Sample records for dissolved solids hardness

  1. Baseline water-quality data for sand-plain aquifers in Hubbard, Morrison, Otter Tail, and Wadena counties, Minnesota

    USGS Publications Warehouse

    Myette, C.F.

    1982-01-01

    Water from the sand-plain aquifers is of the calcium bicarbonate type. The water is hard to very hard with dissolved solids ranging from about 100 to 700 milligrams per liter. Locally, concentrations of dissolved solids, iron, manganese, and nitrate exceeded limits recommended by the Minnesota Pollution Control Agency.

  2. Effect of water hardness and dissolved-solid concentration on hatching success and egg size in bighead carp

    USGS Publications Warehouse

    Chapman, Duane C.; Deters, Joseph E.

    2009-01-01

    Bighead carp Hypophthalmichthys nobilis is an Asian species that has been introduced to the United States and is regarded as a highly undesirable invader. Soft water has been said to cause the bursting of Asian carp eggs and thus has been suggested as a factor that would limit the spread of this species. To evaluate this, we subjected fertilized eggs of bighead carp to waters with a wide range of hardness and dissolved-solid concentrations. Hatching rate and egg size were not significantly affected by the different water qualities. These results, combined with the low hardness (28–84 mg/L) of the Yangtze River (the primary natal habitat of Hypophthalmichthys spp.), suggest that managers and those performing risk assessments for the establishment of Hypophthalmichthys spp. should be cautious about treating low hardness and dissolved-solid concentrations as limiting factors.

  3. Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.

    PubMed

    Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha

    2018-05-21

    This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.

  4. Water quality of Somerville Lake, south-central Texas

    USGS Publications Warehouse

    McPherson, Emma; Mendieta, H.B.

    1983-01-01

    The concentration of dissolved solids ranged from 139 to 292 milligrams per liter and averaged about 220 milligrams per liter. Dissolved chloride concentrations ranged from 20 to 68 milligrams per liter and averaged 43 milligrams per liter. Dissolved sulfate concentrations ranged from 30 to 130 milligrams per liter and averaged 63 milligrams per liter. The total hardness of the water ranged from 75 to 140 milligrams per liter, expressed as calcium carbonate, placing it in the moderately hard to hard (61 to 180 milligrams per liter) classification. The concentrations of principal dissolved constituents indicate that Somerville Lake is an excellent source of water for municipal, industrial, or agricultural use.

  5. Rapid integrated water quality evaluation of Mahisagar river using benthic macroinvertebrates.

    PubMed

    Bhadrecha, M H; Khatri, Nitasha; Tyagi, Sanjiv

    2016-04-01

    The water quality of Mahisagar river, near Galteshwar in Kheda district of Gujarat, India, was assessed through a rapid integrated technique by physicochemical parameters as well as benthic macroinvertebrates. Physicochemical parameters retrieved were pH, color, conductivity, total solids, total suspended solids, total dissolved solids, chlorides, total hardness, calcium hardness, magnesium hardness, alkalinity, turbidity, ammoniacal nitrogen, chemical oxygen demand, biochemical oxygen demand, dissolved oxygen, sulfates, and nitrates. The biological indices calculated were BMWP (Bio Monitoring Working Party) score or saprobic score and sequential comparison index or diversity score. In total, 37 families were encountered along the studied river stretch. The findings indicate that the water quality of Mahisagar river at sampled locations is “slightly polluted.” Moreover, the results of physicochemical analysis are also in consonance with the biological water quality criteria developed by Central Pollution Control Board.

  6. Microstructure and Hardness of Mg - 9Li - 6Al Alloy After Different Variants of Solid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Haipeng; Fei, Pengfei; Wu, Ruizhi; Hou, Legan; Zhang, Milin

    2018-03-01

    The microstructure and the hardness of cast magnesium alloy Mg - 9% Li - 6% Al are studied after a treatment for solid solution at 300, 350, and 450°C for 0.5 - 5 h. The phase composition of the alloy is represented by α-Mg, β-Li, thin-plate and faceted particles of an AlLi phase, and particles of a MgLi2Al θ-phase. The θ-phase dissolves in the matrix in the initial stage of the solution treatment, which causes growth in the hardness of the alloy. At a temperature above 350°C the AlLi phase dissolves giving way to short rod-like precipitates of a θ-phase, which remain steady in the process of solution treatment. The hardness of the alloy deceases in this stage for this reason.

  7. Geology and ground-water resources of Winkler County, Texas

    USGS Publications Warehouse

    Garza, Sergio; Wesselman, John B.

    1963-01-01

    The chemical quality of the water in the principal aquifers is generally acceptable for industry and for public supply. About two-thirds of the samples collected from fresh-water wells had a dissolved-solids content of less than 1,000 ppm (parts per million) ; however, some samples in a few areas were hard and were high in fluoride and silica. Samples from wells in polluted areas contained dissolved solids ranging from about 1,400 to 71,100 ppm. Two comprehensive analyses of water samples from the Rustler formation showed a dissolved-solids content of 18,400 ppm. and 157,000 ppm. In most of the water produced with the oil in the Hendrick oil field, the content of dissolved solids ranged from about 4,000 to about 10,000 ppm. The water produced with the oil in the rest of the oil fields in Winkler County was mainly brine.

  8. Treatment of kitchen wastewater using Eichhornia crassipes

    NASA Astrophysics Data System (ADS)

    Parwin, Rijwana; Karar Paul, Kakoli

    2018-03-01

    The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.

  9. Preliminary analysis for trends in selected water-quality characteristics, Powder River, Montana and Wyoming, water years 1952-85

    USGS Publications Warehouse

    Cary, L.E.

    1989-01-01

    Selected water-quality data from two streamflow-gaging stations on the Powder River, Montana and Wyoming, were statistically analyzed for trends using the seasonal Kendall test. Data for water years 1952-63 and 1975-85 from the Powder River near Locate, Montana, and water years 1967-68 and 1976-85 from the Powder River at Sussex, Wyoming, were analyzed. Data for the earlier period near Locate were discharge-weighted monthly mean values, whereas data for the late period near Locate and at Sussex were from periodic samples. For data from water years 1952-63 near Locate, increasing trends were detected in sodium and sodium-adsorption ratio; no trends were detected in specific conductance, hardness, non-carbonate hardness, alkalinity, dissolved solids, or sulfate. For data from water years 1975-85 near Locate, increasing trends were detected in specific conductance, sodium, sodium-adsorption ratio, and chloride; no trends were detected in hardness, noncarbonate hardness, alkalinity, dissolved solids, calcium, magnesium, potassium, or sulfate. At Sussex (water years 1967-68 and 1976-85), increasing trends were detected in sodium, sodium-adsorption ratio, and chloride, and a decreasing trend was detected in sulfate. No trends were detected in specific conductance, alkalinity, or dissolved solids. When the 1967-68 data were deleted and the analysis repeated for the 1976-85 data, only sodium-adsorption ratio displayed a significant (increasing) trend. Because the study was exploratory, causes and effects were not considered. The results might have been affected by sample size, number of seasons, heterogeneity, significance level, serial correlation, and data adjustment for changes in discharge. (USGS)

  10. Geohydrology and ground-water quality at selected sites in Meade County, Kentucky, 1987-88

    USGS Publications Warehouse

    Mull, D.S.; Alexander, A.G.; Schultz, P.E.

    1989-01-01

    Meade County in north-central Kentucky is about 305 sq mi in size, and is underlain by thick beds of limestone and dolomite which are the principal sources of drinking water for about 8 ,500 residents. About half the area contains mature, karst terrain with abundant sinkholes, springs, and caves. Because of this karst terrain, groundwater is susceptible to rapid changes in water quality and contamination from human sources. Thirty-seven wells and 12 springs were selected as sampling points to characterize groundwater quality in the area. Water was analyzed for major anions and cations, nitrates, trace elements, and organic compounds. Water from selected sites was also analyzed for fecal species of coliform streptococci bacteria and total coliform content. Except for fluoride and lead, the water quality was within the range expected for carbonate aquifers.The fluoride content was significantly higher in water from wells than in water from springs. Concentrations of detectable lead ranged from 10 to 50 micrograms/L and had a median value of 7.5 microg/L. Dissolved solids ranged from 100 to 2,200 mg/L and the median value was 512 mg/L. Hardness ranged from 20 to 1,100 mg/L and the median value was 290 mg/L. Organic compounds detected by the gas chromatographic/flame ionization detection scans, did not indicate evidence of concentrations in excess of the current Federal drinking water standards. Analysis for specific organic compounds indicated that the presence of these compounds was associated with agricultural chemicals, usually pesticides. Total coliform content exceeded drinking water standards in water from all 12 springs and in 18 wells. Statistical analysis of the groundwater quality data indicates that the variance of the concentrations of fluoride and chloride may be attributed to the site type. There was strong correlation between hardness and dissolved solids, hardness and sulfate, and sulfate and dissolved solids. No apparent relations were detected between water quality and the geographic location of sampling sites. However, seasonal variations were detected in the concentrations of dissolved solids, hardness, and iron. (Lantz-PTT)

  11. Surface-water availability, Tuscaloosa County, Alabama

    USGS Publications Warehouse

    Knight, Alfred L.; Davis, Marvin E.

    1975-01-01

    The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.

  12. Quality of Delaware River water at Trenton, New Jersey

    USGS Publications Warehouse

    McCarthy, Leo T.; Keighton, Walter B.

