranged between 8.0 and 8.5. Variation in dissolved oxygen content was from 4.125 to 4.963 mg l-1. Total alkalinity ranged from 64 to 99 mg/l. Total suspended solids ranged from 24 to 97 mg/l. Concentrations of nutrients, viz. nitrates (2.047-4.007 μM/l), nitrites (0.215-0.840 μM/l), phosphates (0.167-0.904 µM/l), total phosphorus (1.039-3.479 μM/l), reactive silicates (3.737-8.876 μM/l) ammonia (0.078-0.526 μM/l) and also varied independently.
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
Gerner, S.J.; Spangler, L.E.; Kimball, B.A.; Wilberg, D.E.; Naftz, D.L.
2006-01-01
Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River.The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter.Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons.Water samples collected from selected sites within the Green River agricultural areas were analyzed for naturally occurring isotopes of strontium and boron, which can be useful for differentiating dissolved-solids sources. Substantial variations in the delta strontium-87 and delta boron-11 values among the sites were measured. Canal and river samples had relatively low concentrations of strontium and the most positive (heavier) isotopic ratios, while drains and seeps had a wide range of strontium concentrations and isotopic ratios that generally were less positive (lighter). Further study of the variation in strontium and boron concentrations and isotope ratios may provide a means to distinguish end members and discern processes affecting dissolved solids within the Green River study area; however, the results from isotope data collected during this study are inconclusive.Flow and seepage losses were estimated for the three main canals in the study area for May 2 to October 4 in any given year. This period coincides with the frost-free period in the Green River area. Estimated diversion from the Green River into the Thayn, East Side, and Green River Canals is 6,600, 6,070, and 19,900 acre-feet, respectively. The estimated seepage loss to ground water from the Thayn, East Side, and Green River Canals during the same period is 1,550, 1,460, and 4,710 acre-feet, respectively.
Linlin, Wu; Xuan, Zhao; Meng, Zhang
2010-01-01
Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant.
Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85
Waddell, K.M.; Seiler, R.L.; Solomon, D.K.
1986-01-01
During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from the tailings was 330 mg/L, and beneath and downgradient from the tailings the concentrations were 864 and 1,240 mg/L. The minimum volume of contaminated water in the confined aquifer was estimated to be about 12,000 acre-ft. (Lantz-PTT)
The quality of surface waters in Texas
Rawson, Jack
1974-01-01
The discharge-weighted average concentrations of dissolved solids, chloride, and ,sulfate for many of the principal streams in Texas are less than 500 mg/l (millijgraljls per liter), 250 mg/l, and 250 mg/l, respectively. At 65 of 131 sites on streams that were sampled at least 10 times, the biochemical oxygen demand of at least half the samples exceeded 3.0 mg/l. At 20 of the sites, the dissolved-oxygen content of at least half the samples was less than 5.0 mg/l. The higher concentrations of minor elements usually were detected in waters from urban areas, indicating a relation to man's activities. Small amounts of some pesticides are widely distributed in low concentrations. The higher concentrations usually were detected in waters from urban areas.
Bright, Daniel J.; Nash, David B.; Martin, Peter
1997-01-01
Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams per liter from concentrations in 1988. During 1941-88 about 1,096,000 acre-feet of water was pumped from the aquifer system. Average pumpage for this period (22,830 acre-feet per year) exceeded pumpage for the steady-state simulation by 16,590 acre-feet per year. The results of the transient simulation indicate that about 60 percent of this increase in pumpage was contributed by increased recharge, 28 percent by decreased natural discharge from the system (primarily discharge to the Santa Ynez River and transpiration), and 13 percent was withdrawn from storage. Total simulated downward leakage from the middle zone to the main zone in the central plain and upward leakage from the consolidated rocks to the main zone significantly increased in response to increased pumpage, which increased from about 6,240 to 30,870 acre-feet per year from 1941 to 1988. Average dissolved-solid concentration in the middle zone in 1987-88 ranged from 2,000 to 3,000 milligrams per liter beneath the northeastern plain and the dissolved-solids concentration of two samples from the consolidated rocks beneath the western plain averaged 4,300 milligrams per liter. Because the dissolved-solids concentration for the middle zone and the consolidated rocks is higher than the simulated steady-state dissolved-solids concentration of the main zone, the increase in the leakage from these two sources resulted in increased dissolved-solids concentration in the main zone during the transient period. The model results indicate that the main source of increased dissolved- solids concentration in the northeastern and central plains was downward leakage from the middle zone; whereas, upward leakage from the consolidated rocks was the main source of the increased dissolved-solids concentrations in the northwestern and western plains. The models were used to estimate changes in hydraulic head and in dissolved-solids concentration resulting from three proposed management alternatives: (1) average recharge
The electrical resistivity meter in fishery investigations
Lennon, Robert E.
1959-01-01
A portable resistivity (or conductivity) meter is easily used in fishery investigations to obtain rapid and precise measurements of the electrical resistance (or conductance) of waters. These measurements can be used to estimate the total dissolved solids content of waters, to facilitate the selection of appropriate gear for efficient electrofishing, and to determine the velocity, stretch-out, dilution, and effective range of a solute over miles of a stream in conjunction with chemical reclamation operations. Applications of resistivity measurements on Appalachian streams are discussed.
Water resources of the Big Black River basin, Mississippi
Wasson, B.E.
1971-01-01
Abundant supplies of water of good quality are available in the Big Black River basin from either ground-water or surface-water sources. For 90 percent of the time flow in the lower part of the Big Black River below Pickens is not less than 85 cfs (cubic feet per second), and low flows of more than 5 cfs are available in five of the eastern tributary streams in the upper half of the basin. Chemical quality of water in the streams is excellent, except for impairment caused by pollution at several places. The Big Black River basin is underlain by several thousand feet of clay, silt, sand, gravel, and limestone. This sedimentary material is mostly loose to semiconsolidated and is stratified. The beds dip to the southwest at the rate of 20 to 50 feet per mile. The Big Black River flows southwestward but at a lower gradient; therefore, any specific formation is at a greater depth below the river the farther one goes down stream. The formations crop out in northwest-southeast trending belts. Most of the available ground water is contained in six geologic units; thickness of these individual units ranges from 100 to 1,000 feet. The aquifers overlap to the extent that a well drilled to the base of fresh water will, in most places, penetrate two or more aquifers. Well depths range from less than 10 to 2,400 feet. Water suitable for most needs can be obtained from the aquifers available at most localities. Dissolved-solids content of water within an aquifer increases down the dip. Also, generally the deeper a well is the higher will be the dissolved-solids content of the water. Shallow ground water (less than 200 ft deep) in the basin usually contains about 100 mg/l (milligrams per liter) of dissolved solids. Most water in the basin from more than 2,500 feet below land surface contains m ore than 1,000 mg/l of dissolved solids. In several areas fresh water is deeper than 2,500 feet, but near the mouth of the Big Black River brackish water is only about 300 feet below land surface. Practically all water pumped for man's use in the basin is from the ground (about 11 million gallons per day); however, a small amount of surface water is used for supplemental irrigation of row crops. Wells producing 500 to 1,000 gpm (gallons per minute) are not unusual in the basin. Most of the area is underlain by one or more aquifers from which a properly constructed well could produce as much as 2,000 gpm. All the towns in the area have sufficient ground water available to at least double or triple their ground-water pumpage.
Shope, Christopher L.; Gerner, Steven J.
2014-01-01
Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.
Evaluation of hydrogeology and hydrogeochemistry of Truckee Meadows area, Washoe County, Nevada
Cohen, Philip M.; Loeltz, Omar J.
1964-01-01
Practically all the ground water of economic importance in the Truckee Meadows area, an alluviated intermontane basin in western Nevada is in the valley fill, which consists of unconsolidated and partially consolidated sedimentary deposits. The Mesozoic and Cenozoic consolidated rocks of the mountains bordering the valley contain some water in fractures and other openings, but they have virtually no interstitial permeability. The permeability of the valley fill is extremely variable. The Truckee Formation, which is the oldest deposit of the valley fill, yields very little water to wells. Permeable lenses of sand and gravel in the valley fill that are younger than the Truckee Formation yield moderate to large amounts of water to wells. The estimated average annual recharge to and discharge from the groundwater reservoir is 35,000 acre-feet. About 25,000 acre-feet of the recharge is from the infiltration of irrigation water diverted from the Truckee River. Most of the discharge is by evapotranspiration and by seepage to ditches and streams. Some water in the area is unsuitable for many uses because of its poor chemical quality. Water in the Steamboat Springs area is hot and has high concentrations of chloride and dissolved solids. Both water draining areas of bleached rock and ground water downgradient from areas of leached rock have high concentrations of sulfate and dissolved solids. Surface water of low dissolved-solids content mixes with and dilutes some highly mineralized ground water. Increased pumping in discharge areas will help to alleviate waterlogged conditions and will decrease ground-water losses by evapotranspiration. Increased pumping near the Truckee River may induce recharge from the river to the ground-water system.
Burns, A.W.
1989-01-01
An interactive-accounting model was used to simulate dissolved solids, streamflow, and water supply operations in the Arkansas River basin, Colorado. Model calibration of specific conductance to streamflow relations at three sites enabled computation of dissolved-solids loads throughout the basin. To simulate streamflow only, all water supply operations were incorporated in the regression relations for streamflow. Calibration for 1940-85 resulted in coefficients of determination that ranged from 0.89 to 0.58, and values in excess of 0.80 were determined for 16 of 20 nodes. The model then incorporated 74 water users and 11 reservoirs to simulate the water supply operations for two periods, 1943-74 and 1975-85. For the 1943-74 calibration, coefficients of determination for streamflow ranged from 0.87 to 0.02. Calibration of the water supply operations resulted in coefficients of determination that ranged from 0.87 to negative for simulated irrigation diversions of 37 selected water users. Calibration for 1975-85 was not evaluated statistically, but average values and plots of reservoir contents indicated reasonableness of the simulation. To demonstrate the utility of the model, six specific alternatives were simulated to consider effects of potential enlargement of Pueblo Reservoir. Three general major alternatives were simulated: the 1975-85 calibrated model data, the calibrated model data with an addition of 30 cu ft/sec in Fountain Creek flows, and the calibrated model data plus additional municipal water in storage. These three major alternatives considered the options of reservoir enlargement or no enlargement. A 40,000-acre-foot reservoir enlargement resulted in average increases of 2,500 acre-ft in transmountain diversions, of 800 acre-ft in storage diversions, and of 100 acre-ft in winter-water storage. (USGS)
Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J
2016-12-01
The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.
Dissolved Solids as HD Bioeffluent Toxicants.
1998-12-01
12 The question still remains about whether the toxicity of the SBR effluent was caused by either the animals’ inability to osmoregulate in a high...the dissolved solids. The inability of freshwater organisms to osmoregulate in such high saline environments caused toxicity. Freshwater organisms are
Effects of elevated total dissolved solids on bivalves
A series of experiments were performed to assess the toxicity of different dominant salt recipes of excess total dissolved solids (TDS) to organisms in mesocosms. Multiple endpoints were measured across trophic levels. We report here the effects of four different TDS recipes on b...
COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS
Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...
Kletetschka, Gunther; Hruba, Jolana
2015-01-01
Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797
Kletetschka, Gunther; Hruba, Jolana
2015-01-01
Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.
Vinasses: characterization and treatments.
España-Gamboa, Elda; Mijangos-Cortes, Javier; Barahona-Perez, Luis; Dominguez-Maldonado, Jorge; Hernández-Zarate, G; Alzate-Gaviria, Liliana
2011-12-01
The final products of the ethanol industry are alcoholic beverages, industrial ethanol and biofuels. They are produced by the same production process, which includes fermentation and distillation of raw materials which come from plant biomass. At the end of the distillation process a waste effluent is obtained called vinasse or stillage. The direct disposal of stillages on land or in groundwater (rivers, streams or lakes), or even for the direct irrigation of crops, pollutes the environment due to their high organic contents, dissolved solids and many other compounds which are toxic or could be contaminants under certain environmental conditions. This work reviews the characterization of vinasses from different feedstock sources and the main treatments for conditioning the soluble solids of vinasses before their disposal.
Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Speciation of strontium in particulates and sediments from the Mississippi River mixing zone
NASA Astrophysics Data System (ADS)
Xu, Yingfeng; Marcantonio, Franco
2004-06-01
Sequential extractions were performed on small amounts of particulate and sediment samples (6 to10 mg) from the Mississippi River mixing zone. The leachates were analyzed for Sr concentration and 87Sr/ 86Sr isotope ratio. Mn and Fe contents were also measured as their oxyhydroxides are potential carrier phases for Sr. The largest fraction of Sr in the solid phase (particulates and sediments) was found to be present in the residual, refractory fraction (>70% of total). By comparison with the corresponding sediment, particulates appear to have higher concentrations of nonresidual, labile Sr (30% vs. 15%). Carbonate components seem to play an important role as carriers for labile Sr in particulates and sediments. Changes in the composition and content of the solid phase may significantly modify both the 87Sr/ 86Sr isotope ratio of the total labile fractions and that of the bulk components. However, such modifications, under normal conditions, exert little measurable influence on the Sr isotope composition of the dissolved phase.
A recent conceptual model links high bulk electrical conductivities at hydrocarbon impacted sites to higher total dissolved solids (TDS) resulting from enhanced mineral weathering due to acids produced during biodegradation. In this study, we investigated the vertical distributio...
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...
Water quality and streamflow characteristics, Raritan River Basin, New Jersey
Anderson, Peter W.; Faust, Samuel Denton
1974-01-01
The findings of a problem-oriented river-system investigation of the stream-quality and streamflow characteristics of the Raritan River basin (1,105 square miles or 2,862 square kilometers drainage area) are described. The investigation covers mainly the period 1955-72. Precipitation in the basin is classified as ample and averages 47 inches or 120 centimeters per year (3-5 inches or 8-12 centimeters per month). During the study period four general precipitation trends were noted: less than normalin 1955-61 and 1966-70; extreme drought in 1962-66; and above normal in 1971-72. Analyses of streamflow measurements at eight gaging stations indicate a general trend toward lower flows during the study period, which is attributed to generally lower than normal precipitation. Highest flows were observed in 1958, concurrent with maximum annual precipitation; whereas lowest flows were observed in 1965 during extreme drought conditions. Non-tidal streams in the basin are grouped into three general regions of similar chemical quality based upon predominant constituents and dissolved-solids concentration during low-flow conditions. The predominant cations in solution in all regions are calcium and magnesium (usually exceeding 60 percent of total cation content). In headwater streams of the North and South Branch Raritan Rivers, bicarbonate is the predominant anion; a combination of sulfate, chloride, and nitrate are the predominant anions in the other two regions. The dissolved-solids concentration of streams in areas little influenced by man's activities generally range from 40 to 200 mg/L. Those in areas influenced by man often range much higher sometimes exceeding 800 mg/L. Suspended-sediment yields in the basin range from 25 to 500 tons per square mile annually. The water quality of the Raritan River and most tributaries above Manville (784 square miles of 2,030 square kilometers drainage area) generally is good for most industrial, domestic, and recreational uses, although pollution has been reported locally in some areas. A comparison of chemical analyses of water collected at several sampling sites in the 1920's with more recent data, however, indicate that there has been a significant increase in sulfate, chloride, and nitrate ions transported per unit of streamflow. These increases reflect increased waste-water discharges and nutrients in agricultural runoff in the upper basin. Trends in the dissolved-solids and dissolved-oxygen concentation of water in the Raritan and MIllstone Rivers above their confluence at Manville are described. The dissolved solids of the Millstone River are shown to increase, particularly at low streamflows. For example, at a flow of 100 cubic feet per second (2.83 cubic meters per second) this river tansported 13 percent more dissolved solids in 1969-70 than it did in 1957-58. A similar trend, however, was not apparent on the Raritan River. This phenomenon is attributed to dilution provided since 1964 by upstream reservoir releases during low flows. With the exception of low-flow periods on the Raritan River, dissolved-oxygen concentrations showed little or no significant time trends at Manville on either the Raritan or Millstone River. An improvement in dissolved-oxygen content at flows lower than 100 cubic feet per second (2.83 cubic meters per second) is observed with time on the Raritan River. This improvement is attributed to generally better quality water and dilution of nonconservative pollutants by upstream reservoir releases during low flows. The Raritan River between Manville and Perth Amboy flows through a large urban and industrial complex. Much of this reach is tidal. Detrimental activities of man are reflected in higher concentrations of most constituents below Manville than those observed upstream. For example, between Manville and the head of tide near South Bound Brook, the maximum concentration of dissolved solids observed during the study period increased from 464 to 1,520 mg/L; orthophosphates from 0.93 to 2.3 mg/L; phenolic materials from 22 to 312 μg/L; and coliform bacteria from 13,300 to 100,000 colonies per 100 milliliters. A general deterioration in water quality with time in the river below Manville is demonstrated through comparisons of dissolved-oxygen and biochemical-oxygen demand data collected between the late 1920's and early 1970's. Several time-of-travel measurements within the basin are reported. These data provide reasonable estimates of the time required for soluble contaminants to pass through particular parts of the river system. For example, the peak concentration of a contaminant injected into the river system at Clinton at a flow of 100 cubic feet per second (2.83 cubic meters per second) would be expected to travel to the head of tide near South Bound Brook, about 34 miles (55 kilometers), in about 70 hours; but at a flow of 50 cubic feet per second (1.42 cubic meters per second) the traveltime would increase to about 125 hours.
Heavy metals content in acid mine drainage at abandoned and active mining area
NASA Astrophysics Data System (ADS)
Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim
2013-11-01
This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD appeared to be influenced by acidity and the formation of Fe, Mn oxide and hydroxide.
Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.
Burmistrz, Piotr; Burmistrz, Michał
2013-01-01
The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.
A SURROGATE SUBCHRONIC TOXICITY TEST METHOD FOR WATERS WITH HIGH TOTAL DISSOLVED SOLIDS
Total dissolved solids (TDS) are often identified as a toxicant in whole-effluent toxicity (WET) testing. The primary test organism used in WET testing, Ceriodaphnia dubia, is very sensitive to TDS ions, which can be problematic when differentiating the toxicity of TDS from those...
Community-Level Effects of Excess Total Dissolved Solids Doses Using Model Streams
Model stream chronic dosing studies (42 days) were conducted with four different total dissolved solids (TDS) recipes. The recipes differed in their relative dominance of major ions. One was made from sodium and calcium chloride salts only. Another was similar to the first, but a...
Wu, Sarah Xiao; Maskaly, Jason
2018-01-28
In this study, the effect of total dissolved solids (TDS) on the performance of a sequencing batch reactor (SBR) system to treat synthetic wastewater with microbial inoculum was evaluated. The SBR was operated continuously for eight days on a 6-h cycle with anaerobic/anoxic/aerobic phases in each cycle after entering the steady state, and the influent TDS was tested at five levels, i.e., 750, 1500, 3000, 4500, and 6000 mg L -1 . The results showed that only two TDS levels (750 and 1500 mg L -1 ) could achieve good COD removal efficiencies (94.8 and 92.2%, respectively). For TDS levels equal to, or greater than, 3000 mg L -1 , a 20% reduction in COD removal efficiency resulted. Different from COD, removal of NH 4 + -N appeared not to be affected by the TDS content, and a removal efficiency of higher than 97% was obtained, regardless of the TDS content. However, only the lowest two TDS levels achieved high phosphate removals (>99%), and the removal efficiency dropped to 57.8 and 45.9%, respectively, for TDS levels of 3000 and 4500 mg L -1 . More interestingly, a phosphate release, instead of uptake, was observed at the TDS level of 6000 mg L -1 . It may be concluded that for effective phosphate removal, the TDS level in the liquid should be controlled under 1500 mg L -1 , and higher liquid TDS levels were detrimental to the aerobes and could disrupt the aerobic metabolism, leading to the failure of the SBR treatment system. A tendency that raising TDS content would adversely affect the aerobic oxygen uptake rate was observed, which could also result in SBR upset. A power regression with an R of 0.9844 was established between the influent TDS concentration and the TDS removal efficiency, which may be used to estimate the SBR performance in TDS removal based on the influent TDS content.
Physical, chemical and microbial analysis of bottled drinking water.
Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V
2012-09-01
People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Kedar G.; Pannu, Satinderpall S.
An integrated circuit system having an integrated circuit (IC) component which is able to have its functionality destroyed upon receiving a command signal. The system may involve a substrate with the IC component being supported on the substrate. A module may be disposed in proximity to the IC component. The module may have a cavity and a dissolving compound in a solid form disposed in the cavity. A heater component may be configured to heat the dissolving compound to a point of sublimation where the dissolving compound changes from a solid to a gaseous dissolving compound. A triggering mechanism maymore » be used for initiating a dissolution process whereby the gaseous dissolving compound is allowed to attack the IC component and destroy a functionality of the IC component.« less
Gillip, Jonathan A.
2014-01-01
The West Gulf Coastal Plain, Mississippi embayment, and underlying Cretaceous aquifers are rich in water resources; however, large parts of the aquifers are largely unusable because of large concentrations of dissolved solids. Cretaceous aquifers are known to have large concentrations of salinity in some parts of Arkansas. The Nacatoch Sand and the Tokio Formation of Upper Cretaceous age were chosen for investigation because these aquifers produce groundwater to wells near their outcrops and have large salinity concentrations away from their outcrop areas. Previous investigations have indicated that dissolved-solids concentrations of groundwater within the Nacatoch Sand, 2–20 miles downdip from the outcrop, render the groundwater as unusable for purposes requiring freshwater. Groundwater within the Tokio Formation also exhibits large concentrations of dissolved solids downdip. Water-quality data showing elevated dissolved-solids concentrations are limited for these Cretaceous aquifers because other shallower aquifers are used for water supply. Although not suitable for many uses, large, unused amounts of saline groundwater are present in these aquifers. Historical borehole geophysical logs were used to determine the geologic and hydrogeologic properties of these Cretaceous aquifers, as well as the quality of the groundwater within the aquifers. Based on the interpretation of borehole geophysical logs, in Arkansas, the altitude of the top of the Nacatoch Sand ranges from more than 200 to less than -4,000 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Nacatoch Sand ranges from 0 to over 550 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. Other areas of large thickness include the area of the Desha Basin structural feature in southeastern Arkansas and in an area on the border of Cross and St. Francis Counties in eastern Arkansas. The clean-sand percentage of the total Nacatoch Sand thickness ranges from less than 20 percent to more than 60 percent and generally decreases downdip. The Nacatoch Sand contains more than 120.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 milligrams per liter (mg/L), more than 57.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and more than 122.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L. The altitude of the top of the Tokio Formation, in Arkansas, ranges from more than 200 feet to less than -4,400 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Tokio Formation, in Arkansas, ranges from 0 to over 400 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. The clean-sand percentage of the total Tokio Formation thickness ranges from less than 20 percent to more than 60 percent and generally decreases away from the outcrop area. The Tokio Formation contains more than 2.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 mg/L, more than 12.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and nearly 43.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L.
Simmler, Michael; Bommer, Jérôme; Frischknecht, Sarah; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben
2017-12-01
Mining activities have contaminated many riverine floodplains with arsenic (As). When floodplain soils become anoxic under water-saturated conditions, As can be released from the solid phase. Several microbially-driven As solubilization processes and numerous influential factors were recognized in the past. However, the interplay and relative importance of soil properties and the influence of environmental factors such as temperature remain poorly understood, especially considering the (co)variation of soil properties in a floodplain. We conducted anoxic microcosm experiments at 10, 17.5, and 25 °C using 65 representative soils from the mining-impacted Ogosta River floodplain in Bulgaria. To investigate the processes of As solubilization and its quantitative variation we followed the As and Fe redox dynamics in the solid and the dissolved phase and monitored a range of other solution parameters including pH, Eh, dissolved organic C, and dissolved Mn. We related soil properties to dissolved As observed after 20 days of microcosm incubation to identify key soil properties for As solubilization. Our results evidenced reductive dissolution of As-bearing Fe(III)-oxyhydroxides as the main cause for high solubilization. The availability of nutrients, most likely organic C as the source of energy for microorganisms, was found to limit this process. Following the vertical nutrient gradient common in vegetated soil, we observed several hundred μM dissolved As after 1-2 weeks for some topsoils (0-20 cm), while for subsoils (20-40 cm) with comparable total As levels only minor solubilization was observed. While high Mn contents were found to inhibit As solubilization, the opposite applied for higher temperature (Q 10 2.3-6.1 for range 10-25 °C). Our results suggest that flooding of nutrient-rich surface layers might be more problematic than water-saturation of nutrient-poor subsoil layers, especially in summer floodings when soil temperature is higher than in winter or spring. Copyright © 2017 Elsevier Ltd. All rights reserved.
Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G
2015-06-01
The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.
Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982
Clifton, Daphne G.
1983-01-01
Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)
Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394
Chitosan coating of red kiwifruit (Actinidia melanandra) for extending of the shelf life.
Kaya, Murat; Česonienė, Laima; Daubaras, Remigijus; Leskauskaitė, Daiva; Zabulionė, Donata
2016-04-01
Commercial production of red kiwifruit (Actinidia melanandra) has been unsuccessful because of its short shelf life. Here in this study, we used chitosan to extend the shelf life of red kiwifruit berries. Chitosan (with 70-75% deacetylation degree and low molecular weight) was dissolved in acetic acid (at pH 2.0-2.3) to obtain gel material, which was used for coating of the fruit. The coated and uncoated samples were kept for 26 days at room temperature (20±2°C). The changes in the weight loss, firmness, soluble solid content, total polyphenol content and ascorbic acid content were evaluated. All these findings showed that chitosan could be an effective coating material for berries of red kiwifruit to extend its short shelf life. Copyright © 2016 Elsevier B.V. All rights reserved.
Ruhl, J.F.; Adolphson, D.G.
1986-01-01
Ground water generally flows eastward through the aquifer from North Dakota and discharges upward to wells and to overlying deposits. Yields of wells open to the full thickness of the aquifer range from 100 t 250 gallons per minute. The water is unsuitable for most uses because of the high mineral content. Dissolved-solids concentrations range from about 3,000 milligrams per liter in the eastern part of the aquifer to about 60,000 milligrams per liter in the northwestern corner of Minnesota.
Stoliker, Deborah L; Campbell, Kate M; Fox, Patricia M; Singer, David M; Kaviani, Nazila; Carey, Minna; Peck, Nicole E; Bargar, John R; Kent, Douglas B; Davis, James A
2013-08-20
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.
2013-01-01
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
Healy, D.F.
1997-01-01
The Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment Program collected monthly water- quality samples at a network of surface-water sites from April 1993 through September 1995. This basic-fixed-site network consisted of nine main-stem sites on the Rio Grande, five sites on tributaries of the Rio Grande, two sites on streams in the Rio Grande Valley study unit that are not directly tributary to the Rio Grande, and one site on a conveyance channel. During each monthly sampling, field properties were measured and samples were collected for the analysis of dissolved solids, major constituents, nutrients, selected trace elements, and suspended-sediment concentrations. During selected samplings, supplemental samples were collected for the analysis of additional trace elements, organic carbon, and/or pesticides. Spatial variations of dissolved-solids, major-constituent, and nutrient data were analyzed. The report presents summary statistics for the monthly water-quality data by sampling site and background information on the drainage basin upstream from each site. Regression equations are presented that relate dissolved-solids, major-constituent, and nutrient concentrations to streamflow, selected field properties, and time. Median instantaneous streamflow at each basic-fixed site ranged from 1.4 to 1,380 cubic feet per second. Median specific conductance at each basic-fixed site ranged from 84 to 1,680 microsiemens per centimeter at 25 degrees Celsius, and median pH values ranged from 7.8 to 8.5. The water sampled at the basic-fixed sites generally was well oxygenated and had a median dissolved-oxygen percent of saturation range from 89 to 108. With the exception of Rio Grande above mouth of Trinchera Creek, near Lasauses, Colorado, dissolved-solids concentrations in the main stem of the Rio Grande generally increased in a downstream direction. This increase is from natural sources such as ground-water inflow and evapotranspiration and from anthropogenic sources such as irrigation- return flows, urban runoff, and wastewater-treatment plant discharges. The smallest median dissolved-solids concentration detected at a basic- fixed site was 58 milligrams per liter and the largest was 1,240 milligrams per liter. The spatial distribution of calcium, magnesium, sodium, sulfate, chloride, and fluoride was similar to the spatial distribution of dissolved solids. The spatial distribution of potassium and bicarbonate varied slightly from that of dissolved solids. Median silica concentrations generally decreased in a downstream direction. Of all cations, calcium and sodium had the largest concentrations at most basic-fixed sites. Bicarbonate and sulfate were the anions having the largest concentrations at most sites. The largest median silica concentration was at Rito de los Frijoles in Bandelier National Monument, New Mexico, where silica composed approximately 50 percent of the dissolved solids. The largest concentrations and largest median concentrations of dissolved-nutrient analytes were detected at Santa Fe River above Cochiti Lake, New Mexico, and Rio Grande at Isleta, New Mexico. The relatively large dissolved-nutrient concentrations at these sites probably were due to discharges from wastewater-treatment plants and urban runoff. The largest concentrations and largest median concentrations of total ammonia plus organic nitrogen and total phosphorus were detected at Rio Puerco near Bernardo, New Mexico. The largest concentrations of these nutrients at this site were associated with runoff from summer thunderstorms. Dissolved-iron concentrations ranged from censored concentrations to 914 micrograms per liter. Median dissolved-iron concentrations ranged from 3 to 160 micrograms per liter. Dissolved-manganese concentrations ranged from censored concent
2008-01-01
Whereas serious health consequences of widespread consumption of groundwater elevated in As have been documented in several South Asian countries, the mechanisms responsible for As mobilization in reducing aquifers remain poorly understood. We document here a previously unrecognized and consistent relationship between dissolved As concentrations in reducing groundwater and the phosphate-mobilizable As content of aquifer sediment for a set of precisely depth-matched samples from across Bangladesh. The relationship holds across nearly 3 orders of magnitude in As concentrations and suggests that regional as well as local patterns of dissolved As in shallow groundwater are set by the solid phase according to a remarkably constant ratio of ∼250 μg/L dissolved As per 1 mg/kg P-mobilizable As. We use this relationship in a simple model of groundwater recharge to propose that the distribution of groundwater As in shallow aquifers of the Bengal Basin could primarily reflect the different flushing histories of sand formations deposited in the region over the past several thousand years. PMID:18504954
Isolated single-species exposures were conducted in parallel with 42 d mesocosm dosing studies that measured in-situ and whole community responses to different recipes of excess total dissolved solids (TDS). The studies were conducted with cultured species and native taxa from mo...
USDA-ARS?s Scientific Manuscript database
Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...
Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...
Gross, Eliza L.; Lindsey, Bruce D.; Rupert, Michael G.
2012-01-01
Field blank samples help determine the frequency and magnitude of contamination bias, and replicate samples help determine the sampling variability (error) of measured analyte concentrations. Quality control data were evaluated for calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, silica, and total dissolved solids. A 99-percent upper confidence limit is calculated from field blanks to assess the potential for contamination bias. For magnesium, potassium, chloride, sulfate, and fluoride, potential contamination in more than 95 percent of environmental samples is less than or equal to the common maximum reporting level. Contamination bias has little effect on measured concentrations greater than 4.74 mg/L (milligrams per liter) for calcium, 14.98 mg/L for silica, 4.9 mg/L for sodium, and 120 mg/L for total dissolved solids. Estimates of sampling variability are calculated for high and low ranges of concentration for major ions and total dissolved solids. Examples showing the calculation of confidence intervals and how to determine whether measured differences between two water samples are significant are presented.
Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.
Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo
2017-04-27
In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.
Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E
2016-01-15
The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Milliman, J. D.; Lee, T. Y.; Huang, J. C.; Kao, S. J.
2017-05-01
Small mountainous rivers deliver disproportionately large quantities of suspended and dissolved solids to the global ocean, often in response to catastrophic events such as earthquakes or floods. Here we report on the impact of a major flood on the Choshui River, central-western Taiwan, generated by typhoon Mindulle, July 2-6, 2004, five years after the nearby Mw 7.6 Chichi earthquake. Water samples taken at 3-h intervals at three stations along main stem, as well as from two downriver tributaries, allow us to delineate the temporal and spatial variability in concentrations and fluxes of suspended and dissolved constituents within the middle and lower portions of the river in response to this flood. High suspended-sediment concentrations, some as high as 200 g/l, reflected the rapid erosion of landslide scars and debris deposits generated by super-typhoon Herb in 1996 and the 1999 Chichi earthquake. Dissolved-solid and suspended-sediment discharges totaled 0.22 and 70 million tons (mt), 50 mt of which were discharged in just two days. Particulate organic carbon (POC) discharge, most of which was pre-modern in age, was 195,000 t. More than half of the discharged water, POC and dissolved solids came from upriver, whereas about 70% of the suspended sediment and 60% of the dissolved nitrate came from two downriver tributaries, the Chenyoulan and Qingshui rivers. Spatial and temporal differences in the character and discharge of suspended and dissolved solids within and between rivers in the Choshui drainage basin reflect different geologies, landslide histories, the effects of human impact, and the abrupt draining of the Tsaoling landslide lake in the Qingshui basin, as well as the possible shifting of importance of groundwater vs. overland flow. Neither wind-blown pollutants nor sea salts appear to have contributed significantly to dissolved solid character or discharge. Sediment contribution from the landslides in the Chenyoulan basin generated by super-typhoon Herb and reactivated by the Chichi earthquake declined during Mindulle. In contrast, sediment erosion and discharge from the Qingshui basin, derived primarily from landslides generated during the Chichi earthquake and reactivated during Mindulle, remained elevated for several more years.
Impact of drainage on wettability of fen peat-moorsh soils
NASA Astrophysics Data System (ADS)
Szajdak, L.; Szatyłowicz, J.; Brandyk, T.
2009-04-01
High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.
Thiros, Susan A.; Spangler, Larry
2010-01-01
Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some areas used for public supply, raising concerns as to the source(s) and cause(s) of the higher concentrations and the potential long-term effects on groundwater quality.
Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution
NASA Astrophysics Data System (ADS)
Bhatti, Zulfiqar Ahmad; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Khan, Muhammad Suleman; Wu, Donglei
Car wash wastewater (CWW) contains petroleum, hydrofluoric acid, ammonium bifluoride products, paint residues, rubber, phosphates, oil, grease and volatile organic compounds (VOCs). The present study dealt with various investigations conducted for the treatment of CWW. A treatment system of 5 L capacity was designed in the laboratory. Due to high load of oil and grease, CWW was aerated and scum was removed. Alum was used as coagulant in primary treatment which resulted 93% and 97% reduction in COD and turbidity. During secondary treatment CWW was further treated with waste hydrogen peroxide which resulted in further 71% and 83% reduction in COD and turbidity, respectively. Other desirable changes were also observed in pH, total dissolved solids (TDS), conductivity and dissolved oxygen contents. It was concluded that designed system could be effectively used to treat carwash wastewater that could be reused in the same station.
Quality of water in Luxapallia Creek at Columbus, Mississippi
Kalkhoff, Stephen J.
1982-01-01
The results of a water quality study of a short reach of Luxapallila Creek at Columbus, Mississippi, during September 9-12, 1979, indicate that the water is colored (60 units) and has a low dissolved solids content (44 mg/L). The dissolved oxygen concentration, temperature, and pH of the water in Luxapallila Creek changed a slightly downstream through the study reach. The mean specific conductance almost doubled and the five-day biochemical oxygen demand load increased over four times through the study reach. The fecal coliform to fecal streptococcus ration of 3 to 5 samples collected at the downstream site was greater than 4.0, strongly suggesting the presence of human waste. The concentrations of iron and manganese at the downstream site exceeded the U.S. Environmental Protection Agency 's criteria for domestic water supplies. High concentrations of iron, manganese, and lead also were present in a bottom material sample at the downstream site. (USGS)
de Aguiar Netto, Antenor Oliveira; Garcia, Carlos Alexandre Borges; Hora Alves, José do Patrocínio; Ferreira, Robério Anastácio; Gonzaga da Silva, Marinoé
2013-05-01
The Poxim River is one of Sergipe State's major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region's population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0-2.8), the Poxim River (1.6-4.6), and the estuarine region (1.7-5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.
NASA Astrophysics Data System (ADS)
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-12-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
Dissolver vessel bottom assembly
Kilian, Douglas C.
1976-01-01
An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.
Myette, C.F.
1982-01-01
Water from the sand-plain aquifers is of the calcium bicarbonate type. The water is hard to very hard with dissolved solids ranging from about 100 to 700 milligrams per liter. Locally, concentrations of dissolved solids, iron, manganese, and nitrate exceeded limits recommended by the Minnesota Pollution Control Agency.
Gain-loss study along two streams in the upper Sabine River basin, Texas; August-September 1981
Myers, Dennis R.
1983-01-01
Dissolved solids concentrations in the Sabine River, estimated from specific conductance, increased from about 120 milligrams per liter near the upstream end of the reach to about 400 milligrams per liter near the downstream end of the reach. Water with these concentrations of dissolved solids generally is suitable for most uses.
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-01-01
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-06-08
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.
A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol.
Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella; Beatson, Rodger; Mark Martinez, D
2017-01-01
Bamboo is a highly abundant source of biomass which is underutilized despite having a chemical composition and fiber structure similar as wood. The main challenge for the industrial processing of bamboo is the high level of silica, which forms water-insoluble precipitates negetively affecting the process systems. A cost-competitive and eco-friendly scheme for the production of high-purity dissolving grade pulp from bamboo not only requires a process for silica removal, but also needs to fully utilize all of the materials dissolved in the process which includes lignin, and cellulosic and hemicellulosic sugars as well as the silica. Many investigations have been carried out to resolve the silica issue, but none of them has led to a commercial process. In this work, alkaline pretreatment of bamboo was conducted to extract silica prior to pulping process. The silica-free substrate was used to produce high-grade dissolving pulp. The dissolved silica, lignin, hemicellulosic sugars, and degraded cellulose in the spent liquors obtained from alkaline pretreatment and pulping process were recovered for providing high-value bio-based chemicals and fuel. An integrated process which combines dissolving pulp production with the recovery of excellent sustainable biofuel and biochemical feedstocks is presented in this work. Pretreatment at 95 °C with 12% NaOH charge for 150 min extracted all the silica and about 30% of the hemicellulose from bamboo. After kraft pulping, xylanase treatment and cold caustic extraction, pulp with hemicellulose content of about 3.5% was obtained. This pulp, after bleaching, provided a cellulose acetate grade dissolving pulp with α-cellulose content higher than 97% and hemicellulose content less than 2%. The amount of silica and lignin that could be recovered from the process corresponded to 95 and 77.86% of the two components in the original chips, respectively. Enzymatic hydrolysis and fermentation of the concentrated and detoxified sugar mixture liquor showed that an ethanol recovery of 0.46 g/g sugar was achieved with 93.2% of hydrolyzed sugars being consumed. A mass balance of the overall process showed that 76.59 g of solids was recovered from 100 g (o.d.) of green bamboo. The present work proposes an integrated biorefinery process that contains alkaline pre-extraction, kraft pulping, enzyme treatment and cold caustic extraction for the production of high-grade dissolving pulp and recovery of silica, lignin, and hemicellulose from bamboo. This process could alleviate the silica-associated challenges and provide feedstocks for bio-based products, thereby allowing the improvement and expansion of bamboo utilization in industrial processes.
Waldron, M.C.; Wiley, J.B.
1996-01-01
The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.
Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,
1984-01-01
Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached; consequently, flows in the ephemeral streams usually have larger concentrations of dissolved solids than those in perennial streams. Ground-water supplies are restricted by the low yields of wells due to small permeability. Most ground-water use is for domestic and stock-watering purposes; it is limited by the amount and type of dissolved material. The ground-water ionic composition is highly variable. Dissolved-solids concentrations for aquifers sampled in Area 53 range from a minimum of 46 milligrams per liter to a maximum of 109,000 milligrams per liter. Trace element concentrations generally are not a problem. An estimated 82 billion tons of coal exist above a depth of 6,000 feet in the Colorado parts of the area. The coal beds of greatest economic interest occur in the sedimentary deposits of the Upper Cretaceous Iles and Williams Fork Formations of the Mesaverde Group and the Upper Cretaceous Lance Formation and the Fort Union and Wasatch Formations of Tertiary age. The coal characteristically has a low sulfur content. Hydrologic problems related to surface mining are erosion, sedimentation, decline in water levels, disruption of aquifers, and degradation of water quality. Because the semiarid mine areas have very little runoff and the major streams have large buffer and dilution capacities, the effects of mining on surface water are minimal. However, effects on ground water may be much more severe and long lasting.
Li, Qunliang; Lu, Yanyu; Guo, Xiaobo; Shan, Guangchun; Huang, Junhao
2017-03-01
Composting is an effective method in treating solid organic wastes, in which dissolved organic matter (DOM) plays an important role in transformation of organic matter and microbial activity. Therefore, an understanding of the properties and evolution of DOM during composting is crucial. In this study, DOM was studied using elemental analysis, spectroscopic analysis (UV-vis, FTIR, and pyrolysis-GC/MS), and colloidal analysis during a 120-day composting. Results showed that the content of N and O in DOM increased while C and H content declined progressively over the composting time. Aliphatic C-H stretching, aromatic C=C or C=O stretching of amide groups, and C-O stretch (carbohydrates) showed an obvious decrease, while COO- and C-N groups had a significant increase. The evolution of DOM indicated a gradual decrease of the lipid and polysaccharide fractions, whereas an increase of aromatic and nitrogenous compounds was observed. The DOM also showed a more stable status, and an accumulation of small molecular compounds occurred with composting proceeded. Taken together, these results shed a good insight into the properties and evolution of DOM during a composting process.
Tuck, L.K.
1993-01-01
Mississippian through Holocene rocks crop out in the area. Emplaced Tertiary igneous rocks have caused structural deformation. Aquifers are Holocene alluvium, Quaternary interstratified sand and gravel, and Upper Cretaceous Judith River Formation and Virgelle Sandstone Member of Eagle Sandstone. Recharge to each aquifer is through combinations of infiltration of precipitation, streamflow, irrigation return flow, stored surface water, and subsurface inflow. Discharge is through combinations of seepage to streams, withdrawals from wells, flow of springs and seeps, evapotranspiration, and subsurface outflow. Water in alluvium flows sub- parallel to stream channels. One water sample had a dissolved-solids concentration of 439 milligrams per liter. Water in the interstratified sand and gravel generally moves northward. Transmissivity was estimated at 900 feet squared per day. Dissolved- solids concentration ranged from 154 to 1,600 milligrams per liter. Water quality is least feasible for irrigation, marginal for domestic use, and generally suitable for livestock. Water in the Judith River Formation probably flows northeast and southeast. One water sample had a dissolved-solids concentration of 855 milligrams per liter. Water in the Virgelle Sandstone Member generally flows north. Transmissivity ranges from 200 to 3,700 feet squared per day. Dissolved-solids concentration ranged from 213 to 1,360 milligrams per liter. Water quality near outcrops is mostly adequate for domestic and livestock use and marginal for irrigation, but deteriorates downgradient. Unknown perennial yields and water quality could limit development of this resource. Miners Coulee, Breed Creek, and Bear Gulch flow intermittently. Dissolved-solids concentration ranged from 241 to 774 milligrams per liter.
Lindsey, Bruce D.; Rupert, Michael G.
2012-01-01
Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or nitrate - had a statistically significant increase in concentration in 66 percent of the networks. Statistically significant decreases in concentrations were identified in 4 percent of the networks for chloride, 2 percent of the networks for dissolved solids, and 9 percent of the networks for nitrate. A larger percentage of urban land-use networks had statistically significant increases in chloride, dissolved solids, and nitrate concentrations than agricultural land-use networks. In order to assess the magnitude of statistically significant changes, the median of the differences between constituent concentrations from the first full-network sampling event and those from the second full-network sampling event was calculated using the Turnbull method. The largest median decadal increases in chloride concentrations were in networks in the Upper Illinois River Basin (67 mg/L) and in the New England Coastal Basins (34 mg/L), whereas the largest median decadal decrease in chloride concentrations was in the Upper Snake River Basin (1 mg/L). The largest median decadal increases in dissolved solids concentrations were in networks in the Rio Grande Valley (260 mg/L) and the Upper Illinois River Basin (160 mg/L). The largest median decadal decrease in dissolved solids concentrations was in the Apalachicola-Chattahoochee-Flint River Basin (6.0 mg/L). The largest median decadal increases in nitrate as nitrogen (N) concentrations were in networks in the South Platte River Basin (2.0 mg/L as N) and the San Joaquin-Tulare Basins (1.0 mg/L as N). The largest median decadal decrease in nitrate concentrations was in the Santee River Basin and Coastal Drainages (0.63 mg/L). The magnitude of change in networks with statistically significant increases typically was much larger than the magnitude of change in networks with statistically significant decreases. The magnitude of change was greatest for chloride in the urban land-use networks and greatest for dissolved solids and nitrate in the agricultural land-use networks. Analysis of data from all networks combined indicated statistically significant increases for chloride, dissolved solids, and nitrate. Although chloride, dissolved solids, and nitrate concentrations were typically less than the drinking-water standards and guidelines, a statistical test was used to determine whether or not the proportion of samples exceeding the drinking-water standard or guideline changed significantly between the first and second full-network sampling events. The proportion of samples exceeding the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level for dissolved solids (500 milligrams per liter) increased significantly between the first and second full-network sampling events when evaluating all networks combined at the national level. Also, for all networks combined, the proportion of samples exceeding the USEPA Maximum Contaminant Level (MCL) of 10 mg/L as N for nitrate increased significantly. One network in the Delmarva Peninsula had a significant increase in the proportion of samples exceeding the MCL for nitrate. A subset of 261 wells was sampled every other year (biennially) to evaluate decadal-scale changes using a time-series analysis. The analysis of the biennial data set showed that changes were generally similar to the findings from the analysis of decadal-scale change that was based on a step-trend analysis. Because of the small number of wells in a network with biennial data (typically 4-5 wells), the time-series analysis is more useful for understanding water-quality responses to changes in site-specific conditions rather than as an indicator of the change for the entire network.
DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID
Johnson, R.; Horn, F.L.; Strickland, G.
1963-05-01
A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)
Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet.
Cho, Jung Hyun; Kim, Yong-Il; Kim, Dong-Wuk; Yousaf, Abid Mehmood; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon
2014-04-11
The goal of this research was to develop a novel prolonged release tablet bioequivalent to the commercial sustained release capsule. A number of tacrolimus-loaded fast-dissolving solid dispersions containing various amounts of DOSS were prepared using the spray drying technique. Their solubility, dissolution and pharmacokinetics in rats were studied. DOSS increased drug solubility and dissolution in the solid dispersions. Compared with the drug powder, the solubility, dissolution and bioavailability of tacrolimus with the fast-dissolving solid dispersion containing tacrolimus/HP-β-CD/DOSS in the weight ratio of 5:40:4 were boosted by approximately 700-, 30- and 2-fold, respectively. Several tablet formulations were accomplished with this solid dispersion in combination with various ratios of HPMC/ethylcellulose. The release behaviour and pharmacokinetic studies in beagle dogs were assessed compared with the commercial prolonged release capsule. A decrease in HPMC/ethylcellulose ratios reduced the dissolution of tacrolimus from the tablets. Particularly, the tacrolimus-loaded prolonged release tablet consisting of fast-dissolving tacrolimus solid dispersion, HPMC, ethylcellulose and talc at the weight ratio of 20:66:112:2 exhibited a dissolution profile similar to that produced by the commercial prolonged release capsule. Furthermore, there were no significant differences in the AUC, Cmax, Tmax and MRT values between them in beagle dogs. Consequently, this tacrolimus-loaded prolonged release tablet might be bioequivalent to the tacrolimus-loaded commercial capsule. Copyright © 2013 Elsevier B.V. All rights reserved.
Michałowicz, Jaromir; Stufka-Olczyk, Jadwiga; Milczarek, Anna; Michniewicz, Małgorzata
2011-08-01
Chlorophenols are widely represented, toxic, and persistent environmental pollutants. In this work, we analyzed annual fluctuations in the content of phenol, guaiacol, chlorophenols, chlorocatechols, and chlorinated methoxyphenols in drinking water collected in Warsaw and Tomaszów Mazowiecki (Poland). Moreover, the effect of dissolved organic matter content on the occurrence of phenolic compounds in drinking water was studied. The compounds were adsorbed on octadecyl C18 solid-phase discs, separated by the use of gas chromatography, and analyzed using mass spectrometry. The content of organic matter was evaluated by the analysis of UV absorption at 254 nm by water samples. In Warsaw, raw water (derived from infiltration intakes situated in the Vistula River) and treated water (subjected to coagulation, filtration, and disinfection with chlorine dioxide) were collected in order to analyze phenols. In Tomaszów Mazowiecki, raw water (taken directly form the river) and treated water (subjected to coagulation, sand filtration, ozonation, and disinfection with gaseous chlorine) were taken to determine phenolic substances. The obtained results showed the occurrence of phenol, guaiacol, 2,4,6-trichlorophenol (2,4,6-TCP), tetrachlorophenol (TeCP), and pentachlorophenol in drinking water of both cities. Occasionally, in the waters studied, the appearance of chloroguaiacols, 3-chlorosyringol, and some chlorocatechols were noted. It was also observed that the content of dissolved organic matter in river waters may have contributed to the formation of some phenols, e.g., phenol, guaiacol, 2,4,6-TCP, and TeCP in drinking water. Finally, it was found that there were no annual (seasonal) fluctuations in phenolic compounds contents in drinking waters examined.
Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.; Miller, Elisa M.; Zhang, Jianbing; Beard, Matthew C.; Luther, Joseph M.
2015-01-01
We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%. PMID:25910183
Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells.
Crisp, Ryan W; Kroupa, Daniel M; Marshall, Ashley R; Miller, Elisa M; Zhang, Jianbing; Beard, Matthew C; Luther, Joseph M
2015-04-24
We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl(-) with I(-). The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.
Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; ...
2015-04-24
We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI 2, PbCl 2, CdI 2, or CdCl 2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI 2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting amore » deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI 2 with power conversion efficiencies above 7%.« less
Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.
Cazier, E A; Trably, E; Steyer, J P; Escudie, R
2015-08-01
In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Colloidal mode of transport in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less
Characterization of urban runoff pollution between dissolved and particulate phases.
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.
Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha
2017-01-01
A pot experiment was conducted to study soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the rhizosphere and non-rhizosphere of Bothriochloa ischaemum in loess hilly-gully region under the different treatments of CO 2 concentrations (400 and 800 μmol·mol -1 ) and nitrogen addition (0, 2.5, 5.0 g N·m -2 ·a -1 ). The results showed that eleva-ted CO 2 treatments had no significant effect on the contents of DOC, dissolved total nitrogen (DTN), DON, dissolved ammonium nitrogen (NH 4 + -N) and dissolved nitrate nitrogen (NO 3 - -N) in the soil of rhizosphere and non-rhizosphere of B. ischaemum. The contents of DTN, DON, and NO 3 - -N in the rhizosphere soil were significantly increased with the nitrogen application and the similar results of DTN and NO 3 - -N also were observed in the non-rhizosphere of B. ischaemum. Nitrogen application significantly decreased DOC/DON in the rhizosphere of B. ischaemum. The contents of DTN, NO 3 - -N and DON in the soil of rhizosphere were significantly lower than that in the non-rhizosphere soil, and DOC/DON was significantly higher in the rhizosphere soil than that in the non-rhizosphere soil. It indicated that short-term elevated CO 2 concentration had no significant influence on the contents of soil dissolved organic carbon and nitrogen. Simulated nitrogen deposition, to some extent, increased the content of soil dissolved nitrogen, but it was still insufficient to meet the demand of dissolved nitrogen for plant growing.
Study on the electrochemical corrosion behavior of industrial boilers
NASA Astrophysics Data System (ADS)
Wu, Xiaoyang; Huang, Song; Zhang, Wenpin; Feng, Qiang; Huang, Yong
2018-06-01
In this paper, industrial boilers are used as the research object, and Boilerentiodynamic polarization analysis of boiler steel is used to study the electrochemical corrosion behavior in the boiler water. The electrochemical corrosion nature and morphology of the samples were tested through experiments. The study shows: the corrosion resistance of the samples will decrease significantly with the increase of the operating time of boilers. Dissolved solids and Cl- in the boiler water will destroy the original protective film, of which the increase of its content is the main reason for the deterioration of the material properties.
Flyhammar, P; Bendz, D
2006-09-01
The objective of this study was to analyze the accumulated effects of leaching in two test roads were municipal solid waste incineration (MSWI) bottom ash and aggregate from a railway embankment, respectively, were used as subbase aggregates. Solid samples from the subbase and the subgrade were collected in trenches, which were excavated perpendicular to the road extension. The samples were analyzed with respect to pH, water content, electrical conductivity and extractable fractions of macro and trace constituents. To conclude, spatial distribution patterns of different constituents in subbase and subgrade layers confirms the existence of two major transport processes in a road with permeable shoulders: diffusion underneath surface asphalt layers driven by a concentration gradient directed horizontally towards the shoulder of the road where the dissolved elements are carried away by advection.
NASA Astrophysics Data System (ADS)
Bostick, Kyle W.; Zimmerman, Andrew R.; Wozniak, Andrew. S.; Mitra, Siddhartha; Hatcher, Patrick G.
2018-04-01
Though pyrogenic carbon (pyC) has been assumed to be predominantly stable, degradation and transfers of pyC between various pools have been found to influence its cycling and longevity in the environment. Dissolution via leaching may be the main control on loss processes such as microbial or abiotic oxidation, mineral sorption, or export to aquatic systems. Yet, little is known of the controls on pyrogenic dissolved organic matter (pyDOM) generation or composition. Here, the yield and composition of pyDOM generated through batch leaching of a thermal series of oak and grass biochars, as well as several non-pyrogenic reference materials, was compared to that of their parent solids. Over 17 daily leaching cycles, biochars made from oak at 250 to 650° C released decreasing amounts of C on both a weight (16.9 to 0.3%, respectively) and C yield basis (7.4 to 0.2% C, respectively). Aryl-C represented an estimated 32 to 82% of C in the parent solids (identified by 13C-NMR), but only 7 to 38% in the leachates (identified by 1H-NMR), though both increased with pyrolysis temperature. PyC, often operationally defined as condensed aromatic carbon (ConAC), was quantified using the benzenepolycarboxylic acid (BPCA) method. Tri- and tetra-carboxylated BPCAs were formed from non-pyrogenic reference materials, thus, only penta- and hexa-carboxylated BPCAs were used to derive a BPCA-C to ConAC conversion factor of 7.04. ConAC made up 24 to 57% of the pyrogenic solid C (excluding the 250 °C biochar), but only about 9 to 23% of their respective leachates' DOC, though both proportions generally increased with pyrolysis temperature. Weighted BPCA compound distributions, or the BPCA Aromatic Condensation (BACon) Index, indicate that ConAC cluster size increased in pyrogenic solids but not in leachates. Additional evidence presented suggests that both aromatic cluster size and O-containing functional group contents in the pyrogenic solid control pyC solubility. Overall, pyDOM was found to be compositionally dissimilar from its parent chars and contained a complex mixture of organic compound groups. Thus, it is expected that estimates of dissolved pyC production and export, made only by detection of ConAC, are too low by factors of 4 to 11.
Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.
2013-04-01
Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.
Tobin, R.L.
1993-01-01
Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.
Destruction of Navy Hazardous Wastes by Supercritical Water Oxidation
1994-08-01
cleaning and derusting (nitrite and citric acid solutions), electroplating ( acids and metal bearing solutions), electronics and refrigeration... acid forming chemical species or that contain a large amount of dissolved solids present a challenge to current SCWO •-chnology. Approved for public...Waste streams that contain a large amount of mineral- acid forming chemical species or that contain a large amount of dissolved solids present a challenge
Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, William S.
Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less
Quality of surface waters in the lower Columbia River Basin
Santos, John F.
1965-01-01
This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the chemical composition of the streams. The maximum dissolved-solids concentration and hardness of water observed in major irrigation areas were 507 and 262 parts per million, respectively, for the. Walla Walla River near Touchet, Wash. In terms of the U.S. Salinity Laboratory Staff classification (1954, p. 80), water in most streams in the basin has low salinity and sodium hazards and is suitable for irrigation. A salt-balance problem does exist in the Hermiston-Stanfield, Oreg., area of the Umatilla River basin, and because of poor drainage, improper irrigation practices could cause salt-balance problems in the Willamette River Valley, Oreg., in which irrigation is rapidly increasing. Pollution by sewage disposal has reached undesirable levels in the Walla Walla River, in the Willamette River from Eugene to Portland, Oreg., and in the Columbia River from Portland to Puget Island. In the lower reaches of the Willamette River, the pollution load from sewage and industrial-waste disposal at times depletes the dissolved oxygen in the water to concentrations below what is considered necessary for aquatic life. Water in most of the tributaries to the lower Columbia River is of excellent quality and after some treatment could be used for industrial and municipal supplies. The principal treatment required would be disinfection and turbidity removal.
Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.
2018-01-01
Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.
Cannon, M.R.
1985-01-01
Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)
Hydrology of area 38, Western Region, Interior Coal Province, Iowa and Missouri
Detroy, M.G.; Skelton, John
1983-01-01
In Area 38 dissolved-solids concentrations in water from the Cambrian-Ordovician aquifer range from 300 to 15,000 milligrams per liter; in southcentral Iowa and where the aquifer underlies the Missouri River alluvium, as in Boone County, Missouri, dissolved-solids concentrations are less than 1,000 milligrams per liter. In these areas the Cambrian-Ordovician aquifer is suitable for domestic and other uses. Chemical quality of water from Quaternary aquifers generally is suitable for domestic uses and other uses, dissolved-solids concentrations averaged less than 1,000 milligrams per liter. Iron, manganese and nitrate are excessive in some instances. Chemical quality of water from Mississippian and Pennsylvanian aquifers is unsuitable for domestic use and may be unsuitable for other uses. The Pennsylvanian and Misissippian aquifers have average sulfate concentrations in excess of 1,000 milligrams per liter.
Clark, D.W.
1995-01-01
A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.
Geology and ground-water resources of Nobles County, and part of Jackson County, Minnesota
Norvitch, Ralph F.
1964-01-01
The quality of water in the Precambrian crystalline rocks, the Cretaceous strata, and the buried Pleistocene aquifers is poor. Chemical analyses of 22 water samples showed that dissolved solids ranged from 1,100 ppm (parts per million) to 3,050 ppm. Water from the surficial outwash deposits is good by comparison; dissolved solids in water from these aquifers ranged from 425 to 870 ppm.
Geochemistry and geohydrology of the West Decker and Big Sky coal-mining areas, southeastern Montana
Davis, R.E.
1984-01-01
In the West Decker Mine area, water levels west of the mine at post-mining equilibrium may be almost 12 feet higher than pre-mining levels. Dissolved-solids concentration in water from coal aquifers is about 1,400 milligrams per liter and from mine spoils is about 2,500 milligrams per liter. About 13 years will be required for ground water moving at an average velocity of 2 feet per day to flow from the spoils to the Tongue River Reservoir. The increase in dissolved-solids load to the reservoir due to mining will be less than 1 percent. In the Big Sky Mine area, water levels at post-mining equilibrium will closely resemble pre-mining levels. Dissolved-solids concentration in water from coal aquifers is about 2,700 milligrams per liter and from spoils is about 3,700 milligrams per liter. About 36 to 60 years will be required for ground water moving at an average velocity of 1.2 feet per day to flow from the spoils to Rosebud Creek. The average annual increase in dissolved-solids load to the creek due to mining will be about 2 percent, although a greater increase probably will occur during summer months when flow in the creek is low. (USGS)
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-01-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
Guo, Xing-Sen; Lü, Ying-Chun; Sun, Zhi-Gao; Wang, Chuan-Yuan; Zhao, Quan-Sheng
2015-02-01
Estuary is an important area contributing to the global carbon cycle. In order to analyze the spatial-temporal distribution characteristics of the dissolved inorganic carbon (DIC) in the surface water of Yellow River estuary. Samples were collected in spring, summer, fall, winter of 2013, and discussed the correlation between the content of DIC and environmental factors. The results show that, the DIC concentration of the surface water in Yellow River estuary is in a range of 26.34-39.43 mg x L(-1), and the DIC concentration in freshwater side is higher than that in the sea side. In some areas where the salinity is less than 15 per thousand, the DIC concentration appears significant losses-the maximum loss is 20.46%. Seasonal distribution of performance in descending order is spring, fall, winter, summer. Through principal component analysis, it shows that water temperature, suspended solids, salinity and chlorophyll a are the main factors affecting the variation of the DIC concentration in surface water, their contribution rate is as high as 83% , and alkalinity, pH, dissolved organic carbon, dissolved oxygen and other factors can not be ignored. The loss of DIC in the low area is due to the calcium carbonate sedimentation. DIC presents a gradually increasing trend, which is mainly due to the effects of water retention time, temperature, outside input and environmental conditions.
Clark, Melanie L.; Mason, Jon P.
2006-01-01
The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.
Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid
2015-06-15
Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface. Copyright © 2015 Elsevier B.V. All rights reserved.
Boughton, Gregory K.
2014-01-01
Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.
Banar, Müfide; Ozkan, Aysun; Kürkçüoğlu, Mine
2006-10-01
The aim of this study is to evaluate extensively the characterization and identification of major pollutant parameters by paying attention to the organic chemical pollution for unregulated dumping site leachate in Eskişehir/Turkey. The study that is first and only one research has been very important data related with before new sanitary landfill site in Eskişehir city. For this purpose, in this study leachate samples were collected in-situ at monthly interval for a period of 8 months. Firstly, thirty three physicochemical parameters were monitored. Secondly, SPME technique was used for identification of organic pollutants. Meteorological data were also recorded for the same sampling period to correlate meteorological data and physicochemical parameters. Mean values are used in the correlation analysis. Correlation is shown only for the relationship between air temperature and NO(3) (-). No correlation has been found between rain and leachate quality parameters since the amount of rain was very low during the sampling period. However, analysis results were generally decreased in winter season when each parameter and each sampling point are examined separately. According to correlation between every parameter, especially solid content and dissolved oxygen concentration of leachate is affecting to other parameters. Also, sodium and potassium are changing proportionally with same parameters (suspended solids, fixed solids, dissolved oxygen) and high correlation between chloride and heavy metal concentration is showing. The results were statistically evaluated by use of SPSS 10.0 program. Second part of the study, the leachate was extracted by Solid Phase Microextraction (SPME) technique and then analyzed. Of the methodologies tested in this study, the best one selected was based on 100 micro m polydimethylsiloxane coated fiber (PDMS), headspace with heating (Delta HS) sampling mode and an extraction time of 15 min. at a temperature of 50 degrees C. Thirty three organic compounds in leachate were identified by GC/MS.
An introduction to fast dissolving oral thin film drug delivery systems: a review.
Kathpalia, Harsha; Gupte, Aasavari
2013-12-01
Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.
Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444
Miller, Lisa D.; Watts, Kenneth R.; Ortiz, Roderick F.; ,
2010-01-01
In 2007, the U.S. Geological Survey (USGS), in cooperation with City of Aurora, Colorado Springs Utilities, Colorado Water Conservation Board, Lower Arkansas Valley Water Conservancy District, Pueblo Board of Water Works, Southeastern Colorado Water Activity Enterprise, Southeastern Colorado Water Conservancy District, and Upper Arkansas Water Conservancy District began a retrospective evaluation to characterize the occurrence and distribution of dissolved-solids (DS), selenium, and uranium concentrations in groundwater and surface water in the Arkansas River Basin based on available water-quality data collected by several agencies. This report summarizes and characterizes available DS, dissolved-selenium, and dissolved-uranium concentrations in groundwater and surface water for 1970-2009 and describes DS, dissolved-selenium, and dissolved-uranium loads in surface water along the main-stem Arkansas River and selected tributary and diversion sites from the headwaters near Leadville, Colorado, to the USGS 07137500 Arkansas River near Coolidge, Kansas (Ark Coolidge), streamgage, a drainage area of 25,410 square miles. Dissolved-solids concentrations varied spatially in groundwater and surface water in the Arkansas River Basin. Dissolved-solids concentrations in groundwater from Quaternary alluvial, glacial drift, and wind-laid deposits (HSU 1) increased downgradient with median values of about 220 mg/L in the Upper Arkansas subbasin (Arkansas River Basin from the headwaters to Pueblo Reservoir) to about 3,400 mg/L in the Lower Arkansas subbasin (Arkansas River Basin from John Martin Reservoir to Ark Coolidge). Dissolved-solids concentrations in the Arkansas River also increased substantially in the downstream direction between the USGS 07086000 Arkansas River at Granite, Colorado (Ark Granite), and Ark Coolidge streamgages. Based on periodic data collected from 1976-2007, median DS concentrations in the Arkansas River ranged from about 64 mg/L at Ark Granite to about 4,060 mg/L at Ark Coolidge representing over a 6,000 percent increase in median DS concentrations. Temporal variations in specific conductance values (which are directly related to DS concentrations) and seasonal variations in DS concentrations and loads were investigated at selected sites in the Arkansas River from Ark Granite to Ark Coolidge. Analyses indicated that, for the most part, specific conductance values (surrogate for DS concentrations) have remained relatively constant or have decreased in the Arkansas River since about 1970. Dissolved-solids concentrations in the Arkansas River were higher during the nonirrigation season (November-February) than during the irrigation season (March-October). Average annual DS loads, however, were higher during the irrigation season than during the nonirrigation season. Average annual DS loads during the irrigation season were at least two times and as much as 23 times higher than average annual DS loads during the nonirrigation season with the largest differences occurring at sites located downstream from the two main-stem reservoirs at USGS 07099400 Arkansas River above Pueblo, Colorado (Ark Pueblo), (which is below Pueblo Reservoir) and USGS 07130500 Arkansas River below John Martin Reservoir, Colorado (Ark below JMR). View report for unabridged abstract.
Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.
2014-01-01
The effects of fallowing of Walker River Indian Irrigation Project fields from 2007 to 2010 on Walker Lake inflow, level, and dissolved solids were evaluated. Fallowing resulted in a near doubling of Walker River inflow to Walker Lake during this period, an increase in Walker Lake level of about 1.4 feet, and a decrease in dissolved-solids concentration of about 540 mg/L.
Determination of total dissolved solids in water analysis
Howard, C.S.
1933-01-01
The figure for total dissolved solids, based on the weight of the residue on evaporation after heating for 1 hour at 180??C., is reasonably close to the sum of the determined constituents for most natural waters. Waters of the carbonate type that are high in magnesium may give residues that weigh less than the sum. Natural waters of the sulfate type usually give residues that are too high on account of incomplete drying.
Chapman, Duane C.; Deters, Joseph E.
2009-01-01
Bighead carp Hypophthalmichthys nobilis is an Asian species that has been introduced to the United States and is regarded as a highly undesirable invader. Soft water has been said to cause the bursting of Asian carp eggs and thus has been suggested as a factor that would limit the spread of this species. To evaluate this, we subjected fertilized eggs of bighead carp to waters with a wide range of hardness and dissolved-solid concentrations. Hatching rate and egg size were not significantly affected by the different water qualities. These results, combined with the low hardness (28–84 mg/L) of the Yangtze River (the primary natal habitat of Hypophthalmichthys spp.), suggest that managers and those performing risk assessments for the establishment of Hypophthalmichthys spp. should be cautious about treating low hardness and dissolved-solid concentrations as limiting factors.
Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence
1955-01-01
year period 1947-51, inclusive. Most irrigation wells in the Douglas basin are less than 200 feet in depth and usually produce less than 400 gpm (gallons per minute). The average specific capacity of the wells is about 12 gpm per foot of drawdown. Although water in some parts of the basin is artesian, all irrigation wells must be pumped. Ground water in the basin is generally of excellent to good quality for irrigation use, In small areas along the southern part of Whitewater Draw and east of Douglas the ground water is high in dissolved-solids content. Although most of the water is hard, it is generally satisfactory for domestic use. In many areas the fluoride content is more than 1.5 ppm (parts per million).
Shulkin, Vladimir; Zhang, Jing
2014-11-15
This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Radionuclide solubility and speciation studies for the Yucca Mountain site characterization project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitsche, H.; Roberts, K.; Prussin, T.
1992-12-01
Yucca Mountain, Nevada, USA, is being investigated for its suitability as a potential site for a geologic nuclear waste repository. As part of the site characterization studies, actinide solubilities and speciations were studied at pH 6, 7, and 8.5 at 25{degrees}C in two different groundwaters from the vicinity of Yucca Mountain. The groundwaters differ substantially in total dissolved carbonate concentration, and to a lesser extent in ionic strength. In the waters with higher carbonate content, the solubilities of neptunium(V) decreased, whereas those americium(III) increased at 25{degrees}KC and decreased at 60{degrees}C. The solids formed were sodium neptunium carbonates and americium hydroxycarbonates.more » Plutonium solubilities did not significantly change with changing water composition because the solubility-controlling solids were mostly amorphous Pu(IV) polymers that contained only small amounts of carbonate.« less
Radionuclide solubility and speciation studies for the Yucca Mountain site characterization project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitsche, H.; Roberts, K.; Prussin, T.
1993-12-31
Yucca Mountain, Nevada, U.S.A., is being investigated for its suitability as a potential site for a geologic nuclear waste repository. As part of the site characterization studies, actinide solubilities and speciations were studied at pH 6, 7, and 8.5 at 25{degrees} and 60{degrees}C in two different groundwaters from the vicinity of Yucca Mountain. The groundwaters differ substantially in total dissolved carbonate concentration, and to a lesser extent in ionic strength. In the waters with higher carbonate content, the solubilities of neptunium(V) decreased, whereas those of americium (III) increased at 25{degrees}C and decreased at 60{degrees}C. The solids formed were sodium neptuniummore » carbonates and americium hydroxycarbonates. Plutonium solubilities did not significantly change with changing water composition because the solubility-controlling solids were mostly amorphous Pu(IV) polymers that contained only small amounts of carbonate.« less
Fractions and biodegradability of dissolved organic matter derived from different composts.
Wei, Zimin; Zhang, Xu; Wei, Yuquan; Wen, Xin; Shi, Jianhong; Wu, Junqiu; Zhao, Yue; Xi, Beidou
2014-06-01
An experiment was conducted to determine the fractions of molecular weights (MW) and the biodegradability of dissolved organic matter (DOM) in mature composts derived from dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), sludge (S), and mushroom culture waste (MCW). There were distinct differences in the concentration and MW fractions of DOM, and the two measures were correlated. Fraction MW>5kDa was the major component of DOM in all mature composts. Determined 5day biochemical oxygen demand (BOD5) of DOM was correlated to the concentration of DOM and all MW fractions except MW>5kDa, indicating that the biodegradability of DOM was a function of the content and proportion of fraction MW<5kDa. This study suggests that the amount and distribution of low MW fractions affect DOM biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jiang, Jianguo; Gong, Changxiu; Wang, Jiaming; Tian, Sicong; Zhang, Yujing
2014-03-01
This paper describes a series of studies on the effects of food waste disintegration using an ultrasonic generator and the production of volatile fatty acids (VFAs) by anaerobic hydrolysis. The results suggest that ultrasound treatment can significantly increase COD [chemical oxygen demand], proteins and reducing sugars, but decrease that of lipids in food waste supernatant. Ultrasound pre-treatment boosted the production of VFAs dramatically during the fermentation of food waste. At an ultrasonic energy density of 480W/L, we treated two kinds of food waste (total solids (TS): 40 and 100g/L, respectively) with ultrasound for 15min. The amount of COD dissolved from the waste increased by 1.6-1.7-fold, proteins increased by 3.8-4.3-fold, and reducing sugars increased by 4.4-3.6-fold, whereas the lipid content decreased from 2 to 0.1g/L. Additionally, a higher VFA yield was observed following ultrasonic pre-treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin
2016-10-01
Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Does DOM properties or the amount of DOC induces iron reduction in topsoil porewater?