    1964-01-01

    Water in the Delaware River at Trenton, NJ, is a mixture of several types--water from the mountainous headwater region, water from the coal-mining regions, and water from the limestone valleys. The quantities of these types of water, in relation to the total quantity of water at Trenton, vary with changes in season and reservoir releases. The chemical quality of the water during the 17-year period 1945-61 was excellent, and the water was suitable for most uses after little or no treatment. The average concentration of dissolved solids was 86 ppm (parts per million), and 90 percent of the time it ranged from 57 to 126 ppm. Usually the pH of the water was close to 7.0 (considered to be a neutral point-neither acid nor alkaline). The hardness was less than 86 ppm 95 percent of the time. The general composition of the dissolved-solids content, in terms of equivalents, is 28 percent calcium, 14 percent magnesium, 8 percent sodium plus potassium, 43 percent bicarbonate plus sulfate, 5 percent chloride, and 2 percent nitrate. Concentrations of minerals in the river water are lowest during March, April and May (median concentration of dissolved solids 66 PPM) and are highest during August and September (median, 107 PPM). Each year an average of 880,000 tons of dissolved solids and 932,000 tons of suspended solids are carried past Trenton by the Delaware River. The greatest monthly loads of dissolved solids are in March and April, and the smallest are from July to October. Suspended-solids loads are greater when the streamflow is high but small the rest of the time. Concentration of suspended solids exceeds 100 PPM only 5 percent of the time. The headwaters in the Delaware River basin are the source of water of excellent quality. Much of this water is stored in reservoirs, and when released during August and September, it improves the quality of the water at Trenton. These releases to augment low flow have the effect of narrowing the range of concentrations of dissolved constituents. In 1952 and 1962, 6 and 19 percent, respectively, of the drainage area above Trenton was regulated by reservoirs. After proposed construction, 60 percent will be regulated by 1975. Thus, it may be that the high concentrations of dissolved constituents observed in the 1945-61 period will not occur again. It is possible that the water quality observed during the period 1945-61 (dissolved solids 57-126 PPM 90 percent of the time, pH close to 7.0, hardness less than 86 PPM 95 percent of the time) is representative of what can be expected in the future, for a variety of hydrologic conditions were experienced in the 17-year period.

  13. Geochemical studies of fluoride and other water quality parameters of ground water in Dhule region Maharashtra, India.

    PubMed

    Patil, Dilip A; Deshmukh, Prashant K; Fursule, Ravindra A; Patil, Pravin O

    2010-07-01

    This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra State in India. The analysis was carried out for the parameters pH, DO (dissolved oxygen), BOD (biological oxygen demand), Cl-, NO3-, F-, S(2)-, total alkalinity, total solid, total dissolved solids (TDS), total suspended solids (TSS), total hardness, calcium, magnesium, carbonate and noncarbonate hardness, and concentrations of calcium and magnesium. These parameters were compared against the standards laid down by World Health Organization (WHO) and Indian Council of Medical Research (ICMR) for drinking water quality. High levels of NO(3)-, Cl-, F-, S(2)-, total solid, TDS, TSS, total hardness, magnesium and calcium have been found in the collected samples. From these observations, it has been found that fluoride is present as per the permissible limit (WHO 2003) in some of the villages studied, but both fluoride and nitrate levels are unacceptable in drinking water samples taken from several villages in Dhule. This is a serious problem and, therefore, requires immediate attention. Excess of theses impurities in water causes many diseases in plants and animals. This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra.

  14. Quality of ground water in Routt County, northwestern Colorado

    USGS Publications Warehouse

    Covay, Kenneth J.; Tobin, R.L.

    1980-01-01

    Chemical and bacteriological data were collected to describe the quality of water from selected geologic units in Routt County, Colo. Calcium bicarbonate was the dominant water-chemistry type; magnesium, sodium, and sulfate frequently occurred as codominant ions. Specific conductance values ranged from 50 to 6,000 micromhos. Mean values of specific conductance, dissolved solids , and hardness from the sampled aquifers were generally greatest in waters from the older sedimentary rocks of the Lance Formation, Lewis Shale, Mesaverde Group, and Mancos Shale, and least in the ground waters from the alluvial deposits, Browns Park Formation, and the basement complex. Correlations of specific conductance with dissolved solids and specific conductance with hardness were found within specified concentration ranges. On the basis of water-quality analyses, water from the alluvial desposits, Browns Park Formation, and the basement complex generally is the most suitable for domestic uses. Chemical constituents in water from wells or springs exceeded State and Federal standards for public-water supplies or State criteria for agricultural uses were pH, arsenic, boron, chloride, iron, fluoride, manganese, nitrite plus nitrate, selenium, sulfate, or dissolved solids. Total-coliform bacteria were detected in water from 29 sites and fecal-coliform bacteria were detected in water from 6 of the 29 sites. (USGS)

  15. Geology and ground-water resources of Hays County, Texas

    USGS Publications Warehouse

    DeCook, Kenneth James

    1963-01-01

    Ground water from wells in the Pearsall formation generally contains less than 500 parts per million of dissolved solids. Water from the Glen Rose limestone in some places contains more than 500 parts per million of sulfate and more than 1,000 parts per million of dissolved solids; locally it is high in nitrate also. Except in the southeastern part of the county, water from the Edwards limestone is commonly very hard but is otherwise of good quality for most uses. Analyses of two water samples from the Austin chalk indicate a high content of bicarbonate. Water from the Taylor marl and from Quaternary sediments generally is hard, and locally it contains excessive nitrate. Most wells in Hays County are used for domestic and stock supplies. About 20 wells, most of them in the Edwards limestone, yield water in relatively large amounts for industrial use, irrigation, or public supplies.

  16. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  17. Spatial and temporal relationships among watershed mining, water quality, and freshwater mussel status in an eastern USA river.

    PubMed

    Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E

    2016-01-15

    The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Chemical analyses of geothermal waters from a South Louisiana well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, B.E.; Chavanne, R.E.; Ham, R.A.

    1977-11-16

    The abandoned Edna Delcambre No. 1 gas well, about 8 miles south of Delcambre, Louisiana was reopened and bottom-hole and flowing samples were collected. McNeese State University was responsible for the analyses of the products of the well. Typical values from the analyses are shown for such quantities as: pH, turbidity, conductance, density, total dissolved solids, hardness, viscosity, dissolved silicates, chlorides, bicarbonates, etc. Some observations on these values are made. (MHR)

  19. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  20. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    NASA Astrophysics Data System (ADS)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2017-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  1. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    PubMed

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.

  2. Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas

    USGS Publications Warehouse

    Playton, Stephen J.; Davis, Robert Ellis; McClaflin, Roger G.

    1978-01-01

    Onsite measurements of pH, specific conductance, and water temperature show that water temperatures in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total, and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less-dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.Correlation analysis showed that several chemical constituents and properties of mine-shaft water, including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium, are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study - September 1975 to June 1977 - the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month.  Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall.Water in the mine shafts is unsuited for most uses without treatment.  The inability of current domestic water treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.

  3. Extraction of mercury from groundwater using immobilized algae.

    PubMed

    Barkley, N P

    1991-10-01

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency's (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contaminated groundwater in laboratory studies and pilot-scale field tests. Algal biomass was incorporated in a permeable polymeric matrix. The product, AlgaSORB, packed into adsorption columns, exhibited excellent flow characteristics, and functioned as a "biological" ion exchange resin. A sequence of eleven laboratory tests demonstrated the ability of this product to adsorb mercury from groundwater that contained high levels of total dissolved solids and hard water components. However, use of a single AlgaSORB preparation yielded nonrepeatable results with samples collected at different times of the year. The strategy of sequentially extracting the groundwater through two columns containing different preparations of AlgaSORB was developed and proved successful in laboratory and pilot-scale field tests. Field test results indicate that AlgaSORB could be economically competitive with ion exchange resins for removal of mercury, with the advantage that hardness and other dissolved solids do not appear to compete with heavy metals for binding capacity.

  4. Water-quality characteristics in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Williamson, Joyce E.; Carter, Janet M.

    2001-01-01

    This report summarizes the water-quality characteristics of ground-water and surface-water in the Black Hills area. Differences in groundwater quality by aquifer and differences in surfacewater quality by water source are presented. Ground-water characteristics are discussed individually for each of the major aquifers in the Black Hills area, referred to herein as the Precambrian, Deadwood, Madison, Minnelusa, Minnekahta, and Inyan Kara aquifers. Characteristics for minor aquifers also are discussed briefly. Surface-water characteristics are discussed for hydrogeologic settings including headwater springs, crystalline core sites, artesian springs, and exterior sites. To characterize the water quality of aquifers and streams in the Black Hills area, data from the U.S. Geological Survey National Water Information System water-quality database were examined. This included samples collected as part of the Black Hills Hydrology Study as well as for other studies within the time frame of October 1, 1930, to September 30, 1998. Tables of individual results are not presented in this report, only summaries. Constituents summarized and discussed include physical properties, common ions, nutrients, trace elements, and radionuclides. Comparisons of concentration levels are made to drinking-water standards as well as beneficial-use and aquatic-life criteria. Ground water within the Black Hills and surrounding area generally is fresh and hard to very hard. Concentrations exceeding various Secondary and Maximum Contaminant Levels may affect the use of the water in some areas for many aquifers within the study area. Concentrations that exceed Secondary Maximum Contaminant Levels (SMCL's) generally affect the water only aesthetically. Radionuclide concentrations may be especially high in some of the major aquifers used within the study area and preclude the use of water in some areas. The sodiumadsorption ratio and specific conductance may affect irrigation use for some wells. High concentrations of iron and manganese are the only concentrations that may hamper the use of water from Precambrian aquifers. The principal deterrents to use of water from the Deadwood aquifer are the high concentrations of radionuclides as well as iron and manganese. Iron, manganese, and hardness may deter use of water from the Madison aquifer as well as dissolved solids and sulfate in downgradient wells (generally deeper than 2,000 feet). Iron, manganese, and hardness may also deter use of the Minnelusa aquifer. Water from the Minnekahta aquifer generally is suitable for all water uses although it is hard to very hard. High concentrations of dissolved solids, iron, sulfate, and manganese may hamper the use of water from the Inyan Kara aquifer. In the southern Black Hills, radium-226 and uranium concentrations also may preclude use of water from the Inyan Kara aquifer. Suitability for irrigation may be affected by high specific conductance and sodium-adsorption ratio for the Inyan Kara. Surface-water quality within the Black Hills and surrounding area generally is very good but the water is hard to very hard. Concentrations of some constituents in the study area tend to be higher exterior to the Black Hills, primarily due to influences from the Cretaceous-age marine shales, including dissolved solids, sodium, sulfate, selenium, and uranium. Headwater springs have relatively constant discharge, specific conductance, dissolved solids, and concentrations of most other constituents. Concentrations at crystalline core sites are very similar to those found in samples from Precambrian aquifers. Some high nitrate concentrations greater than the Maximum Contaminant Level (MCL) of 10 mg/L (milligrams per liter) have occurred at Annie Creek near Lead, which have been attributed to mining impacts. Trace elements generally are low with the exception of arsenic, for which 60 percent of samples exceed the proposed MCL of 10 ug/L (micrograms per liter) and one sample

  5. Quality of surface waters in the lower Columbia River Basin

    USGS Publications Warehouse

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the chemical composition of the streams. The maximum dissolved-solids concentration and hardness of water observed in major irrigation areas were 507 and 262 parts per million, respectively, for the. Walla Walla River near Touchet, Wash. In terms of the U.S. Salinity Laboratory Staff classification (1954, p. 80), water in most streams in the basin has low salinity and sodium hazards and is suitable for irrigation. A salt-balance problem does exist in the Hermiston-Stanfield, Oreg., area of the Umatilla River basin, and because of poor drainage, improper irrigation practices could cause salt-balance problems in the Willamette River Valley, Oreg., in which irrigation is rapidly increasing. Pollution by sewage disposal has reached undesirable levels in the Walla Walla River, in the Willamette River from Eugene to Portland, Oreg., and in the Columbia River from Portland to Puget Island. In the lower reaches of the Willamette River, the pollution load from sewage and industrial-waste disposal at times depletes the dissolved oxygen in the water to concentrations below what is considered necessary for aquatic life. Water in most of the tributaries to the lower Columbia River is of excellent quality and after some treatment could be used for industrial and municipal supplies. The principal treatment required would be disinfection and turbidity removal.