NASA Astrophysics Data System (ADS)
Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Perényi, Katalin; Jakab, Gergely
2017-04-01
Iron content of porewater in hydromorphic soils shows high temporal variability. This usually correlates with dissolved organic carbon (DOC) content, but the correlation can be weak in some cases. Some studies suggest that ferrous iron stabilizes organic carbon in dissolved state. On the contrary, other papers report about dissolved iron stabilization by dissolved organic matter (DOM). Present study focuses on this apparent contradiction and on the interaction of organic carbon and iron in hydromorphic soils. Studied gleyic Phaeozems (3 profiles) and mollic Gleysols (3 profiles) are located in Geresdi-dombság (Hungary) and in Danube-Tisza Interfluve (Hungary) respectively. Dynamics of porewater pH, EH, have been recorded by field stations at 20, 40 and 100 cm depth during the growing season with 10 min temporal resolution. Porewater occasionally have also been sampled in each depth. The presence of ferrous iron was detected by dipyridil field test. DOC, dissolved nitrogen (DN) and iron were measured by TOC analyser and fl-AAS. Molecular size and molecular weight were measured by photon correlation spectroscope (DLS and SLS). Textural and mineralogical properties of studied soils were also determined. Relationships among studied parameters were tested by Spearman's rank correlation. The seasonal dynamics of redox potential is primarily controlled by saturation, but spatial differences are also driven by vegetation. The environment is usually reductive for iron oxides between March and July, but intensive daily redox fluctuations could be measured in June and July in some topsoils. Short term temporal variability of redox conditions is depended on the physiological activity of plants. Most of the papers published a range between +100 and +50 mV for iron reduction in aquatic systems. Topsoil porewater measurements show three redox ranges where concentration of dissolved iron has been increased: +320 to +200, +80 to +20 and below-160 mV. These ranges were identified independently from each other in various topsoils and subsoils. DOC was correlated with dissolved iron only in the most oxidative topsoils. Therefore we did not find correlation between DOC and dissolved iron in the studied topsoils of Gleysols. Molecular size and molecular weight of DOM have correlated with dissolved iron in all topsoils. We did not find any relationship between dissolved iron and any other properties at 100 cm depth. Presence of colour reaction and the colour intensity of dipyridil test also did not show correlation with measured dissolved iron in all studied topsoils. High ratio of dithionite and oxalate extractable iron of the solid phase and the molecular size measurements suggest that this observation can be explained by an intensive complex formation of ferric iron with low molecular size DOM. This research was supported by Hungarian Scientific Research Fund (OTKA K100180) and Gergely Jakab was supported by János Bolyai Fellowship of the MTA.
Christensen, V.G.; Pope, L.M.
1997-01-01
A network of 34 stream sampling sites was established in the 1,005-square-mile Cheney Reservoir watershed, south-central Kansas, to evaluate spatial variability in concentrations of selected water-quality constituents during low flow. Land use in the Cheney Reservoir watershed is almost entirely agricultural, consisting of pasture and cropland. Cheney Reservoir provides 40 to 60 percent of the water needs for the city of Wichita, Kansas. Sampling sites were selected to determine the relative contribution of point and nonpoint sources of water-quality constituents to streams in the watershed and to identify areas of potential water-quality concern. Water-quality constituents of interest included dissolved solids and major ions, nitrogen and phosphorus nutrients, atrazine, and fecal coliform bacteria. Water from the 34 sampling sites was sampled once in June and once in September 1996 during Phase I of a two-phase study to evaluate water-quality constituent concentrations and loading characteristics in selected subbasins within the watershed and into and out of Cheney Reservoir. Information summarized in this report pertains to Phase I and was used in the selection of six long-term monitoring sites for Phase II of the study. The average low-flow constituent concentrations in water collected during Phase I from all sampling sites was 671 milligrams per liter for dissolved solids, 0.09 milligram per liter for dissolved ammonia as nitrogen, 0.85 milligram per liter for dissolved nitrite plus nitrate as nitrogen, 0.19 milligram per liter for total phosphorus, 0.20 microgram per liter for dissolved atrazine, and 543 colonies per 100 milliliters of water for fecal coliform bacteria. Generally, these constituents were of nonpoint-source origin and, with the exception of dissolved solids, probably were related to agricultural activities. Dissolved solids probably occur naturally as the result of the dissolution of rocks and ancient marine sediments containing large salt deposits. Nutrients also may have resulted from point-source discharges from wastewater-treatment plants. An examination of water-quality characteristics during low flow in the Cheney Reservoir watershed provided insight into the spatial variability of water-quality constituents and allowed for between-site comparisons under stable-flow conditions; identified areas of the watershed that may be of particular water-quality concern; provided a preliminary evaluation of contributions from point and nonpoint sources of contamination; and identified areas of the watershed where long-term monitoring may be appropriate to quantify perceived water-quality problems.
Karthikeyan, G; Sundarraj, A Shunmuga; Elango, K P
2003-10-01
193 drinking water samples from water sources of 27 panchayats of Veppanapalli block of Dharmapuri district of Tamil Nadu were analysed for chemical quality parameters. Based on the fluoride content of the water sources, fluoride maps differentiating regions with high / low fluoride levels were prepared using Isopleth mapping technique. The interdependence among the important chemical quality parameters were assessed using correlation studies. The experimental results of the application of linear and multiple regression equations on the influence of hardness, alkalinity, total dissolved solids and pH on fluoride are discussed.
Fluoride, Nitrate, and Dissolved-Solids Concentrations in Ground Waters of Washington
Lum, W. E.; Turney, Gary L.
1984-01-01
This study provides basic data on ground-water quality throughout the State. It is intended for uses in planning and management by agencies and individuals who have responsibility for or interest in, public health and welfare. It also provides a basis for directing future studies of ground-water quality toward areas where ground-water quality problems may already exist. The information presented is a compilation of existing data from numerous sources including: the Washington Departments of Ecology and Social and Health Services, the Environmental Protection Agency, as well as many other local, county, state and federal agencies and private corporations. Only data on fluoride, nitrate, and dissolved-solids concentrations in ground water are presented, as these constituents are among those commonly used to determine the suitability of water for drinking or other purposes. They also reflect both natural and man-imposed effects on water quality and are the most readily available water-quality data for the State of Washington. The percentage of wells with fluoride, nitrate, or dissolved-solids concentrations exceeding U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations were about 1, about 3, and about 3, respectively. Most high concentrations occurred in widely separated wells. Two exceptions were: high concentrations of nitrate and dissolved solids in wells on the Hanford Department of Energy Facility and high concentrations of nitrate in the lower Yakima River basin. (USGS)
Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida
Navoy, A.S.
1986-01-01
Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)
Güngör, Kerem; Karthikeyan, K G
2008-01-01
The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.
Wang, Ning; Chen, Hong-Zhang
2013-07-01
In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.34% and 1.10% respectively. The α-cellulose content of cornstalk dissolving pulps was up to 93.10-97.10%, the viscosity was 14.37-23.96 mPas, and the yields of cornstalk dissolving pulps were from 10.11% to 12.44%. In addition, the fractionated short fiber was to be hydrolyzed by enzyme to build sugar platform. The constructed method of steam explosion coupling mechanical carding achieved the fractionation of cornstalk into long fiber and short fiber cleanly and effectively, and provided a new way for cornstalk integrated refinery. Copyright © 2013 Elsevier Ltd. All rights reserved.
CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Reboul, S.
2012-06-19
The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.« less
Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène
2010-05-15
The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.
Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M
2009-05-01
The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.
Pope, Larry M.; Diaz, A.M.
1982-01-01
Quality-of-water data, collected October 21-23, 1980, and a statistical summary are presented for 42 coal-mined strip pits in Crawford and Cherokee Counties, Southeastern Kansas. The statistical summary includes minimum and maximum observed values , mean, and standard deviation. Simple linear regression equations relating specific conductance, dissolved solids, and acidity to concentrations of dissolved solids, sulfate, calcium, and magnesium, potassium, aluminum, and iron are also presented. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming
Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten
2015-11-01
Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.
Reductive capacity measurement of waste forms for secondary radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey
2015-12-01
The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less
Electron beam processed transdermal delivery system for administration of an anti-anginal agent
NASA Astrophysics Data System (ADS)
Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.
2002-12-01
Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.
NASA Astrophysics Data System (ADS)
Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan
2017-09-01
This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.
Water quality of hydrologic bench marks; an indicator of water quality in the natural environment
Biesecker, James E.; Leifeste, Donald K.
1974-01-01
Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical divisions of the United States, except the Central Lowland province of the Interior Plains, the Great Plains province of the Interior Plains, and the Basin and Ridge province of the Intermontane Plateaus. The relationship between dissolved-solids concentration and discharge per unit area is least variable in the New England province and Blue Ridge province of the Appalachian Highlands. The dissolved-solids concentration versus discharge per unit area in the Central Lowland province of the Interior Plains is highly variable. A sample collected from the hydrologic bench-mark station at Bear Den Creek near Mandaree, N. Dak., contained 3,420 milligrams per litre dissolved solids. This high concentration in the 'natural' environment indicates that natural processes can be principal agents in modifying the environment and can cause degradation. Average annual runoff and rock type can be used as predictive tools to determine the maximum dissolved-solids concentration expected in the 'natural' environment.
Friedman, I.; Smith, G.I.; Hardcastle, Kenneth G.
1976-01-01
Owens Lake is an alkaline salt lake in a closed basin in southeast California. It is normally nearly dry, but in early 1969, an abnormal runoff from the Sierra Nevada flooded it to a maximum depth of 2??4 m. By late summer of 1971, the lake was again nearly dry and the dissolved salts recrystallized. Changes in the chemistry, pH, and deuterium content were monitored during desiccation. During flooding, salts (mostly trona, halite, and burkeite) dissolved slowly from the lake floor. Their concentration in the lake waters increased as evaporation removed water and salts again crystallized, but winter temperatures caused precipitation of some salts and the following summer warming caused their solution, resulting in seasonal variations in the concentration patterns of some ions. The pH values (9??4-10??4) changed with time but showed no detectable diurnal pattern. The deuterium concentration increased during evaporation and appeared to be in equilibrium with vapor leaving the lake according to the Rayleigh equation. The effective ??(D/H in liquid/D/H in vapor) decreased as salinity increased; the earliest measured value was 1??069 [as total dissolved solids (TDS) of lake waters changed from 136,200 to 250,400 mg/1]and the last value (calc.) was 1??025 (as TDS changed from 450,000 to 470,300 mg/1). Deuterium exchange with the atmosphere was apparently small except during late desiccation stages when the isotopic contrast became great. Eventually, atmospheric exchange, combined with decreasing ?? and lake size and increasing salinity, stopped further deuterium concentration in the lake. The maximum contrast between atmospheric vapor and lake deuterium contents was about 110%. ?? 1976.
Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60
Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.
1968-01-01
Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough to harm fish. Data on alpha and beta particle activities in Devils Lake were insufficient to determine if present activities are less than, equal to, or more than activities before nuclear tests began.Miscellaneous surface waters not in the Devils Lake chain contained dissolved solids that ranged from 239 to 61,200 ppm. The lakes that spill infrequently and have little or no ground-water inflow and outflow generally contain high concentrations of dissolved solids.Salt balance computations for Devils Lake for 1952-60 indicate that a net of as much as 89,000 tons of salts was removed from the bed by the water in some years and as much as 35,000 tons was added to the bed in other years. For the 9-year period, the tons removed exceeded the tons added; the net removed averaged 2.7 tons per acre per year. Pickup of these salts from the bed increased the dissolved solids in the lake water an average of 193 ppni per year. Between 1952 and 1960, 201,000 tons of salt was added to the bed of East Devils Lake, 15,100 tons to the bed of western Stump Lake, and 421,000 tons to the bed of eastern Stump Lake.Laboratory examination of shore and bed material indicated that the shore contained less weight of salt per unit weight of dry, inorganic material than the bed. Calcium and bicarbonate were the chief constituents dissolved from bed material of Devils Lake, whereas sodium and sulfate were the chief constituents dissolved from bed material of East Bay, East Devils Lake, and eastern and western Stump Lakes. Generally, calcium and bicarbonate were the chief constitutents dissolved from shore material of all these lakes.Evidence indicates that not more than 20 percent of the salt that "disappeared" from the water of Devils Lake west of State Route 20 as the lake altitudes decreased years ago will redissolve if the lake altitude is restored.
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
NASA Astrophysics Data System (ADS)
Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.
2011-12-01
A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.
Green, W. Reed
2013-01-01
Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted farther downstream from the source. Differences in concentrations between the baseline condition and the 1.2, 1.5, and 2.0 times baseline concentration scenarios were smaller than the differences in the 5.0 and 10.0 times baseline concentration scenarios. The results for both the 2 m below the surface and 2 m above the bottom were similar, with the exception of concentrations resulting from the increased loading factors (5.0 and 10.0 times), where concentrations 2 m above the bottom were consistently greater than those 2 m below the surface at most segments.
Composition of steam in the system NaCl-KCl-H2O-quartz at 600°C
Fournier, Robert O.; Thompson, J. Michael
1993-01-01
In the system NaCl-KCl-H2O, with and without ??-quartz present, steam was equilibrated in a large-volume reaction vessel with brine and/or precipitated salt at 600??C and pressures ranging from about 100 to 0.4 MPa. Episodically, steam was extracted for chemical analysis, accompanied by a decrease in pressure within the reaction vessel. In the absence of precipitated salt, within the analytical uncertainty stoichiometric quantities of Cl and total alkali, metals (Na + K) dissolve in steam coexisting with chloriderich brine. In contrast, in the presence of precipitated salt (in our experiments halite with some KCl in solid solution), significant excess chloride as associated hydrogen chloride (HCl0??) dissolves in steam. The HCl0 is generated by the reaction of steam with solid NaCl(s), producing solid NaOH(s) that diffuses into halite, forming a solid solution. In our quasistatic experiments, compared to dynamic flow-through experiments of others, higher initial ratios of H2O/NaCl have apparently resulted in higher model fractions of NaOH(s) in solid solution in halite. This, in turn, resulted in incrementally higher concentrations of associated NaOHo dissolved in steam. Addition of quartz to the system NaCl + KC1 + H2O resulted in an order of magnitude increase in the concentration of HCl0 dissolved in steam, apparently as a consequence of the formation of sodium disilicate by reaction of silica with NaOH(s). The measured dissolved silica in steam saturated with alkali halides at 600??C in the pressure range 7-70 MPa agrees nicely with calculated values of the solubility of ??-quartz obtained using the equation of Fournier and Potter (1982), corrected for dissolved salt by the method of fournier (1983). Na K ratios in steam at 600??C tend to be slightly greater than in coexisting brine. When precipitated halite is present, larger mole fractions of NaOH(s) in solid solution in that halite apparently result in even larger Na K ratios in coexisting steam. Precipitation of more halite as a consequence of repeated depressurization episodes results in decreased Na K ratios in both the brine and coexisting steam phases, indicating that the lower pressures begin to favor K over Na in the vapor. When steam is in contact with precipitated salts in the absence of brine, the Na K ratio in the steam is less than that of the bulk composition of the salt-H2O system. ?? 1993.
Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep
2014-01-01
Determination of the 14C content of dissolved inorganic carbon (DIC) is useful for dating of groundwater. However, in addition to radioactive decay, the 14C content in DIC (14CDIC) can be affected by many geochemical and physical processes and numerous models have been proposed to refine radiocarbon ages of DIC in groundwater systems. Changes in the δ13C content of DIC (δ13CDIC) often can be used to deduce the processes that affect the carbon isotopic composition of DIC and the 14C value during the chemical evolution of groundwater. This paper shows that a curved relationship of 14CDIC vs. δ13CDIC will be observed for groundwater systems if (1) the change in δ13C value in DIC is caused by a first-order or pseudo-first-order process, e.g. isotopic exchange between DIC and solid carbonate, (2) the reaction/process progresses with the ageing of the groundwater, i.e. with decay of 14C in DIC, and (3) the magnitude of the rate of change in δ13C of DIC is comparable with that of 14C decay. In this paper, we use a lumped parameter method to derive a model based on the curved relationship between 14CDICand δ13CDIC. The derived model, if used for isotopic exchange between DIC and solid carbonate, is identical to that derived by Gonfiantini and Zuppi (2003). The curved relationship of 14CDIC vs. δ13CDIC can be applied to interpret the age of the DIC in groundwater. Results of age calculations using the method discussed in this paper are compared with those obtained by using other methods that calculate the age of DIC based on adjusted initial radiocarbon values for individual samples. This paper shows that in addition to groundwater age interpretation, the lumped parameter method presented here also provides a useful tool for geochemical interpretations, e.g. estimation of apparent rates of geochemical reactions and revealing the complexity of the geochemical environment.
Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions.
Bunkin, Nikolai F; Ninham, Barry W; Ignatiev, Pavel S; Kozlov, Valery A; Shkirin, Alexey V; Starosvetskij, Artem V
2011-03-01
Results of experiments combining laser modulation interference microscopy and Mueller matrix scatterometry show that macroscopic scatterers of light are present in liquids free of external solid impurities. Experimental data on distilled water and aqueous NaCl solutions of various concentrations as well as physiological saline solution are reported. The experimental data can be interpreted by using a model of micron-scale clusters composed of polydisperse air nanobubbles having effective radii of 70-100 nm. Their concentration increases with the growth of ionic content. We hypothesize that under certain conditions those clusters of nanobubbles can affect the erythrocyte structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ogawa, Yasumasa; Yamada, Ryoichi; Shinoda, Kozo; Inoue, Chihiro; Tsuchiya, Noriyoshi
2014-01-01
The Shozu-gawa river, located in the Aomori Prefecture, northern Japan, is affected by volcanic activities and acid thermal waters. The river is unique because both solid arsenic (As; as orpiment, As2S3) and dissolved As are supplied to the river from the uppermost caldera lake (Usori-ko Lake) and thermal ponds. The watershed is an excellent site for investigating the fate of different As species in a fluvial system. Upstream sediments near the caldera lake and geothermal ponds are highly contaminated by orpiment. This solid phase is transported as far as the mouth of the river. On the other hand, dissolved As is removed from the river system by hydrous ferric oxides (HFOs); however, HFO formation and removal of dissolved As do not occur in the uppermost area of the watershed, resulting in further downstream transport of dissolved As. Consequently, upstream river sediments are enriched in orpiment, whereas As(v), which is associated with HFOs in river sediments, increases downstream. Furthermore, orpiment particles are larger, and possibly heavier, than those of HFO with sorbed As. Fractionation between different chemical states of As during transport in the Shozu-gawa river is facilitated not only by chemical processes (i.e., sorption of dissolved As by HFOs), but also by physical factors (i.e., gravity). In contrast to acid mine drainage (AMD), in some areas of the Shozu-gawa river, both solid forms of As (as sulfide minerals) and dissolved As are introduced into the aquatic system. Considering that the stabilities of sulfide minerals are rather different from those of oxides and hydroxides, river sediments contacted with thermal waters possibly act as sources of As under both aerobic and anaerobic conditions.
Campeau, Audrey; Bishop, Kevin H; Billett, Michael F; Garnett, Mark H; Laudon, Hjalmar; Leach, Jason A; Nilsson, Mats B; Öquist, Mats G; Wallin, Marcus B
2017-12-01
The stability of northern peatland's carbon (C) store under changing climate is of major concern for the global C cycle. The aquatic export of C from boreal peatlands is recognized as both a critical pathway for the remobilization of peat C stocks as well as a major component of the net ecosystem C balance (NECB). Here, we present a full year characterization of radiocarbon content ( 14 C) of dissolved organic carbon (DOC), carbon dioxide (CO 2 ), and methane (CH 4 ) exported from a boreal peatland catchment coupled with 14 C characterization of the catchment's peat profile of the same C species. The age of aquatic C in runoff varied little throughout the year and appeared to be sustained by recently fixed C from the atmosphere (<60 years), despite stream DOC, CO 2 , and CH 4 primarily being sourced from deep peat horizons (2-4 m) near the mire's outlet. In fact, the 14 C content of DOC, CO 2 , and CH 4 across the entire peat profile was considerably enriched with postbomb C compared with the solid peat material. Overall, our results demonstrate little to no mobilization of ancient C stocks from this boreal peatland and a relatively large resilience of the source of aquatic C export to forecasted hydroclimatic changes. © 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.
2016-10-01
We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.
Methods of deoxygenating metals having oxygen dissolved therein in a solid solution
Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang
2017-06-06
A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.
Hydrology and water quality of the Forest County Potawatomi Indian Reservation, Wisconsin
Lidwin, R.A.; Krohelski, J.T.
1993-01-01
Water quality of three lakes on the Reservation is variable and depends on the degree of connection with the ground-water system. In general, Bug Lake and Devils Lake are in poor hydraulic connection with the ground-water system, and their waters contain low concentrations of dissolved solids and alkalinity and low pH. King Lake is in good hydraulic connection with the ground-water system, and its waters contain higher concentrations of dissolved solids and alkalinity and higher pH than Bug and Devils Lakes.
SOURCE ASSESSMENT: RECLAIMING OF WASTE SOLVENTS, STATE OF THE ART
This document reviews the state of the art of air emissions from the reclaiming of waste solvents. The composition, quantity, and rate of emissions are described. Waste solvents are organic dissolving agents which are contaminated with suspended and dissolved solids, organics, wa...
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J
2013-02-01
Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
Medalie, Laura
2014-01-01
Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.
BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2012-05-10
Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. Amore » three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.« less
2012-01-01
Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation. PMID:22920045
NASA Astrophysics Data System (ADS)
Beermann, Oliver; Garbe-Schönberg, Dieter; Bach, Wolfgang; Holzheid, Astrid
2017-01-01
High metal and rare-earth element (REE) concentrations with unusual ('atypical') normalized REE patterns are documented in fluids from active hydrothermal vent fields on the Mid-Atlantic Ridge, 5°S and the East Scotia Ridge. Those fluids show relative enrichment of middle heavy REEs and almost no Eu anomalies in chondrite-normalized patterns. To understand the processes that produce such atypical REE patterns we ran a series of experiments, in which natural bottom seawater or aqueous solutions (NaCl, NaCl-MgCl2, or NaCl-CaCl2) were reacted with gabbro and gabbro mineral assemblages from 300 to 475 °C and 40 and 100 MPa. These P-T conditions are representative for water-rock interactions in hydrothermal root and discharge zones. Fluid flux variability and kinetics were addressed in the experiments by varying the water-to-rock mass ratio (w/r) from 0.5-10 and using different run durations from 3-720 h. Only seawater and synthetic MgCl2-bearing fluid mobilized significant amounts of REEs, Si, Ca, Fe, and Mn from gabbro, from clinopyroxene, and from plagioclase. At 425 °C and 40 MPa, fluids were initially acidic with pH (25 °C) of ∼2 increasing to values between ∼4 and 7 upon progressing reactions. Rare earth element and Fe contents peaked within 3-6 h after interaction with gabbroic mineral grains (125-500 μm) at w/r of 5 (REEs) and 2-5 (Fe) but decreased with continuing reaction without strong REE fractionation. Most of the REEs that were leached from primary minerals and dissolved in the fluids early became redeposited into solid reaction products after 720 h. Contents of dissolved SiO2 were pressure-dependent, being about twofold higher at 100 MPa than at 40 MPa (425 °C) and were below quartz saturation with gabbro and clinopyroxene as solid starting material and close to quartz saturation with plagioclase reactant. However, Si in fluids from the rock-dominated experiments at 100 MPa with gabbro (w/r 0.5-1) dropped to very low contents. A concomitant decrease in chlorinity suggests that these changes may be due to the breakdown of olivine and the formation of serpentine and Fe-hydroxy chlorides. Regardless of the starting solid reactants, fluid REE patterns were dominantly controlled by w/r. Atypical fluid REE patterns and high fluid REE contents were obtained at high w/r (⩾5). Whereas typical REE patterns known from many mid-ocean ridge vent fluids, showing relative enrichments of light REEs and a positive Eu anomaly, were obtained at low w/r of 0.5-1. Our results hence clearly show that REE contents and patterns of vent fluids are sensitive to variations in the w/r.
Application of spherical silicate to prepare solid dispersion dosage forms with aqueous polymers.
Nagane, Kentaro; Kimura, Susumu; Ukai, Koji; Takahashi, Chisato; Ogawa, Noriko; Yamamoto, Hiromitsu
2015-09-30
The objective of this study is to prepare and characterize solid dispersions of nifedipine (NP) using porous spherical silicate micro beads (MB) that were approximately 100 μm in diameter with vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) and a Wurster-type fluidized bed granulator. Compared with previously reported solid dispersion using only MB, the supersaturation of NP dissolved from the proposed system of MB and PVP/VA was maintained during dissolution tests. The proposed system produced a solid dispersion product coated on MB, and morphology was maintained after the coating process to prepare solid dispersion; therefore, the powder characteristics, such as flowability of the proposed solid dispersion product, was tremendously preferable to that of the conventional spray-dried solid dispersions of NP with PVP/VA, expecting to make the consequent manufacturing processes easy for development. Another advantage in the terms of manufacturing is its simple process to prepare solid dispersion by spraying the drug and polymer that were dissolved in an organic solvent onto a MB in a Wurster-type fluidized bed granulator, thus, simplifying the optimization and scale-up with ease. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Nishimura, Shin; Fujiwara, Hirotada
2012-01-01
Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.
Gardner, Philip M.
2018-04-10
Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific conductance, water temperature, pH, and discharge) were made at up to 26 sites along the springs reach. These data demonstrate the interaction between the saline, thermal groundwater system and the Virgin River, and provide estimates of reductions in dissolved-solids loads to the river.The interference tests show that pumping thermal groundwater from the shallow carbonate aquifer adjacent to the springs is effective at capturing high dissolved-solids loads discharging from Pah Tempe Springs before they enter the Virgin River. Discharge measurements made in the Virgin River downstream of the springs reach show that streamflow is reduced by approximately the amount pumped, indicating that complete capture of thermal discharge is possible. During the February 2014 test, the dissolved-solids load removed by pumping (190 tons per day) was approximately equal to the dissolved-solids load reduction observed in the river below the springs reach, indicating near 100-percent efficient capture of spring-sourced dissolved solids. However, an observed decrease in temperature and specific conductance of the pumping discharge during the high-flow test in November 2014 showed that capture of the cool, fresh river water can occur and is more likely at a higher stage in the Virgin River.
Recovery of gold from computer circuit board scrap using aqua regia.
Sheng, Peter P; Etsell, Thomas H
2007-08-01
Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.
Potential of tin (IV) chloride for treatment in Alor Pongsu as stabilized landfill leachate
NASA Astrophysics Data System (ADS)
Zainal, Sharifah Farah Fariza Syed; Aziz, Hamidi Abdul
2017-10-01
Leachate production from landfilling contributes crucial pollutants to the environment. This study examined the potential of tin (IV) chloride as coagulant that involved charge neutralization and sweep flocculation mechanisms. The negative charge of leachate is neutralized by adding tin (IV) chloride as cationic coagulant which resulted precipitation and swept most of the colloids and dissolved solids that entrapped in the settling as hydrous oxide floc. Parameters such as suspended solid (SS) content, color, and chemical oxygen demand (COD) were analyzed using standard jar test procedures. The best condition was observed at pH 8, with removal efficiencies of 75.99 %, 99.29 % and 98.36 % for COD, SS, and color, respectively. At optimum dosage, tin (IV) chloride successfully removed 98.40 % for color, 99.54 % for SS and 71.53 % for COD. These results indicated the satisfactory performance of tin (IV) chloride. Hence, tin (IV) chloride is a potential coagulant for the treatment of Alor Pongsu Landfill leachate.
The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS), including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components incl...
Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...
Armstrong, C.A.
1985-01-01
The investigation was undertaken to define the geohydrology of the Sand Creek-Hanks area and to project probable hydrologic effects of lignite mining on the area. Aquifers occur in sandstone beds in the Fox Hills Sandstone and the Hell Creek Formation of Cretaceous age and in sandstone lenses and lignite beds in the Tongue River and Sentinel Butte Members of the Fort Union Formation of Tertiary age.The top of the Fox Hills aquifer ranges from about 1,200 to 2,000 feet below land surface. Yields of wells completed in the aquifer could be as much as 60 gallons per minute. Water in the Fox Hills aquifer is a sodium bicarbonate type and generallyDepths to the top of the Hell Creek aquifer range from about 900 to 1,600 feet. Well yields range from less than 10 to 40 gallons per minute. Water in the aquifer is a sodium bicarbonate type and generally contains between 1,000 and 2,200 milligrams per liter dissolved solids. Depths to aquifers in the Tongue River and Sentinel Butte Members of Fort Union Formation range from near land surface to about 1,000 feet below land surface. Wells completed in the aquifers may yield as much as 40 gallons per minute of sodium bicarbonate or a sodium sulfate type water that contains about 800 to 4,100 milligrams per liter dissolved solids.Glacial drift covers most of the study area. The drift thickness ranges from a veneer to about 380 feet. Well yields range from a few gallons per minute to 900 gallons per minute. Dissolved-solids concentrations in water from the glacial drift generally range from 477 to 2,050 milligrams per liter. Mining of lignite will destroy all aquifers in and above the mined lignite and will expose overburden to oxidation. Leaching will cause an increase in dissolved solids in ground water immediately beneath the mines and possibly will cause some increase in the dissolved solids in low flows in area streams.
Horwatich, J.A.; Corsi, Steven R.; Bannerman, Roger T.
2004-01-01
A pressurized stormwater filtration system was installed in 1998 as a stormwater-treatment practice to treat runoff from a hospital rooftop and parking lot in Green Bay, Wisconsin. This type of filtration system has been installed in Florida citrus groves and sewage treatment plants around the United States; however, this installation is the first of its kind to be used to treat urban runoff and the first to be tested in Wisconsin. The U.S. Geological Survey (USGS) monitored the system between November 2000 and September 2002 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Fifteen runoff events were monitored for flow and water quality at the inlet and outlet of the system, and comparison of the event mean concentrations and constituent loads was used to evaluate its effectiveness. Loads were decreased in all particulate-associated constituents monitored, including suspended solids (83 percent), suspended sediment (81 percent), total Kjeldahl nitrogen (26 percent), total phosphorus (54 percent), and total recoverable zinc (62 percent). Total dissolved solids, dissolved phosphorus, and nitrate plus nitrite loads remained similar or increased through the system. The increase in some constituents was most likely due to a ground-water contribution between runoff events. Sand/silt split analysis resulted in the median silt content of 78 percent at the inlet, 87 percent at the outlet, and 3 percent at the flow splitter.
Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva
2017-03-08
Solvent annealing is an efficient way of phase separation in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of phase separation is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. Phase separation is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for phase separation at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.
Hayhurst, Brett A.; Fisher, Benjamin N.; Reddy, James E.
2016-07-20
This report presents results of the evaluation and interpretation of hydrologic and water-quality data collected as part of a cooperative program between the U.S. Geological Survey and the U.S. Environmental Protection Agency. Streamflow, phosphorus, and solids dissolved and suspended in stream water were the focus of monitoring by the U.S. Geological Survey at 10 sites on 9 selected tributaries to Lake Ontario during the period from October 2011 through September 2014. Streamflow yields (flow per unit area) were the highest from the Salmon River Basin due to sustained yields from the Tug Hill aquifer. The Eighteenmile Creek streamflow yields also were high as a result of sustained base flow contributions from a dam just upstream of the U.S. Geological Survey monitoring station at Burt. The lowest streamflow yields were measured in the Honeoye Creek Basin, which reflects a decrease in flow because of withdrawals from Canadice and Hemlock Lakes for the water supply of the City of Rochester. The Eighteenmile Creek and Oak Orchard Creek Basins had relatively high yields due in part to groundwater contributions from the Niagara Escarpment and seasonal releases from the New York State Barge Canal.Annual constituent yields (load per unit area) of suspended solids, phosphorus, orthophosphate, and dissolved solids were computed to assess the relative contributions and allow direct comparison of loads among the monitored basins. High yields of total suspended solids were attributed to agricultural land use in highly erodible soils at all sites. The Genesee River, Irondequoit Creek, and Honeoye Creek had the highest concentrations and largest mean yields of total suspended solids (165 short tons per square mile [t/mi2], 184 t/mi2, and 89.7 t/mi2, respectively) of the study sites.Samples from Eighteenmile Creek, Oak Orchard Creek at Kenyonville, and Irondequoit Creek had the highest concentrations and largest mean yields of phosphorus (0.27 t/mi2, 0.26 t/mi2, and 0.20 t/mi2, respectively) and orthophosphate (0.17 t/mi2, 0.13 t/mi2, and 0.04 t/mi2, respectively) of the study sites. These results were attributed to a combination of sources, including discharges from wastewater treatment plants, diversions from the New York State Barge Canal, and manure and fertilizers applied to agricultural land. Yields of phosphorus also were high in the Genesee River Basin (0.17 t/mi2) and were presumably associated with nutrient and sediment transport from agricultural land and from streambank erosion. The Salmon and Black Rivers, which drain a substantial amount of forested land and are influenced by large groundwater discharges, had the lowest concentrations and yields of phosphorus and orthophosphate of the study sites.Mean annual yields of dissolved solids were the highest in Irondequoit Creek due to a high percentage of urbanized area in the basin and in Oak Orchard Creek at Kenyonville and in Eighteenmile Creek due to groundwater contributions from the Niagara Escarpment. High yields of dissolved solids of 840 t/mi2, 829 t/mi2, and 715 t/mi2, respectively, from these basins can be attributed to seasonal chloride yields associated with use of road deicing salts. The Niagara Escarpment can produce large amounts of dissolved solids from the dissolution of minerals (a continual process reflected in base flow samples). Groundwater inflows in the Salmon River have very low concentrations of dissolved solids due to minimal bedrock interaction along the Tug Hill Plateau and discharge from the Tug Hill sand and gravel aquifer, which has minimal mineralization.
Rahman, Ismail Md Mofizur; Islam, M Monirul; Hossain, M Mosharraf; Hossain, M Shahadat; Begum, Zinnat A; Chowdhury, Didarul A; Chakraborty, Milan K; Rahman, M Azizur; Nazimuddin, M; Hasegawa, Hiroshi
2011-02-01
The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh--where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.
Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed
2016-04-08
factors playing an augmenting role. The authors found a seasonal relationship with temperature , pH, and dissolved oxygen (DO). Additionally, they...2011 ), and nutrients (2013). In 1994, a Public Health Advisory ( fish consumption advisory) which is still in place today, was issued by the D.C...Dissolved Solids (TDS) Escherichia coli (E.coli) Temperature Dissolved Oxygen (DO) Total Colifonns - Electrical Conductivity (EC) Nitrate (N03-N
NASA Astrophysics Data System (ADS)
Ebersbach, F.; Böttcher, M. E.; Al-Raei, A. M.; Segl, M.
2009-04-01
Top intertidal sediments show a pronounced zone of activities of sulphate-reducing bacteria. Iron sulfides may be formed, but a substantial part is reoxidized to sulfate. Microbial or chemical reoxidation can be further enhanced by a resuspension of surface sediments by tidal currents or storms. The rates of the different processes depend on the site-secific sedimentological properties (e.g., grain size, iron and sulphur contents etc.). In the present study 3 different areas of the German Wadden Sea were studied: a mud flat in the Jade Bay, and sandy sediments in the intertidals of Spiekeroog and Sylt islands. The latter site is part of an in-situ lugworm-exclusion experiment. The goal was the experimental and field investigation of the fate of iron sulfides and the formation of sulphate upon resuspension of intertidal surface sediments in oxygenated seawater. All sites were geochemically analyzed for dissolved and solid phase iron, manganese, sulphur and carbon phases/species, and sulphate reduction rates were measured using radiotracers. Dissolved chloride and grain sizes analysis where additionally carried out. TOC, S and metal phase contents were higher in mud compared to sandy sediments. Field results demonstrate gross but only minor net sulphide production and a downcore increases in FeS contents, due to intense sulphide oxidation at the surface. Pyrite, on the other hand, was abundant through the sediments due to continuous sediment reworking. The fate of iron-sulphides and accumulation of sulphate as a function of time was followed in batch experiments using dark suspensions of surface sediments in site-bottom waters at room temperature. During the experiments, each sample was shaken continuously under exposition to oxygen, and sub-samples were taken at the beginning and after discrete time intervalls. A very fast oxidation rate of AVS led to a complete exhaustion within a day, whereas Cr(II)-reducible sulfur was inititially built up and then decreased. This observation can be explained by a formation of S° and FeOOH, followed by the oxidation of pyrite. The dissolved species (SO4/Cl ratios) reflected the continuous accumulation of sulphate as an oxidation product. Dissolved inorganic carbonate (DIC) concentrations decreased upon reaction progress, due to the liberation of protons upon iron sulphide oxidation and degassing of carbon dioxide. The 13C/12C ratio of the residual DIC increased due to the preferential desorption of 12CO2. 34S and 18O contents of dissolved sulphate further show process specific isotope discrimination. The experiments demonstrate the importance of oxidation on the fate of FeS , but less pyrite and the formation of sulphate from resuspended intertidal surface sediments. Acknowledgements: The authors gratefully acknowledge discussions and field advice by N. Volkenborn, and financial support from Deutsche Forschungsgemeinschaft during DFG-SPP ‚BioGeoChemistry of the Wadden Sea' (JO 307/4, BO 1584/4), Max Planck Society, and Leibniz-IO Warnemünde.
1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray;
2013-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana
2015-05-15
The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew
2012-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Eikenberry, Stephen E.
1978-01-01
Chemical quality of surface water in the 237-square mile Busseron Creek watershed, in Indiana, is significantly affected by drainage from coal mines and municipalities. Drainage from coal mines is primarily a problem of higher than normal dissolved-solids concentration, whereas, drainage from municipalities is generally a problem of bacteria and phytoplankton. Generally, the water is calcium bicarbonate type, except in streams affected by drainage from coal mines, where the water is a mixed calcium and magnesium sulfate type. Ranges of concentration (in milligrams per liter) of dissolved solids and of some of the chemical constituents dissolved in streams from September 1975 to July 1976 were: dissolved solids, from 104 to 2,610; iron, from 0.00 to 150; sulfate, from 14 to 1,900; chloride, from 3.3 to 130; nitrate (as nitroglen), from 0.01 to 5.3; phosphate (as phosphorus), from 0.1 to 1.7; and total organic carbon, from 2.4 to 60. Range of pH was from 2.7 to 9.6 Ranges of concentration of chlorinated hydrocarbons (in micrograms per kilogram) detected in bed material of streams were: aldrin, from 0.2 to 0.4; chlordane, from 0 to 13; DDE, from 0.0 to 0.3; dieldrin, from 0.0 to 9.8; and heptachlor epoxide, from 0 to 1.0. Streams draining municipalities had high populations of fecal coliform bacteria (as many as 46,000 colonies per 100 milliliter) and phytoplankton (as many as 190 ,000 cells per milliliter). Dissolved-oxygen concentration ranged from 2.8 to 15.0 milligrams per liter.
The Colorado River in the Grand Canyon.
ERIC Educational Resources Information Center
Speece, Susan
1991-01-01
An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…
Cole, Grace; McCaffrey, Joanne; Ali, Ahlam A.; McBride, John W.; McCrudden, Cian M.; Vincente-Perez, Eva M.; Donnelly, Ryan F.; McCarthy, Helen O.
2017-01-01
ABSTRACT DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application. PMID:27846370
Water quality and bathymetry of Sand Lake, Anchorage, Alaska
Donaldson, Donald E.
1976-01-01
Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)
Recovery of iron oxide from coal fly ash
Dobbins, Michael S.; Murtha, Marlyn J.
1983-05-31
A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.
Wahl, Kenneth; Bunker, Bill J.
1986-01-01
Water analyses from the Devonian and Silurian aquifers indicate that they are of similar chemical quality at most locations in the study area. However, they may commonly contain concentrations of sulfate that exceed 1,000 mil grams per liter. Dissolved-solids concentrations as much as 2,350 milligrams per liter occur in the Silurian aquifer in the western and southwestern part of the study area. Water from the Quaternary aquifer generally is suitable for most uses and dissolved-solids concentrations generally are less than 750 milligrams per liter.
Abbott, Marvin M.
2000-01-01
The project was to provide information on the quality of ground water from rural-domestic-water wells within the Osage Reservation and compare the water-quality to proximity to oil wells. About 38,500 oil wells have been drilled in the Reservation since drilling began in 1896. About 1,480 square miles or 64 percent of the Reservation is within a quarter mile of an oil well. The unconfined Quaternary sand aquifer covers about 315 square miles or about 14 percent of the Reservation and the confined Ada-Vamoosa sandstone aquifer covers about 800 square miles or about 35 percent of the Reservation. Fifty-eight percent of the Quaternary aquifer and 69 percent of the outcrop area of the Ada-Vamoosa aquifer are within a quarter mile of an oil well . One hundred twenty domestic ground-water wells were sampled from the Quaternary and Ada-Vamoosa aquifers. Forty-nine percent of the Reservation is underlain by the aquifers. Ground-water quality is good on most of the Reservation, but the use of domestic water-supply wells tend to minimize water-quality problems. Existing water-supply wells commonly are located in areas that produce usable volumes of potable water. Several constituents in samples from the Ada-Vamoosa-aquifer within a quarter mile of an oil well were significantly greater than from the aquifer not near oil wells. The constituents include specific conductance, dissolved solids, sodium, sulfate, chloride, bromide, and silica. These ions are probably derived from brine water. In the Ada-Vamoosa aquifer subgroups, 57 percent of the samples near oil wells and 24 percent of the samples not near oil wells had dissolved-solids concentrations greater than 500 milligrams per liter. The water quality in the Quaternary and Ada-Vamoosa aquifers is similar in areas where no oil wells have been drilled but is significantly different for several constituents. Median concentrations of major constituents from the Ada-Vamoosa aquifer not near oil wells were less than or equal to values from the Quaternary aquifer. Sixty-four percent of the water-quality samples from the Quaternary and 51 percent from the Ada-Vamoosa aquifers have dissolved-solids concentrations less than the secondary drinking water regulations of 500 milligrams per liter. Fifty-nine percent of the aquifer samples in the Quaternary aquifer subgroups not near oil wells and 70 percent of the samples near oil wells had dissolved solids less than 500 milligrams per liter. Areas in the Ada-Vamoosa aquifer near Hominy, Pershing, and Hula Lake have dissolved-solids concentrations greater than the secondary drinking water regulations. Water-quality samples from the Quaternary aquifer in these areas also have dissolved-solids concentrations greater than 500 milligrams per liter.
NASA Astrophysics Data System (ADS)
Adina Morosanu, Gabriela; Zaharia, Liliana; Ioana-Toroimac, Gabriela; Belleudy, Philippe
2017-04-01
The total dissolved solids (TDS) is a river water quality parameter reflecting its concentration in solute ions. It is sensitive to many physical and anthropogenic features of the watershed. In this context, the objective of this work is to analyze the spatial variation of the TDS and to identify the role of the main controlling factors (e.g. geology, soils, land use) in Jiu River and some of its main tributaries, by using a methodology based on GIS and multivariate analysis. The Jiu watershed (10,000 kmp) is located in south-western Romania and it has a high diversity of physical and anthropogenic features influencing the water flow and its quality. The study is based on TDS measurements performed in August, 2016, during low flow conditions in the Jiu River and its tributaries. To measure in situ the TDS (ppm), an EC/TDS/Temperature Hand-held Tester was used in the 12 measuring points on Jiu River and in another 7 points on some of its tributaries. Across the hydrographic basin, the recorded TDS values ranged from 31 ppm to 607 ppm, while in the case of Jiu River, the TDS varied between 38 ppm at Lonea station (upper Jiu River) and 314 ppm at Išalniča (in the lower course). For each catchment corresponding to the sampling points, the influence of some contiguous features was defined on the basis of the lithology (marls, limestones, erodible bedrocks) and soils (clay textures), as well as the land cover/use influencing the solubility and solid content. This assessment was carried out in GIS through a set of spatial statistics analysis by calculating the percentages of the catchment coverage area for each determinant. In order to identify the contributions of different catchment features on the TDS variability, principal components analysis (PCA) was then applied. The results revealed the major role of the marls and clayey soils in the increase of TDS (on the Amaradia and Gilort rivers and some sections in the middle course of the Jiu River). In contrast, turbidity did not play a significant role in the variation of TDS. The presence and extent of agricultural and industrial areas also have some influence, indicated by its positive correlation with TDS, at 95% confidence level. Thus, the main contributory variables in the increase of TDS are the geological substrate and soil texture across watersheds, followed by the anthropogenic disturbances (reflected by agricultural and industrial activities). Keywords: total dissolved solids, Jiu River, PCA, GIS
Cisse, Mady; Vaillant, Fabrice; Acosta, Oscar; Dhuique-Mayer, Claudie; Dornier, Manuel
2009-07-22
Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.
Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion.
Sammour, Omaima A; Hammad, Mohammed A; Megrab, Nagia A; Zidan, Ahmed S
2006-06-16
The purpose of the present investigation was to increase the solubility and dissolution rate of rofecoxib by the preparation of its solid dispersion with polyvinyl pyrrolidone K30 (PVP K30) using solvent evaporation method. Drug-polymer interactions were investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). For the preparation of rofecoxib mouth dissolve tablets, its 1:9 solid dispersion with PVP K30 was used with various disintegrants and sublimable materials. In an attempt to construct a statistical model for the prediction of disintegration time and percentage friability, a 3(2) randomized full and reduced factorial design was used to optimize the influence of the amounts of superdisintegrant and subliming agent. The obtained results showed that dispersion of the drug in the polymer considerably enhanced the dissolution rate. The drug-to-carrier ratio was the controlling factor for dissolution improvement. FTIR spectra revealed no chemical incompatibility between the drug and PVP K30. As indicated from XRD and DSC data, rofecoxib was in the amorphous form, which explains the better dissolution rate of the drug from its solid dispersions. Concerning the optimization study, the multiple regression analysis revealed that an optimum concentration of camphor and a higher percentage of crospovidone are required for obtaining rapidly disintegrating tablets. In conclusion, this investigation demonstrated the potential of experimental design in understanding the effect of the formulation variables on the quality of mouth dissolve tablets containing solid dispersion of a hydrophobic drug.
Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15
Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.
2017-02-23
The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.
ERIC Educational Resources Information Center
Wagner, David; And Others
This volume is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and function of the process units in a wastewater treatment plant. Examples of modules include measuring settleable matter, total solids, dissolved solids, suspended solids, and volatile solids. The…
Further insight into the mechanism of heavy metals partitioning in stormwater runoff.
Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan
2016-03-01
Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Dajun D; Lee, Ping I
2013-11-04
The combination of a rapidly dissolving and supersaturating "spring" with a precipitation retarding "parachute" has often been pursued as an effective formulation strategy for amorphous solid dispersions (ASDs) to enhance the rate and extent of oral absorption. However, the interplay between these two rate processes in achieving and maintaining supersaturation remains inadequately understood, and the effect of rate of supersaturation buildup on the overall time evolution of supersaturation during the dissolution of amorphous solids has not been explored. The objective of this study is to investigate the effect of supersaturation generation rate on the resulting kinetic solubility profiles of amorphous pharmaceuticals and to delineate the evolution of supersaturation from a mechanistic viewpoint. Experimental concentration-time curves under varying rates of supersaturation generation and recrystallization for model drugs, indomethacin (IND), naproxen (NAP) and piroxicam (PIR), were generated from infusing dissolved drug (e.g., in ethanol) into the dissolution medium and compared with that predicted from a comprehensive mechanistic model based on the classical nucleation theory taking into account both the particle growth and ripening processes. In the absence of any dissolved polymer to inhibit drug precipitation, both our experimental and predicted results show that the maximum achievable supersaturation (i.e., kinetic solubility) of the amorphous solids increases, the time to reach maximum decreases, and the rate of concentration decline in the de-supersaturation phase increases, with increasing rate of supersaturation generation (i.e., dissolution rate). Our mechanistic model also predicts the existence of an optimal supersaturation rate which maximizes the area under the curve (AUC) of the kinetic solubility concentration-time profile, which agrees well with experimental data. In the presence of a dissolved polymer from ASD dissolution, these observed trends also hold true except the de-supersaturation phase is more extended due to the crystallization inhibition effect. Since the observed kinetic solubility of nonequilibrium amorphous solids depends on the rate of supersaturation generation, our results also highlight the underlying difficulty in determining a reproducible solubility advantage for amorphous solids.
The Introduction of Crystallographic Concepts Using Lap-Dissolve Slide Techniques.
ERIC Educational Resources Information Center
Bodner, George M.; And Others
1980-01-01
Describes a method using lap-dissolve slide techniques with two or more slide projectors focused on a single screen for presenting visual effects that show structural features in extended arrays of atoms, or ions involving up to several hundred atoms. Presents an outline of an introduction to the structures of crystalline solids. (CS)
A study examined the effect of sunlight-initiated photo-degradation of dissolved organic matter (DOM) on its carboxyl content, and the role of oxygen and iron in this process. Solar-simulated irradiations were performed on 0.2-mm filtered water samples collected from the highly c...
Treatment of kitchen wastewater using Eichhornia crassipes
NASA Astrophysics Data System (ADS)
Parwin, Rijwana; Karar Paul, Kakoli
2018-03-01
The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.
NASA Astrophysics Data System (ADS)
Conver, Timothy S.; Koropchak, John A.
1995-06-01
This paper describes detailed work done in our lab to compare analytical figures of merit for pneumatic, ultrasonic and thermospray sample introduction (SI) systems with three different inductively coupled plasma-atomic emission spectrometry (ICP-AES) instruments. One instrument from Leeman Labs, Inc. has an air path echelle spectrometer and a 27 MHz ICP. For low dissolved solid samples with this instrument, we observed that the ultrasonic nebulizer (USN) and fused silica aperture thermospray (FSApT) both offered similar LOD improvements as compared to pneumatic nebulization (PN), 14 and 16 times, respectively. Average sensitivities compared to PN were better for the USN, by 58 times, compared to 39 times for the FSApT. For solutions containing high dissolved solids we observed that FSApT optimized at the same conditions as for low dissolved solids, whereas USN required changes in power and gas flows to maintain a stable discharge. These changes degraded the LODs for USN substantially as compared to those utilized for low dissolved solid solutions, limiting improvement compared to PN to an average factor of 4. In general, sensitivities for USN were degraded at these new conditions. When solutions with 3000 μg/g Ca were analyzed, LOD improvements were smaller for FSApT and USN, but FSApT showed an improvement over USN of 6.5 times. Sensitivities compared to solutions without high dissolved solids were degraded by 19% on average for FSApT, while those for USN were degraded by 26%. The SI systems were also tested with a Varian Instruments Liberty 220 having a vacuum path Czerny-Turner monochromator and a 40 MHz generator. The sensitivities with low dissolved solids solutions compared to PN were 20 times better for the USN and 39 times better for FSApT, and LODs for every element were better for FSApT. Better correlation between relative sensitivities and anticipated relative analyte mass fluxes for FSApT and USN was observed with the Varian instrument. LOD improvements averaged 18 times lower than PN with FSApT while with USN values averaged 8 times lower. When solutions with high dissolved solids were studied it was found that FSApT still offered 5.5 times better LODs than PN and USN offered 4.6 times better LODs than PN. Sensitivities for FSApT averaged 20 times better, while those for USN were 13 times better compared to PN. Finally, background RSDs on the Varian system were generally higher for FSApT than for the USN for similar sample types. A third instrument used for a small set of elements was a Perkin-Elmer model 5500 ICP-AES. This system has a 27 MHz generator with a N 2 purged Czerny-Turner monochromator. LOD trends, background RSDs, and sensitivities were similar to those with the Leeman instrument. However, matrix effects more closely resembled those seen with the Varian instrument for both SI systems. To compare performance and recoveries on a real sample, a National Institute of Standards and Technology, Standard Reference Material 1643c trace elements in water, was analyzed using the Varian system and it was found that both SI systems offered similar recoveries.
Assessing the Nation's Brackish Groundwater Resources
NASA Astrophysics Data System (ADS)
Stanton, J.; Anning, D. W.; Moore, R. B.; McMahon, P. B.; Bohlke, J. K.; McGuire, V. L.
2014-12-01
Declines in the amount of groundwater in storage as a result of groundwater development have led to concerns about the future availability of freshwater to meet drinking-water, agricultural, industrial, and environmental needs. Industry and public drinking-water suppliers have increasingly turned to nontraditional groundwater sources, such as moderately saline (brackish) groundwater, to supplement or replace the use of freshwater. Despite the growing demand for alternative water sources, a significant potential nontraditional water resource, brackish groundwater, was last assessed almost 50 years ago. The recently (2013) initiated USGS National Brackish Groundwater Assessment, which is part of the National Water Census, will provide an updated systematic national assessment of the distribution of significant brackish groundwater resources and critical information about the hydrogeologic and chemical characterization of brackish aquifers. As part of this study, updated national-scale maps of total dissolved-solids concentrations and chemical water types will be created using data from about 400,000 sites that have been compiled from over 30 national, regional, and state sources. However, available data are biased toward freshwater and shallow systems. Preliminary analysis indicates that about 75 percent of the dissolved-solids concentrations are from freshwater aquifers, and more than 80 percent represent depths less than 500 feet below land surface. Several techniques are used to extend the information contained in the compiled data. For about half of the sites, dissolved-solids concentration was estimated from specific conductance using statistical relations. In addition, for areas where chemical data are not available, regression models are being developed to predict the occurrence of brackish groundwater based on geospatial data such as geology and other variables that are correlated to dissolved-solids concentrations.
Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries
NASA Astrophysics Data System (ADS)
Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.
2014-12-01
Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was uniformly elevated above water dissolved MeHg in the other estuaries studied. Several estuaries had higher MeHg at low tide suggesting input as water was delivered from the watersheds. We conclude that the relative importance of sources is dependent on the physical (water residence time, water depth) and chemical characteristics (sediment organic carbon content) of the estuary.
Solaraj, Govindaraj; Dhanakumar, Selvaraj; Murthy, Kuppuraj Rutharvel; Mohanraj, Rangaswamy
2010-07-01
Delta regions of the Cauvery River basin are one of the significant areas of rice production in India. In spite of large-scale utilization of the river basin for irrigation and drinking purposes, the lack of appropriate water management has seemingly deteriorated the water quality due to increasing anthropogenic activities. To assess the extent of deterioration, physicochemical characteristics of surface water were analyzed monthly in select regions of Cauvery Delta River basin, India, during July 2007 to December 2007. Total dissolved solids, chemical oxygen demand, and phosphate recorded maximum levels of 1,638, 96, and 0.43 mg/l, respectively, exceeding the permissible levels at certain sampling stations. Monsoonal rains in Cauvery River basin and the subsequent increase in river flow rate influences certain parameters like dissolved solids, phosphate, and dissolved oxygen. Agricultural runoff from watershed, sewage, and industrial effluents are suspected as probable factors of water pollution.
Butler, D.L.
1986-01-01
A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and Carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. (USGS)
General surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, D.L.
1986-01-01
A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. 10 refs., 11 figs., 10 tabs.
Zhao, Huifang; Li, Jing; Zhang, Xuejin
2018-06-01
In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study of dissolved oxygen content in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan)
NASA Astrophysics Data System (ADS)
Grigoryeva, N. I.
2017-09-01
Seasonal changes in the dissolved oxygen (DO) content in water were analyzed based on long-term observations (2006-2013) in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan). It was found that the monthly average DO concentrations at the bottom of the strait were significantly lower in summer than the average annual long-term data. The minimum DO contents were recorded during four months, from July to October. It was shown that the DO content in water depended on changes in current directions in the strait: lower DO contents resulted from hypoxic water inflow, mostly from Amur Bay.
Net, Sopheak; Rabodonirina, Suzanah; Sghaier, Rafika Ben; Dumoulin, David; Chbib, Chaza; Tlili, Ines; Ouddane, Baghdad
2015-07-15
Various drug residues, pesticides and phthalates are ubiquitous in the environment. Their presence in the environment has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health. In this work, 14 drug residues, 24 pesticides and 6 phthalates have been quantified in three matrices (in the dissolved phase, associated to suspended solid matter (SSM), and in sediment) collected from fifteen watercourses and rivers located in a highly industrialized zone at the cross-border area of Northern France and Belgium. The extractions have been carried out using accelerated solvent extraction (ASE) for solid matrices (SSM and sediment) and using solid phase extraction (SPE) for liquid matrix. The final extract was analyzed using GC-MS technique. Among the three classes of compounds, phthalates have been found at highest level compared to pesticides and drug residues. The Σ6PAE concentrations were ranging from 17.2±2.58 to 179.1±26.9μgL(-1) in dissolved phase, from 2.9±0.4 to 21.1±3.2μgL(-1) in SSM and from 1.1±0.2 to 11.9±1.8μgg(-1)dw in sediment. The Σ14drug residue concentrations were lower than 1.3μgL(-1) in the dissolved phases, lower than 30ngL(-1) associated to SSM and from nondetectable levels to 60.7±9.1ngg(-1)dw in sediment. For pesticides, all compounds were below the LOQ values in dissolved phase and in sediment, and only EPTC could be quantified in SSM. Copyright © 2015 Elsevier B.V. All rights reserved.
Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki
2013-01-01
We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379
Quality of storm-water runoff, Mililani Town, Oahu, Hawaii, 1980-84
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamane, C.M.; Lum, M.G.
1985-01-01
The data included results from analyses of 300 samples of storm water runoff. Turbidity, suspended solids, Kjeldahl nitrogen, and phosphorus concentrations exceeded the State of Hawaii Department of Health's streamwater standards in more than 50% of the samples. Mercury, lead, and fecal coliform bacteria levels exceeded the US EPAs recommended criteria for either freshwater aquatic life or shellfish harvesting waters in more than half the samples. Other constituents exceeding State or federal standards in at least one sample included pH, cadmium, nitrate plus nitrite, iron, alkalinity, manganese, chromium, copper, zinc, and the pesticides. No statistically significant relationships were found betweenmore » quantity of runoff and concentration of water quality constituents. A first flush effect was observed for chemical oxygen demand, suspended solids, lead, nitrate plus nitrite, fecal coliform bacteria, dissolved solids, and mercury. There were significant differences between the two basins for values of discharge, turbidity, specific conductance, chemical oxygen demand, suspended solids, nitrate plus nitrite, phosphorus, lead, dissolved solids, and mercury. The larger basin had higher median and maximum values, and wider ranges of values. 28 refs., 10 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Fox, P. M.; Davis, J. A.; Bargar, J.; Williams, K. H.; Singer, D. M.; Long, P.
2011-12-01
Bioremediation of uranium in subsurface environments is an approach that has been used at numerous field sites throughout the U.S in an attempt to lower dissolved U(VI) concentrations in groundwater. At the Rifle IFRC research site in Colorado, biostimulation of the native microbial population through acetate amendment for various periods of time has been tested in order to immobilize uranium through reduction U(VI) to U(IV). While this approach has successfully decreased U(VI) concentrations in the dissolved phase, often to levels below the EPA's maximum contaminant level of 0.13 μM, little work has examined the solid-phase accumulation of U during field-scale biostimulation. The lack of information on solid-phase U accumulation is due in large part to the difficulty of obtaining comparable pre- and post-biostimulation field sediment samples. In addition, the relatively low (<10 ppm) U concentrations present in most sediments preclude the use of spectroscopic techniques such as XAS for examining solid-phase U speciation. However, a recently developed technique of performing column experiments in situ has allowed us to overcome both of these problems, obtaining sediment samples which were exposed to the same biogeochemical conditions as subsurface sediments during the course of biostimulation. During the 2010 Rifle IFRC field experiment (dubbed "Super 8"), a number of in situ columns were deployed in various wells representing regions of the aquifer affected by acetate amendment (ambient bicarbonate) and concomitant acetate and bicarbonate amendment (elevated bicarbonate). Elevated levels of bicarbonate have been shown to cause desorption of U(VI) from the solid phase at the Rifle site under non-stimulated conditions, resulting in higher dissolved U(VI) concentrations in the aquifer. The Super 8 field experiment was designed in part to test the effect of elevated bicarbonate concentrations on U sequestration during biostimulation. Results from this experiment provide a comparison of temporal aqueous and solid-phase U concentrations under ambient and elevated bicarbonate conditions during field-scale biostimulation. Additionally, a subset of in situ columns amended with 20 μM U(VI) were analyzed by XANES in order to determine the relative importance of U(VI) and U(IV) in the solid phase. While the elevated bicarbonate concentrations did not impede reduction and sequestration of U, differences in the behavior of dissolved U(VI) after acetate amendment was stopped demonstrate the importance of U adsorption-desorption reactions in controlling dissolved U concentrations post-biostimulation.
NASA Astrophysics Data System (ADS)
Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael
2017-04-01
To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.
The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments
NASA Astrophysics Data System (ADS)
Wang, Xu-chen; Lee, Cindy
1990-10-01
The methylated amines—monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA)—are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using 14C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.
NASA Astrophysics Data System (ADS)
Schwieters, Timo; Evertz, Marco; Mense, Maximilian; Winter, Martin; Nowak, Sascha
2017-07-01
In this work we present a new method using LA-ICP-MS to quantitatively determine the lithium content in aged graphite electrodes of a lithium ion battery (LIB) by performing total depth profiling. Matrix matched solid external standards are prepared using a solid doping approach to avoid elemental fractionation effects during the measurement. The results are compared and matched to the established ICP-OES technique for bulk quantification after performing a microwave assisted acid digestion. The method is applied to aged graphite electrodes in order to determine the lithium immobilization (= "Li loss") in the solid electrolyte interphase after the first cycle of formation. For this, different samples including a reference sample are created to obtain varying thicknesses of the SEI covering the electrode particles. By applying defined charging voltages, an initial lithiation process is performed to obtain specific graphite intercalation compounds (GICs, with target stoichiometries of LiC30, LiC18, LiC12 and LiC6). Afterwards, the graphite electrode is completely discharged to obtain samples without mobile, thus active lithium in its lattice. Taking the amount of lithium into account which originates from the residues of the LiPF6 (dissolved in the carbon components containing electrolyte), it is possible to subtract the amount of lithium in the SEI.
Ion conducting polymers and polymer blends for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra
2017-08-29
Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.
Smith, S; Lizotte, R E
2007-11-01
This study was conducted to assess the influence of suspended solids, dissolved organic carbon, and phytoplankton (as chlorophyll a) water quality characteristics on lambda-cyhalothrin and gamma-cyhalothrin aqueous toxicity to Hyalella azteca using natural water from 12 ponds and lakes in Mississippi, USA with varying water quality characteristics. H. azteca 48-h immobilization EC50 values ranged from 1.4 to 15.7 ng/L and 0.6 to 13.4 ng/L for lambda-cyhalothrin and gamma-cyhalothrin, respectively. For both pyrethroids, EC50 values linearly increased as turbidity, suspended solids, dissolved organic carbon and chlorophyll a concentrations increased.
Materials and Electronic Equipment Corrosion Tests in Some U.S. Navy Geothermal Environments.
1983-03-01
dissolved solids ə 5.0 ə 5.0 Mercury ɘ.0002 ɘ.0002 Lithium ɘ.01 ɘ.01 Silica as Si0 2 ə.0 ə.0 Aluminum 0.1 ɘ.1 Boron 0.01 ɘ.01 Phosphate ɘ.1 ɘ...Nitrate 2.7 Fluoride 2.80 Iron 0.08 Manganese 0.07 Arsenic 0.20 Copper 0.02 Zinc 0.27 Total dissolved solids 7013.0 Mercury ɘ.0002 Lithium 0.16 Silica as...Behavior of Passive Layers on Titanium," Corrosion, Vol. 38 (5), 1982, pp. 237-240. 7. J. S. Smith and J. D. A. Miller. "Nature of Sulphides and Their
Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.
Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha
2018-05-21
This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.
Physical environment and hydrologic characteristics of coal-mining areas in Missouri
Vaill, J.E.; Barks, James H.
1980-01-01
Hydrologic information for the north-central and western coal-mining regions of Missouri is needed to define the hydrologic system in these areas of major historic and planned coal development. This report describes the physical setting, climate, coal-mining practices, general hydrologic system, and the current (1980) hydrologie data base in these two coal-mining regions. Streamflow in both mining regions is poorly sustained. Stream water quality generally varies with location and the magnitude of coal-mining activity in a watershed. Streams in non coal-mining areas generally have dissolved-solids concentrations less than 400 milligrams per liter. Acid-mine drainage has seriously affected some streams by reducing the pH to less than 4.0 and increasing the dissolved-solids concentrations to greater than 1,000 milligrams per liter. This has resulted in fish kills in some instances. Ground-water movement is impeded both laterally and vertically in both mining regions, especially in western Missouri, because of the low hydraulic conductivity of the rocks of Pennsylvanian age. The quality of ground water varies widely depending on location and depth. Ground water commonly contains high concentrations of iron and sulfate, and dissolved-solids concentrations generally are greater than 1,000 milligrams per liter.
Brahana, J.V.; Macy, J.A.; Mulderink, Dolores; Zemo, Dawn
1986-01-01
The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water, The Pennington Formation serves as the base of this aquifer system and is an effective confining unit, The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau, wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies, water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer. only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids, However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.
Brahana, J.V.; Macy, Jo Ann; Mulderink, Dolores; Zemo, Dawn
1986-01-01
The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water. The Pennington Formation serves as the base of this aquifer system and is an effective confining unit. The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau. Wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies. Water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer, only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids. However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.
Payne, J.D.; Kress, W.H.; Shah, S.D.; Stefanov, J.E.; Smith, B.A.; Hunt, B.B.
2007-01-01
During September 2006, the U.S. Geological Survey, in cooperation with the Barton Springs/Edwards Aquifer Conservation District, conducted a geophysical pilot study to determine whether time-domain electromagnetic (TDEM) sounding could be used to delineate the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards aquifer in Travis and Hays Counties, Texas. There was uncertainty regarding the application of TDEM sounding for this purpose because of the depth of the aquifer (200-500 feet to the top of the aquifer) and the relatively low-resistivity clayey units in the upper confining unit. Twenty-five TDEM soundings were made along four 2-3-mile-long profiles in a study area overlying the transition zone near the Travis-Hays County boundary. The soundings yield measurements of subsurface electrical resistivity, the variations in which were correlated with hydrogeologic and stratigraphic units, and then with dissolved solids concentrations in the aquifer. Geonics Protem 47 and 57 systems with 492-foot and 328-foot transmitter-loop sizes were used to collect the TDEM soundings. A smooth model (vertical delineation of calculated apparent resistivity that represents an estimate [non-unique] of the true resistivity) for each sounding site was created using an iterative software program for inverse modeling. The effectiveness of using TDEM soundings to delineate the transition zone was indicated by comparing the distribution of resistivity in the aquifer with the distribution of dissolved solids concentrations in the aquifer along the profiles. TDEM sounding data show that, in general, the Edwards aquifer in the study area is characterized by a sharp change in resistivity from west to east. The western part of the Edwards aquifer in the study area shows higher resistivity than the eastern part. The higher resistivity regions correspond to lower dissolved solids concentrations (freshwater), and the lower resistivity regions correspond to higher dissolved solids concentrations (saline water). On the basis of reasonably close matches between the inferred locations of the freshwater/saline-water transition zone in the Edwards aquifer in the study area from resistivities and from dissolved solids concentrations in three of the four profiles, TDEM sounding appears to be a suitable tool for delineating the transition zone.
Rapid integrated water quality evaluation of Mahisagar river using benthic macroinvertebrates.
Bhadrecha, M H; Khatri, Nitasha; Tyagi, Sanjiv
2016-04-01
The water quality of Mahisagar river, near Galteshwar in Kheda district of Gujarat, India, was assessed through a rapid integrated technique by physicochemical parameters as well as benthic macroinvertebrates. Physicochemical parameters retrieved were pH, color, conductivity, total solids, total suspended solids, total dissolved solids, chlorides, total hardness, calcium hardness, magnesium hardness, alkalinity, turbidity, ammoniacal nitrogen, chemical oxygen demand, biochemical oxygen demand, dissolved oxygen, sulfates, and nitrates. The biological indices calculated were BMWP (Bio Monitoring Working Party) score or saprobic score and sequential comparison index or diversity score. In total, 37 families were encountered along the studied river stretch. The findings indicate that the water quality of Mahisagar river at sampled locations is “slightly polluted.” Moreover, the results of physicochemical analysis are also in consonance with the biological water quality criteria developed by Central Pollution Control Board.
Water quality of Somerville Lake, south-central Texas
McPherson, Emma; Mendieta, H.B.
1983-01-01
The concentration of dissolved solids ranged from 139 to 292 milligrams per liter and averaged about 220 milligrams per liter. Dissolved chloride concentrations ranged from 20 to 68 milligrams per liter and averaged 43 milligrams per liter. Dissolved sulfate concentrations ranged from 30 to 130 milligrams per liter and averaged 63 milligrams per liter. The total hardness of the water ranged from 75 to 140 milligrams per liter, expressed as calcium carbonate, placing it in the moderately hard to hard (61 to 180 milligrams per liter) classification. The concentrations of principal dissolved constituents indicate that Somerville Lake is an excellent source of water for municipal, industrial, or agricultural use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, D.C.; Johnson, C.J.
1979-09-01
In parts of the area, water for domestic use obtained from the fractured crystalline-rock aquifer contained excessive concentrations of dissolved fluoride, dissolved nitrite plus nitrate, dissolved solids, dissolved iron, dissolved manganese, dissolved zinc, coliform bacteria, gross alpha radiation, and gross beta radiation. Based on water-quality analyses from 26 wells located in small urbanized areas, water from 21 of the wells contained excessive concentrations of one or more constituents. Local variations in concentrations of 15 chemical constituents, specific conductance, and water temperature were statistically significant. Depths to water in 11 non-pumping wells ranged from 1 to 15 feet annually. Three-year trendsmore » in water-level changes in 6 of the 11 wells indicated a decrease in stored water in the aquifer.« less
MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N
2017-10-01
A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.
2016-11-28
In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration.
Potential for leaching of arsenic from excavated rock after different drying treatments.
Li, Jining; Kosugi, Tomoya; Riya, Shohei; Hashimoto, Yohey; Hou, Hong; Terada, Akihiko; Hosomi, Masaaki
2016-07-01
Leaching of arsenic (As) from excavated rock subjected to different drying methods is compared using sequential leaching tests and rapid small-scale column tests combined with a sequential extraction procedure. Although the total As content in the rock was low (8.81 mg kg(-1)), its resulting concentration in the leachate when leached at a liquid-to-solid ratio of 10 L kg(-1) exceeded the environmental standard (10 μg L(-1)). As existed mainly in dissolved forms in the leachates. All of the drying procedures applied in this study increased the leaching of As, with freeze-drying leading to the largest increase. Water extraction of As using the two tests showed different leaching behaviors as a function of the liquid-to-solid ratio, and achieved average extractions of up to 35.7% and 25.8% total As, respectively. Dissolution of As from the mineral surfaces and subsequent re-adsorption controlled the short-term release of As; dissolution of Fe, Al, and dissolved organic carbon played important roles in long-term As leaching. Results of the sequential extraction procedure showed that use of 0.05 M (NH4)2SO4 underestimates the readily soluble As. Long-term water extraction removed almost all of the non-specifically sorbed As and most of the specifically sorbed As. The concept of pollution potential indices, which are easily determined by the sequential leaching test, is proposed in this study and is considered for possible use in assessing efficacy of treatment of excavated rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.
2008-01-01
Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to May 1986 and 1987, and slightly greater than measured data in August and September 1987. Relative to the calibration period, simulated water temperatures during the verification period did not compare as well to measured water temperatures. In general, simulated dissolved-oxygen concentrations for the calibration period compared well to measured concentrations in Pueblo Reservoir. Spatially, simulated concentrations deviated more from the measured values at the downstream part of the reservoir than at other locations in the reservoir. Overall, the absolute mean error ranged from 1.05 (site 1B) to 1.42 milligrams per liter (site 7B), and the root mean square error ranged from 1.12 (site 1B) to 1.67 milligrams per liter (site 7B). Simulated dissolved oxygen in the verification period compared better to the measured concentrations than in the calibration period. The absolute mean error ranged from 0.91 (site 5C) to 1.28 milligrams per liter (site 7B), and the root mean square error ranged from 1.03 (site 5C) to 1.46 milligrams per liter (site 7B). Simulated total dissolved solids generally were less than measured total dissolved-solids concentrations in Pueblo Reservoir from October 1985 through September 1987. The largest differences between simulated and measured total dissolved solids were observed at the most downstream sites in Pueblo Reservoir during the second year of the calibration period. Total dissolved-solids data were not available from reservoir sites during the verification period, so in-reservoir specific-conductance data were compared to simulated total dissolved solids. Simulated total dissolved solids followed the same patterns through time as the measured specific conductance data during the verification period. Simulated total nitrogen concentrations compared relatively well to measured concentrations in the Pueblo Reservoir model. The absolute mean error ranged from 0.21 (site 1B) to 0.27 milligram per liter as nitrogen (sites 3B and 7
Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.
2014-01-01
Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.
NASA Astrophysics Data System (ADS)
Mohamed, N.; Ariffin, N. A. N.; Mohamed, C. A. R.