  6. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Liscum, Fred

    1980-01-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes, in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  7. Toxicological study of the Anam River in Otuocha, Anambra State, Nigeria.

    PubMed

    Igwilo, Innocent O; Afonne, Onyenmechi Johnson; Maduabuchi, Ugwuona John-Moses; Orisakwe, Orish Ebere

    2006-01-01

    The authors studied the quality of water and soil samples from the Anam River in Nigeria. Using an atomic absorption spectrophotometer, they analyzed levels of lead, cadmium, copper, and nickel. They also analyzed sulfates, nitrates, biological oxygen demand, total hardness, total dissolved solids, pH values, electrical conductivity, chloride, and salinity. The ranges of detected metals were 0.002-0.005 mg/L for cadmium, 0.008-0.016 mg/L for lead, and 0.580-1.345 mg/L for copper. In the soil samples, the authors detected cadmium (0.07-3.45 ppm), copper (4.38-13.54 ppm), lead (0.59-7.34 ppm), and nickel (0.36-5.64 ppm). The mean values of the chemical parameters were 11.34 +/- 1.20 mg/L for total hardness, 4.43 +/- 1.54 mg/L for biological oxygen demand, 20.00 +/- 0.00 mg/L for total dissolved solids, and 0.22 +/- 0.05 mg/L for nitrates. Chloride, salinity, electrical conductivity, and pH values were 8.00 +/- 1.73 mg/L, 14.44 +/- 3.13 mg/L, 19.33 +/- 0.67 ps cm-L, and 7.09 +/- 0.05, respectively. The World Health Organization guidelines for the parameters in soil were exceeded.

  8. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysismore » of principal and selected minor dissolved constituents.« less

  9. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    USGS Publications Warehouse

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas samples with larger concentrations generally were calcium-sodium-sulfate, calcium-sulfate, or sodium-sulfate-type waters. In the lower Tertiary aquifers, samples with fresh waters generally were sodium-bicarbonate or sodium-bicarbonate-sulfate type waters, whereas samples with larger concentrations were sodium-sulfate or calcium-sodium-sulfate types. Concentrations of most trace elements in both types of aquifers generally were small and most were less than applicable USEPA standards. The trace elements that most often did not meet USEPA secondary drinking-water standards were iron and manganese. In fact, the SMCL for manganese was the most frequently exceeded standard; 68 percent of the samples from the Quaternary aquifers and 31 percent of the samples from the lower Tertiary aquifers exceeded the manganese standard. Geochemical conditions may control manganese in both aquifers as concentrations in Quaternary aquifers were negatively correlated with dissolved oxygen concentrations and concentrations in lower Tertiary aquifers decreased with increasing pH. Elevated nitrate concentrations, in addition to detection of pesticides and VOCs in both aquifers, indicated some effects of human activities on ground-water quality. Nitrate concentrations in 36 percent of the wells in Quaternary aquifers and 28 percent of the wells in lower Tertiary aquifers were greater than 1 mg/L, which may indicate ground-water contamination from human sources. The USEPA drinking-water Maximum Contaminant Level (MCL) for nitrate, 10 mg/L, was exceeded in 8 percent of samples collected from Quaternary aquifers and 3 percent from lower Tertiary aquifers. Nitrate concentrations in Quaternary aquifers were positively correlated with the percentage of cropland and other agricultural land (non-cropland), and negatively correlated with rangeland and riparian land. In the lower Tertiary aquifers, nitrate concentrations only were correlated with the percentage of cropland. Concentratio

  10. Groundwater quality assessment for drinking and agriculture purposes in Abhar city, Iran.

    PubMed

    Jafari, Khadijeh; Asghari, Farzaneh Baghal; Hoseinzadeh, Edris; Heidari, Zahra; Radfard, Majid; Saleh, Hossein Najafi; Faraji, Hossein

    2018-08-01

    The main objective of this study is to assess the quality of groundwater for drinking consume and agriculture purposes in abhar city. The analytical results shows higher concentration of electrical conductivity (100%), total hardness (66.7%), total dissolved solids (40%), magnesium (23%), Sulfate (13.3%) which indicates signs of deterioration as per WHO and Iranian standards for drinking consume. Agricultural index, in terms of the hardness index, 73.3% of the samples in hard water category and 73.3% in sodium content were classified as good. Therefore, the main problem in the agricultural sector was the total hardness Water was estimated. For the RSC index, all 100% of the samples were desirable. In the physicochemical parameters of drinking water, 100% of the samples were undesirable in terms of electrical conductivity and 100% of the samples were desirable for sodium and chlorine parameters. Therefore, the main water problem in Abhar is related to electrical conductivity and water total hardness.

  11. Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995

    USGS Publications Warehouse

    Rankin, D.R.

    1996-01-01

    Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.

  12. Effect of highways and local activities on the quality of underground water in Ogun State, Nigeria: a case study of three districts in Ogun State, Nigeria.

    PubMed

    Odukoya, Olusegun O; Onianwa, Percy C; Sanusi, Olanrewaju I

    2010-09-01

    The effect of highways and local activities on the quality of groundwater in Ogun State, Nigeria was investigated. This was done by collecting groundwater samples from three different districts in the state, located in Southwestern Nigeria. The water samples collected at 5 m from the highway and control samples collected at 3 km from the highway were analyzed for the following physicochemical parameters: pH, conductivity, chemical oxygen demand, alkalinity, total hardness, total solid, suspended solid, dissolved solid, chloride, sulfate, phosphate, nitrate, phenol, and the metals-lead, zinc, iron, aluminum, sodium, and potassium. The levels of chromium, copper, and cadmium in the samples were below the detectable limit. The levels of the parameters show that there are significant differences between those in the samples and the controls (F test) except for phosphate and phenol. Also, anthropogenic sources (local activities) elevate the levels of different specific parameters, which are related to these activities. Good correlation was observed between traffic density and lead levels as well as between conductivity and dissolved solids. Comparisons with the World Health Organization guidelines indicate that most of the water samples are not suitable for human consumption.

  13. Ground-water quality and geochemistry of aquifers associated with coal in the Allegheny and Monongahela formations, southeastern Ohio

    USGS Publications Warehouse

    Razem, A.C.; Sedam, A.C.

    1985-01-01

    Ground water from aquifers associated with coal beds in the Allegheny and Monongahela Formations in southeastern Ohio is predominantly a calcium magnesium bicarbonate type. Sodium bicarbonate type water is less common. Isolated areas of sodium chloride and calcium sulfate types also are present. The water is predominantly very hard, and has a median hardness concentration of 258 milligrams per liter as calcium carbonate and a median dissolved-solids concentration of 436 milligrams per liter. Few wells contain water with dissolved-solids concentrations in excess of 1,000 milligrams per liter. Bicarbonate concentration in ground water was found to be significantly different among coals, whereas concentrations of bicarbonate, hardness, calcium, magnesium, sodium, iron, manganese, and strontium were significantly different between ground water in the Allegheny and Monongahela Formations. Many constituents are significantly correlated, but few correlation coefficients are high. The presence of sulfate or iron is attributed to the kinetic mechanism operating during the oxidation of pyrite. The position along the sulfide or ferrous-iron oxidation pathways controls the reaction products of pyrite found in solution, and the formation of either the sulfate of iron constituents. The availability and rate of diffusion of oxygen in the formations exerts control on the water quality. Discriminant-function analysis correctly classifies 89 percent of the observations into the Allegheny or Monongahela Formations. As a verifications, 39 of 41 observations from another study were correctly classified by formation. The differences in water chemistry between the Allegheny and the Monongahela Formations are gradational and are attributed the oxidation of iron sulfide. The diffusion and availability of oxygen, which controls the chemical reaction, is regulated by the porosity and permeability of the rock with respect to oxygen and the presence or absence of carbonates, which controls the pH.

  14. Hydrogeology and quality of ground water on Guemes Island, Skagit County, Washington

    USGS Publications Warehouse

    Kahle, S.C.; Olsen, T.D.

    1995-01-01

    Guemes Island, located in Puget Sound of Washington State, is experiencing population growth and seawater intrusion. The island consists of Pleistocene glacial deposits overlying bedrock. Geologic sections and a map of surficial geology were constructed and used to delineate six hydrogeologic units, three of which are aquifers. The most productive aquifer is the Double Bluff aquifer, situated at or below sea level. Water budget estimates indicate that of the 21-29 inches of precipitation received in a typical year, 0-4 inches runs off, 12-22 inches evapotranspires, and 2-10 inches recharges the ground-water system. Of the water recharged, 0.1-0.3 inches is withdrawn by wells; the remainder recharges deeper aquifer(s) or discharges from the ground-water system to drainage ditches or the sea. The median dissolved-solids concentration was 236 mg/L (milligrams per liter). Half of the samples were classified as moderately hard, the remainder as hard or very hard. Although magnesium-calcium/bicarbonate water types dominate, some samples contained large amounts of sodium and chloride. The median concentration of 0.08 mg/L for nitrate indicates that no widespread contamination from septic systems or livestock exists. Small concentrations of arsenic were present in 5 of 24 samples. Trace concentrations of volatile organic compounds were detected in three of five samples. None of the U.S. Environmental Protection Agency's maximum contaminant levels was exceeded. However, secondary maximum contaminant levels were exceeded for dissolved solids, chloride, manganese, and iron. Seasonal variability of chloride concentration was apparent in water from coastal wells that had chloride concentrations greater than 100 mg/L. Higher values occurred from April through September because of increased pumping and lower recharge.

  15. Fort Dix Remedial Investigation/Feasibility Study for 13 Sites, Final Technical Plan, Data Item A004

    DTIC Science & Technology

    1995-09-01

    39 oxygen demand (COD), TSS, total dissolved solids ( TDS ), nitrate/nitrite, sulfate, W0109314.M80 7133-04 5-4 SECTION 5 phosphateand alkalinity...TSS, TDS , BOD-5, COD, alkalinity, hardness, 38 and gross alpha, beta, and gamma radiation (Table 2). 39 W0109314.M80 12-2 7133-°4 SECTION 12 l...wells. Groundwater samples 28 will be analyzed for TCL VOCs, TCL SVOCs, TAL metals (nonfiltered and filtered) 29 TSS, TDS , BOD-5, COD, alkalinity

  16. Dissolved-solids loads discharged from irrigated areas near Manila, Utah, May 2007-October 2012, and relation of loads to selected variables

    USGS Publications Warehouse

    Thiros, Susan A.; Gerner, Steven J.

    2015-01-01

    Irrigation improvements began to be implemented in 2007 to reduce dissolved-solids loads discharged from the MWSP area. The theoretical annual net dissolved-solids load where the cumulative NRCS calculated dissolved-solids load reduction is added to the net MWSP dissolved-solids load is what would be expected if there was no irrigation improvement in the area associated with the MWSP. The theoretical data points lie very near the baseline representing the pre-MWSP dissolved-solids load to canal streamflow relation. The proximity of the theoretical data points to the baseline shows that the NRCS calculations of reduction in dissolved-solids load are generally supported by the data collected during this study.

  17. Dissolved-solids transport in surface water of the Muddy Creek Basin, Utah

    USGS Publications Warehouse

    Gerner, Steven J.

    2008-01-01

    Muddy Creek is located in the southeastern part of central Utah and is a tributary of the Dirty Devil River, which, in turn, is a tributary of the Colorado River. Dissolved solids transported from the Muddy Creek Basin may be stored in the lower Dirty Devil River Basin, but are eventually discharged to the Colorado River and impact downstream water users. This study used selected dissolved-solids measurements made by various local, State, and Federal agencies from the 1970s through 2006, and additional dissolved-solids data that were collected by the U.S. Geological Survey during April 2004 through November 2006, to compute dissolved-solids loads, determine the distribution of dissolved-solids concentrations, and identify trends in dissolved-solids concentration in surface water of the Muddy Creek Basin. The dissolved-solids concentration values measured in water samples collected from Muddy Creek during April 2004 through October 2006 ranged from 385 milligrams per liter (mg/L) to 5,950 mg/L. The highest dissolved-solids concentration values measured in the study area were in water samples collected at sites in South Salt Wash (27,000 mg/L) and Salt Wash (4,940 to 6,780 mg/L). The mean annual dissolved-solids load in Muddy Creek for the periods October 1976 to September 1980 and October 2005 to September 2006 was smallest at a site near the headwaters (9,670 tons per year [tons/yr]) and largest at a site at the mouth (68,700 tons/yr). For this period, the mean annual yield of dissolved solids from the Muddy Creek Basin was 44 tons per square mile. During October 2005 to September 2006, direct runoff transported as much as 45 percent of the annual dissolved-solids load at the mouth of Muddy Creek. A storm that occurred during October 5?7, 2006 resulted in a peak streamflow at the mouth of Muddy Creek of 7,150 cubic feet per second (ft3/s) and the transport of an estimated 35,000 tons of dissolved solids, which is about 51 percent of the average annual dissolved-solids load at the mouth of Muddy Creek. A significant downward trend in dissolved-solids concentrations from 1973 to 2006 was determined for Muddy Creek at a site just downstream of that portion of the basin containing agricultural land. Dissolved-solids concentrations decreased about 2.1 percent per year; however, the rate of change was a decrease of 1.8 percent per year when dissolved-solids concentrations were adjusted for flow.

  18. Geology, hydrology, and water quality of the Tracy-Dos Palos area, San Joaquin Valley, California

    USGS Publications Warehouse

    Hotchkiss, W.R.; Balding, G.O.

    1971-01-01

    The Tracy-Dos Palos area includes about 1,800 square miles on the northwest side of the San Joaquin Valley. The Tulare Formation of Pliocene and Pleistocene age, terrace deposits of Pleistocene age, and alluvium and flood-basin deposits of Pleistocene and Holocene age constitute the fresh ground-water reservoir Pre-Tertiary and Tertiary sedimentary and crystalline rocks, undifferentiated, underlie the valley and yield saline water. Hydrologically most important, the Tulare Formation is divided into a lower water-bearing zone confined by the Corcoran Clay Member and an upper zone that is confined, semiconfined, and unconfined in different parts of the area. Alluvium and flood-basin deposits are included in the upper zone. Surficial alluvium and flood-basin deposits contain a shallow water-bearing zone. Lower zone wells were flowing in 1908, but subsequent irrigation development caused head declines and land subsidence. Overdraft in both zones ended in 1951 with import of surface water. Bicarbonate water flows into the area from the Sierra Nevada and Diablo Range. Diablo Range water is higher in sulfate, chloride, and dissolved solids. Upper zone water averages between 400 and 1,200 mg/l (milligrams per liter) dissolved solids and water hardness generally exceeds 180 mg/l as calcium carbonate. Nitrate, fluoride, iron, and boron occur in excessive concentrations in water from some wells. Dissolved constituents in lower zone water generally are sodium chloride and sodium sulfate with higher dissolved solids concentration than water from the upper zone. The foothills of the Diablo Range provide favorable conditions for artificial recharge, but shallow water problems plague about 50 percent of the area and artificial recharge is undesirable at this time.

  19. Knowledge and understanding of dissolved solids in the Rio Grande–San Acacia, New Mexico, to Fort Quitman, Texas, and plan for future studies and monitoring

    USGS Publications Warehouse

    Moyer, Douglas; Anderholm, Scott K.; Hogan, James F.; Phillips, Fred M.; Hibbs, Barry J.; Witcher, James C.; Matherne, Anne Marie; Falk, Sarah E.

    2013-01-01

    -Focused Hydrogeology Studies at Inflow Sources: Map dissolved-solids concentrations in the Rio Grande and underlying alluvial aquifer; perform hydrogeologic characterization of subsurface areas containing unusually high concentrations of dissolved solids. -Modeling of Dissolved Solids: Develop models to simulate the transport and storage of dissolved solids in both surface-water and groundwater systems.

  20. Assessment of physico-chemical characteristics of water in Tamilnadu.

    PubMed

    Udhayakumar, R; Manivannan, P; Raghu, K; Vaideki, S

    2016-12-01

    Water is an important component to human life. The major aims of the present work are to assess the quality of the ground water and its impact in Villupuram District of Tamilnadu. The present study focus to bring an awareness among the people about the quality of ground water by taking water samples from various locations for Physico - Chemical analysis of the ground water. This analysis result was compared with the WHO, ICMR, USPH and European standards of drinking water quality parameters with the following water quality parameters namely pH, Electrical conductivity, Cl, , Na, K, Ca , Mg, Total dissolved solids, Total hardness, Dissolved oxygen, Fluoride etc. Various chemical methods have been employed to investigate the extent level of pollution in ground water. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Water resources inventory of Connecticut Part 8: Quinnipiac River basin

    USGS Publications Warehouse

    Mazzaferro, David L.; Handman, Elinor H.; Thomas, Mendall P.

    1978-01-01

    The Quinnipiac River basin area in southcentral Connecticut covers 363 square miles, and includes all drainage basins that enter Long Island Sound from the Branford to the Wepawaug Rivers. Its population in 1970 was estimated at 535,000. Precipitation averages 47 inches per year and provides an abundant supply of water. Twenty-one inches returns to the atmosphere as evapotranspiration; the remainder flows directly to streams or percolates to the water table and discharges to Long Island Sound. Small amounts of water are exported from the basin by the New Britain Water Department, and small amounts are imported to the basin by the New Haven Water Company. The amount of water that can be developed at a given place depends upon precipitation, variability of streamflow, hydraulic properties and areal extent of the aquifers, and hydraulic connection between the aquifers and major streams. The quality of the water is determined by the physical environment and the effects of man. Stratified drift is the only aquifer capable of large sustained yields of water to individual wells. Yields of 64 screened wells tapping stratified drift range from 17 to 2,000 gpm (gallons per minute); their median yield is 500 gpm. Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and commonly are inadequate during dry periods. Till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire report area and include sedimentary, igneous, and metamorphic rock types. These aquifers supply small but reliable quantities of water to wells throughout the basin and are the chief source for many nonurban homes and farms. About 90 percent of the wells tapping bedrock yield at least 2 pgm, and much larger yields are occasionally reported. Maximum well yields of 305 gpm for sedimentary, 75 gpm for igneous, and 200 gpm for metamorphic bedrock have been reported. Water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers and evaluation of natural and induced recharge. Long-term yields estimated for 14 favorable areas of stratified drift range from 0.8 to 16.1 mgd (million gallons per day), but detailed verification studies are needed before development. The natural quality of water in the report area is good. The water is generally low in dissolved solid and is soft to moderately hard. Surface water is less mineralized than ground water, especially during high flow when it is primarily surface runoff. A median dissolved-solids concentration of 117 mg/l (milligrams per liter) and a median hardness of 58 mg/l was determined for water samples collected at 20 sites on 16 streams during high flow. A median dissolved-solids concentration of 146 mg/l and a median hardness of 82 mg/l was determined for samples collected at the same sites during low flow. In contrast water from 130 wells had a median dissolved-solids concentration of 188 mg/l and a median hardness of 110 mg/l. Iron and manganese occur in objectionable concentrations in parts of the report area, particularly in water from streams draining swamps and in water from aquifers rich in iron- and manganese-bearing minerals. Concentrations of iron in excess of 0.3 mg/l were found in 40 percent of the high-streamflow samples, 59 percent of the low-streamflow samples and 20 percent of the ground-water samples. Human activities have modified the quality of water in much of the basin. Wide and erratic fluctuations in concentration of dissolved solids in streams, high bacterial content of the Quinnipiac River, and locally high nitrate and chloride concentrations in ground water are evidence of man's influence. Streams, wetlands, and some aquifers along the southern boundary of the basin contain salty water. Overpumping has caused extensive saltwater intrusion in aquifers in the southern and eastern parts of New Haven. The total amount of fresh water used in the area during 1970 is estimated at 35,710 million gallons, or 183 gallons per day per capita. Public water-supply systems met the domestic requirements of about 90 percent of the population; all the systems supplied water that met the drinking water standards of the Connecticut Department of Health.