2016-07-01
Distribution of 226Ra and 228Ra radioactive in marine have been studied at Kapar coastal area that closed to Sultan Salahudin Abdul Aziz Shah (SJSSAS) power station. The concentration level of 226Ra and 228Ra were measured in seawater include total suspended solids (TSSrw) and dissolved phases from September 2006 to February 2008. The measurement technique used for 226Ra and 228Ra was using cation exchange column and counted using Liquid Scintillator Ciunter (LSC). The radioactivities of 226Rasw and 228Rasw in the dissolved phase of seawater ranged from 1.29 ± 0.52 mBq/L - 3.69 ± 1.29 mBq/L and 2.12 ± 0.71 mbq/L - 17.07 ± 6.03 mBq/L respectively. The measurement of radioactivities of radium isotopes in the particulate phase of seawater ranged from 15.62 ± 1.99 Bq/kg - 241.76 ± 100.23 Bq/kg (226Ratsw) and 7.19 ± 3.21 Bq/kg - 879.66 ± 365.74 Bq/kg (228Ratsw). Radium isotopes inventory in this study showed that suspended solid have higher inventory value than seawater and sediment. Study also found that suspended solid play an important role for flux contribution at seawater. Based on the finding, the radioactivity concentration of 226Ra and 228Ra is higher in particulate phase than in dissolved phase.
Gallagher, D L; Johnston, K M; Dietrich, A M
2001-08-01
The fate and distribution of copper-based crop protectants, applied to plasticulture tomato fields to protect against disease, were investigated in a greenhouse-scale simulation of farming conditions in a coastal environment. Following rainfall, 99% of the applied copper was found to remain on the fields sorbed to the soil and plants; most of the soil-bound copper was found sorbed to the top 2.5 cm of soil between the plasticulture rows. Of the copper leaving the agricultural fields, 82% was found in the runoff with the majority, 74%. sorbed to the suspended solids. The remaining copper, 18%, leached through the soil and entered the groundwater with 10% in the dissolved phase and 8% sorbed to suspended solids. Although only 1% copper was found to leave the field, this was sufficient to cause high copper concentrations (average 2102+/-433 microg/L total copper and 189+/-139 microg/L dissolved copper) in the runoff. Copper concentrations in groundwater samples were also high (average 312+/-198 microg/L total copper and 216+/-99 microg/L dissolved copper). Sedimentation, a best management practice for reducing copper loadings. was found to reduce the total copper concentrations in runoff by 90% to a concentration of 245+/-127 microg/L; however, dissolved copper concentrations remained stable, averaging 139+/-55 microg/L. Total copper concentrations were significantly reduced by the effective removal of suspended solids with sorbed copper.
Christensen, V.G.
2001-01-01
Because of the considerable wildlife benefits offered by the Quivira National Wildlife Refuge in south-central Kansas, there is a desire to ensure suitable water quality. To assess the quality of water flowing from Rattlesnake Creek into the refuge, the U.S. Geological Survey collected periodic water samples from December 1998 through June 2001 and analyzed the samples for physical properties, dissolved solids, total suspended solids, suspended sediment, major ions, nutrients, metals, pesticides, and indicator bacteria. Concentrations of 10 of the 125 chemicals analyzed did not meet water-quality criteria to protect aquatic life and drinking water in a least one sample. These were pH, turbidity, dissolved oxygen, dissolved solids, sodium, chloride, phosphorus, total coliform bacteria, E. coli bacteria, and fecal coliform bacteria. No metal or pesticide concentrations exceeded water-quality criteria. Twenty-two of the 43 metals analyzed were not detected, and 36 of the 46 pesticides analyzed were not detected. Because dissolved solids, sodium, chloride, fecal coliform bacteria, and other chemicals that are a concern for the health and habitat of fish and wildlife at the refuge cannot be measured continuously, regression equations were developed from a comparison of the analytical results of periodic samples and in-stream monitor measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen. A continuous record of estimated chemical concentrations was developed from continuously recorded in-stream measurements. Annual variation in water quality was evaluated by comparing 1999 and 2000 sample data- the 2 years for which complete data sets were available. Median concentrations of alkalinity, fluoride, nitrate, and fecal coliform bacteria were smaller or did not change from 1999 to 2000. Dissolved solids, total suspended solids, sodium, chloride, sulfate, total organic nitrogen, and total phosphorus had increases in median concentrations from 1999 to 2000. Increases in the median concentrations of the major ions were expected due to decreased rainfall in 2000 and very low streamflow late in the year. Increases for solids and nutrients may have been due to the unusually high streamflow in the early spring of 2000. This was the time of year when fields were tilled, exposing solids and nutrients that were transported with runoff to Rattlesnake Creek. Load estimates indicate the chemical mass transported into the refuge and can be used in the development of total maximum daily loads (as specified by the U.S. Environmental Protection Agency) for water-quality contaminants in Rattlesnake Creek. Load estimates also were used to evaluate seasonal variation in water quality. Seasonal variation was most pronounced in the estimates of nutrient loads, and most of the nutrient load transported to the refuge occurred during just a few periods of surface runoff in the spring and summer. This information may be used by resource managers to determine when water-diversion strategies would be most beneficial. Load estimates also were used to calculate yields, which are useful for site comparisons. The continuous and real-time nature of the record of estimated concentrations, loads, and yields may be important for resource managers, recreationalists, or others for evaluating water-diversion strategies, making water-use decisions, or assessing the environmental effects of chemicals in time to prevent adverse effects on fish or other aquatic life at the refuge.
Müller, Christoph; Vetter, Florian; Richter, Elmar; Bracher, Franz
2014-02-01
The occurrence of the bioactive components caffeine (xanthine alkaloid), myosmine and nicotine (pyridine alkaloids) in different edibles and plants is well known, but the content of myosmine and nicotine is still ambiguous in milk/dark chocolate. Therefore, a sensitive method for determination of these components was established, a simple separation of the dissolved analytes from the matrix, followed by headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS/MS). This is the first approach for simultaneous determination of caffeine, myosmine, and nicotine with a convenient SPME technique. Calibration curves were linear for the xanthine alkaloid (250 to 3000 mg/kg) and the pyridine alkaloids (0.000125 to 0.003000 mg/kg). Residuals of the calibration curves were lower than 15%, hence the limits of detection were set as the lowest points of the calibration curves. The limits of detection calculated from linearity data were for caffeine 216 mg/kg, for myosmine 0.000110 mg/kg, and for nicotine 0.000120 mg/kg. Thirty samples of 5 chocolate brands with varying cocoa contents (30% to 99%) were analyzed in triplicate. Caffeine and nicotine were detected in all samples of chocolate, whereas myosmine was not present in any sample. The caffeine content ranged from 420 to 2780 mg/kg (relative standard deviation 0.1 to 11.5%) and nicotine from 0.000230 to 0.001590 mg/kg (RSD 2.0 to 22.1%). © 2014 Institute of Food Technologists®
Kinnarinen, Teemu; Huhtanen, Mikko; Penttilä, Mika; Häkkinen, Antti
2013-02-01
Fly ash is generated in large quantities by waste incineration processes. Chloride is commonly present in the fly ash produced by the incineration of hazardous materials, such as polyvinylchloride plastic. Major difficulties related to the disposal and handling of fly ash include the high concentration of easily leachable chlorides, heavy metals and toxic compounds. In order to avoid adverse environmental effects from the disposal of fly ash, the content of soluble chlorides must be reduced. One of the most effective options for chloride removal is leaching and displacement washing in a filter press. The primary aim of this study was to obtain efficient removal of chloride from fly ash by utilizing a leaching and displacement washing process, carried out in a filter press. The secondary objective was to obtain high filtration capacities and low filter cake moisture contents. The slurry was prepared by mixing fly ash with water at an ash:water ratio of 1:2 and filtered to separate the solids from the liquid. After solid-liquid separation, most of the dissolved residual chloride was removed from the filter cake by washing the cake with fresh water in the second stage of separation. It was possible to remove up to 98% of the total chloride and to obtain sufficient filtration capacities. The residual moisture content of the filter cakes varied from 22 to 35 wt%, which meant that the cakes could be disposed of in landfill, or possibly utilized as a construction material.
NASA Astrophysics Data System (ADS)
Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.
2016-09-01
A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.
Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing
2015-02-01
The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production.
de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun
2007-01-01
Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.
NASA Astrophysics Data System (ADS)
Solonenko, A. P.
2018-01-01
Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.
TELEPHONIC PRESENTATION: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Hill, B.R.; Gilliom, R.J.
1993-01-01
The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum, chromium, copper, iron, manganese, nickel, and zinc, none of which cause significant water-quality problems in the river.
Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection
Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan
2011-01-01
Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O2 content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. PMID:21497566
Xiao, Jin; Yuan, Jie; Tian, Zhongliang; Yang, Kai; Yao, Zhen; Yu, Bailie; Zhang, Liuyun
2018-01-01
The spent cathode carbon (SCC) from aluminum electrolysis was subjected to caustic leaching to investigate the different effects of ultrasound-assisted and traditional methods on element fluorine (F) leaching rate and leaching residue carbon content. Sodium hydroxide (NaOH) dissolved in deionized water was used as the reaction system. Through single-factor experiments and a comparison of two leaching techniques, the optimum F leaching rate and residue carbon content for ultrasound-assisted leaching process were obtained at a temperature of 70°C, residue time of 40min, initial mass ratio of alkali to SCC (initial alkali-to-material ratio) of 0.6, liquid-to-solid ratio of 10mL/g, and ultrasonic power of 400W, respectively. Under the optimal conditions, the leaching residue carbon content was 94.72%, 2.19% larger than the carbon content of traditional leaching residue. Leaching wastewater was treated with calcium chloride (CaCl 2 ) and bleaching powder and the treated wastewater was recycled caustic solution. All in all, benefiting from advantage of the ultrasonication effects, ultrasound-assisted caustic leaching on spent cathode carbon had 55.6% shorter residue time than the traditional process with a higher impurity removal rate. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemistry of manganese precipitation in Pinal Creek, Arizona, USA: A laboratory study
Hem, J.D.; Lind, Carol J.
1994-01-01
Groundwater underlying the valley of Pinal Creek downstream from Globe, Arizona, has been contaminated by low-pH metal-enriched wastewater from copper mining and ore processing at Miami, Arizona. At present, the acidity and most of the dissolved metal content, except for Mn, of the wastewater is removed by reactions with carbonate and other solids in the alluvial aquifer before the neutralized contaminated water enters the creek channel and becomes surface flow. Where flow in the creek is perennial, Mn-bearing precipitates are formed in the stream bed and in some places in the subsurface. As an aid to understanding the processes involved and explaining the mineralogy of the precipitates, closely controlled laboratory redox titration experiments were performed on samples of surface flow and groundwater taken near the head of perennial flow in the creek. The high content of dissolved Ca, Mg, Mn and COP2 species in the neutralized contaminated groundwater caused precipitation of some of the Mn as kutnahorite, (Mn, Mg)Ca(CO3)2, when the experimental system was held between pH 8.5 and 9.0 while CO2-free air was bubbled into the solution. Hausmannite and manganite also were precipitated, in somewhat lower amounts. When the concentrations of dissolved CO2 species in the groundwater sample were decreased before the experiment was started, the Mn precipitated was predominantly in the oxides hausmannite and manganite. In some of the experimental titrations clinoenstatite, (MgSiO3), was precipitated. After titrations were stopped the solutions and precipitates were allowed to stand, with limited access to the atmosphere, for several months. During this aging period the degree of oxidation of the precipitated Mn increased and in one precipitate from an experimental solution the Ca + Mn4+ oxides todorokite and takanelite were identified. These oxides also have been identified in streambed precipitates. Some of these precipitates also gave X-ray diffraction reflections for kutnahorite. Thermodynamic feasibilities of eight potential chemical reactions forming solid phases of interest were evaluated by calculating their respective reaction affinities attained during titration and aging. The results are in general agreement with the indications for the presence of these species given by X-ray and electron diffraction. The presence of carbonates in precipitated encrustations formed from groundwater below the land surface and their occurrence in manganese oxide crusts that precipitate from the creek water, also are predicted by these results. ?? 1994.
High-Intensity Sweeteners in Alternative Tobacco Products.
Miao, Shida; Beach, Evan S; Sommer, Toby J; Zimmerman, Julie B; Jordt, Sven-Eric
2016-11-01
Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco toxicants. This study is the first to quantify high intensity sweeteners in snus and dissolvable products. Snus and dissolvables contain the high intensity sweetener, sucralose, at levels higher than in confectionary products. The high sweetness of alternative tobacco products makes these products attractive to adolescents. Regulation of sweetener content in non-cigarette products is suggested as an efficient means to control product palatability and to reduce initiation in adolescents. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.
High-Intensity Sweeteners in Alternative Tobacco Products
Miao, Shida; Beach, Evan S.; Sommer, Toby J.; Zimmerman, Julie B.
2016-01-01
Introduction: Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Methods: Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization–mass spectrometry (LC-ESI-MS). Results: All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Discussion: Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Implications: Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco toxicants. This study is the first to quantify high intensity sweeteners in snus and dissolvable products. Snus and dissolvables contain the high intensity sweetener, sucralose, at levels higher than in confectionary products. The high sweetness of alternative tobacco products makes these products attractive to adolescents. Regulation of sweetener content in non-cigarette products is suggested as an efficient means to control product palatability and to reduce initiation in adolescents. PMID:27217475
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, S.K.; Hames, B.R.; Myers, M.D.
1998-03-24
A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.
1998-01-01
A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Duwelius, R.F.; Greeman, T.K.
1989-01-01
Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.
Wu, Junliang; Ren, Yufen; Wang, Xuemei; Wang, Xiaoke; Chen, Liding; Liu, Gangcai
2015-10-01
Roofs and roads, accounting for a large portion of the urban impervious land surface, have contributed significantly to urban nonpoint pollution. In this study, in Beijing, China, roof and road runoff are sampled to measure the suspended solids (SS), nitrogen (N), and phosphorus (P) contained in particles with different sizes. The SS content in the road runoff (151.59 mg/L) was sevenfold that in the roof runoff (21.13 mg/L, p < 0.05). The SS contained more coarse particulates in the roof runoff than in road runoff. The small particulates in the range of 0.45-50 μm consisted of 59 % SS in the roof runoff and 94 % SS in the road runoff. P was mainly attached to particle sizes of 10-50 μm in the roof (73 %) and road (48 %) runoffs, while N was mainly in a dissolved phase state in both runoffs. So, the different associations of N and P raise a challenge in preventing stormwater pollution in urban environments.
Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials
Amirbahman, A.; Kent, D.B.; Curtis, G.P.; Davis, J.A.
2006-01-01
The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g-1) and reductively extractable iron contents (18-26 ??mol m-2), but with varying total manganese contents (0.5-3.5 ??mol m-2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the concentrations of the free oxidative surface sites and dissolved As(III), as r As(V) = k???ox [Mn(IV) OH3][AsO3] with apparent second-order rate constants of koxf??? = 6.28 ?? 10-1 and koxs??? = 1.25 ?? 10-2 M-1 s-1 for the fast and the slow oxidative sites, respectively. The As(III) removal rate decreased approximately by half for a pH increase from 4 to 7. The pH dependence was explained using the acid-base behavior of the surface oxidative sites by considering a surface pKa = 6.2 (I = 0). In the presence of excess surface adsorptive and oxidative sites, phosphate diminished the rate of As(III) removal and As(V) production only slightly due to its interaction with the oxidative sites. The observed As(III) oxidation rate here is consistent with previous observations of As(III) oxidation over short transport distances during field-scale transport experiments. The model developed here may be incorporated into groundwater transport models to predict arsenic speciation and transport in chemically heterogeneous systems. ?? 2005 Elsevier Inc. All rights reserved.
Coffin, Donald L.; Horr, Clarence Albert
1967-01-01
This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and flood-plain width indicates that floodflows percolate to the ground-water reservoir. In the project area at least 94,000 acre-feet of water is evaporated and transpired from the valley fill along Big Sandy Creek, 1,500 acre-feet is pumped, 250 acre-feet leaves the area as underflow, and 10,000 acre-feet leaves as surface flow. Surface-water irrigation has been unsuccessful because of the failure of diversion dams and because of excessive seepage from reservoirs. Ground-water irrigation dates from about World War I; most of the 30 irrigation wells now in use, however, were drilled after 1937. Iv 1960 less than 1,000 acre-feet of water was pumped for irrigation, about 500 acre-feet was pumped for municipal use, and less than 10 acre-feet was pumped for rural use (stock and domestic). Although additional water is available in the valley-fill deposits of Big Sandy and Rush Creeks, large-scale irrigation probably will not develop in the immediate future; soils are unsuitable for crops in many places, and large water supplies are not available from individual wells. The dissolved-solids content of the ground water in the valley-fill deposits ranges from 507 to 5,420 parts per million. In the Big Sandy Creek valley the dissolved-solids content generally increases downstream, whereas in the Rush Creek valley the dissolved-solids content decreases downstream. Ground water in the Big Sandy Creek valley is suitable for most uses.
Dissolution actuated sample container
Nance, Thomas A.; McCoy, Frank T.
2013-03-26
A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.
Farrah, S R; Bitton, G
1983-01-01
The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978
PRESENTED 04/05/2006: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
PRESENTED MAY 10, 2005, MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.
Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin
2018-02-01
The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.
Aines, Roger D.; Bourcier, William L.; Viani, Brian
2013-01-29
A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.
Lithium-Based High Energy Density Flow Batteries
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Quality of ground water in the Columbia Basin, Washington, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turney, G.L.
1986-01-01
Groundwater from 188 sites in the Columbia Basin of central Washington was sampled and analyzed in 1983 for pH, specific conductance, and concentrations of fecal coliform bacteria, major dissolved ions, and dissolved iron, manganese, and nitrate. Twenty of the samples were also analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were sodium bicarbonate and calcium bicarbonate. The sodium bicarbonate water samples had higher pH, fluoride, and sodium:adsorption ratio values than samples with other water types. Most trace metal concentrations were also < 10 ug/Lmore » except for barium and zinc, which had maximum concentrations of 170 and 600 ug/L, respectively. Nitrate concentrations were < 1.0 mg/L in water from more than half the wells sampled. US EPA (Environmental Protection Agency) drinking water regulations were exceeded in several samples, most commonly involving pH and concentrations of fluoride, nitrate, and dissolved solids in samples from Adams and Grant Counties. Generally, the historical data lead to similar conclusions about the quality of groundwater in the Columbia Basin region. However, historical samples had higher dissolved solids concentrations in Douglas County. Historical samples also included fewer sodium bicarbonate type waters in the region as a whole than the 1983 samples. 24 refs., 2 figs., 4 tabs.« less
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678
Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert
2011-01-01
The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and PAH—are not included in the lists of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Similar to the HSD, the average efficiency ratios and SOLs for TDS and Cl were negative. Flow rates, high concentrations of SS, and particle-size distributions (PSD) can affect the treatment efficacies of the two devices. Flow rates equal to or greater than the design flow rate of the HSD had minimal or negative removal efficiencies for TSS and SS loads. Similar TSS removal efficiencies were observed at the SFD, but SS was consistently removed throughout the flow regime. Removal efficiencies were high for both devices when concentrations of SS and TSS approached 200 mg/L. A small number of runoff events were analyzed for PSD; the average sand content at the HSD was 33 percent and at the SFD was 71 percent. The 71-percent sand content may reflect the 90-percent removal efficiency of SS at the SFD. Particles retained at the bottom of both devices were largely sand-size or greater.
Yanagida, Hirotaka
2008-04-01
The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.
Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352
Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.
Controls on the quality of harvested rainwater in residential systems
NASA Astrophysics Data System (ADS)
Sojka, S. L.; Phung, D.; Hollingsworth, C.
2014-12-01
Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.
Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E
2015-02-17
Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.
Physical, chemical, and biological characteristics of Pueblo Reservoir, Colorado, 1985-89
Lewis, Michael E.; Edelmann, Patrick
1994-01-01
Physical, chemical, and biological characteristics of Pueblo Reservoir are described on the basis of data collected from spring 1985 through fall 1989. Also included are discussions of water quality of the upper Arkansas River Basin and the reservoir as they relate to reservoir operations. Pueblo Reservoir is a multipurpose, main-stem reservoir on the Arkansas River about 6 miles west of Pueblo, Colorado. At the top of its conservation pool, the reservoir is more than 9 miles long and ranges in depth from a few feet at the inflow to about 155 feet at the dam. Pueblo Reservoir derives most of its contents from the Arkansas River, which comprises native and transmountain flow. With respect to water temperature, the reservoir typically was well mixed to weakly stratified during the early spring and gradually became strongly stratified by May. The strong thermal stratification and underflow of the Arkansas River generally persisted into August, at which time the reservoir surface began to cool and the reservoir subsequently underwent fall turnover. Following fall turnover, the reservoir was stratified to some degree in the shallow upstream part and well mixed in the deeper middle and downstream parts. Reservoir residence times were affected by the extent of stratification present. When the reservoir was well mixed, residence times were as long as several months. During the summer when the reservoir was strongly stratified, reservoir releases were large, and when underflow was the prevalent flow pattern of the Arkansas River, reservoir residence times were as short as 30 days.Most particulate matter settled from the water column between the inflow and a distance of about 5 miles downstream. On occasions of large streamflows and sediment loads from the Arkansas River, particulate matter was transported completely through the reservoir. Water transparency, as measured with a Secchi disk, increased in a downstream direction from the reservoir inflow. The increase probably was a result of sediment settling from the water column in the upstream part of the reservoir. Secchi-disk depths in December through April were larger than those in May through November. Secchi-disk depths were small between May through August as inflow sediment loads and reservoir biomass increased. In the fall, Secchi-disk depths remained small possibly as the result of resuspension of sediment and detritus within the water column. Dissolved-oxygen concentrations generally were near supersaturation near the reservoir surface. Dissolved-oxygen concentrations decreased with increasing depth. On several occasions during the summer, dissolved oxygen became completely depleted in the hypolimnion of the downstream part of the reservoir. The most extensive period of anoxia that was measured was in August 1988; the bottom 12 to 30 feet of the downstream end of the reservoir was anoxic. Fall turnover typically resulted in well-oxygenated conditions throughout the water column from September or October through the spring. Values of pH ranged from 7.5 to 9.0 and typically were largest near the surface and decreased with depth.Dissolved-solids concentrations in the reservoir primarily are affected by dissolved solids in the inflow from the Arkansas River. Concentrations are largest during periods of decreased streamflows, September through April, and decrease with increasing streamflows in May through August. The median dissolved-solids concentration increased from 224 milligrams per liter at the inflow to 262 milligrams per liter at the outflow. However, a statistical analysis of dissolved solids indicated the apparent increase in dissolved-solids concentrations between the inflow and outflow was not significant. Calcium, sulfate, and bicarbonate are the major dissolved ions in Pueblo Reservoir.Concentrations of the major nutrients, nitrogen and phosphorus, varied within the reservoir because of settling of particulate matter, uptake by phytoplankton near the reservoir surface, and releases from the reservoir bottom sediments. Phosphorus was indicated to be a potentially growth-limiting nutrient in the reservoir because of its relatively small concentrations. During 1986 and 1987, the reservoir retained about 35 percent (359 tons) of the total nitrogen load and about 83 percent (203 tons) of the total phosphorus load. Settling of particulate matter from the water column and uptake by phytoplankton are the major nutrient sinks in the reservoir.Barium, iron, manganese, and zinc were the major trace elements in Pueblo Reservoir. Traceelement concentrations in the reservoir varied because of seasonality of trace-element concentrations in the Arkansas River, settling of particulate matter, and flux of trace elements from the bottom sediments. The aquatic-life standard in Pueblo Reservoir for total-recoverable iron (1,000 micrograms per liter) and the public water-supply standard for dissolved manganese (50 micrograms per liter) were exceeded on several occasions during the summer. Elevated concentrations of totalrecoverable iron and dissolved manganese in the Arkansas River during summer runoff contributed to exceedances in the upper part of the reservoir. Flux of manganese from the reservoir bottom sediments during periods of low or depleted dissolved-oxygen concentrations contributed to exceedances in the deeper, downstream parts of the reservoir. Concentrations of lead, mercury, and zinc were elevated in the reservoir bottom sediments and may be the result of metal-mine drainage in the upper Arkansas River Basin. Median concentrations of total organic carbon ranged from 3.1 to 4.5 milligrams per liter in May through September and from 2.5 to 3.5 milligrams per liter in October through April. Totalorganic-carbon concentrations in the reservoir were largest in the summer when streamflows and total-organic-carbon concentrations are largest in the Arkansas River. Total-organic-carbon concentrations in the reservoir decrease downstream from the reservoir inflow because of settling of particulate organic carbon. Levels of gross-alpha and gross-beta radioactivity generally were relatively low. In 7 of 31 samples collected, dissolved gross-alpha radioactivity, as natural uranium, exceeded 5 picocuries per liter, the level at which additional radiochemical analyses are recommended for drinking-water supplies. Potential sources of uranium in Pueblo Reservoir include weathering of exposed uranium ore deposits in the upper Arkansas River Basin and a uranium milling operation near Canon City.Phytoplankton densities and biovolumes measured during the winter, spring, and fall generally were indicative of a small to moderate algal biomass. Phytoplankton production tended to be largest during the summer. During the summer, phytoplankton densities and biovolumes generally were indicative of a moderate to large algal biomass. However, excessive algal production and biomass periodically occurred during the spring, summer, and fall. Three species of phytoplankton that are specifically associated with taste-and-odor problems in drinking water were identified on several occasions in water samples collected from Pueblo Reservoir. Reservoir operations and hydrodynamics can substantially affect processes that affect reservoir water quality. Stratification, underflow, and hypolimnetic withdrawals affect concentrations of dissolved solids, availability of nutrients, and concentrations of metals in the reservoir. Stratification impedes the mixing of epilimnetic and hypolimnetic waters, and the prevalent underflow that occurs during the summer results in a decrease in the potential dilution of inflowing river water with reservoir water. The underflow also decreases the maximum available nutrient load to the euphotic zone, which can, in turn, offset the maximum algal growth potential. Increased dissolved-solids, nutrient, and metal concentrations that occur in the hypolimnion during the summer are partially offset by hypolimnetic withdrawals.
Variations in statewide water quality of New Jersey streams, water years 1998-2009
Heckathorn, Heather A.; Deetz, Anna C.
2012-01-01
Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.
Skylab study of water quality. [Kansas
NASA Technical Reports Server (NTRS)
Yarger, H. L. (Principal Investigator); Mccauley, J. R.
1975-01-01
The author has identified the following significant results. Apparent reflectance levels in the Skylab S190A and S192 bands, from one pass over three Kansas reservoirs, exhibit good statistical correlation with suspended solids. Band ratios appear to yield the best results. The concentration of suspended solids, mostly inorganic sediment, has the most effect on the reflected energy. Dissolved solids concentrations up to 200 ppm were not detectable by the Skylab sensors.
Kinetics of microbial reduction of Solid phase U(VI).
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K
2006-10-15
Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.
Sukumaran, Aparna; Diwakar, Madankumar P; Shastry, Shivakumar M
2012-05-01
This study was conducted to examine the nature, content, and duration of advertisements broadcasted during children's Tamil television channels and to determine the extent to which television advertising changes during school holiday and non-holiday periods and between prime time and non-prime time broadcast. Television broadcasts on two main children's Tamil television channels were video-recorded over 16 days between 17.00-19.00 hours (non-prime time) and 19.00-21.00 hours (prime time). For each commercial, the type of product advertised, as well as the duration (in seconds), was recorded. Advertisements were categorized as 'food' and 'non-food'. The former category was further subdivided into 'sugar-rich foods' and 'other foods'. The sugar-rich foods were further categorized as liquid, solid and sticky, and slowly dissolving sugars. Commercials related to the promotion of oral health products and non-food products were also recorded. Among the total of 128 h of television programmes recorded, advertising accounted for 10.15% (13.01 hours). The advertisement of sugar-rich food products, non-food and oral hygiene products occupied 50.36%, 38.41% and 1.90%, respectively, of the total advertising time. Solid and sticky products made up 100% of advertisements in this category on Chithiram television channel, compared with 62.5% of advertisements on Chutti television channel. It was concluded that the advertising of sugar-rich foods, particularly solid and sticky food products, was broadcasted more in Chithiram television channel, during school holidays and during prime time. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.
Spent coffee ground as a new bulking agent for accelerated biodrying of dewatered sludge.
Hao, Zongdi; Yang, Benqin; Jahng, Deokjin
2018-07-01
The feasibility of using spent coffee ground (SCG) as a new bulking agent for biodrying of dewatered sludge (DS) was investigated in comparison with two other frequently-used bulking agents, air-dried sludge (AS) and sawdust (SD). Results showed that the moisture contents (MC) of 16-day DS biodrying with AS (Trial A), SCG (Trial B) and SD (Trial C) decreased from 70.14 wt%, 68.25 wt% and 71.63 wt% to 59.12 wt%, 41.35 wt% and 57.69 wt%, respectively. In case of Trial B, the MC rapidly decreased to 46.16 wt% with the highest water removal (70.87%) within 8 days because of the longest high-temperature period (5.8 days). Further studies indicated that the abundant biodegradable volatile solids (BVS) and high dissolved organic matter (DOM) contents in SCG were the main driving forces for water removal. According to pyrosequencing data, Firmicutes, most of which were recognized as thermophiles, was rapidly enriched on Day 8 and became the dominant phylum in Trial B. Four thermophilic genera, Bacillus, Ureibacillus, Geobacillus and Thermobifida, which can produce thermostable hydrolytic extracellular enzymes, were the most abundant in Trial B, indicating that these thermophilic bacteria evolved during the long high-temperature period enhanced the biodegradation of BVS in SCG. The 8-day biodried product of Trial B was demonstrated to be an excellent solid fuel with low heating value (LHV) of 9284 kJ kg -1 , which was 2.1 and 1.8 times those of biodried products with AS and SD, respectively. Thus SCG was found to be an excellent bulking agent accelerating DS biodrying and producing a solid fuel with a high calorific value. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared
Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less
Terry, J.E.; Morris, E.E.; Bryant, C.T.
1982-01-01
The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)
Taylor, Malcolm; Elliott, Herschel A; Navitsky, Laura O
2018-05-01
The production of hydraulic fracturing fluids (HFFs) in natural gas extraction and their subsequent management results in waste streams highly variable in total dissolved solids (TDS). Because TDS measurement is time-consuming, it is often estimated from electrical conductivity (EC) assuming dissolved solids are predominantly ionic species of low enough concentration to yield a linear TDS-EC relationship: TDS (mg/L) = k e × EC (μS/cm) where k e is a constant of proportionality. HHFs can have TDS levels from 20,000 to over 300,000 mg/L wherein ion-pair formation and non-ionized solutes invalidate a simple TDS-EC relationship. Therefore, the composition and TDS-EC relationship of several fluids from Marcellus gas wells in Pennsylvania were assessed. Below EC of 75,000 μS/cm, TDS (mg/L) can be estimated with little error assuming k e = 0.7. For more concentrated HFFs, a curvilinear relationship (R 2 = 0.99) is needed: TDS = 27,078e 1.05 × 10 -5 *EC . For hypersaline HFFs, the use of an EC/TDS meter underestimates TDS by as much as 50%. A single linear relationship is unreliable as a predictor of brine strength and, in turn, potential water quality and soil impacts from accidental releases or the suitability of HFFs for industrial wastewater treatment.
Pradhan, Harapriya; Jain, Sumat Chand; Ghangrekar, Makarand M
2015-12-01
Microbial desalination cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent desalination through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous desalination of water in middle desalination chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in desalination chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m(2) as compared to MDC-1 (95 %, 64 %, 12.8 mW/m(2), respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m(2), respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters.
Appraisal of the water resources of Death Valley, California-Nevada
Miller, Glenn Allen
1977-01-01
The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)
Quality of ground water in Routt County, northwestern Colorado
Covay, Kenneth J.; Tobin, R.L.
1980-01-01
Chemical and bacteriological data were collected to describe the quality of water from selected geologic units in Routt County, Colo. Calcium bicarbonate was the dominant water-chemistry type; magnesium, sodium, and sulfate frequently occurred as codominant ions. Specific conductance values ranged from 50 to 6,000 micromhos. Mean values of specific conductance, dissolved solids , and hardness from the sampled aquifers were generally greatest in waters from the older sedimentary rocks of the Lance Formation, Lewis Shale, Mesaverde Group, and Mancos Shale, and least in the ground waters from the alluvial deposits, Browns Park Formation, and the basement complex. Correlations of specific conductance with dissolved solids and specific conductance with hardness were found within specified concentration ranges. On the basis of water-quality analyses, water from the alluvial desposits, Browns Park Formation, and the basement complex generally is the most suitable for domestic uses. Chemical constituents in water from wells or springs exceeded State and Federal standards for public-water supplies or State criteria for agricultural uses were pH, arsenic, boron, chloride, iron, fluoride, manganese, nitrite plus nitrate, selenium, sulfate, or dissolved solids. Total-coliform bacteria were detected in water from 29 sites and fecal-coliform bacteria were detected in water from 6 of the 29 sites. (USGS)
Haddad, Mathieu; Vali, Hojatollah; Paquette, Jeanne; Guiot, Serge R.
2014-01-01
Two previously unknown modes of biomineralization observed in the presence of Carboxydothermus hydrogenoformans are presented. Following the addition of NaHCO3 and the formation of an amorphous calcium phosphate precipitate in a DSMZ medium inoculated with C. hydrogenoformans, two distinct crystalline solids were recovered after 15 and 30 days of incubation. The first of these solids occurred as micrometric clusters of blocky, angular crystals, which were associated with bacterial biofilm. The second solid occurred as 30–50 nm nanorods that were found scattered among the organic products of bacterial lysis. The biphasic mixture of solids was clearly dominated by the first phase. The X-ray diffractometry (XRD) peaks and Fourier transform infrared spectroscopy (FTIR) spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite. No organic content or protein could be identified by dissolving the solids. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. Since Mg is known to be a strong inhibitor of the nucleation and growth of CaP, C. hydrogenoformans may act by providing sites that chelate Mg or form complexes with it, thus decreasing its activity as nucleation and crystal growth inhibitor. The synthesis of whitlockite and nano-HAP-like material by C. hydrogenoformans demonstrates the versatility of this organism also known for its ability to perform the water-gas shift reaction, and may have applications in bacterially mediated synthesis of CaP materials, as an environmentally friendly alternative process. PMID:24586811
Ross Schmidt, Heather C.
2004-01-01
Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.
Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California
Lamb, Charles E.
1980-01-01
The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)
Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.
Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan
2011-06-01
Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. Copyright © 2011 Elsevier B.V. All rights reserved.
Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.
1992-01-01
Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.
NASA Astrophysics Data System (ADS)
Wang, Shui-Jiong; Wasylenki, Laura E.
2017-06-01
The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4% of total Ni, presumably surface-adsorbed) that were isotopically heavier (δ60/58Ni = +0.11 ± 0.06‰) than the residues (presumably dominated by incorporated Ni), which had δ60/58Ni of -0.26 ± 0.07‰. The preference of lighter isotopes for the incorporated Ni relative to the surface-adsorbed Ni after phase transformation (most had been released into solution) is probably due to distortion of Nisbnd O octahedra in the hematite structure, with weaker Nisbnd O bond strengths on average. Hence, the more variable Δ60/58Nisolution-solid values (-0.04 to +0.77‰) observed in hematite experiments most likely reflect thermodynamically driven Rayleigh fractionation, with incorporated Ni unavailable to exchange with dissolved Ni due to continuous reduction in size of the highly reactive surface pool of Ni, through which all solid-solution exchange must occur. Overall, the synthesized hematite was isotopically lighter than the ferrihydrite by ∼0.08‰ in δ60/58Ni, which is however within the current analytical uncertainties (±0.09‰). This implies that earliest diagenesis of BIFs results in very limited change in the isotopic composition of solid-associated Ni. Our experimental results, although conducted in a very simple system that differs from Archean seawater, represent an important step toward reconstruction of the Ni isotopic composition of ancient seawater from Ni isotopic signatures in BIFs.
Origin of carbon released from ecosystems affected by permafrost degradation in Northern Siberia
NASA Astrophysics Data System (ADS)
Gandois, L.; Hoyt, A.; Xu, X.; Hatte, C.; Teisserenc, R.; Tananaev, N.