  2. A summary of selected chemical-quality conditions in 66 California streams 1950-72

    USGS Publications Warehouse

    Irwin, George A.; Lemons, Michael

    1975-01-01

    Water from California streams has been analyzed for concentrations of selected chemical constituents since the early 1950's. This summary includes about 1,200 water years of data from 88 sampling sites on 66 streams. Results of this summary show that about 80 percent of the sites had a mean dissolved-solids concentration of 400 milligrams per litre or less. All the sites that had mean concentrations ranging from 601 to 800 milligrams per litre were in either the South Coastal or Central Coastal subregions. Results of regression analysis between specific conductance and calcium, magnesium, sodium, bicarbonate, dissolved solids, and hardness usually indicated a high percentage of explained variance. Other constituents, such as potassium, sulfate, chloride, and particularly nitrate, were not as frequently highly associated with specific conductance. At sites where the water discharge was highly regulated, the variation in specific conductance that was explained as a function of discharge ranged from 0 to more than 90 percent. Whereas at the unregulated sites, the explained variance ranged from 50 to more than 90 percent.

  3. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    USGS Publications Warehouse

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy Creek reflect the different basin characteristics. Relations between specific conductance and dissolved-solids concentrations were statistically significant for the Green River (p-value less than 0.001) and Muddy Creek (p-value less than 0.001); therefore, specific conductance can be used to estimate dissolved-solids concentrations. Using continuous specific conductance values to estimate dissolved solids in real-time on the World Wide Web increases the amount and improves the timeliness of data available to water managers for assessing dissolved-solids concentrations in the Colorado River Basin.

  4. Water resources of Spink County, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.; Howells, L.W.

    1996-01-01

    Spink County, an agricultural area of about 1,505 square miles, is in the flat to gently rolling James River lowland of east-central South Dakota. The water resources are characterized by the highly variable flows of the James River and its tributaries and by aquifers both in glacial deposits of sand and gravel, and in sandstone in the bedrock. Glacial aquifers underlie about half of the county, and bedrock aquifers underlie most of the county. The James River is an intermittent prairie stream that drains nearly 8,900 square miles north of Spink County and has an average annual discharge of about 124 cubic feet per second where it enters the county. The discharge is augmented by the flow of Snake and Turtle Creeks, each of which has an average annual flow of about 25 to 30 cubic feet per second. Streamflow is unreliable as a water supply because precipitation, which averages 18.5 inches annually, is erratic both in volume and in distribution, and because the average annual potential evapotranspiration rate is 43 inches. The flow of tributaries generally ceases by summer, and zero flows are common in the James River in fall and winter. Aquifers in glacial drift deposits store nearly 3.3 million acre-feet of fresh to slightly saline water at depths of from near land surface to more than 500 feet below land surface beneath an area of about 760 square miles. Yields of properly developed wells in the more productive aquifers exceed 1,000 gallons per minute in some areas. Withdrawals from the aquifers, mostly for irrigation, totaled about 15,000 acre-feet of water in 1990. Water levels in observation wells generally have declined less than 15 feet over several decades of increasing pumpage for irrigation, but locally have declined nearly 30 feet. Water levels generally rose during the wet period of 1983-86. In Spink County, bedrock aquifers store more than 40 million acre-feet of slightly to moderately saline water at depths of from 80 to about 1,300 feet below land surface. Yields of properly developed wells range from 2 to 600 gallons per minute. The artesian head of the heavily used Dakota aquifer has declined about 350 feet in the approximately 100 years since the first artesian wells were drilled in the county, but water levels have stabilized locally as a result of decreases in the discharge of water from the wells. Initial flows of from 4 gallons per minute to as much as 30 gallons per minute of very hard water can be obtained in the southwestern part of the county, where drillers report artesian heads of nearly 100 feet above land surface. The quality of water from aquifers in glacial drift varies greatly, even within an aquifer. Concentrations of dissolved solids in samples ranged from 151 to 9,610 milligrams per liter, and hardness ranged from 84 to 3,700 milligrams per liter. Median concentrations of dissolved solids, sulfate, iron, and manganese in some glacial aquifers are near or exceed Secondary Maximum Contaminant Levels (SMCL's) established by the U.S. Environmental Protection Agency (EPA). Some of the water from aquifers in glacial drift is suitable for irrigation use. Water samples from aquifers in the bedrock contained concentrations of dissolved solids that ranged from 1,410 to 2,670 milligrams per liter (sum of constituents) and hardness that ranged from 10 to 1,400 milligrams per liter; these concentrations generally are largest for aquifers below the Dakota aquifer. Median concentrations of dissolved solids, sulfate, iron, and manganese in Dakota wells either are near or exceed EPA SMCL's. Dissolved solids, sodium, and boron concentrations in water from bedrock aquifers commonly are too large for the water to be suitable for irrigation use.

  5. Nucleation of the diamond phase in aluminium-solid solutions

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.

    1993-01-01

    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  6. Spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.; Spangler, Lawrence E.

    2009-01-01

    The Upper Colorado River Basin (UCRB) discharges more than 6 million tons of dissolved solids annually, about 40 to 45 percent of which are attributed to agricultural activities. The U.S. Department of the Interior estimates economic damages related to salinity in excess of $330 million annually in the Colorado River Basin. Salinity in the UCRB, as measured by dissolved-solids load and concentration, has been studied extensively during the past century. Over this period, a solid conceptual understanding of the sources and transport mechanisms of dissolved solids in the basin has been developed. This conceptual understanding was incorporated into the U.S. Geological Survey Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model to examine statistically the dissolved-solids supply and transport within the UCRB. Geologic and agricultural sources of dissolved solids in the UCRB were defined and represented in the model. On the basis of climatic and hydrologic conditions along with data availability, water year 1991 was selected for examination with SPARROW. Dissolved-solids loads for 218 monitoring sites were used to calibrate a dissolved-solids SPARROW model for the UCRB. The calibrated model generally captures the transport mechanisms that deliver dissolved solids to streams of the UCRB as evidenced by R2 and yield R2 values of 0.98 and 0.71, respectively. Model prediction error is approximated at 51 percent. Model results indicate that of the seven geologic source groups, the high-yield sedimentary Mesozoic rocks have the largest yield of dissolved solids, about 41.9 tons per square mile (tons/mi2). Irrigated sedimentary-clastic Mesozoic lands have an estimated yield of 1,180 tons/mi2, and irrigated sedimentary-clastic Tertiary lands have an estimated yield of 662 tons/mi2. Coefficients estimated for the seven landscape transport characteristics seem to agree well with the conceptual understanding of the role they play in the delivery of dissolved solids to streams in the UCRB. Predictions of dissolved-solids loads were generated for more than 10,000 stream reaches of the stream network defined in the UCRB. From these estimates, the downstream accumulation of dissolved solids, including natural and agricultural components, were examined in selected rivers. Contributions from each of the 11 dissolved-solids sources were also examined at select locations in the Grand, Green, and San Juan Divisions of the UCRB. At the downstream boundary of the UCRB, the Colorado River at Lees Ferry, Arizona, monitoring site, the dissolved-solids contribution of irrigated agricultural lands and natural sources were about 45 and 57 percent, respectively. Finally, model predictions, including the contributions of natural and agricultural sources for selected locations in the UCRB, were compared with results from two previous studies.

  7. Dissolved-Solids Load in Henrys Fork Upstream from the Confluence with Antelope Wash, Wyoming, Water Years 1970-2009

    USGS Publications Warehouse

    Foster, Katharine; Kenney, Terry A.

    2010-01-01

    Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.

  8. Dissolved solids in basin-fill aquifers and streams in the southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.

    2007-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.

  9. Calibration of a dissolved-solids model for the Yampa River basin between Steamboat Springs and Maybell, northwestern Colorado

    USGS Publications Warehouse

    Parker, R.S.; Litke, D.W.

    1987-01-01

    The cumulative effects of changes in dissolved solids from a number of coal mines are needed to evaluate effects on downstream water use. A model for determining cumulative effects of streamflow, dissolved-solids concentration, and dissolved-solids load was calibrated for the Yampa River and its tributaries in northwestern Colorado. The model uses accounting principles. It establishes nodes on the stream system and sums water quantity and quality from node to node in the downstream direction. The model operates on a monthly time step for the study period that includes water years 1976 through 1981. Output is monthly mean streamflow, dissolved-solids concentration, and dissolved-solids load. Streamflow and dissolved-solids data from streamflow-gaging stations and other data-collection sites were used to define input data sets to initiate and to calibrate the model. The model was calibrated at four nodes and generally was within 10 percent of the observed values. The calibrated model can compute changes in dissolved-solids concentration or load resulting from the cumulative effects of new coal mines or the expansion of old coal mines in the Yampa River basin. (USGS)

  10. Characterization of dissolved solids in water resources of agricultural lands near Manila, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos Shale. The boron concentration and δ11B value for the water sample from Antelope Wash, being distinctly different from water samples from other sites, is evidence that water in Antelope Wash may contain a substantial component of regional ground-water flow.

  11. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are decreasing salinity in groundwater transported to streams.

  12. Characteristics and trends of streamflow and dissolved solids in the upper Colorado River Basin, Arizona, Colorado, New Mexico, Utah, and Wyoming

    USGS Publications Warehouse

    Liebermann, Timothy D.; Mueller, David K.; Kircher, James E.; Choquette, Anne F.

    1989-01-01

    Annual and monthly concentrations and loads of dissolved solids and major constituents were estimated for 70 streamflow-gaging stations in the Upper Colorado River Basin. Trends in streamflow, dissolved-solids concentrations, and dissolved-solids loads were identified. Nonparametric trend-analysis techniques were used to determine step trends resulting from human activities upstream and long-term monotonic trends. Results were compared with physical characteristics of the basin and historical water-resource development in the basin to determine source areas of dissolved solids and possible cause of trends. Mean annual dissolved-solids concentration increases from less than 100 milligrams per liter in the headwater streams to more than 500 milligrams per liter in the outflow from the Upper Colorado River Basin. All the major tributaries that have high concentrations of dissolved solids are downstream from extensive areas of irrigated agriculture. However, irrigation predated the period of record for most sites and was not a factor in many identified trends. Significant annual trends were identified for 30 sites. Most of these trends were related to transbasin exports, changes in land use, salinity-control practices, or reservoir development. The primary factor affecting streamflow and dissolved-solids concentration and load has been the construction of large reservoirs. Reservoirs have decreased the seasonal and annual variability of streamflow and dissolved solids in streams that drain the Gunnison and San Juan River basins. Fontenelle and Flaming Gorge Reservoirs have increased the dissolved-solids load in the Green River because of dissolution of mineral salts from the bank material. The largest trends occurred downstream from Lake Powell. However, the period of record since the completion of filling was too short to estimate the long-term effects of that reservoir.

  13. Hydrologic data collected in and around a surface coal mine, Clay and Vigo counties, Indiana, 1977-80

    USGS Publications Warehouse

    Bobo, Linda L.; Eikenberry, Stephen E.

    1982-01-01

    Few data are available for evaluating water-quality and other hydrologic properties in and around surface coal mines, particularly in areas where material having a high potential for acid-production is selectively buried. This report contains hydrologic data collected in an active coal mining area in Clay and Vigo Counties, Indiana, from September 1977 through February 1980. Methods of sampling and analysis used in collecting the data also are summarized. The data include field and laboratory measurements of water at 41 wells and 24 stream sites. Variables measured in the field include water temperature, specific conductance, pH, Eh, dissolved oxygen, ground-water levels, and streamflow; and in the laboratory, concentrations of major ions, alkalinity, hardness, trace elementsl, organic carbon, phosphorus, and dissolved solids. Other variables measured in the laboratory include ferrous iron concentration of water samples from selected wells, percent sulfur by weight and the potential acidity of core samples of reclaimed cast overburden, concentrations of elements absorbed on streambed materials, concentrations and particle size of suspended sediment in water, and populations and Shannon diversity indices of phytoplankton in water. Dissolved-solids concentrations and pH of ground water ranged from 173 to 5,130 milligrams per liter and from 6.1 to 8.9, respectively, and of surface water, from 120 to 4,100 milligrams per liter and from 6.1 to 8.8 respectively. 

  14. Documentation of a dissolved-solids model of the Tongue River, southeastern Montana

    USGS Publications Warehouse

    Woods, Paul F.

    1981-01-01

    A model has been developed for assessing potential increases in dissolved solids of the Tongue River as a result of leaching of overburden materials used to backfill pits in surface coal-mining operations. The model allows spatial and temporal simulation of streamflow and dissolved-solids loads and concentrations under user-defined scenarios of surface coal mining and agricultural development. The model routes an input quantity of streamflow and dissolved solids from the upstream end to the downstream end of a stream reach while algebraically accounting for gains and losses of streamflow and dissolved solids within the stream reach. Input data needed to operate the model include the following: simulation number, designation of hydrologic conditions for each simulated month, either user-defined or regression-defined concentrations of dissolved solids input by the Tongue River Reservoir, number of irrigated acres, number of mined acres, dissolved-solids concentration of mine leachates and quantity of other water losses. A listing of the Fortran computer program, definitions of all variables in the model, and an example output permit use of the model by interested persons. (USGS)

  15. An analysis of the chemical and microbiological quality of ground water from boreholes and shallow wells in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Moyo, N. A. G.

    Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the recommended levels in a few areas under irrigation. Most of the chloride is probably from agricultural activity particularly the application of potassium chloride. Fluoride levels were particularly elevated in the Gwayi catchment area and this is because of the geology of the area. There was no evidence of microbial contamination in all the boreholes sampled as the total coliform, faecal coliforms, heterotrophs count was nil. However, severe microbial contamination was found in the wells especially those in clay areas.

  16. The determination of water quality and metal concentrations of Ampang Hilir Lake, Selangor, Peninsular Malaysia.

    PubMed

    Said, Khaled S A; Shuhaimi-Othman, M; Ahmad, A K

    2012-05-01

    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Ampang Hilir Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using Hydrolab Data Sonde 4 and Surveyor 4 a water quality multi probe (USA). Six metals which were cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer Elan, model 9000.The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.

  17. Water quality assessment of sacred glacial Lake Satopanth of Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Kumar, Rahul

    2017-12-01

    Satopanth Lake is a glacial lake, located at an altitude of 4600 m above sea level in Garhwal Himalaya of Uttarakhand state in India where an attempt was made to assess the water quality. A total of sixteen physico-chemical parameters including temperature, hardness, alkalinity, dissolved oxygen, conductivity, pH, calcium, magnesium, chlorides, nitrates, sulphates and phosphates were recorded during 2014 and 2015 between June and August in ice-free period. The mean values of pH ranged from 6.85 to 7.10; water temperature fluctuated from 0.1 to 0.3 °C; dissolved oxygen varied from 5.90 to 6.0 mg.L-1; free CO2 varied from 8.40 to 8.60 mg.L-1; total dissolved solids varied from 88.0 to 89.5 mg.L-1; calcium from 7.88 to 7.95 mg.L-1; magnesium from 0.53 to 0.66 mg.L-1. All the physico-chemical values were within the prescribed WHO/BIS limit for drinking water. Water Quality Index (WQI) calculated based on these parameters also revealed the excellent quality of lake water.

  18. Water resources of the Myakka River basin area, southwest Florida

    USGS Publications Warehouse

    Joyner, Boyd F.; Sutcliffe, Horace

    1976-01-01

    Ground water in the Myakka River basin area of southwest Floria is obtained from a water-table aquifer and from five zones in an artesian aquifer. Wells in the water-table aquifer yield generally less than 50 gpm and dissolved solids concentration is less than 500 mg/liter except in coastal areas and the peninsula southwest of the Myakka River estuary. Wells in the Venice area that tap zone 1 usually yield less than 30 gmp. The quality of water is good except in the peninsula area. Zone 2 is the most highly developed aquifer in the heavily populated coastal areas. Wells yield as much as 200 gpm. In most areas, water is of acceptable quality. Wells that tap zone 3 yield as much as 500 gmp. Fluoride concentration ranges from 1 to 3.5 mg/liter. Zone 4 yields as much as 1,500 gpm to large diameter wells. Except in the extreme northeastern part of the area water from zone 4 usually contains high concentrations of fluoride and sulfate. Zone 5 is the most productive aquifer in the area, but dissolved solids concentrations usually are too high for public supply except in the extreme northeast. Surface water derived from natural drainage is of good quality except for occasional high color in summer. Most of the streams in the Myakka River basin area have small drainage basins, are of short channel length, and do not yield high volumes of flow. During the dry season, streamflow is maintained by groundwater discharge, and, as a result, chloride, sulfate, and dissolved solids concentrations and the hardness of the water are above drinking water standards for some streams. (Woodard-USGS)

  19. Solubility of nano-zinc oxide in environmentally and biologically important matrices

    PubMed Central

    Reed, Robert B.; Ladner, David A.; Higgins, Christopher P.; Westerhoff, Paul; Ranville, James F.

    2011-01-01

    Increasing manufacture and use of engineered nanoparticles (NPs) is leading to a greater probability for release of ENPs into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles (ZnO), dissolution to Zn2+, or some combination thereof. The goal of this study was to determine the relative solubilites of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18– 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco’s Modified Eagle’s Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low zinc solubility, likely due to precipitation of a zinc carbonate solid phase. Precipitation of a zinc-containing solid phase in RPMI also appeared to limit zinc solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. PMID:21994124

  20. Updated estimates of long-term average dissolved-solids loading in streams and rivers of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.

  1. Trends in nitrate and dissolved-solids concentrations in ground water, Carson Valley, Douglas County, Nevada, 1985-2001

    USGS Publications Warehouse

    Rosen, Michael R.

    2003-01-01

    Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.

  2. Hydrology and land use in Grand Traverse County, Michigan

    USGS Publications Warehouse

    Cummings, T.R.; Gillespie, J.L.; Grannemann, N.G.

    1990-01-01

    Glacial deposits are the sole source of ground-water supplies in Grand Traverse County. These deposits range in thickness from 100 to 900 feet and consist of till, outwash, and materials of lacustrine and eolian origin. In some areas, the deposits fill buried valleys that are 500 feet deep. Sedimentary rocks of Paleozoic age, which underlie the glacial deposits, are mostly shale and are not used for water supply. Of the glacial deposits, outwash and lacustrine sand are the most productive aquifers. Most domestic wells obtain water from sand and gravel at depths ranging from 50 to 150 feet and yield at least 20 gallons per minute. Irrigation, municipal, and industrial wells capable of yielding 250 gallons per minute or more are generally greater than 150 feet deep. At places in the county where moranial deposits contain large amounts of interbedded silt and clay, wells are generally deeper and yields are much lower. Areal variations in the chemical and physical characteristics of ground and surface water are related to land use and chemical inputs to the hydrologic system. Information on fertilizer application, septic-tank discharges, animal wastes, and precipitation indicate that 40 percent of nitrogen input is from precipitation, 6 percent from septic tanks, 14 percent from animal wastes, and 40 percent from fertilizers. Streams and lakes generally have a calcium bicarbonate-type water. The dissolved-solids concentration of streams ranged from 116 to 380 milligrams per liter, and that of lakes, from 47 to 170 milligrams per liter. Water of streams is hard to very hard; water of lakes ranges from soft to hard. The maximum total nitrogen concentration found in streams was 4.4 milligrams per liter. Water of lakes have low nitrogen concentrations; the median nitrate concentration is less than 0.01 milligrams per liter. Pesticides (Parathion and Simazine) were detected in low concentrations at six stream sites; 2,4-D was detected in low concentrations in water of two lakes. Relationships between land use and the yield of dissolved and suspended substances could not be established for most stream basins. Calcium and bicarbonate are the principal dissolved substances in ground water. Dissolved-solids concentrations ranged from 70 to 700 milligrams per liter; the countywide mean concentration is 230 milligrams per liter. The mean nitrate concentration is 1.3 milligrams per liter; about 1.6 percent of the county's ground water has nitrate concentrations that exceed the U.S. Environmental Protection Agency's maximum drinking water level of 10 milligrams per liter. An effect of fertilizer applications on ground-water quality is evident in some parts of the county.