2016-12-01
Permafrost soils and peatlands store half of the soil organic carbon stock worldwide, and are rapidly evolving as a result of permafrost thaw. Determining the origin (permafrost or recent photosynthesis) of carbon which is released to surface waters and the atmosphere is crucial to assess Arctic ecosystems' potential feedback to climate change. In order to evaluate it, we investigated the stable and radioactive content of carbon in solid organic matter, dissolved organic matter (DOM) and dissolved CO2 and CH4 in a discontinuous permafrost area of Siberia affected by permafrost degradation (Igarka, Graviyka catchment (67°27'11''N, 86°32'07''E)). We collected samples from the active layer, permafrost, surface water and bubbles from thermokarst lakes. We further investigated DOM and dissolved CO2 and CH4 in porewater profiles, streams and the catchment outlet. In thermokarst lakes, DOM of surface water as well as CO2 and CH4 from bubbles from lake sediments predominantly originate from modern carbon. In two locations, CO2 and CH4 from bubbles have relatively low 14C contents, with ages greater than 700 yr BP, but still younger that what was previously reported in Eastern Siberia. In all samples the Δ14C of CH4 and CO2 were strongly correlated, with CH4 being consistently older than CO2, indicating strong interrelation between CO2 and CH4 cycles. In our study, permafrost influenced CO2 and CH4 is found in small ponds where palsa collapse and the resulting bank erosion has mobilized sequestered carbon. In peatland porewater, the Δ14C of DOM, CO2 and CH4 increases with depth (DOM: 1385 ±45 yr BP at 2m), indicating a contribution from Holocene peatlands affected by permafrost. In deep layers, CO2 reduction is the dominant pathway of CH4 production, whereas acetate fermentation dominates in thermokarst lakes. In summary, the majority of dissolved CO2 and CH4 analyzed from thermokarst lakes and degraded peatlands is modern and originates from recently fixed carbon. Additionally, the DOM exported in small streams draining peatlands is also modern. However, at the catchment scale, an additional contribution from deep groundwater or thawing permafrost results in an intermediate Δ14C of DOM (300-400 yr BP) at the outlet of the Graviyka River.
Ground-water resources of the Wind River Indian Reservation, Wyoming
McGreevy, Laurence J.; Hodson, Warren Gayler; Rucker, Samuel J.
1969-01-01
The area of this investigation is in the western part of the Wind River Basin and includes parts of the Absaroka, Washakie, Wind River, and Owl Creek Mountains. The purposes of the study were to determine the general hydrologic properties of the rocks in the area and the occurrence and quality c f the water in them. Structurally, the area is a downfolded basin surrounded by upfolded mountain ranges. Igneous and metamorphic rocks of Precambrian age are exposed in the mountains: folded sedimentary rocks representing all geologic periods, except the Silurian, crop out along the margins of the basin; and relatively flat-lying Tertiary rocks are at the surface in the central part of the basin. Surficial sand and gravel deposits of Quaternary age occur along streams and underlie numerous terraces throughout the basin. The potential yield and quality of water from most rocks in the area are poorly known, but estimates are possible, based on local well data and on data concerning similar rocks in nearby areas. Yields of more than 1,000 gpm are possible from the rocks comprising the Bighorn Dolomite (Ordovician), Darby Formation (Devonian), Madison Limestone (Mississippian), and Tensleep Sandstone (Pennsylvanian). Total dissolved solids in the water range from about 300 to 3,000 ppm. Yields of as much as several hundred gallons per minute are possible from the Nugget Sandstone (Jurassic? and Triassic?). Yields of 20 gpm or more are possible from the Crow Mountain Sandstone (Triassic) and Sundance Formation (Jurassic). Dissolved solids are generally high but are less than 1,000 ppm near outcrops in some locations. The Cloverly and Morrison (Cretaceous and Jurassic), Mesaverde (Cretaceous) and Lance(?) (Cretaceous) Formations may yield as much as several hundred gallons per minute, but most wells in Cretaceous rocks yield less than 20 gpm. Dissolved solids generally range from 1,000 to 5,000 ppm but may be higher. In some areas, water with less than 1,000 ppm dissolved solids may be available from the Cloverly and Morrison Formations. Tertiary rocks yield a few to several hundred gallons per minute and dissolved solids generally range from 1,000 to 5,000 ppm. Wells in the Wind River Formation (Eocene) yield about 1.-500 gpm of water having dissolved solids of about 200-5,000 ppm. Yields of a few to several hundred gallons per minute are available from alluvium (Quaternary). Dissolved solids range from about 200 to 5,000 ppm. Many parts of the Wind River Irrigation Project have become waterlogged. The relation of drainage problems to geology and the character and thickness of rocks in the irrigated areas are partly defined by sections drawn on the basis of test drilling. The drainage-problem areas are classified according to geologic similarities into five general groups: flood plains, terraces, underfit-stream valleys, slopes, and transitional areas. Drainage can be improved by open drains, buried drains, relief wells, and pumped wells or by pumping from sumps or drains. The methods that will be most successful depend on the local geologic and hydrologic conditions. In several areas, the most effective means of relieving the drainage problem would be to reduce the amount of infiltration of water by lining canals and ditches and by reducing irrigation water applications to the optimum. Water from underground storage in alluvium could supplement water from surface storage in some areas. A few thousand acre-feet of water per square mile are in storage in some of the alluvium. The use of both surface and underground storage would reduce the need for additional surface-storage facilities and also would alleviate drainage problems in the irrigated areas.
Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.
1987-01-01
Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)
Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining
Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.
2008-01-01
Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.
Process for coal liquefaction in staged dissolvers
Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.
1983-01-01
There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.
Illitization of Potassium, Cesium, and Ammonium Exchanged Smectite
NASA Astrophysics Data System (ADS)
Mills, M. M.; Wang, Y.; Payne, C.; Sanchez, A. C.; Boisvert, L.; Matteo, E. N.
2017-12-01
Bentonite clay is a primary choice for engineered barrier systems within geologic repositories for disposal of radioactive wastes due to its low permeability at saturated states, warranting diffusion as the dominant transport mechanism, and large swelling pressures that promote sealing. In order to predict how well the barrier will function over time at repository relevant temperatures, it is important to understand thermal alteration effects on montmorillonite, better known as smectite, a main constituent of bentonite. One type of thermal alteration is the conversion to illite, when exposed to elevated temperatures and a sufficient amount of potassium ions, thereby weakening barrier functions. To facilitate the conversion of smectite to illite and examine the influence of interlayer cations, illitization experiments on cation exchanged smectite were performed within hydrothermal reaction vessels over one week timescales. The <2um fraction of a Na-rich smectite clay was first exchanged with 1M Cs, K, and NH4 salt solutions and further exposed to hydrous pyrolysis using a 1M KCl solution with various solid to liquid ratios at 200°C. Multiple analysis techniques were used to characterize the altered clay and identify extent of conversion, such as XRD, cation exchange capacity, and morphology changes by SEM. The pore-water chemistry was also analyzed by ICP-OES to detect any dissolved products and silica content. Results suggest the conversion rate is relatively fast, occurring within days, and is dependent on not only the amount of K, but also dissolved silica concentration related to total solid in solution. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7856A
Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David
2016-07-01
The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.
Groundwater transport of crater-lake brine at Poa´s Volcano, Costa Rica
Sanford, Ward E.; Konikow, Leonard F.; Rowe, Gary L.; Brantley, Susan L.
1995-01-01
Poa´s Volcano is an active stratovolcano in Costa Rica that has a lake in its active crater. The crater lake has high temperatures (50–90 °C), high acidity (pH ≈ 0.0), and a high dissolved-solids content (100 g/kg). The volcano has numerous freshwater springs on its flanks, but a few on the northwestern flank are highly acidic (pH = 1.6–2.5) and have high dissolved-solids concentrations (2–22 g/kg). This study analyzes the regional groundwater system at Poa´s and demonstrates the likelihood that the water discharging from the acidic springs in the Rio Agrio watershed originates at the acidic crater lake. Both heat and solute transport are analyzed on a regional scale through numerical simulations using the HST3D finite-difference model, which solves the coupled equations for fluid flow, heat transport, and solute transport. The code allows fluid viscosity and density to be functions of both temperature and solute concentration. The simulations use estimates for recharge to the mountain and a range of values and various distributions of permeability and porosity. Several sensitivity analyses are performed to test how the uncertainty in many of the model parameters affects the simulation results. These uncertainties yield an estimated range of travel times from the crater lake to the Rio Agrio springs of 1–30 years, which is in close agreement with the results of tritium analyses of the springs. Calculated groundwater fluxes into and out of the crater lake are both about several hundred kg/s. These fluxes must be accounted for in water budgets of the crater lake.
NASA Astrophysics Data System (ADS)
Kaiser, M.; Kleber, M.; Berhe, A. A.
2010-12-01
Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.
Han, Liang-Feng; Plummer, Niel
2013-01-01
The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of organic carbon, radiocarbon ages are best estimated by inverse geochemical modeling techniques.
Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong
2016-10-01
The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.
Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.
2014-01-01
The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.
Thomas, Jonathan V.; Teeple, Andrew; Payne, Jason; Ikard, Scott
2016-06-21
During the recent period, median dissolved-solids concentrations of less than 1,000 milligrams per liter (mg/L) were predominantly measured in the western part of the study area, and median concentrations of more than 1,000 mg/L were predominantly measured in the eastern part of the study area. A general pattern of increasing nitrate concentrations from west to the northeast was evident in the study area. Nitrate concentrations measured in samples collected from 16 wells completed in the Ogallala aquifer for the recent period were equal to or greater than 10 mg/L, the primary drinking water standard for finished drinking water.
Natural ground-water quality in Michigan, 1974-87
Cummings, T. Ray
1989-01-01
Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 20 to 76,000 mg/L. Waters having low dissolved-solids concentrations are calcium bicarbonate-type waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium concentrations are higher at some locations than is common in most natural waters. Lead concentrations exceed U.S. Environmental Protection Agency 's primary drinking-water regulations at some locations in the northern part of the lower Peninsula. Generalized areal patterns of water-quality variability indicate that geology is a primary cause of differences across the State. Examples of chemical associations in water indicate that chemical analyses may be valuable in tracing and identifying mineral deposits.
Chemical and physical characteristics of natural ground waters in Michigan: A preliminary report
Cummings, T. Ray
1980-01-01
Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 23 to 2,100 milligrams per liter. Waters having low dissolved-solids concentrations are calcium bicarbonate waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium are higher at some locations than is common in most natural waters. Lead concentrations exceed those desirable in drinking water at some locations in the northern part of the Lower Peninsula. Generalized areal patterns of water quality variation suggest that geology is a primary cause of differences across the State. Examples of chemical associations in water suggest that chemical analyses may be valuable in tracing and identifying mineral deposits.
NASA Astrophysics Data System (ADS)
Oxmann, J. F.; Schwendenmann, L.
2014-06-01
Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid- and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.
NASA Astrophysics Data System (ADS)
Oxmann, J. F.; Schwendenmann, L.
2014-01-01
Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In-situ relationships between liquid and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determination of particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions; and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the analyzed coastal sediments which supports the hypothesis of apatite formation by an OCP precursor.
Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen
2018-05-01
The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.
Quality of ground water in southeastern and south-central Washington, 1982
Turney, G.L.
1986-01-01
In 1982 groundwater was sampled at over 100 sites in the southeastern-south central region of Washington and analyzed for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved irons, and dissolved iron, manganese, and nitrate. Twenty percent of the samples were analyzed for concentrations of dissolved aluminum, arsenic, barium, cadmium, chromium, cooper, lead, mercury, selenium, silver, and zinc. The predominant water type was calcium bicarbonate. Some sodium bicarbonate water was found in samples from the Lower Yakima, Horse Heaven Hills, and Walla Walla-Tucannon subregions. Dissolved solids concentrations were typically less than 500 mg/L (milligrams per liter). Median iron and manganese concentrations were less than 20 micrograms/L except in the Palouse subregion, where the median concentration of iron was 200 micrograms/L and the median concentrations of manganese was 45 micrograms/L. Generally, trace-metal concentrations were also less than 10 micrograms/L except for barium, copper, and zinc. Nitrate concentrations were less than 1.0 mg/L in waters from half the wells sampled. Concentrations greater than 5.0 mg/L were found in areas of the Lower Yakima, Walla Walla-Tucannon and Hanford subregions. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulation limits were generally not exceeded, except for occasional high concentrations of nitrate or dissolved solids. The historical data for the region were evaluated for these same constituents. Quantitative differences were found, but the historical and 1982 data led to similar qualitative conclusions. (USGS)
Localized zones of denitrification in a floodplain aquifer in southern Wisconsin, USA
NASA Astrophysics Data System (ADS)
Craig, Laura; Bahr, Jean M.; Roden, Eric E.
2010-12-01
A floodplain aquifer within an agricultural watershed near Madison, Wisconsin (USA), was studied to determine whether denitrification was occurring below the surface organic layer. Groundwater levels and concentrations of O2, Cl-, NO{3/-}, SO{4/2-}, dissolved organic carbon (DOC), and major cations were monitored over a 1-year period along a 230-m transect between an agricultural field and a stream discharge point. Seventeen groundwater samples were analyzed for δ15NNO3 and δ18ONO3 composition. Samples in which NO{3/-} was too low for stable isotope analysis were analyzed for excess dissolved N2. Groundwater NO{3/-} concentrations declined between the agricultural field and the discharge point. Chloride and δ15NNO3/δ18ONO3 data indicated that the drop in NO{3/-} was caused primarily by dilution of shallow NO{3/-}-rich water with deeper, NO{3/-}-depleted groundwater. Two localized zones of denitrification were identified in the upland-wetland transition by their δ15NNO3 and δ18ONO3 signatures, and two in the stream hyporheic zone by the presence of excess dissolved N2. The combined stratigraphic, hydrologic, and geochemical data in these locations correspond to groundwater mixing zones where NO{3/-} is delivered to subsurface layers that support denitrification fueled by dissolved (e.g. DOC or dissolved Fe(II)) and/or solid-phase (e.g. particulate organic carbon, solid-associated Fe(II), or pyrite) electron donors.
Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia
NASA Astrophysics Data System (ADS)
Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.
2016-07-01
A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.
Iyappan, Kuttalam; Ponrasu, Thangavel; Sangeethapriya, Vilvanathan; Gayathri, Vinaya Subramani; Suguna, Lonchin
2013-09-01
Preservation or curing of hides and skins is performed as the primary step of leather processing. Common salt is employed as the conventional agent for curing purpose. Use of salt enhances the pollution load of tannery effluent which becomes highly contaminated with increased total dissolved solids and chlorides. To overcome this hurdle, researchers are in constant search of alternative preservation techniques which are either totally void of salt or use only a meager amount of salt. In the present study, we had explored the possibility of using Semecarpus anacardium nut extract as an alternative to salt for the curing process by assessing different parameters like hair slip, putrefaction odor, volatile nitrogen content, moisture content, bacterial count, and shrinkage temperature in comparison to the salt curing method. The antibacterial property of the plant extract was also investigated. The results obtained substantiated that the nut extract of S. anacardium effectively could preserve the skins for more than a month, by its antibacterial activity along with the dehydrating property of acetone.
Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles.
Pan, Gang; Yang, Bo
2012-06-04
The formation mechanism of a nanoscale gas state is studied on inorganic clay surfaces modified with hexamethyldisilazane, which show different contact angles in ethanol-water solutions. As the dissolved oxygen becomes oversaturated due to the decrease in ethanol-water ratio, oxygen nanoscale gas state are formed and stabilized on the hydrophobic surfaces so that the total oxygen content in the suspension is increased compared to the control solution without the particles. However, the total oxygen content in the suspension with hydrophilic surfaces is lower than the control solution without the particles because the hydrophilic particle surfaces destabilize the nanobubbles on the surfaces by spreading and coagulating them into microbubbles that quickly escape from the suspension solution. No significant correlation was observed between the nanobubble formation and the shape or roughness of the surfaces. Our results suggest that a nanoscale gas state can be formed on both hydrophobic and hydrophilic particle surfaces, but that the stability of the surface nanoscale gas state can vary greatly depending on the hydrophobicity of the solid surfaces. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna
2014-11-15
A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang
2013-07-01
In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Shenoy, R. N.; Unnam, J.
1987-01-01
Standards were prepared for calibrating microanalyses of dissolved oxygen in unalloyed alpha-Ti and Ti-6Al-2Sn-4Zr-2Mo. Foils of both of these materials were homogenized for 120 hours in vacuum at 871 C following short exposures to the ambient atmosphere at 854 C that had partially oxidized the foils. The variation of Knoop microhardness with oxygen content was calibrated for both materials using 15-g and 5-g indentor loads. The unit-cell lattice parameters were calibrated for the unalloyed alpha-Ti. Example analyses demonstrate the usefulness of these calibrations and support an explanation of an anomaly in the lattice parameter variation. The results of the calibrations have been tabulated and summarized using predictive equations.
Determination of oxygen vacancy limit in Mn substituted yttria stabilized zirconia
NASA Astrophysics Data System (ADS)
Stepień, Joanna; Sikora, Marcin; Kapusta, Czesław; Pomykalska, Daria; Bućko, Mirosław M.
2018-05-01
A series of Mnx(Y0.148Zr0.852)1-xO2-δ ceramics was systematically studied by means of X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) and DC magnetic susceptibility. The XAS and XES results show the changes in manganese oxidation state and a gradual evolution of the local atomic environment around Mn ions upon increasing dopant contents, which is due to structural relaxation caused by the growing amount of oxygen vacancies. Magnetic susceptibility measurements reveal that Mn3O4 precipitates are formed for x ≥ 0.1 and enable independent determination of the actual quantity of Mn ions dissolved in Yttria Stabilized Zirconia (YSZ) solid solution. We show that the amount of oxygen vacancies generated by manganese doping into YSZ is limited to ˜0.17 per formula unit.
Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain
Back, William
1966-01-01
Flow patterns of fresh ground water shown on maps and in cross sections have been deduced from available water-level data. These patterns are controlled by the distribution of the higher landmasses and by the depth to either bedrock or to the salt-water interface. The mapping of hydrochemical facies shows that at shallow depths within the Coastal Plain (less than about 200 ft) the calcium-magnesium cation facies generally predominates. The bicarbonate anion facies occurs within more of the shallow Coastal Plain sediments than does the sulfate or the chloride facies. In deeper formations, the sodium chloride character predominates. The lower dissolved-solids content of the ground water in New Jersey indicates less upward vertical leakage than in Maryland and Virginia, where the shallow formations contain solutions of higher concentration.
Photolysis of RDX and nitroglycerin in the context of military training ranges.
Bordeleau, Geneviève; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia
2013-09-01
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroglycerin (NG) are two energetic materials commonly found in the environment on military training ranges. They are deposited on the ground in the form of solid particles, which can then dissolve in infiltration water or in surface water bodies. The objective of this study was to evaluate whether photolysis by sunlight can significantly contribute to the natural attenuation of RDX and NG (as solid particles or dissolved in surface water) at mid-northern latitudes, where training ranges of Canada and many European countries are located. Experiments conducted at 46.9°N show that both compounds are degraded by sunlight when dissolved in water, with half-lives between 1 and 120d, depending on the compound and time of year. Numerical models may be useful in predicting such photolysis rates, but the models should take into account current ozone levels, as older radiation datasets, collected before the ozone depletion observed since the late 1970s, underestimate the RDX/NG photolysis rate. For solid RDX or NG-bearing particles, photolysis is slower (half-lives of 2-4months), but the degradation rate is still rapid enough to make this process significant in a natural attenuation context. However, photolysis of NG embedded within solid propellant particles cannot proceed to completion, due to the stable nitrocellulose matrix of the propellant. Nonetheless, photolysis clearly constitutes an important attenuation mechanism that should be considered in conceptual models and included in numerical modeling efforts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...
NASA Astrophysics Data System (ADS)
Hu, Chengyao; Huang, Pei
2011-05-01
The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also the influence of the solution density change and the initial concentration conditions on the dissolved amount was investigated by the numerical results using the estimated parameters. It is found that the theoretical assumption to simplify the inverse measurement problem algorithm is reasonable for low solubility.
Water requirements of the copper industry
Mussey, Orville Durey
1961-01-01
The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration was higher in dissolved solids and was harder than the water used in smelting and refining. Water used in mining and ore concentration had a median dissolved solids content of about 400 ppm and a median hardness (as CaCO3) of about 200 ppm. The median values for water used in smelting and refining were only half these amounts.
Trends in the quality of water in New Jersey streams, water years 1998-2007
Hickman, R. Edward; Gray, Bonnie J.
2010-01-01
Trends were determined in flow-adjusted values of selected water-quality characteristics measured year-round during water years 1998-2007 (October 1, 1997, through September 30, 2007) at 70 stations on New Jersey streams. Water-quality characteristics included in the analysis are dissolved oxygen, pH, total dissolved solids, total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite. In addition, trend tests also were conducted on measurements of dissolved oxygen made only during the growing season, April to September. Nearly all the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the New Jersey Department of Environmental Protection Ambient Surface-Water Quality Monitoring Network. Monotonic trends in flow-adjusted values of water quality were determined by use of procedures in the ESTREND computer program. A 0.05 level of significance was selected to indicate a trend. Results of tests were not reported if there were an insufficient number of measurements or insufficient number of detected concentrations, or if the results of the tests were affected by a change in data-collection methods. Trends in values of dissolved oxygen, pH, and total dissolved solids were identified using the Seasonal Kendall test. Trends or no trends in year-round concentrations of dissolved oxygen were determined for 66 stations; decreases at 4 stations and increases at 0 stations were identified. Trends or no trends in growing-season concentrations of dissolved oxygen were determined for 65 stations; decreases at 4 stations and increases at 4 stations were identified. Tests of pH values determined trends or no trends at 26 stations; decreases at 2 stations and increases at 3 stations were identified. Trends or no trends in total dissolved solids were reported for all 70 stations; decreases at 0 stations and increases at 24 stations were identified. Trends in total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite were identified by use of Tobit regression. Two sets of trend tests were conducted-one set with all measurements and a second set with all measurements except the most extreme outlier if one could be identified. The result of the test with all measurements is reported if the results of the two tests are equivalent. The result of the test without the outlier is reported if the results of the two tests are not equivalent. Trends or no trends in total phosphorus were determined for 69 stations. Decreases at 12 stations and increases at 5 stations were identified. Of the five stations on the Delaware River included in this study, decreases in concentration were identified at four. Trends or no trends in total organic nitrogen plus ammonia were determined for 69 stations. Decreases and increases in concentrations were identified at six and nine stations, respectively. Trends or no trends in dissolved nitrate plus nitrite were determined for 66 stations. Decreases and increases in concentration were identified at 4 and 19 stations, respectively.
Geology, hydrology, and water quality of the Tracy-Dos Palos area, San Joaquin Valley, California
Hotchkiss, W.R.; Balding, G.O.
1971-01-01
The Tracy-Dos Palos area includes about 1,800 square miles on the northwest side of the San Joaquin Valley. The Tulare Formation of Pliocene and Pleistocene age, terrace deposits of Pleistocene age, and alluvium and flood-basin deposits of Pleistocene and Holocene age constitute the fresh ground-water reservoir Pre-Tertiary and Tertiary sedimentary and crystalline rocks, undifferentiated, underlie the valley and yield saline water. Hydrologically most important, the Tulare Formation is divided into a lower water-bearing zone confined by the Corcoran Clay Member and an upper zone that is confined, semiconfined, and unconfined in different parts of the area. Alluvium and flood-basin deposits are included in the upper zone. Surficial alluvium and flood-basin deposits contain a shallow water-bearing zone. Lower zone wells were flowing in 1908, but subsequent irrigation development caused head declines and land subsidence. Overdraft in both zones ended in 1951 with import of surface water. Bicarbonate water flows into the area from the Sierra Nevada and Diablo Range. Diablo Range water is higher in sulfate, chloride, and dissolved solids. Upper zone water averages between 400 and 1,200 mg/l (milligrams per liter) dissolved solids and water hardness generally exceeds 180 mg/l as calcium carbonate. Nitrate, fluoride, iron, and boron occur in excessive concentrations in water from some wells. Dissolved constituents in lower zone water generally are sodium chloride and sodium sulfate with higher dissolved solids concentration than water from the upper zone. The foothills of the Diablo Range provide favorable conditions for artificial recharge, but shallow water problems plague about 50 percent of the area and artificial recharge is undesirable at this time.
Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi
2018-05-01
The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.
McKnight, Diane M.; Harnish, R.; Wershaw, R. L.; Baron, Jill S.; Schiff, S.
1997-01-01
The chemical relationships among particulate and colloidal organic material and dissolved fulvic acid were examined in an alpine and subalpine lake and two streams in Loch Vale Watershed, Rocky Mountain National Park. The alpine lake, Sky Pond, had the lowest dissolved organic carbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13 mgC/L), and high algal biomass. The watershed of Sky Pond is primarily talus slope, and DOC and POC may be autochthonous. Both Andrews Creek and Icy Brook gain DOC as they flow through wet sedge meadows. The subalpine lake, The Loch, receives additional organic material from the surrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis, stable carbon isotopic compositon, and 13C-NMR characterization showed that: 1) particulate material had relatively high inorganic contents and was heterogeneous in compositon, 2) colloidal material was primarily carbohydrate material with a low inorganic content at all sites; and 3) dissolved fulvic acid varied in compositon among sites. The low concentration and carbohydrate-rich character of the colloidal material suggests that this fraction is labile to microbial degradation and may be turning over more rapidly than particulate fractions or dissolved fulvic acid. Fulvic acid from Andrews Creek had the lowest N content and aromaticity, whereas Sky Pond fulvic acid had a higher N content and lower aromaticity than fulvic acid from The Loch. The UV-visible spectra of the fulvic acids demonstrate that variation in characteristics with sources of organic carbon can explain to some extent the observed nonlinear relationship between UV-B extinction coefficients and DOC concentrations in lakes.
Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.
2007-06-27
The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, B.E.; Karkalits, O.C.
1978-09-01
The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed inmore » surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)« less
Rickert, David A.; Leopold, Luna Bergere
1972-01-01
Fremont Lake, at an altitude of 2,261 m, has an area of 20.61 km2 and a volume of 1.69 km3. The maximum depth is 185 m, which makes it the seventh deepest natural lake in the conterminous United States. Theoretical renewal time is 11.1 years. Temperature data for 1971 indicate that vernal circulation extended to a depth of less than 90 m. The summer heat income was 19,450 cal/cm2. The dissolved-oxygen curve is orthograde, with a slight metalimnetic maximum, and a tendency toward decreasing concentrations at depth. At 180 m, oxygen was at 80 percent of saturation in late July 1970. The lake has a remarkably low dissolved-solids content of 12.8 mg/l, making it one of the most dilute medium-sized lakes in the world. Detailed chemical data are given for the water column at three sites in the lake and for the influent and effluent streams. Net plankton included representatives of seven genera of phytoplankters and three genera of zooplankters. A reconnaissance indicated substantially no bacteriological contamination in the lake, but there was an appreciable amount in two minor streams in the vicinity of a summer-home colony.
Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun
2012-01-01
The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substances in three rivers, two lakes and effluent flows from two wastewater treatment plants (WWTPs) in Xi'an, China. Although the most seriously polluted river with high chemical oxygen demand (COD) and total organic carbon (TOC) showed high cytotoxicity (expressed as TII50, the toxicity impact index) and genotoxicity (expressed as RMCN, the relative frequency of micronucleus), no correlative relation was found between the ecotoxicity and organic content of the water samples. However, there was a linear correlative relation between TII50 and RMCN for most water samples except that from the Zaohe River, which receives discharge from WWTP and untreated industrial wastewaters. The ecotoxicity of the organic toxicants in the Chanhe River and Zaohe River indicated that cytotoxic and genotoxic effects were related to the pollutant source. The TII50 and RMCN were also found to correlate roughly to the dissolved oxygen concentration of the water. Sufficient dissolved oxygen in surface water is thus proved to be an indicator of a healthy water environmental condition.
Mercury pollution in Doha (Qatar) coastal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Madfa, H.; Dahab, O.A.; Holail, H.
Surface water and sediment samples were collected from the Doha coastal area and analyzed for content of physico-chemical forms of mercury. Dissolved reactive Hg represented 81.0% of the total dissolved Hg. Organic Hg contributed only 5.0% of total Hg. Mercury showed a strong tendency to be associated with suspended matter in Doha coastal waters, as it represented about 73.0% of the total. Total Hg in bulk Doha surface sediments fluctuated between 0.14 and 1.75 [mu]g g[sup [minus]1] dry weight, with an average of 0.54 [+-] 0.46 [mu]g g[sup [minus]1] dry weight. The sediment fraction past 63 [mu]m contained 0.73 [+-]more » 0.60 [mu]g g[sup [minus]1] dry weight total Hg. Leachable and methyl Hg averaged 0.10 [+-] 0.11 and 0.02 [+-] 0.03 [mu]g g[sup [minus]1] dry weight, respectively, in the < 63-[mu]m sediment fraction. There is a general trend for all Hg species determined in water and sediments to decrease seaward. The significantly elevated Hg levels at certain locations indicated that the main Hg sources to Doha coastal environment are leachate from the solid waste disposal site, the two harbors, and surface-water discharge.« less
Are modern geothermal waters in northwest Nevada forming epithermal gold deposits?
Breit, George N.; Hunt, Andrew G.; Wolf, Ruth E.; Koenig, Alan E.; Fifarek, Richard; Coolbaugh, Mark F.
2010-01-01
Hydrothermal systems currently are active near some gold deposits in northwestern Nevada. Possible links of these modern systems to gold mineralization were evaluated by chemically and isotopically analyzing water samples from the Brady, Dixie Valley, Humboldt House, San Emidio-Empire, Soda Lake, and Wabuska geothermal areas. In addition, quartz veins from Humboldt House and the adjacent Florida Canyon Mine were analyzed to compare ore and gangue phases with those predicted to form from proximal hydrothermal fluids.Nearly all water samples are alkali-chloride-type. Total dissolved solids range from 800 to 3900 mg/L, and pH varies from 5.6 to 7.8. Geochemical modeling with SOLVEQ, WATCH, and CHILLER predict the precipitation of silica in all systems during cooling. Anhydrite, calcite, barite, pyrite, base-metal sulfides, and alumino-silicates are variably saturated at calculated reservoir temperatures and also precipitate during boiling/cooling of some fluids. Measured dissolved gold concentrations are low (<0.2μg/L), but are generally consistent with contents predicted by equilibrium of sampled solutions with elemental gold at reservoir temperatures. Although the modern geothermal waters can precipitate ore minerals, the low gold and other ore metal concentrations require very large fluid volumes to form a deposit of economic interest.
Leaching characteristics of polybrominated diphenyl ethers (PBDEs) from flame-retardant plastics.
Kim, Yong-Jin; Osako, Masahiro; Sakai, Shin-ichi
2006-10-01
To investigate the effect of leachant on the leachability of polybrominated diphenyl ethers (PBDEs), we determined the leaching concentrations of PBDEs from flame-retardant plastic samples (TV housings and raw materials before molding processing) that are regarded as a source of PBDEs in landfill sites. The leachants used were distilled water, 20% methanol solution, and dissolved humic solution (DHS) of 1000 mg/l based on organic carbon. The leaching test conditions were a liquid-to-solid ratio of 100:1, and a contact period of five days, with twice-daily agitation in a temperature-controlled room of 30 degrees C without pH or ionic strength control. The leaching concentrations of PBDEs increased with increased content, and were found to be remarkably enhanced when methanol and DHS were used instead of distilled water. The enhancement of leachability in the presence of the latter was attributed to the cosolvency effect, and complex formations between the PBDEs and dissolved humic matter (DHM). PBDE concentrations in the leachate obtained from the leaching test and an actual landfill site revealed a significant presence of congeners below heptabromodiphenyl ethers (H7BDEs), detected in the leachate of the actual landfill, while significant amounts of nonabromodiphenyl ethers (N9BDEs) and decabromodiphenyl ether (D10BDE) were detected in the leachate of the leaching test.
Zielińska, Anna; Oleszczuk, Patryk
2016-06-01
The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baccot, Camille; Pallier, Virginie; Feuillade-Cathalifaud, Geneviève
2017-05-01
Many data on anaerobic digestion (AD) and co-digestion of municipal solid waste leachate (MSWL) are already available in literature. They mainly deal with its performances to decrease the chemical oxygen demand (COD) of MSWL and no information is given on the impact of the specific characteristics of the dissolved organic matter (DOM) in leachate on these performances. DOM in leachate evolves towards more aromatic and hydrophobic compounds during landfilling with increasing specific ultra-violet absorbance index (SUVA) and hydrophobic character. However, according to the humification stages, this DOM would not present the same aptitude for AD. This research thus focused on (i) optimizing a biochemical methane potential (BMP) test applied to MSWL by using the Taguchi method and (ii) evaluating the impact of the hydrophobic character of the DOM in leachate on the BMP of MSWL to finally define the humification degree more suitable for AD. Hydrophobic-like (HPO ∗ ) and transphilic-like (TPH ∗ ) compounds extracted from leachate by a fractionation protocol were tested because of their high content in MSWL during acetogenesis and methanogenesis steps. After 275days of AD, the content in hydrophobic compounds and the SUVA indexes increased in the digestates. Moreover, even if the biogas and methane productions were not significantly different during the whole tests (4072±350mLgDOC -1 and 2370±95mLgDOC -1 respectively), the volume of biogas produced directly correlated with the TPH ∗ fraction content in the initial digestates. On the contrary, the methane percentage in biogas was anti-correlated with the hydrophilic-like compounds content. The hydrophobic-like molecules seem thus not to be directly involved in the methanogenic step, however they promote the increase of the methane percent in the biogas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Speiran, Gary K.
1996-01-01
Local and regional patterns in the organic content of sediments in the surficial aquifer, as reflected in topography and land use, control dissolved oxygen and nitrate concentrations in ground water that recharged through agricultural fields and flowed beneath riparian woodlands. Dissolved oxygen and nitrate concentrations decreased beneath the woodlands as a result of changes in the organic content of the sediments that resulted from deposition of the sediments, not the current presence of riparian woodlands.
The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA
Bern, Carleton R.; Stogner, Sr., Robert W.
2017-01-01
Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.
Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter
2018-01-01
Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).
Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter
2018-01-01
Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator). PMID:29342204
Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M
2012-03-20
Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.
Chemical composition of snow in the northern Sierra Nevada and other areas
Feth, John Henry Frederick; Rogers, S.M.; Roberson, Charles Elmer
1964-01-01
Melting snow provides a large part of the water used throughout the western conterminous United States for agriculture, industry, and domestic supply. It is an active agent in chemical weathering, supplies moisture for forest growth, and sustains fish and wildlife. Despite its importance, virtually nothing has been known of the chemical character of snow in the western mountains until the present study.Analysis of more than 100 samples, most from the northern Sierra Nevada, but some from Utah, Denver, Colo., and scattered points, shows that melted snow is a dilute solution containing measurable amounts of some or all of the inorganic constituents commonly found in natural water. There are significant regional differences in chemical composition; the progressive increase in calcium content with increasing distance eastward from the west slope of the Sierra Nevada is the most pronounced. The chemical character of individual snowfalls is variable. Some show predominant influence of oceanic salt; others show strong effects of mineralization from continental sources, probably largely dust. Silica and boron were found in about half the samples analyzed for these constituents; precipitation is seldom analyzed for these substances.Results of the chemical analyses for major constituents in snow samples are summarized in the following table. The median and mean values for individual constituents are derived from 41-78 samples of Sierra Nevada snow, 6-18 samples of Utah snow, and 6-17 samples of Denver, Colo., snow.The sodium, chloride, and perhaps boron found in snow are probably incorporated in moisture-laden air masses as they move over the Pacific Ocean. Silica, although abundant in the silicate-mineral nuclei found in some snowflakes, may be derived in soluble form largely from dust. Calcium, magnesium, and some bicarbonate are probably added by dust of continental origin. The sources of the other constituents remain unknown.When snowmelt comes in contact with the lithosphere, the earlier diversity of chemical type largely disappears. The melt water rapidly increases its content of dissolved solids and becomes calcium magnesium bicarbonate in type. Silica, whose concentration increases more than tenfold, shows the largest gain; calcium and bicarbonate contents also increase markedly. Most of the additional mineral matter is from soft and weathered rock; bicarbonate, however, is largely from the soil atmosphere.Investigators, some reporting as much as a century ago, concentrated attention largely on nitrogen compounds and seldom reported other constituents except chloride and sulfate. The Northern European precipitation-sampling network provides the most comprehensive collection of data on precipitation chemistry, but it does not segregate snow from other forms of precipitation. The present study establishes with confidence the chemical character of snow in the Sierra Nevada, and suggests that the dissolved-solids content of precipitation increases with increasing distance inland from the Pacific Coast.