  3. Methods for estimating monthly mean concentrations of selected water-quality constituents for stream sites in the Red River of the North basin, North Dakota and Minnesota

    USGS Publications Warehouse

    Guenthner, R.S.

    1991-01-01

    Future development of the Garrison Diversion Unit may divert water from the Missouri River into the Sheyenne River and the Red River of the North for municipal and industrial use. The U.S. Bureau of Reclamation's Canals, Rivers, and Reservoirs Salinity Accounting Procedures model can be used to predict the effect various operating plans could have on water quality in the Sheyenne River and the Red River of the North. The model uses, as Input, monthly means of streamflow and selected water-quality constituents for a 54-year period at 28 nodes on the Sheyenne River and the Red River of the North. This report provides methods for estimating monthly mean concentrations of selected water-quality constituents that can be used for input to and calibration of the salinity model.Mater-quality data for 32 gaging stations can be used to define selected water-quality characteristics at the 28 model nodes. Materquality data were retrieved from the U.S. Geological Survey's National Mater Data Storage and Retrieval System data base and statistical summaries were prepared. The frequency of water-quality data collection at the gaging stations is inadequate to define monthly mean concentrations of the individual water-quality constituents for all months for the 54-year period; therefore, methods for estimating monthly mean concentrations were developed. Relations between selected water-quality constituents [dissolved solids, hardness (as CaCO3), sodium, sulfate, and chloride] and streamflow were developed as the primary method to estimate monthly mean concentrations. Relations between specific conductance and streamflow and relations between selected water-quality constituents [dissolved solids, hardness (as CaCO3), sodium, sulfate, and chloride] and specific conductance were developed so that a cascaded-regression relation could be developed as a second method of estimating monthly mean concentrations and, thus, utilize a large specific-conductance data base. Information about the quantity and the quality of ground water discharging to the Sheyenne River is needed for model input for reaches of the river where ground water accounts for a substantial part of streamflow during periods of low flow. Ground-water discharge was identified for two reaches of the Sheyenne River. Ground-water discharge to the Sheyenne River in the vicinity of Warwick, N.Dak., was about 14.8 cubic feet per second and the estimated dissolved-solids concentration was about 441 milligrams per liter during October 15 and 16, 1986. Ground-water discharge to the Sheyenne River in a reach between Lisbon and Kindred, N.Dak., ranged from an average of 25.3 cubic feet per second during September 13 to November 19, 1963, to about 45.0 cubic feet per second during October 21 and 22, 1986. Dissolved-solids concentration was estimated at about 442 milligrams per liter during October 21 and 22, 1986.

  4. Hydrology of an abandoned coal-mining area near McCurtain, Haskell County, Oklahoma

    USGS Publications Warehouse

    Slack, L.J.

    1983-01-01

    Water quality was investigated from October 1980 to May 1983 in an area of abandoned coal mines in Haskell county, Oklahoma. Bedrock in the area is shale, siltstone, sandstone, and the McAlester (Stigler) and Hartshorne coals of the McAlester Formation and Hartshorne Sandstone of Pennsylvanian age. The two coal beds, upper and lower Hartshorne, associated with the Hartshorne Sandstone converge or are separated by a few feet or less of bony coal or shale in the McCurtain area. Many small faults cut the Hartshorne coal in all the McCurtain-area mines. The main avenues of water entry to and movement through the bedrock are the exposed bedding-plane openings between layers of sandstone, partings between laminae of shale, fractures and joints developed during folding and faulting laminae of shale, fractures and joints developed during folding and faulting of the brittle rocks, and openings caused by surface mining--the overburden being shattered and broken to form spoil. Water-table conditions exist in bedrock and spoil in the area. Mine pond water is in direct hydraulic connections with water in the spoil piles and the underlying Hartshorne Sandstone. Sulfate is the best indicator of the presence of coal-mine drainage in both surface and ground water in the Oklahoma coal field. Median sulfate concentrations for four sites on Mule Creek ranged from 26 to 260 milligrams per liter. Median sulfate concentrations increased with increased drainage from unreclaimed mined areas. The median sulfate concentration in Mule Creek where it drains the reclaimed area is less than one-third of that at the next site downstream where the stream begins to drain abandoned (unreclaimed) mine lands. Water from Mule Creek predominantly is a sodium sulfate type. Maximum and median values for specific conductance and concentrations of calcium, magnesium, sodium, sulfate, chloride, dissolved solids, and alkalinity increase as Mule Creek flows downstream and drains increasing areas of abandoned (unreclaimed) mining lands. Constituent concentrations in Mule Creek, except those for dissolved solids, iron, manganese, and sulfate, generally do not exceed drinking-water limits. Reclamation likely would result in decreased concentrations of dissolved solids, calcium, magnesium, sodium, sulfate, and alkalinity in Mule Creek in the vicinity of the reclaimed area. Ground water in the area is moderately hard to very hard alkaline water with a median pH of 7.2 to 7.6. It predominately is a sodium sulfate type and, except for dissolved solids, iron manganese, and sulfate, constituent concentrations generally do not exceed drinking-water limits. Ground-water quality would likely be unchanged by reclamation. The quality of water in the two mine ponds is quite similar to that of the shallow ground water in the area. Constituents in water from both ponds generally do not exceed drinking-water limits and the water quality is unlikely to be changed by reclamation in the area.

  5. Ground-water flow and quality in Wisconsin's shallow aquifer system

    USGS Publications Warehouse

    Kammerer, P.A.

    1995-01-01

    In terms of chemical quality, the water is suitable for potable supply and most other uses, but objectionable hardness in large areas and concen- trations of iron and manganese that exceed State drinking-water standards cause aesthetic problems that may require treatment of the water for some uses. Concentrations of major dissolved constitu- ents (calcium, magnesium, and bicarbonate), hard- ness, alkalinity, and dissolved solids are highest where the bedrock component of the aquifer is dolo- mite and lowest where the shallow aquifer is almost entirely sand and gravel. Concentrations of other minor constituents (sodium, potassium, sulfate, chloride, and fluoride) are less closely related to common minerals that compose the aquifer system. Sulfate and fluoride concentrations exceed State drinking-water standards locally. Extreme variability in concentrations of iron and manganese are common locally. Iron and manganese concentra- tions exceed State drinking-water standards in water from one-third and one-quarter of the wells, respectively. Likely causes of nitrate-nitrogen con- centrations that exceed State drinking-water stan- dards include local contamination from plant fertilizers, animal wastes, waste water disposed of on land, and septic systems. Water quality in the shallow aquifer system has been affected by saline water from underlying aquifers, primarily along the eastern and western boundaries of the State where the thickness of Paleozoic rocks is greatest.

  6. Summary statistics and trend analysis of water-quality data at sites in the Gila River basin, New Mexico and Arizona

    USGS Publications Warehouse

    Baldys, Stanley; Ham, L.K.; Fossum, K.D.

    1995-01-01

    Summary statistics and temporal trends for 19 water-chemistry constituents and for turbidity were computed for 13 study sites in the Gila River basin, Arizona and New Mexico. A nonparametric technique, the seasonal Kendall tau test for flow-adjusted data, was used to analyze temporal changes in water-chemistry data. For the 19 selected constituents and turbidity, decreasing trends in concentrations outnumbered increasing trends by more than two to one. Decreasing trends in concentrations of constituents were found for 49 data sets at the 13 study sites. Gila River at Calva and Gila River above diversions, at Gillespie Dam (eight each) had the most decreasing trends for individual sites. The largest number of decreasing trends measured for a constituent was six for dissolved lead. The next largest number of decreasing trends for a constituent was for dissolved solids and total manganese (five each). Hardness, dissolved sodium, and dissolved chloride had decreasing trends at four of the study sites. Increasing trends in concen- trations of constituents were found for 24 data sets at the 13 study sites. The largest number of increasing trends measured for a single constituent was for pH (four), dissolved sulfate (three), dissolved chromium (three) and total manganese (three). Increased concentrations of constituents generally were found in three areas in the basin-at Pinal Creek above Inspiration Dam, at sites above reservoirs, and at sites on the main stem of the Gila River from Gillespie Dam to the mouth.

  7. Dissolved Solids in Basin-Fill Aquifers and Streams in the Southwestern United States - Executive Summary

    USGS Publications Warehouse

    Anning, David W.

    2008-01-01

    The U.S. Geological Survey (USGS) recently completed a regional study in the Southwestern United States to characterize dissolved-solids conditions in major water supplies, including important rivers and aquifers. High concentrations of dissolved solids can degrade a water supply's suitability for important uses, such as drinking water or crop irrigation. In an effort to ensure the continued availability of clean surface and groundwater, USGS scientists identified areas where there have been both increasing and decreasing trends in dissolved-solids concentrations.

  8. Effects of temperature, total dissolved solids, and total suspended solids on survival and development rate of larval Arkansas River Shiner

    USGS Publications Warehouse

    Mueller, Julia S.; Grabowski, Timothy B.; Brewer, Shannon K.; Worthington, Thomas A.

    2017-01-01

    Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies.

  9. Physical and chemical characteristics of water from the hydrographic basin of the Poxim River, Sergipe State, Brazil.

    PubMed

    de Aguiar Netto, Antenor Oliveira; Garcia, Carlos Alexandre Borges; Hora Alves, José do Patrocínio; Ferreira, Robério Anastácio; Gonzaga da Silva, Marinoé

    2013-05-01

    The Poxim River is one of Sergipe State's major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region's population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0-2.8), the Poxim River (1.6-4.6), and the estuarine region (1.7-5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.

  10. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    PubMed

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority of groundwater samples can be considered suitable for irrigation purposes.

  11. SiC/GaN Based Optically Triggered MESFET for High Power Efficiency and High Radiation Resistance Solid State Switch Application for Actuator System

    DTIC Science & Technology

    2016-06-23

    somnath.chattopadhyay@csun.edu 1-818-677-7197 clean/etch. Excessively hard- baked photoresist can usually be dissolved in piranha etching solution. 48 hours of...coated onto the freshly cleaned and dried wafer at 3000RPM, then soft- baked at 180ºC for 120 seconds. This gives a PMGI layer of about 0.4µm. Then the...PR is spin coated onto the wafer at about 4000RPM and soft baked at 115ºC for 90seconds, resulting in a PR layer about 1.3µm thick. The wafer is

  12. Mapping of fluoride endemic areas and correlation studies of fluoride with other quality parameters of drinking water of Veppanapalli block of Dharmapuri district in Tamil Nadu.