NASA Astrophysics Data System (ADS)
Laraque, Alain; Moquet, Jean-Sébastien; Alkattan, Rana; Steiger, Johannes; Mora, Abrahan; Adèle, Georges; Castellanos, Bartolo; Lagane, Christèle; Lopez, José Luis; Perez, Jesus; Rodriguez, Militza; Rosales, Judith
2013-07-01
Seasonal variations of total dissolved fluxes of the lower Orinoco River were calculated taking into account four complete hydrological cycles during a five-year period (2005-2010). The modern concentrations of total dissolved solids (TDS) of the Orinoco surface waters were compared with data collected during the second half of the last century published in the literature. This comparison leads to the conclusion that chemical composition did not evolve significantly at least over the last thirty to forty years. Surface waters of the Orinoco at Ciudad Bolivar are between bicarbonated calcic and bicarbonated mixed. In comparison to mean values of concentrations of total dissolved solids (TDS) of world river surface waters (89.2 mg l-1), the Orinoco River at Ciudad Bolivar presents mainly low mineralized surface waters (2005-10: TDS 30 mg l-1). The TDS fluxes passing at this station in direction to the Atlantic Ocean between 2005 and 2010 were estimated at 30 × 106 t yr-1, i.e. 36 t km-2 yr-1. It was observed that the seasonal variations (dry season vs wet season) of total dissolved fluxes (TDS and dissolved organic carbon (DOC)) are mainly controlled by discharge variations. Two groups of elements have been defined from dilution curves and molar ratio diagrams. Ca2+, Mg2+, HCO3-, Cl- and Na+ mainly come from the same geographic and lithologic area, the Andes. K+ and SiO2 essentially come from the Llanos and the Guayana Shield. These findings are important for understanding fundamental geochemical processes within the Orinoco River basin, but also as a baseline study in the perspective of the development of numerous mining activities related with aluminum and steel industries; and the plans of the Venezuelan government to construct new fluvial ports on the lower Orinoco for the transport of hydrocarbons.
NASA Astrophysics Data System (ADS)
Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.
2017-12-01
One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.
Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory
NASA Astrophysics Data System (ADS)
Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter; Koch, Boris P.
2016-10-01
Although sulfur is an essential element for marine primary production and critical for climate processes, little is known about the oceanic pool of nonvolatile dissolved organic sulfur (DOS). We present a basin-scale distribution of solid-phase extractable DOS in the East Atlantic Ocean and the Atlantic sector of the Southern Ocean. Although molar DOS versus dissolved organic nitrogen (DON) ratios of 0.11 ± 0.024 in Atlantic surface water resembled phytoplankton stoichiometry (sulfur/nitrogen ~ 0.08), increasing dissolved organic carbon (DOC) versus DOS ratios and decreasing methionine-S yield demonstrated selective DOS removal and active involvement in marine biogeochemical cycles. Based on stoichiometric estimates, the minimum global inventory of marine DOS is 6.7 petagrams of sulfur, exceeding all other marine organic sulfur reservoirs by an order of magnitude.
NASA Astrophysics Data System (ADS)
Sibari, Hayat; Haida, Souad; Foutlane, Mohamed
2018-05-01
This work aims to estimate the contributions of the Inaouene River during the floods. It is in this context that the dissolved and particulate matter flows were measured during the flood periods followed by the 1996/97 study year at the two hydrological stations Bab Marzouka (upstream) and El Kouchat (downstream). The specific flows of dissolved materials calculated upstream and downstream of the Inaouene watershed correspond respectively to 257 t/ km2/year and 117 t/ km2/year. Chlorides represent 30% and 41% respectively of the total dissolved transport upstream and downstream. The potential mechanical degradation affecting the Inaouene watershed can deliver a solid load estimated at 6.106 t/year corresponding to a specific flow of 2142 t/km2/year.
Ortiz, Roderick F.
2013-01-01
The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry annual hydrologic cycle. Each selected simulation scenario also was evaluated for differences in direct/indirect effects and cumulative effects on a particular scenario. Analysis of the results for the direct/indirect- and cumulative-effects analyses indicated that, in general, the results were similar for most of the scenarios and comparisons in this report focused on results from the direct/indirect-effects analyses. Scenario simulations that represented existing conditions in Pueblo Reservoir were compared to the No Action scenario to assess changes in water quality from current demands (2006) to projected demands in 2070. Overall, comparisons of the results between the Existing Conditions and the No Action scenarios for water-surface elevations, water temperature, and dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, and total iron concentrations indicated that the annual median values generally were similar for all three simulated years. Additionally, algal groups and chlorophyll-a concentrations (algal biomass) were similar for the Existing Conditions and the No Action scenarios at site 7B in the epilimnion for the simulated period (Water Year 2000 through 2002). The No Action scenario also was compared individually to the Comanche South, Joint Use Pipeline North, and Master Contract Only scenarios. These comparisons were made to describe changes in the annual median, 85th percentile, or 15th percentile concentration between the No Action scenario and each of the other three simulation scenarios. Simulated water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, algal groups, and chlorophyll-a concentrations in Pueblo Reservoir generally were similar between the No Action scenario and each of the other three simulation scenarios.
Wang, Ying; Yu, Yange; Li, Haiyan; Shen, Chanchan
2016-12-01
The adsorption of phosphorus (P) onto three industrial solid wastes (fly ash, red mud and ferric-alum water treatment residual (FAR)) and their modified materials was studied systematically via batch experiments. Compared with two natural adsorbents (zeolite and diatomite), three solid wastes possessed a higher adsorption capacity for P because of the higher Fe, Al and Ca contents. After modification (i.e., the fly ash and red mud modified by FeCl 3 and FARs modified by HCl), the adsorption capacity increased, especially for the modified red mud, where more Fe bonded P was observed. The P adsorption kinetics can be satisfactorily fitted using the pseudo-second-order model. The Langmuir model can describe well the P adsorption on all of the samples in our study. pH and dissolved organic matter (DOM) are two important factors for P adsorption. Under neutral conditions, the maximum adsorption amount on the modified materials was observed. With the deviation from pH7, the adsorption amount decreased, which resulted from the change of P species in water and surface charges of the adsorbents. The DOM in water can promote P adsorption, which may be due to the promotion effects of humic-Fe(Al) complexes and the pH buffer function exceeds the depression of competitive adsorption. Copyright © 2016. Published by Elsevier B.V.
Phiroonsoontorn, Nattaphorn; Sansuk, Sira; Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2017-10-13
This research presents a simple and green in situ solid phase extraction (is-SPE) combined with high-performance liquid chromatography (HPLC) for the simultaneous analysis of tetracyclines (TCs) including tetracycline, oxytetracycline, and chlortetracycline. In is-SPE, TCs were efficiently extracted through the precipitation formation of dissolvable layered double hydroxides (LDHs) by mixing the LDH components such as magnesium and aluminum ions (both in metal chloride salts) thoroughly in an alkaline sample solution. After the centrifugation, the precipitate was completely dissolved with trifluoroacetic acid to release the enriched TCs, and then analyzed by HPLC. Under optimized conditions, this method gave good enrichment factors (EFs) of 41-93 with low limits of detection (LODs) of 0.7-6μg/L and limits of quantitation (LOQs) of 3-15μg/L. Also, the proposed method was successfully applied for the determination of TCs in water and milk samples with the recoveries ranging from 81.7-108.1% for water and 55.7-88.7% for milk. Copyright © 2017 Elsevier B.V. All rights reserved.
Dissolution and characterization of HEV NiMH batteries.
Larsson, Kristian; Ekberg, Christian; Ødegaard-Jensen, Arvid
2013-03-01
Metal recovery is an essential part of the recycling of hybrid electric vehicle battery waste and the first step in a hydrometallurgical treatment is dissolution of the solid material. The properties of separated battery electrode materials were investigated. Focus was put on both the solid waste and then the dissolution behaviour. The cathode contains metallic nickel that remains undissolved when utilizing non-oxidizing conditions such as hydrochloric or sulphuric acid in combination with a low oxygen atmosphere. In these conditions the cathode active electrode material is fully dissolved. Not dissolving the nickel metal saves up to 37% of the acid consumption for the cathode electrode material. In the commonly used case of oxidizing conditions the nickel metal dissolves and a cobalt-rich phase remains undissolved from the cathode active material. For the anode material a complete and rapid dissolution can be achieved at mild conditions with hydrochloric, nitric or sulphuric acid. Optimal parameters for all cases of dissolution was pH 1 with a reaction time of approximately ≥ 20,000 s. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Freund, Friedemann
1991-01-01
Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.
Catchment scale molecular composition of hydrologically mobilized dissolved organic matter
NASA Astrophysics Data System (ADS)
Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten
2016-04-01
Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples showed that also the event-mobilized DOM had higher radiocarbon content. Overall, hydrology not only controls the quantity of exported carbon from temperate catchments but also strongly influences the molecular composition by mobilizing distinct compound classes in conjunction with dissolved iron and aluminum. From these results future compositional changes in temperate river DOM can be assessed, given an expected increase in the magnitude of hydrologic events, and technical advice for drinking water production may be inferred.
Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.
Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J; Geissen, Violette
2017-10-01
Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH 4 + , NO 3 - , dissolved organic phosphorus (DOP), and PO 4 3- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physicochemical and antioxidant properties of Algerian honey.
Khalil, Ibrahim; Moniruzzaman, Mohammed; Boukraâ, Laïd; Benhanifia, Mokhtar; Islam, Asiful; Islam, Nazmul; Sulaiman, Siti Amrah; Gan, Siew Hua
2012-09-20
The aim of the present study was to characterize the physical, biochemical and antioxidant properties of Algerian honey samples (n = 4). Physical parameters, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content were measured. Several biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. The mean pH was 3.84 ± 0.01, and moisture the content was 13.21 ± 0.16%. The mean EC was 0.636 ± 0.001, and the mean TDS was 316.92 ± 0.92. The mean color was 120.58 ± 0.64 mm Pfund, and the mean 5-hydroxymethylfurfural (HMF) content was 21.49 mg/kg. The mean total sugar and reducing sugar contents were 67.03 ± 0.68 g/mL and 64.72 ± 0.52 g/g, respectively. The mean sucrose content was 2.29 ± 0.65%. High mean values of phenolic (459.83 ± 1.92 mg gallic acid/kg), flavonoid (54.23 ± 0.62 mg catechin/kg), ascorbic acid (159.70 ± 0.78 mg/kg), AEAC (278.15 ± 4.34 mg/kg), protein (3381.83 ± 6.19 mg/kg) and proline (2131.47 ± 0.90) contents, as well as DPPH (39.57% ± 4.18) and FRAP activities [337.77 ± 1.01 µM Fe (II)/100 g], were also detected, indicating that Algerian honey has a high antioxidant potential. Strong positive correlations were found between flavonoid, proline and ascorbic acid contents and color intensity with DPPH and FRAP values. Thus, the present study revealed that Algerian honey is a good source of antioxidants.
Chemical quality of surface water in the Allegheny River basin, Pennsylvania and New York
McCarren, Edward F.
1967-01-01
The Allegheny River is the principal source of water to many industries and to communities in the upper Ohio River Valley. The river and its many tributaries pass through 19 counties in northwestern and western Pennsylvania. The population in these counties exceeds 3 million. A major user of the Allegheny River is the city of Pittsburgh, which has a population greater than The Allegheny River is as basic to the economy of the upper Ohio River Valley in western Pennsylvania as are the rich deposits of bituminous coal, gas, and oil that underlie the drainage basin. During the past 5 years many streams that flow into the Allegheny have been low flowing because of droughts affecting much of the eastern United States. Consequently, the concentration of solutes in some streams has been unusually high because of wastes from coal mines and oil wells. These and other water-quality problems in the Allegheny River drainage basin are affecting the economic future of some areas in western Pennsylvania. Because of environmental factors such as climate, geology, and land and water uses, surface-water quality varies considerably throughout the river basin. The natural quality of headwater streams, for example, is affected by saltwater wastes from petroleum production. One of the streams most affected is Kinzua Creek, which had 2,900 parts per million chloride in a sample taken at Westline on September 2, 1959. However, after such streams as the Conewango, Brokenstraw, Tionesta, Oil, and French Creeks merge with the Allegheny River, the dissolved-solids and chloride concentrations are reduced by dilution. Central segments of the main river receive water from the Clarion River, Redbank, Mahoning, and Crooked Creeks after they have crossed the coal fields of west-central Pennsylvania. At times, therefore, these streams carry coal-mine wastes that are acidic. The Kiskiminetas River, which crosses these coal fields, discharged sulfuric acid into the Allegheny at a rate of 299 tons a day during the 1962 water year (October 1, 1961, to September 30, 1962). Mine water affects the quality of the Allegheny River most noticeably in its lower part where large withdrawals are made by the Pittsburgh Water Company at Aspinwall and the Wilkinsburg-Penn Joint Water Authority at Nadine. At these places raw river water is chemically .treated in modern treatment plants to control such objectionable characteristics as acidity and excessive concentrations of iron and manganese. Dissolved-solids content in the river varies along its entire length. In its upper reaches the water of the Allegheny River is a sodium chloride type, and at low flow, the sodium chloride is more than half the dissolved solids. In its lower reaches the water is a calcium sulfate .type, and at low flow the calcium sulfate is more than half the dissolved solids. In middle segments of the river from Franklin to Kittanning, water is more dilute and of a mixed type. Many small and several larger streams in the upper basin--such as the Conewango, Brokenstraw, Kinzua, Tionesta, and French Creeks--support large populations of game-fish. Even in segments of the Clarion River, Mahoning, and Redbank Creeks, which are at times affected by coal-mine wastes, fish are present. Although different species withstand varying amounts of contaminants in water, the continued presence of the fish indicates that the water is relatively pure and suitable for recreation and many other uses.
Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin.
He, Li-Ming; Troiano, John; Wang, Albert; Goh, Kean
2008-01-01
Lambda-cyhalothrin is a pyrethroid insecticide used for controlling pest insects in agriculture, public health, and in construction and households. Lambda-cyhalothrin is characterized by low vapor pressure and a low Henry's law constant but by a high octanol-water partition coefficient (K(ow)) and high water-solid-organic carbon partition coefficient (K(oc)) values. Lambda-cyhalothrin is quite stable in water at pH < 8, whereas it hydrolyzes to form HCN and aldehyde under alkaline conditions. Although lambda-cyhalothrin is relatively photostable under natural irradiation, with a half-life > 3 wk, its photolysis process is fast under UV irradiation, with a half-life < 10 min. The fate of lambda-cyhalothrin in aquatic ecosystems depends on the nature of system components such as suspended solids (mineral and organic particulates) and aquatic organisms (algae, macrophytes, or aquatic animals). Lambda-cyhalothrin residues dissolved in water decrease rapidly if suspended solids and/or aquatic organisms are present because lambda-cyhalothrin molecules are strongly adsorbed by particulates and plants. Adsorbed lambda-cyhalothrin molecules show decreased degradation rates because they are less accessible to breakdown than free molecules in the water column. On the other hand, lambda-cyhalothrin adsorbed to suspended solids or bottom sediments may provide a mechanism to mitigate its acute toxicity to aquatic organisms by reducing their short-term bioavailability in the water column. The widespread use of lambda-cyhalothrin has resulted in residues in sediment, which have been found to be toxic to aquatic organisms including fish and amphipods. Mitigation measures have been used to reduce the adverse impact of lambda-cyhalothrin contributed from agricultural or urban runoff. Mitigation may be achieved by reducing the quantity of runoff and suspended solid content in runoff through wetlands, detention ponds, or vegetated ditches.
Paul, Angela P.; Thodal, Carl E.
2003-01-01
This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con
Initial dissolution kinetics of cocrystal of carbamazepine with nicotinamide.
Hattori, Yusuke; Sato, Maiko; Otsuka, Makoto
2015-11-01
Objectives of this study are investigating the initial dissolution kinetics of the cocrystal of carbamazepine (CBZ) with nicotinamide (NIC) and understanding its initial dissolution process. Cocrystal solids of CBZ with NIC were prepared by co-milling and solvent evaporation methods. The formation of cocrystal solid was verified via X-ray diffraction measurement. Dissolution tests of the solids were performed using an original flow cell and ultraviolet-visible spectroscopic detector. The spectra monitored in situ were analyzed to determine the dissolved compounds separately using the classical least squares regression method. The initial dissolution profiles were interpreted using simultaneous model of dissolution and phase changes. In the initial dissolution, CBZ in the cocrystal structure dissolved in water and it was suggested that CBZ reached a metastable intermediate state simultaneously with dissolution. The cocrystal solid prepared by solvent evaporation provided a higher rate constant of the phase change than that prepared by co-milling. Our results thus support the use of evaporation as the method of choice to produce ordered cocrystal structures. We suggest that CBZ forms dihydrate during the dissolution process; however, during the initial phase of dissolution, CBZ changes to a metastable intermediate phase. © 2015 Royal Pharmaceutical Society.
[Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].
Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian
2010-02-01
Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.
Trace Metals in Urban Stormwater Runoff and their Management
NASA Astrophysics Data System (ADS)
Li, T.; Hall, K.; Li, L. Y.; Schreier, H.
2009-04-01
In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.
NASA Astrophysics Data System (ADS)
Mokarram, Marzieh; Sathyamoorthy, Dinesh
2016-10-01
In this study, the fuzzy analytic hierarchy process (AHP) is used to study the relationship between drinking water quality based on content of inorganic components and landform classes in the south of Firozabad, west of Fars province, Iran. For determination of drinking water quality based on content of inorganic components, parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), sodium (Na), electrical conductivity (EC), sulfate (SO4), and total dissolved solids (TDS) were used. It was found that 8.29 % of the study area has low water quality; 64.01 %, moderate; 23.33 %, high; and 4.38 %, very high. Areas with suitable drinking water quality based on content of inorganic components are located in parts of the south-eastern and south-western parts of the study area. The relationship between landform class and drinking water quality based on content of inorganic components shows that drinking water quality based on content of inorganic components is high in the stream, valleys, upland drainages, and local ridge classes, and low in the plain small and midslope classes. In fact we can predict water quality using extraction of landform classes from a digital elevation model (DEM) by the Topographic Position Index (TPI) method, so that streams, valleys, upland drainages, and local ridge classes have more water quality than the other classes. In the study we determined that without measurement of water sample characteristics, we can determine water quality by landform classes.
Kurilić, Sanja Mrazovac; Ulniković, Vladanka Presburger; Marić, Nenad; Vasiljević, Milenko
2015-11-01
This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4+, Cl-, NO2-, NO3-, Fe, Mn, As, Ca2+, Mg2+, SO4(2-), HCO3-, K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na-HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3- content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.
Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah
Brooks, Lynette E.
2006-01-01
Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most locations with measured dissolved-solids concentration in excess of 1,000 milligrams per liter, the model simulates salt-water intrusion with similar concentrations.Simulating an additional 1,650 acre-feet per year withdrawal increased simulated dissolved-solids concentration by 200 to 1,000 milligrams per liter throughout much of Lake Point and near Factory Springs at a depth of about 250 to 300 feet below land surface. The increase in dissolved-solids concentration with increased withdrawals is greater at a depth of about 700 to 800 feet and exceeds 1,000 milligrams per liter throughout most of Lake Point. At the north end of Lake Point, increases exceed 10,000 milligrams per liter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...
Code of Federal Regulations, 2014 CFR
2014-07-01
... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...
Reconnaissance of water quality of Pueblo Reservoir, Colorado: May through December 1985
Edelmann, Patrick
1989-01-01
Pueblo Reservoir is the farthest upstream, main-stream reservoir constructed on the Arkansas River and is located in Pueblo County approximately 6 miles upstream from the city of Pueblo, Colorado. During the 1985 sampling period, the reservoir was stratified, and underflow from the Arkansas River occurred that resulted in stratification with respect to specific conductance. Concentrations of dissolved solids decreased markedly below the thermocline during June. Later in the summer, dissolved-solids concentrations increased substantially below the thermocline. Substantial depletion of dissolved oxygen occurred near the bottom of the reservoir. The dissolved oxygen minimum of 0.1 mg/L occurred during August near the reservoir bottom at transect 7 (near the dam). The average total-inorganic-nitrogen concentration near the reservoir surface was about 0.2 mg/L; near the reservoir bottom, the average concentration was about 0.3 mg/L. Concentrations of total phosphorus ranged from less than 0.01 to 0.05 mg/L near the reservoir surface, and from less than 0.01 to 0.22 mg/L near the reservoir bottom. At transect 2 (about 7 miles upstream from the dam) near the bottom of the reservoir, concentrations of total iron exceeded aquatic-life standards, and dissolved-manganese concentrations exceeded standards for public water supply. Diatoms, green algae, blue-green algae, and cryptomonads comprised the majority of phytoplankton in Pueblo Reservoir in 1985. The maximum average of 41,000 cells/ml occurred in July. Blue-green algae dominated from June to September; diatoms were the dominant group of algae in October. The average concentrations of phytoplankton decreased from July to October. (USGS)
Energy properties of solid fossil fuels and solid biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk; Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk
The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison withmore » solid fossil fuels.« less
Dudeja, Divya; Bartarya, Sukesh Kumar; Biyani, A K
2011-10-01
The present study discusses ion sources and assesses the chemical quality of groundwater of Doon Valley in Outer Himalayan region for drinking and irrigational purposes. Valley is almost filled with Doon gravels that are main aquifers supplying water to its habitants. Recharged only by meteoric water, groundwater quality in these aquifers is controlled essentially by chemical processes occurring between water and lithology and locally altered by human activities. Seventy-six water samples were collected from dug wells, hand pumps and tube wells and were analysed for their major ion concentrations. The pH is varying from 5.6 to 7.4 and electrical conductivity from 71 to 951 μmho/cm. Groundwater of Doon valley is dominated by bicarbonate contributing 83% in anionic abundance while calcium and magnesium dominate in cationic concentrations with 88%. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The high ratio of (Ca + Mg)/(Na + K), i.e. 10, low ratio of (Na + K)/TZ+, i.e.0.2 and also the presence of carbonate lithology in the northern part of valley, is indicative of carbonate dissolution as the main controlling solute acquisition process in the valley. The low abundance of silica content and high HCO₃/H₄SiO₄ ratio also supports carbonate dissolution and less significant role of silicate weathering as the major source for dissolved ions in Doon Valley. The analytical results computed for various indices show that water is of fairly good quality, although, hard but have moderate dissolved solid content. It is free from sodium hazard lying in C₁-S₁ and C₂-S₁ class of USSL diagram and in general suitable for drinking and irrigation except few locations having slightly high salinity hazard.
Du, Haixia; Li, Fusheng
2017-02-01
The characteristics of dissolved organic matter (DOM) formed in aerobic and anaerobic digestion of excess activated sludge (EAS) was investigated for three total solid (TS) concentrations (1.2, 2.3 and 5.2%) and three temperatures (5, 20 and 35 °C). The results on the overall concentration of DOM evaluated by TOC showed significantly higher values in anaerobic than aerobic digestion (2.8-6.9 times for TS 1.2-5.2% at 20 °C). Data analysis with a first-order sequential reaction model revealed that higher occurrence of DOM in anaerobic digestion was a result of comparatively faster hydrolysis (1.3-5.5 times for TS 1.2-5.2% at 20 °C; 1.4-49.3 times for temperatures 5-35 °C with TS 1.2%) and slower degradation (0.3-1.0 times for TS 1.2-5.2% at 20 °C; 0.5-8.3 times for temperatures 5-35 °C with TS 1.2%). In aerobic digestion, more humic substances were formed; while, in anaerobic digestion, proteins and aromatic amino acids were the major constituents. For both digestions, except for a few exceptions, proteins and humic substances increased as the TS concentration increased; and increasing the temperature led to a decrease in the content of proteins formed in both aerobic and anaerobic digestion, and an increase in the content of humic substances in the aerobic digestion. The UV-absorbing DOM constituents were highly heterogeneous, and were comparatively larger in anaerobic digestion; and did not change significantly with the TS concentrations and temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Andrew, Andrea; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil
2016-02-01
Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.
Andrew, Andrea A.; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil V.
2016-01-01
Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters. PMID:26904536
Andrew, Andrea A; Del Vecchio, Rossana; Zhang, Yi; Subramaniam, Ajit; Blough, Neil V
2016-01-01
Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.
Salinity of the ground water in western Pinal County, Arizona
Kister, Lester Ray; Hardt, W.F.
1966-01-01
The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.
Soil salinization in different natural zones of intermontane depressions in Tuva
NASA Astrophysics Data System (ADS)
Chernousenko, G. I.; Kurbatskaya, S. S.
2017-11-01
Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.
Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04
Stanton, Jennifer S.; Qi, Sharon L.
2007-01-01
An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard, 22 percent exceeded the manganese standard, 19 percent exceeded the sulfate standard, 26 percent exceeded the uranium standard, and 38 percent exceeded the dissolved-solids standard. In addition, 78 percent of samples had at least one detectable pesticide and 22 percent of samples had at least one detectable VOC. In the Eastern Nebraska unit, 30 percent of the samples collected had dissolved-solids concentrations larger than the standard, 23 percent exceeded the iron standard, 13 percent exceeded the manganese standard, 10 percent exceeded the arsenic standard, 7 percent exceeded the sulfate standard, 7 percent exceeded the uranium standard, and 7 percent exceeded the selenium standard. No samples exceeded the nitrate standard. Thirty percent of samples had at least one detectable pesticide compound and 10 percent of samples had at least one detectable VOC. In contrast, the Sand Hills and Ogallala Formation units had fewer detections of anthropogenic compounds and drinking-water exceedances. In the Sand Hills unit, 15 percent of the samples exceeded the arsenic standard, 4 percent exceeded the nitrate standard, 4 percent exceeded the uranium standard, 4 percent exceeded the iron standard, and 4 percent exceeded the dissolved-solids standard. Fifteen percent of samples had at least one pesticide compound detected and 4 percent had at least one VOC detected. In the Ogallala Formation unit, 6 percent of water samples exceeded the arsenic standard, 4 percent exceeded the dissolved-solids standard, 3 percent exceeded the nitrate standard, 2 percent exceeded the manganese standard, 1 percent exceeded the iron standard, 1 percent exceeded the sulfate standard, and 1 percent exceeded the uranium standard. Eight percent of samples collected in the Ogallala Formation unit had at least one pesticide detected and 6 percent had at least one VOC detected. Differences in ground-water chemistry among the hydrogeologic units were attributed to variable depth to water, depth of the well screen below the water table, reduction-oxidation conditions, ground-water residence time, interactions with surface water, composition of aquifer sediments, extent of cropland, extent of irrigated land, and fertilizer application rates.
Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997
Dawson, Barbara J.
2001-01-01
In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural, and non-agricultural purposes. All pesticide concentrations were below state and federal 2000 drinking-water standards. The relation of the ground-water quality to natural processes and human activities was tested using statistical methods (Spearman rank correlation, Kruskal?Wallis, or rank-sum tests) to determine whether an influence from rice land-use or other human activities on ground-water chemistry could be identified. The detection of pesticides in 89 percent of the wells sampled indicates that human activities have affected shallow ground-water quality. Concentrations of dissolved solids and inorganic constituents that exceeded state or federal 2000 drinking-water standards showed a statistical relation to geomorphic unit. This is interpreted as a relation to natural processes and variations in geology in the Sacramento River Basin; the high concentrations of dissolved solids and most inorganic constituents did not appear to be related to rice land use. No correlation was found between nitrate concentration and pesticide occurrence, indicating that an absence of high nitrate concentrations is not a predictor of an absence of pesticide contamination in areas with reducing ground-water conditions in the Sacramento Valley. Tritium concentrations, pesticide detections, stable isotope data, and dissolved-solids concentrations suggest that shallow ground water in the ricegrowing areas of the Sacramento Valley is a mix of recently recharged ground water containing pesticides, nitrate, and tritium, and unknown sources of water that contains high concentrations of dissolved solids and some inorganic constituents and is enriched in oxygen-18. Evaporation of applied irrigation water, which leaves behind salt, accounts for some of the elevated concentrations of dissolved solids. More work needs to be done to understand the connections between the land surface, shallow ground water, deep ground water, and the drinking-water supplies in the Sacramento Valley.
Six, Karel; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van Den Mooter, Guy
2004-01-01
Solid dispersions were prepared of itraconazole-Eudragit E100, itraconazole-PVPVA64, and itraconazole-Eudragit E100/PVPVA64 using a corotating twin-screw hot-stage extruder. Modulated temperature differential scanning calorimetry (MTDSC) was used to evaluate the miscibility of the extrudates, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGF(sp)). Itraconazole and Eudragit E100 are miscible up to 13% w/w drug loading. From that concentration on, phase separation is observed. Pharmaceutical performance of this dispersion was satisfactory because 80% of the drug dissolved after 30 min. Extrudates of itraconazole and PVPVA64 were completely miscible but the pharmaceutical performance was low, with 45% of drug dissolved after 3 h. Combination of both polymers in different ratios, with a fixed drug loading of 40% w/w, was evaluated. MTDSC results clearly indicated a two-phase system consisting of itraconazole-Eudragit E100 and itraconazole-PVPVA64 phases. In these extrudates, no free crystalline or glassy clusters of itraconazole were observed; all itraconazole was mixed with one of both polymers. The pharmaceutical performance was tested in SGF(sp) for different polymer ratios, and Eudragit E100/PVPVA64 ratios of 50/50 and 60/40 showed significant increases in dissolution rate and level. Polymer ratios of 70/30 and 80/20, on the other hand, had a release of 85% after 30 min. Precipitation of the drug was never observed. The combination of the two polymers provides a solid dispersion with good dissolution properties and improved physical stability compared with the binary solid dispersions of itraconazole. Copyright 2004 Wiley-Liss, Inc.
Cirri, Marzia; Roghi, Alessandra; Valleri, Maurizio; Mura, Paola
2016-07-01
The aim of this work was to develop effective fast-dissolving tablet formulations of glyburide, endowed with improved dissolution and technological properties, investigating the actual effectiveness of the Solid-Self MicroEmulsifying Drug Delivery System (S-SMEDDS) approach. An initial screening aimed to determine the solubility of the drug in different oils, Surfactants and CoSurfactants allowed the selection of the most suitable components for liquid SMEDDS, whose relative amounts were defined by the construction of pseudo-ternary phase diagrams. The selected liquid SMEDDS formulations (Capyol 90 as oil, Tween 20 as Surfactant and Glycofurol or Transcutol as CoSurfactant) were converted into Solid-SMEDDS, by adsorbing them onto Neusilin (1:1 and 1:0.8w/w S-SMEDDS:carrier), and fully characterized in terms of solid state (DSC and X-ray powder diffraction), morphological (ESEM) and dissolution properties, particle size and reconstitution ability. Finally, the 1:1 S-SMEDDS containing Glycofurol as CoSurfactant, showing the best performance, was selected to prepare two final tablet formulations. The ratio test (t10 min ratio and DE60 ratio) and pair-wise procedures (difference (f1) and similarity (f2) factors) highlighted the similarity of the new developed tablets and the marked difference between their drug dissolution profiles and those of formulations based on the micronized drug. The S-SMEDDS approach allowed to develop fast-dissolving tablets of glyburide, endowed with good technological properties and able to achieve the complete drug dissolution in a time ranging from 10 to 15min, depending on the formulation composition. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical analyses of geothermal waters from a South Louisiana well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, B.E.; Chavanne, R.E.; Ham, R.A.
1977-11-16
The abandoned Edna Delcambre No. 1 gas well, about 8 miles south of Delcambre, Louisiana was reopened and bottom-hole and flowing samples were collected. McNeese State University was responsible for the analyses of the products of the well. Typical values from the analyses are shown for such quantities as: pH, turbidity, conductance, density, total dissolved solids, hardness, viscosity, dissolved silicates, chlorides, bicarbonates, etc. Some observations on these values are made. (MHR)
Francis E. Walter Dam and Reservoir Project, Water Quality Data Report (RCS-DAEN-CWE-15).
1980-12-01
downstream, as well as within, the lake. Analysis of these samples rives an understanding of the effect of the lake on water quality: • . The...regulation, are available for analysis . Water quality data;I (temperature, dissolved oxygen, conductivity, pH, phosphorous, total dissolved solids...depresses the pH following a rain storm. If the source of tre acid water is Fhallow lakes and swamps~lignin and tannin concentrations would be high
Lubrication of chocolate during oral processing.
Rodrigues, S A; Selway, N; Morgenstern, M P; Motoi, L; Stokes, J R; James, B J
2017-02-22
The structure of chocolate is drastically transformed during oral processing from a composite solid to an oil/water fluid emulsion. Using two commercial dark chocolates varying in cocoa solids content, this study develops a method to identify the factors that govern lubrication in molten chocolate and saliva's contribution to lubrication following oral processing. In addition to chocolate and its individual components, simulated boluses (molten chocolate and phosphate buffered saline), in vitro boluses (molten chocolate and whole human saliva) and ex vivo boluses (chocolate expectorated after chewing till the point of swallow) were tested. The results reveal that the lubrication of molten chocolate is strongly influenced by the presence of solid sugar particles and cocoa solids. The entrainment of particles into the contact zone between the interacting surfaces reduces friction such that the maximum friction coefficient measured for chocolate boluses is much lower than those for single-phase Newtonian fluids. The addition of whole human saliva or a substitute aqueous phase (PBS) to molten chocolate dissolves sugar and decreases the viscosity of molten chocolate so that thinner films are achieved. However, saliva is more lubricating than PBS, which results in lower friction coefficients for chocolate-saliva mixtures when compared to chocolate-PBS mixtures. A comparison of ex vivo and in vitro boluses also suggests that the quantity of saliva added and uniformity of mixing during oral processing affect bolus structure, which leads to differences in measured friction. It is hypothesized that inhomogeneous mixing in the mouth introduces large air bubbles and regions of non-emulsified fat into the ex vivo boluses, which enhance wetting and lubrication.
Belval, D.L.; Campbell, J.P.; Woodside, M.D.
1994-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality-- Division of Intergovernmental Coordination to monitor and estimate loads of selected nutrients and suspended solids discharged to Chesapeake Bay from two major tributaries in Virginia. From July 1988 through June 1990, monitoring consisted of collecting depth-integrated, cross-sectional samples from the James and Rappahannock Rivers during storm- flow conditions and at scheduled intervals. Water- quality constituents that were monitored included total suspended solids (residue, total at 105 degrees Celsius), dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen (ammonia plus organic), total nitrogen, total phosphorus, dissolved orthopohosphorus, total organic carbon, and dissolved silica. Daily mean load estimates of each constituent were computed by month, using a seven-parameter log-linear-regression model that uses variables of time, discharge, and seasonality. Water-quality data and constituent- load estimates are included in the report in tabular and graphic form. The data and load estimates provided in this report will be used to calibrate the computer modeling efforts of the Chesapeake Bay region, evaluate the water quality of the Bay and the major effects on the water quality, and assess the results of best-management practices in Virginia.
27 CFR 30.1 - Gauging of distilled spirits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... correcting hydrometer indications at temperatures between 0 and 100 degrees Fahrenheit to true proof. If distilled spirits contain dissolved solids, temperature correction of the hydrometer reading by the use of...
Joe Moore
2016-07-20
This submission includes two modelled drawdown scenarios with new supply well locations, a total dissolved solids (TDS) concentration grid (raster dataset representing the spatial distribution of TDS), and an excel spreadsheet containing well data.
Clarkson, R M; Smith, T K; Kidd, B A; Evans, G E; Moule, A J
2013-12-01
In previous studies, surfactant-containing Hypochlor brands of sodium hypochlorite showed better tissue solubilizing abilities than Milton; differences not explained by original active chlorine content or presence of surfactant. It was postulated that exhaustion of active chlorine content could explain differences. This study aimed to assess whether Milton's poorer performance was due to exhaustion of active chlorine. Parallel experiments assessed the influence of titration methods, and the presence of chlorates, on active chlorine measurements. Time required to dissolve one or groups of 10 samples of porcine incisor pulp samples in Milton was determined. Residual active chlorine was assessed by thermometric titration. Iodometric and thermometric titration was carried out on samples of Milton. Chlorate content was also measured. Dissolution of single and 10 pulp samples caused a mean loss of 1% and 3% respectively of active chlorine, not being proportional to tissue dissolved. Thermometric ammonium ion titration resulted in 10% lower values than iodometric titration. Chlorate accounted for much of this difference. Depletion of active chlorine is not the reason for differences in tissue dissolving capabilities of Milton. Thermometric ammonium ion titration gives more accurate measurement of active chlorine content than iodometric titration. © 2013 Australian Dental Association.
Hydrologic reconnaissance of the Wasatch Plateau-Book Cliffs coal-fields area, Utah
Waddell, Kidd M.; Contratto, P. Kay; Sumsion, C.T.; Butler, John R.
1981-01-01
Data obtained during a hydrologic reconnaissance in 1975-77 in the Wasatch Plateau-Book Cliffs coal-fields area of Utah were correlated with existing long-term data. Maps were prepared showing average precipitation, average streamflow, stream temperature, ground- and surface-water quality, sediment yield, and geology. Recommendations were made for additional study and suggested approaches for continued monitoring in the coalfields areas.moDuring the 1931-75 water years, the minimum discharges for the five major streams that head in the area ranged from about 12,000 to 26,000 acre-feet per year, and the maximum discharges ranged from about 59,000 to 315,000 acre-feet per year. Correlations indicate that 3 years of low-flow records at stream sites in the Wasatch Plateau would allow the development of relationships with long-term sites that can be used to estimate future low-flow records within a standard error of about 20 percent.Most water-quality degradation in streams occurs along the flanks of the Wasatch Plateau and Book Cliffs. In the uplands, dissolved-solids concentrations generally ranged from less than 100 to about 250 milligrams per liter, and in the lowlands, the concentrations ranged from about 250 to more than 6,000 milligrams per liter.Most springs in the Wasatch Plateau and Book Cliffs discharge from the Star Point Sandstone or younger formations, and the water generally contains less than about 1,000 milligrams per liter of dissolved solids. The discharges of 65 springs ranged from about 0.2 to 200 gallons per minute. The Blackhawk Formation, which is the principal coal-bearing formation, produces water in many of the mines. The dissolved-solids concentration in water discharging from springs and mines in the Blackhawk ranged from about 60 to 800 milligrams per liter.In the lowland areas, the Ferron Sandstone Member of the Maneos Shale appears to have the most potential for subsurface development of water of suitable chemical quality for human consumption. Three wells in the Ferron yielded water with dissolved-solids concentrations ranging from about 650 to 1,230 milligrams per liter.
Trends in groundwater quality in principal aquifers of the United States, 1988-2012
Lindsey, Bruce D.; Rupert, Michael G.
2014-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program analyzed trends in groundwater quality throughout the nation for the sampling period of 1988-2012. Trends were determined for networks (sets of wells routinely monitored by the USGS) for a subset of constituents by statistical analysis of paired water-quality measurements collected on a near-decadal time scale. The data set for chloride, dissolved solids, and nitrate consisted of 1,511 wells in 67 networks, whereas the data set for methyl tert-butyl ether (MTBE) consisted of 1, 013 wells in 46 networks. The 25 principal aquifers represented by these networks account for about 75 percent of withdrawals of groundwater used for drinking-water supply for the nation. Statistically significant changes in chloride, dissolved-solids, or nitrate concentrations were found in many well networks over a decadal period. Concentrations increased significantly in 48 percent of networks for chloride, 42 percent of networks for dissolved solids, and 21 percent of networks for nitrate. Chloride, dissolved solids, and nitrate concentrations decreased significantly in 3, 3, and 10 percent of the networks, respectively. The magnitude of change in concentrations was typically small in most networks; however, the magnitude of change in networks with statistically significant increases was typically much larger than the magnitude of change in networks with statistically significant decreases. The largest increases of chloride concentrations were in urban areas in the northeastern and north central United States. The largest increases of nitrate concentrations were in networks in agricultural areas. Statistical analysis showed 42 or the 46 networks had no statistically significant changes in MTBE concentrations. The four networks with statistically significant changes in MTBE concentrations were in the northeastern United States, where MTBE was widely used. Two networks had increasing concentrations, and two networks had decreasing concentrations. Production and use of MTBE peaked in about 2000 and has been effectively banned in many areas since about 2006. The two networks that had increasing concentrations were sampled for the second time close to the peak of MTBE production, whereas the two networks that had decreasing concentrations were sampled for the second time 10 years after the peak of MTBE production.
Rice, C.A.
2003-01-01
This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in isotopes along with compositional variations imply that the Ferron reservoir is heterogeneous and compartmentalized, and that multiple flow paths may exist. ?? 2003 Published by Elsevier B.V. All rights reserved.
Thomas, Mary Ann; Diehl, Sharon F.; Pletsch, Bruce A.; Schumann, Thomas L.; Pavey, Richard R.; Swinford, E. Mac
2008-01-01
The U.S. Geological Survey (USGS), in cooperation with the Miami Conservancy District, collected and analyzed samples of the aquifer materials and ground water from multiple depths at two sites in northern Preble County, Ohio. The aquifer materials included glacial deposits and Silurian carbonate bedrock. In the study area, elevated arsenic concentrations have been detected in ground water from both types of aquifers. The aquifer materials were described in terms of the stratigraphy and the bulk elemental composition of 70 samples. In addition, six water-producing horizons were selected for more detailed study; ground-water quality was analyzed, microanalytical techniques were used to examine thin sections of the aquifer materials, and simplified geochemical modeling was done to identify plausible reactions between the ground water and aquifer materials. At both study sites, the highest solid-phase arsenic concentrations were from a roughly similar stratigraphic position - a transition zone that extends from just above the Wisconsinan/Illinoian contact to just below the Pleistocene/Silurian contact. For carbonate bedrock, the solid-phase arsenic concentrations were generally low (<1 to 4 mg/kg (milligrams per kilogram)). The one notable exception was a thin horizon about 10 feet below the top of bedrock, which had an arsenic concentration of 42 mg/kg. This horizon showed some textural and compositional evidence of alteration by geothermal fluids. Additional study might be warranted to investigate whether arsenic concentrations in ground water from carbonate bedrock could be decreased by excluding discrete horizons from the open intervals of wells. For glacial deposits, solid-phase arsenic concentrations were slightly higher in fine-grained deposits (2 to 20 mg/kg) than in coarse-grained deposits (2 to 9 mg/kg). In ground water, arsenic concentrations ranged from <1 to 51 ug/L (micrograms per liter); samples from two horizons had concentrations greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 ug/L. Dissolved arsenic concentrations appear to be more closely related to redox conditions of the ground water than to the arsenic content of the aquifer materials. Geochemical modeling and thin-section analysis were generally consistent with the idea that arsenic was released to water from iron oxides under iron-reducing conditions. In addition, there was some evidence in support of the idea that arsenic can be removed from ground water by precipitation of sulfide minerals, which occurs under sulfate-reducing conditions. At one site, the dissolved arsenic concentrations in two water-bearing horizons increased from <1 to 51 ug/L over a depth of 15 feet. The large increase might be due to a shift from sulfate-reducing to methanogenic conditions; in the absence of sulfate reduction, arsenic is not sequestered in sulfide minerals and may accumulate in the ground water.
Sample Results from MCU Solids Outage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.; Washington, A.; Oji, L.
2014-09-22
Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate;more » An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system; Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid; The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future; Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing; Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.« less
Monitoring requirements for groundwaters under the influence of reclaimed water.
Fox, P
2001-07-01
Monitoring groundwaters under the influence of reclaimed water must consider the major constituents of concern in reclaimed water. This research focused on the fate of dissolved organic carbon and nitrogen species at field sites located throughout the Southwestern United States. A watershed approach was developed to predict the fate of dissolved organic carbon as a function of the drinking water dissolved organic carbon concentration and the total dissolved solids concentration in the reclaimed water. Extensive characterization of the dissolved organic carbon recovered from groundwaters under the influence of reclaimed water was done. With the exception of fluorescence spectroscopy, the dissolved organic carbon present in effluent organic matter was similar in structure, character and reactivity as compared to natural organic matter. Evidence for sustainable nitrogen removal mechanisms during groundwater recharge with reclaimed water was obtained. The autotrophic reaction between ammonia and nitrate appears to a mechanism for the removal nitrogen in a carbon-depleted environment. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of indirect potable reuse projects.
Distribution of pyrethroid insecticides in secondary wastewater effluent
Parry, Emily; Young, Thomas M.
2014-01-01
Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. We investigated the distribution of pyrethroids among three forms: freely dissolved, complexed with dissolved organic carbon (DOC), and sorbed to suspended particulate matter, during a yearlong study at a secondary wastewater treatment plant. Effluent was fractionated by laboratory centrifugation to determine if sorption was driven by particle size. Linear distribution coefficients were estimated for pyrethroid sorption to suspended particulate matter (Kid) and dissolved organic carbon (Kidoc) at environmentally relevant pyrethroid concentrations. Resulting Kid values were higher than those reported for other environmental solids, and variation between sampling events correlated well with available particle surface area. Fractionation results suggest that no more than 40% of the pyrethroid remaining in secondary effluent could be removed by extending settling periods. Less than 6%of the total pyrethroid load in wastewater effluent was present in the dissolved form across all sampling events and chemicals. PMID:23939863
Water resources inventory of Connecticut Part 8: Quinnipiac River basin
Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.
1978-01-01
The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers and evaluation of natural and induced recharge. Long-term yields estimated for 14 favorable areas of stratified drift range from 0.8 to 16.1 mgd (million gallons per day), but detailed verification studies are needed before development. The natural quality of water in the report area is good. The water is generally low in dissolved solid and is soft to moderately hard. Surface water is less mineralized than ground water, especially during high flow when it is primarily surface runoff. A median dissolved-solids concentration of 117 mg/l (milligrams per liter) and a median hardness of 58 mg/l was determined for water samples collected at 20 sites on 16 streams during high flow. A median dissolved-solids concentration of 146 mg/l and a median hardness of 82 mg/l was determined for samples collected at the same sites during low flow. In contrast water from 130 wells had a median dissolved-solids concentration of 188 mg/l and a median hardness of 110 mg/l. Iron and manganese occur in objectionable concentrations in parts of the report area, particularly in water from streams draining swamps and in water from aquifers rich in iron- and manganese-bearing minerals. Concentrations of iron in excess of 0.3 mg/l were found in 40 percent of the high-streamflow samples, 59 percent of the low-streamflow samples and 20 percent of the ground-water samples. Human activities have modified the quality of water in much of the basin. Wide and erratic fluctuations in concentration of dissolved solids in streams, high bacterial content of the Quinnipiac River, and locally high nitrate and chloride concentrations in ground water are evidence of man's influence. Streams, wetlands, and some aquifers along the southern boundary of the basin contain salty water. Overpumping has caused extensive saltwater intrusion in aquifers in the southern and eastern parts of New Haven. The total amount of fresh water used in the area during 1970 is estimated at 35,710 million gallons, or 183 gallons per day per capita. Public water-supply systems met the domestic requirements of about 90 percent of the population; all the systems supplied water that met the drinking water standards of the Connecticut Department of Health.
Influence of calcium on microbial reduction of solid phase uranium(VI).
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming
2007-08-15
The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.
Qian, Feng; Wang, Jennifer; Hartley, Ruiling; Tao, Jing; Haddadin, Raja; Mathias, Neil; Hussain, Munir
2012-10-01
To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.
NASA Astrophysics Data System (ADS)
Fleetwood, James D.
Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.
Treatment of piggery wastes in waste stabilization ponds.
Estrada, V E E; Hernández, D E A
2002-01-01
The piggery industry produces high effluent loads. This is due to the high concentration of animals kept in a confined space, foods with high protein content that are not well assimilated by the animals, and poor on-farm water management. In this study, we present the characteristics, design, site selection, soil study, and the construction of a pilot pond system for a family farm located in a warm climate area. The design includes a solids sedimentation phase, an anaerobic pond, a facultative pond and three maturation ponds. Once the system had reached steady state, the organic and bacterial kinetic constants were determined for each pond. The control parameters were determined and the dissolved oxygen and removal efficiency profiles were obtained. The results indicate that the effluent from the second maturation pond complies with the Official Mexican Standard for reuse in agriculture ("1000 FC/100 ml).
Lutzu, Giovanni Antonio; Dunford, Nurhan Turgut
2017-12-19
Hydraulic fracturing technology is widely used for recovering natural gas and oil from tight oil and gas reserves. Large volumes of wastewater, flowback water, are produced during the fracturing process. This study examines algal treatment of flowback water. Thirteen microalgae strains consisting of cyanobacteria and green algae were examined. Wastewater quality before and after algae treatment, as well as volatile matter, fixed carbon and ash contents of the biomass grown in flowback water were examined. The experimental results demonstrated that microalgae can grow in flowback water. The chemical composition of the algal biomass produced in flowback water was strain specific. Over 65% total dissolved solids, 100% nitrate and over 95% boron reduction in flowback water could be achieved. Hence, algal treatment of flowback water can significantly reduce the adverse environmental impact of hydraulic fracturing technology and produce biomass that can be converted to bioproducts.
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
Horwatich, Judy A.; Bannerman, Roger T.
2010-01-01
To evaluate the treatment efficiency of a stormwater-filtration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD. Water-quality samples were collected for 51 runoff events from November 2005 to August 2007. Samples from all runoff events were analyzed for concentrations of suspended sediment (SS). Samples from 31 runoff events were analyzed for 15 constituents, samples from 15 runoff events were analyzed for PAHs, and samples from 36 events were analyzed for PSD. The treatment efficiency of the SFD was calculated using the summation of loads (SOL) and the efficiency ratio methods. Constituents for which the concentrations and (or) loads were decreased by the SFD include TSS, SS, volatile suspended solids, total phosphorous (TP), total copper, total zinc, and PAHs. The efficiency ratios for these constituents are 45, 37, 38, 55, 22, 5, and 46 percent, respectively. The SOLs for these constituents are 32, 37, 28, 36, 23, 8, and 48 percent, respectively. The SOL for chloride was -21 and the efficiency ratio was -18. Six chemical constituents or properties-dissolved phosphorus, chemical oxygen demand, dissolved zinc, total dissolved solids, dissolved chemical oxygen demand, and dissolved copper-were not included in the efficiency or SOL, because the difference between concentrations in samples from the inlet and outlet were not significant. Concentrations of TP and TSS were inexplicably high in samples at the inlet for one event.
The long-term effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved and solid phase Cr(VI) in a high pH chromite ore processing solid waste (COPSW) fill material was investigated. Two field pilot injection studies were cond...
Albrechtova, Jana; Seidl, Zdenek; Aitkenhead-Peterson, Jacqueline; Lhotáková, Zuzana; Rock, Barrett N; Alexander, Jess E; Malenovský, Zbynek; McDowell, William H
2008-10-15
Dissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability. The aim of this study was to examine potential links among spectral foliar data, and the organic C and N of forest soils. Two coniferous species (red spruce and balsam fir) were studied in the White Mountains of New Hampshire, USA. Six trees of each species were sampled at 5 watersheds (2 in the Hubbard Brook Experimental Forest, 3 in the Bartlett Experimental Forest). We hypothesized that in a coniferous forest, chemistry of old foliage would better predict the chemical composition of the forest floor litter layer than younger foliage, which is the more physiologically active and the most likely to be captured by remote sensing of the canopy. Contrary to our expectations, chlorophyll concentration of young needles proved to be most tightly linked to soil properties, in particular water-extractable dissolved organic carbon. Spectral indices related to the chlorophyll content of needles could be used to predict variation in forest floor dissolved organic carbon and dissolved organic nitrogen. Strong correlations were found between optical spectral indices based on chlorophyll absorption and forest floor dissolved organic carbon, with higher foliage chlorophyll content corresponding to lower forest floor dissolved organic carbon. The mechanisms behind these correlations are uncertain and need further investigation. However, the direction of the linkage from soil to tree via nutrient availability is hypothesized based on negative correlations found between foliar N and forest floor dissolved organic carbon.
Gerner, Steven J.; Spangler, Lawrence E.
2006-01-01
Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.
Chapman, Melinda J.; Gurley, Laura N.; Fitzgerald, Sharon A.
2014-01-01
Records were obtained for 305 wells and 1 spring in northwestern Lee and southeastern Chatham counties, North Carolina. Well depths ranged from 26 to 720 feet and yields ranged from 0.25 to 100 gallons per minute. A subset of 56 wells and 1 spring were sampled for baseline groundwaterquality constituents including the following: major ions; dissolved metals; nutrients; dissolved gases (including methane); volatile and semivolatile organic compounds; glycols; isotopes of strontium, radium, methane (if sufficient concentration), and water; and dissolved organic and inorganic carbon. Dissolved methane gas concentrations were low, ranging from less than 0.00007 (lowest reporting level) to 0.48 milligrams per liter. Concentrations of nitrate, boron, iron, manganese, sulfate, chloride, total dissolved solids, and measurements of pH exceeded federal and state drinking water standards in a few samples. Iron and manganese concentrations exceeded the secondary (aesthetic) drinking water standard in approximately 35 to 37 percent of the samples.
A sediment resuspension and water quality model of Lake Okeechobee
James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.
1997-01-01
The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.
Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.
Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry
2015-12-09
We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1998-01-01
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less
The Geographic Information System applied to study schistosomiasis in Pernambuco
Barbosa, Verônica Santos; Loyo, Rodrigo Moraes; Guimarães, Ricardo José de Paula Souza e; Barbosa, Constança Simões
2017-01-01
ABSTRACT OBJECTIVE Diagnose risk environments for schistosomiasis in coastal localities of Pernambuco using geoprocessing techniques. METHODS A coproscopic and malacological survey were carried out in the Forte Orange and Serrambi areas. Environmental variables (temperature, salinity, pH, total dissolved solids and water fecal coliform dosage) were collected from Biomphalaria breeding sites or foci. The spatial analysis was performed using ArcGis 10.1 software, applying the kernel estimator, elevation map, and distance map. RESULTS In Forte Orange, 4.3% of the population had S. mansoni and were found two B. glabrata and 26 B. straminea breeding sites. The breeding sites had temperatures of 25ºC to 41ºC, pH of 6.9 to 11.1, total dissolved solids between 148 and 661, and salinity of 1,000 d. In Serrambi, 4.4% of the population had S. mansoni and were found seven B. straminea and seven B. glabrata breeding sites. Breeding sites had temperatures of 24ºC to 36ºC, pH of 7.1 to 9.8, total dissolved solids between 116 and 855, and salinity of 1,000 d. The kernel estimator shows the clusters of positive patients and foci of Biomphalaria, and the digital elevation map indicates areas of rainwater concentration. The distance map shows the proximity of the snail foci with schools and health facilities. CONCLUSIONS Geoprocessing techniques prove to be a competent tool for locating and scaling the risk areas for schistosomiasis, and can subsidize the health services control actions. PMID:29166439
Simulating water-quality trends in public-supply wells in transient flow systems
Starn, J. Jeffrey; Green, Christopher T.; Hinkle, Stephen R.; Bagtzoglou, Amvrossios C.; Stolp, Bernard J.
2014-01-01
Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources as pumping changes in the basin over time. At individual wells, however, predicting specific water-quality changes remains challenging. The influence of pumping-induced transient groundwater flow on changes in mean age and source areas is significant. Mean age and source areas were mapped across the model domain to extend the results from observation wells to the entire aquifer to see where changes in concentrations of dissolved solids are expected to occur. The timing of these changes depends on accurate estimates of groundwater velocity. Calibration to tritium concentrations was used to estimate effective porosity and improve correlation between source area changes, age changes, and measured dissolved solids trends. Uncertainty in the model is due in part to spatial and temporal variations in tracer inputs, estimated tracer transport parameters, and in pumping stresses at sampling points. For tracers such as tritium, the presence of two-limbed input curves can be problematic because a single concentration can be associated with multiple disparate travel times. These shortcomings can be ameliorated by adding hydrologic and geologic detail to the model and by adding additional calibration data. However, the Salt Lake Valley model is useful even without such small-scale detail.
Shope, Christopher L.; Angeroth, Cory E.
2015-01-01
Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.
Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.
Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng
2013-01-01
Attenuation of excess nutrients in wastewater and stormwater is required to safeguard aquatic ecosystems. The use of low-cost, mineral-based industrial by-products with high Ca, Mg, Fe or Al content as a solid phase in constructed wetlands potentially offers a cost-effective wastewater treatment option in areas without centralised water treatment facilities. Our objective was to investigate use of water treatment residuals (WTRs), coal fly ash (CFA), and granular activated carbon (GAC) from biomass combustion in in-situ water treatment schemes to manage dissolved organic carbon (DOC) and nutrients. Both CaO- and CaCO(3)-based WTRs effectively attenuated inorganic N species but exhibited little capacity for organic N removal. The CaO-based WTR demonstrated effective attenuation of DOC and P in column trials, and a high capacity for P sorption in batch experiments. Granular activated carbon proved effective for DOC and dissolved organic nitrogen (DON) removal in column trials, but was ineffective for P attenuation. Only CFA demonstrated effective removal of a broad suite of inorganic and organic nutrients and DOC; however, Se concentrations in column effluents exceeded Australian and New Zealand water quality guideline values. Water treated by filtering through the CaO-based WTR exhibited nutrient ratios characteristic of potential P-limitation with no potential N- or Si-limitation respective to growth of aquatic biota, indicating that treatment of nutrient-rich water using the CaO-based WTR may result in conditions less favourable for cyanobacterial growth and more favourable for growth of diatoms. Results show that selected industrial by-products may mitigate eutrophication through targeted use in nutrient intervention schemes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
von Brömssen, Mattias; Häller Larsson, Sara; Bhattacharya, Prosun; Hasan, M. Aziz; Ahmed, Kazi Matin; Jakariya, M.; Sikder, Mohiuddin A.; Sracek, Ondra; Bivén, Annelie; Doušová, Barbora; Patriarca, Claudio; Thunvik, Roger; Jacks, Gunnar
2008-07-01
High arsenic (As) concentrations in groundwater pose a serious threat to the health of millions of people in Bangladesh. Reductive dissolution of Fe(III)-oxyhydroxides and release of its adsorbed As is considered to be the principal mechanism responsible for mobilisation of As. The distribution of As is extremely heterogeneous both laterally and vertically. Groundwater abstracted from oxidised reddish sediments, in contrast to greyish reducing sediments, contains significantly lower amount of dissolved arsenic and can be a source of safe water. In order to study the sustainability of that mitigation option, this study describes the lithofacies and genesis of the sediments within 60 m depth and establishes a relationship between aqueous and solid phase geochemistry. Oxalate extractable Fe and Mn contents are higher in the reduced unit than in the oxidised unit, where Fe and Mn are present in more crystalline mineral phases. Equilibrium modelling of saturation indices suggest that the concentrations of dissolved Fe, Mn and PO43--tot in groundwater is influenced by secondary mineral phases in addition to redox processes. Simulating AsIII adsorption on hydroferric oxides using the Diffuse Layer Model and analytical data gave realistic concentrations of dissolved and adsorbed AsIII for the reducing aquifer and we speculate that the presence of high PO43--tot in combination with reductive dissolution results in the high-As groundwater. The study confirms high mobility of As in reducing aquifers with typically dark colour of sediments found in previous studies and thus validates the approach for location of wells used by local drillers based on sediment colour. A more systematic and standardised colour description and similar studies at more locations are necessary for wider application of the approach.
Summary of geology and ground-water resources of Passaic County, New Jersey
Carswell, L.D.; Rooney, J.G.
1976-01-01
Ground water in Passaic County occurs in intergranular openings of unconsolidated stratified deposits of Quaternary age and in joints and fractures in consolidated rocks of Precambrian, Paleozoic, and Triassic age.The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County. Reported yields of public supply and industrial wells range from 50 to 510 gallons per minute (3 to 32 litres per second) and the median yield is 130 gallons per minute (8 litres per second). Most of these wells are 200 to 400 feet (61 to 122 metres) deep. The median yield of all public supply and industrial wells over 300 feet (91 metres) deep and 8 inches (203 millimetres) or larger in diameter is 230 gallons per minute (15 litres per second). Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Reported well yields range from 1 to 200 gallons per minute (.06 to 13 litres per second). The median reported yield of domestic wells is 5 gallons per minute (.31 litres per second) and that of public supply wells is 30 gallons per minute (2 litres per second).Other consolidated rocks--rocks of Paleozoic age and the Watchung Basalt of Traissic age--are utilized primarily for domestic water supplies in Passaic County. Reported yields of wells tapping the Paleozoic rocks range from less than 1 to 35 gallons per minute (.06 to 2 litres per second) and the median yield is 10 gallons per minute (.63 litres per second). Reported yields of domestic wells tapping the Watchung Basalt range from less than 1 to 40 gallons per minute (.06 to 3 litres per second) and the median yield is 12 gallons per minute (.76 litres per second). However, reported yields of nine industrial and commercial wells range from 50 to 180 gallons per minute (3 to 11 litres per second).Unconsolidated stratified deposits of Quaternary age are locally an important source of ground water for public supply and industrial use in parts of Passaic County. These deposits have not been extensively explored but are potentially an important source of ground water for future development. Reported yields of wells tapping the stratified deposits range from 4 to 920 gallons per minute (.25 to 58 litres per second). The median reported yield of domestic wells is 16 gallons per minute (1 litre per second) and that of public supply and industrial wells is 130 gallons per minute (8 litres per second. Depths of wells depend upon the thickness of the deposits. Reported depths range from 22 to 170 feet (7 to 52 metres).The quality of ground water in Passaic County varies from one aquifer to another. Water from the Precambrian rocks is soft to moderately hard (34 to 104 milligrams per litre) and is low in dissolved solids (66 to 159 milligrams per litre). Water from the Brunswick Formation is moderately hard to very hard (89 to 540 milligrams per litre). The dissolved solids content ranges from 129 to 563 milligrams per litre). The occurrence of more highly mineralized water at depth in the Brunswick Formation is indicated by an analysis, made in 1885, of 16,000 milligrams per litre of dissolved solids at a depth of 2,050 feet (625 metres) in a well in Paterson. Water from two wells tapping the Quaternary deposits is moderately hard (65 and 83 milligrams per litre) and has dissolved solids contents of 122 and 133 milligrams per litre).Water use from both surface and ground-water supplies in Passaic County averaged about 106 million gallons per day (4.6 cubic metres per second) in 1965. Ground water probably accounts for 5 to 10 percent of this total. Ground-water pumpage by the major public supply companies in the county has increased from 2.1 million gallons per day (.09 cubic metres per second) in 1951 to 4.39 million gallons per day (.19 cubic metres per second) in 1968. About 80 percent of the 4.39 million gallons per day (.19 cubic metres per second) was from wells tapping the Brunswick Formation in the southern part of the county.
Ethanol extraction of phytosterols from corn fiber
Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.
2010-11-16
The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.
Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties.
Xiao, Wendan; Zhang, Yibin; Li, Tingqiang; Chen, Bao; Wang, Huan; He, Zhenli; Yang, Xiaoe
2012-01-01
The toxicity of chromium (Cr) to biota is related to its chemical forms and consequently to the redox conditions of soils. Hexavalent Cr[Cr(VI)] may undergo natural attenuation through reduction processes. In this study, the reduction kinetics of Cr(VI) in seven soils and its relationships with soil properties were investigated with laboratory incubation experiments. The results indicate that the reduction of Cr(VI) can be described by a first-order reaction. The reduction rates of Cr(VI) in the seven soils decreased in the order: Udic Ferrisols > Stagnic Anthrosols > Calcaric Regosols > Mollisol > Typic Haplustalf > Periudic Argosols > Ustic Cambosols. Simple correlation analysis revealed that the reduction of Cr(VI) in soils was positively related to organic matter content, dissolved organic matter content, Fe(II) content, clay fraction, and to the diversity index of the bacterial community but negatively correlated with easily reducible Mn content. Using stepwise regression, the reduction of Cr(VI) in soil could be quantitatively predicted by the measurement of dissolved organic matter content, Fe(II) content, pH, and soil particle size distribution, with a fitting level of 95.5%. The results indicated that the reduction of Cr(VI) in natural soils is not controlled by a single soil property but is the result of the combined effects of dissolved organic matter, Fe(II), pH, and soil particle size distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Method for processing aqueous wastes
Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.
1993-01-01
A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.
Kansas environmental and resource study: A Great Plains model. Monitoring fresh water resources
NASA Technical Reports Server (NTRS)
Yarger, H. L. (Principal Investigator); Mccauley, J. R.
1974-01-01
The author has identified the following significant results. ERTS MSS ratios derived from CCT's are very effective for quantitative detection of suspended solid up to at least 900 ppm. The relatively high inorganic suspended solids, characteristic of midcontinent reservoirs, dominates the reflected energy present in the four MSS bands. Dissolved solids concentrations up to 500 ppm and algal nutrients up to 20 ppm are not detectable. The MSS5/MSS4 ratio may be weakly correlated with total chlorophyll above approximately 8 micrograms/liter.
NASA Astrophysics Data System (ADS)
Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.
2018-06-01
Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest potential impact in areas dominated by organic-rich soils.
Incinerator ash dissolution model for the system: Plutonium, nitric acid and hydrofluoric acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E V
1988-06-01
This research accomplished two goals. The first was to develop a computer program to simulate a cascade dissolver system. This program would be used to predict the bulk rate of dissolution in incinerator ash. The other goal was to verify the model in a single-stage dissolver system using Dy/sub 2/O/sub 3/. PuO/sub 2/ (and all of the species in the incinerator ash) was assumed to exist as spherical particles. A model was used to calculate the bulk rate of plutonium oxide dissolution using fluoride as a catalyst. Once the bulk rate of PuO/sub 2/ dissolution and the dissolution rate ofmore » all soluble species were calculated, mass and energy balances were written. A computer program simulating the cascade dissolver system was then developed. Tests were conducted on a single-stage dissolver. A simulated incinerator ash mixture was made and added to the dissolver. CaF/sub 2/ was added to the mixture as a catalyst. A 9M HNO/sub 3/ solution was pumped into the dissolver system. Samples of the dissolver effluent were analyzed for dissolved and F concentrations. The computer program proved satisfactory in predicting the F concentrations in the dissolver effluent. The experimental sparge air flow rate was predicted to within 5.5%. The experimental percentage of solids dissolved (51.34%) compared favorably to the percentage of incinerator ash dissolved (47%) in previous work. No general conclusions on model verification could be reached. 56 refs., 11 figs., 24 tabs.« less
New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach
NASA Astrophysics Data System (ADS)
Bowman, M. M.; Sanclements, M.; McKnight, D. M.
2017-12-01
Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase fluorescence, which provide new insights into fluorescence studies in terrestrial systems.
Biogeochemistry of aquatic humic substances in Thoreau's Bog, Concord, Massachusetts
McKnight, Diane M.; Thurman, E. Michael; Wershaw, Robert L.; Hemond, Herold
1985-01-01
Thoreau's Bog is an ombrotrophic floating—mat Sphagnum bog developed in a glacial kettlehole and surrounded by a red maple swamp. Concentrations of dissolved organic carbon in the porewater of the bog average 36 mg/L and are greatest near the surface, especially during late summer. This distribution suggest that the upper layer of living and dead Sphagnum and moderately humified peat is the major site of dissolved organic material production in the bog. The dissolved organic material consists mainly of aquatic fulvic acid (67%) and hydrophilic acids (20%); these organic acids control the pH (typically 4 or somewhat lower) of the bogwater. The elemental, amino acid, carbohydrate, and carboxylic acid contents of fulvic acid from the bog are similar to those of aquatic fulvic acid from the nearby Shawsheen River, although the phenolic hydroxyl content of fulvic acid from Thoreau's Bog is higher. The hydrophilic acids have greater amino acid, carbohydrate, and carboxylic acid contents than the fulvic acid, consistent with the hypothesis that hydrophilic acids are more labile intermediate compounds in the formation of fulvic acid.
Fang, Wen; Wei, Yonghong; Liu, Jianguo
2016-06-05
The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6
Chemical composition of dew in Amman, Jordan
NASA Astrophysics Data System (ADS)
Jiries, Anwar
Twenty-six dew samples were collected on a glass surface from an urbanized area in Amman city during the period October 1999 to June 2000. They were analyzed for the major ions (Cl, SO 4, NO 3, Ca, Mg, Na, K and NH 4) in addition to three heavy metals (Pb, Cd and Co). Rain samples were collected for the same period and compared to the chemical constituents of dew. It was found that both rain and dew samples were of almost neutral acidity due to the buffering effect of CaCO 3. Dew composition was mainly from CaSO 4 solution due to conversion of CaCO 3 to CaSO 4 when left exposed to a sulfate-rich atmosphere. The total dissolved solids were higher in dew than rain samples of the same period. This was attributed to higher evaporation effect on dew than rain. The heavy metal content in dew is highest during the cold winter season (December-March) due to excess fossil fuel combustion for heating purposes in this period. The heavy metal content in dew was lower than that for rain during the same period because of the shorter period of dew formation than rainwater.
Effect of hot-water extraction on alkaline pulping of bagasse.
Lei, Yichao; Liu, Shijie; Li, Jiang; Sun, Runcang
2010-01-01
The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 degrees C for 30min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 degrees C and 155 degrees C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied. Copyright 2010 Elsevier Inc. All rights reserved.
Synthesis of tin (II) oxide from tin (II) oxohydroxide
NASA Astrophysics Data System (ADS)
Kuznetsova, Svetlana; Lisitsa, Konstantin
2017-11-01
Sufficiently limited use of tin (II) oxide is associated with the difficulties of its preparation without impurities of tin (IV) oxide. Understanding the cause of the oxidation process will make it possible to develop methods for obtaining SnO without impurities. The influence of ammonium chloride concentration in the suspension on the oxide composition was investigated. The temperature of oxidation (400 °C) on the air and temperature decomposition in the argon (350 °C) of Sn6O4(OH)4 in the solid phase were determined by the thermal analysis method. The decomposition temperature of the oxyhydroxide in the suspension of ammonium chloride does not exceed 100 °C. An increase in the content of ammonium chloride in an aqueous solution leads to an increase i n the solubility of oxohydroxide and leads to an increase in pH. The suspensions of Sn6O4(OH)4 were subjected to heat treatment on a sand bath and under microwave irradiation. Samples of tin oxide were obtained. The quantitative composition of the mixture of tin oxides was determined. The research also highlights emphasizes that the oxidation of tin (II) to tin (IV) is associated with the dissolved oxygen content in the suspension.
Modeling the effect of water on mantle rheology
NASA Technical Reports Server (NTRS)
Bounama, CH.; Franck, S.
1994-01-01
To study the thermal history of the Earth we use a parameterized model of mantle convection. This model includes a mathematical description of de- and regassing processes of water from the Earth's mantle. The rates of this processes are considered to be directly proportional to the seafloor spreading rate. The kinematic viscosity of the mantle depends on the temperature/pressure as well as on the volatile content. Dissolved volatiles such as water weaken the minerals by reducing their activation energy for solid state creep. Karato and Toriumi showed a power law dependence between creep rate and water fugacity derived from experimental results. Therefore, we use such flow parameters of diffusion creep in olivine under wet and dry conditions to calculate the mantle viscosity as a function of the water content. Because the creep rate is proportional to the concentration of water-related point deflects we assume that the water fugacity is proportional to the water weight fraction. An equation for the steady-state strain rate under wet conditions is established. To assess the unknown constant K in this equation, we use flow law parameters given by Karato and Wu as well as the results of McGovern and Schubert.
Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A
2011-12-07
Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.
Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year
Blanchard, Stephen F.; Hahl, D.C.
1981-01-01
This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)
Kinetics of Microbial Reduction of Solid Phase U(VI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.
2006-10-01
Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solidmore » phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).« less
Odukoya, Olusegun O; Onianwa, Percy C; Sanusi, Olanrewaju I
2010-09-01
The effect of highways and local activities on the quality of groundwater in Ogun State, Nigeria was investigated. This was done by collecting groundwater samples from three different districts in the state, located in Southwestern Nigeria. The water samples collected at 5 m from the highway and control samples collected at 3 km from the highway were analyzed for the following physicochemical parameters: pH, conductivity, chemical oxygen demand, alkalinity, total hardness, total solid, suspended solid, dissolved solid, chloride, sulfate, phosphate, nitrate, phenol, and the metals-lead, zinc, iron, aluminum, sodium, and potassium. The levels of chromium, copper, and cadmium in the samples were below the detectable limit. The levels of the parameters show that there are significant differences between those in the samples and the controls (F test) except for phosphate and phenol. Also, anthropogenic sources (local activities) elevate the levels of different specific parameters, which are related to these activities. Good correlation was observed between traffic density and lead levels as well as between conductivity and dissolved solids. Comparisons with the World Health Organization guidelines indicate that most of the water samples are not suitable for human consumption.