    PubMed

    Karthikeyan, G; Sundarraj, A Shunmuga; Elango, K P

    2003-10-01

    193 drinking water samples from water sources of 27 panchayats of Veppanapalli block of Dharmapuri district of Tamil Nadu were analysed for chemical quality parameters. Based on the fluoride content of the water sources, fluoride maps differentiating regions with high / low fluoride levels were prepared using Isopleth mapping technique. The interdependence among the important chemical quality parameters were assessed using correlation studies. The experimental results of the application of linear and multiple regression equations on the influence of hardness, alkalinity, total dissolved solids and pH on fluoride are discussed.

  13. Enhanced and updated spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin

    USGS Publications Warehouse

    Miller, Matthew P.; Buto, Susan G.; Lambert, Patrick M.; Rumsey, Christine A.

    2017-03-07

    Approximately 6.4 million tons of dissolved solids are discharged from the Upper Colorado River Basin (UCRB) to the Lower Colorado River Basin each year. This results in substantial economic damages, and tens of millions of dollars are spent annually on salinity control projects designed to reduce salinity loads in surface waters of the UCRB. Dissolved solids in surface water and groundwater have been studied extensively over the past century, and these studies have contributed to a conceptual understanding of sources and transport of dissolved solids. This conceptual understanding was incorporated into a Spatially Referenced Regressions on Watershed Attributes (SPARROW) model to examine sources and transport of dissolved solids in the UCRB. The results of this model were published in 2009. The present report documents the methods and data used to develop an updated dissolved-solids SPARROW model for the UCRB, and incorporates data defining current basin attributes not available in the previous model, including delineation of irrigated lands by irrigation type (sprinkler or flood irrigation), and calibration data from additional monitoring sites.Dissolved-solids loads estimated for 312 monitoring sites were used to calibrate the SPARROW model, which predicted loads for each of 10,789 stream reaches in the UCRB. The calibrated model provided a good fit to the calibration data as evidenced by R2 and yield R2 values of 0.96 and 0.73, respectively, and a root-mean-square error of 0.47. The model included seven geologic sources that have estimated dissolved-solids yields ranging from approximately 1 to 45 tons per square mile (tons/mi2). Yields generated from irrigated agricultural lands are substantially greater than those from geologic sources, with sprinkler irrigated lands generating an average of approximately 150 tons/mi2 and flood irrigated lands generating between 770 and 2,300 tons/mi2 depending on underlying lithology. The coefficients estimated for six landscape transport characteristics that influence the delivery of dissolved solids from sources to streams, are consistent with the process understanding of dissolved-solids loading to streams in the UCRB.Dissolved-solids loads and the proportion of those loads among sources in the entire UCRB as well as in major tributaries in the basin are reported, as are loads generated from irrigated lands, rangelands, Bureau of Land Management (BLM) lands, and grazing allotments on BLM lands. Model-predicted loads also are compared with load estimates from 1957 and 1991 at selected locations in three divisions of the UCRB. At the basin scale, the model estimates that 32 percent of the dissolved-solids loads are from irrigated agricultural land sources that compose less than 2 percent of the land area in the UCRB. This estimate is less than previously reported estimates of 40 to 45 percent of basin-scale dissolved-solids loads from irrigated agricultural land sources. This discrepancy could be a result of the implementation of salinity control projects in the basin. Notably, results indicate that the conversion of flood irrigated agricultural lands to sprinkler irrigated agricultural lands is a likely process contributing to the temporal decrease in dissolved-solids loads from irrigated lands.

  14. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  15. Dissolved-solids contribution to the Colorado River from public lands in southeastern Nevada, through September 1993

    USGS Publications Warehouse

    Westenburg, C.L.

    1995-01-01

    The Bureau of Land Management administers about 9,300 square miles of public lands in southeastern Nevada that are part of the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, began a 5-year program in October 1988 to assess the contribution of dissolved solids to the fiver from those lands. About 6,200 square miles of public lands are in the Muddy River subbasin in Nevada. The estimated average dissolved-solids load contributed to the Colorado River from those lands was 28,000 tons per year from October 1988 through September 1993. Subsurface flow contributed about 86 percent (24,000 tons per year) of that load. About 730 square miles of public lands in the Las Vegas Wash subbasin contribute dissolved-solids load to the Colorado River. (About 120 square miles of public lands do not contribute to the river.) The estimated average dissolved-solids load contributed to the river from those lands was about 1,300 tons per year from October 1988 through September 1993. Subsurface flow contributed almost all of that load. About 1,100 square miles of public lands are in the Virgin River subbasin in Nevada. The estimated average dissolved- solids load contributed to the Colorado River from Nevada public lands in the subbasin was 8,700 tons per year. Subsurface flow contributed almost the entire load. About 1,200 square miles of Nevada public lands are in ephemeral tributaries that drain direcfly to the Colorado River or its impoundments (Lake Mead and Lake Mobave). The estimated average dissolved-solids load contributed to the river from those lands was 50 tons per year from surface runoff; however, the dissolved-solids load contributed by subsurface flow was not estimated. From October 1992 to September 1993, the Colorado River carried about 6,600,000 tons of dissolved solids past a streamflow gaging station 0.3 mile downstream from Hoover Dam. In contrast, surface runoff and subsurface flow contribute an estimated average dissolved-solids load of 38,000 tons per year from public lands in southeastern Nevada to the Colorado River. Land-management practices probably would not substantially reduce this contribution.

  16. Assessment of the Efficacy of Home Remedial Methods to Improve Drinking Water Quality in Two Major Aquifer Systems in Jaffna Peninsula, Sri Lanka

    PubMed Central

    Subanky, Suvendran

    2017-01-01

    Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts. PMID:29181225

  17. Assessment of the Efficacy of Home Remedial Methods to Improve Drinking Water Quality in Two Major Aquifer Systems in Jaffna Peninsula, Sri Lanka.

    PubMed

    Wijeyaratne, W M Dimuthu Nilmini; Subanky, Suvendran

    2017-01-01

    Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts.

  18. Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1985-01-01

    Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)

  19. Ground-water flow and water quality in northeastern Union County, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1987-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the Village of Richwood, Ohio, to determine directions of ground-water flow, ground-water-level fluctuations, and water quality in the northeastern part of Union County. The topography of the study area generally is featureless, and the land surfaces slopes gently eastward from 985 to 925 feet above sea level. Glacial deposits up to 48 feet thick cover the carbonate-bedrock aquifer. Three municipal wells and an adjoining abandoned landfill are located in an area previously excavated for clay deposits. An agricultural supply company is adjacent to the well field. Ground water flows from west to east with local variation to the northeast and southeast because of the influence of Fulton Creek. Richwood Lake occupies an abandoned sand-and-gravel quarry. Water-level fluctuations indicate that the and gravel deposits beneath the lake may be hydraulically connected to the bedrock aquifer. Water-quality data collected from 14 wells and Richwood Lake indicate that a hard to very hard calcium bicarbonate type water is characteristic of the study area. Dissolved solids ranged from 200 to 720 mg/L (Milligrams per liter) throughout the study area. Potassium ranged from 1.3 to 15 mg/L, with a median concentration of 2.0 mg/L. Concentration of 10 and 15 mg/L at one municipal well were five to eight times greater than the median concentration. Total organic carbon, ammonia, and organic nitrogen were present at every site. Concentrations of ammonia above 1 mg/L as nitrogen were found in water from two municipal wells and one domestic well. Total organic carbon was detected at a municipal well, a landfill well, and a domestic well at concentrations above 5 mg/L. Ground-water quality is similar throughout the study area except in the vicinity of the municipal well field, where water from one well had elevated concentrations of ammonia, dissolved manganese, dissolved chloride, dissolved, sodium, and total organic carbon.

  20. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1992-93

    USGS Publications Warehouse

    Tadayon, Saeid

    1995-01-01

    Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.

  1. Geospatial datasets for assessing the effects of rangeland conditions on dissolved-solids yields in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Flynn, Marilyn E.; Anning, David W.

    2015-01-01

    In 2009, the U.S. Geological Survey (USGS) developed a Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model for the Upper Colorado River Basin (UCRB) relating dissolved-solids sources and transport in the 1991 water year to upstream catchment characteristics. The SPARROW model focused on geologic and agricultural sources of dissolved solids in the UCRB and was calibrated using water-year 1991 dissolved-solids loads from 218 monitoring sites. A new UCRB SPARROW model is planned that will update the investigation of dissolved-solids sources and transport in the basin to circa 2010 conditions and will improve upon the 2009 model by incorporating more detailed information about agricultural-irrigation and rangeland-management practices, among other improvements. Geospatial datasets relating to circa 2010 rangeland conditions are required for the new UCRB SPARROW modeling effort. This study compiled geospatial datasets for the UCRB that relate to the biotic alterations and rangeland conditions of grazing, fire and other land disturbance, and vegetation type and cover. Datasets representing abiotic alterations of access control (off-highway vehicles) and sediment generation and transport in general, were also compiled. These geospatial datasets may be tested in the upcoming SPARROW model to better understand the potential contribution of rangelands to dissolved-solids loading in UCRB streams.

  2. Summary of geology and ground-water resources of Passaic County, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.; Rooney, J.G.

    1976-01-01

    Ground water in Passaic County occurs in intergranular openings of unconsolidated stratified deposits of Quaternary age and in joints and fractures in consolidated rocks of Precambrian, Paleozoic, and Triassic age.The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County. Reported yields of public supply and industrial wells range from 50 to 510 gallons per minute (3 to 32 litres per second) and the median yield is 130 gallons per minute (8 litres per second). Most of these wells are 200 to 400 feet (61 to 122 metres) deep. The median yield of all public supply and industrial wells over 300 feet (91 metres) deep and 8 inches (203 millimetres) or larger in diameter is 230 gallons per minute (15 litres per second). Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Reported well yields range from 1 to 200 gallons per minute (.06 to 13 litres per second). The median reported yield of domestic wells is 5 gallons per minute (.31 litres per second) and that of public supply wells is 30 gallons per minute (2 litres per second).Other consolidated rocks--rocks of Paleozoic age and the Watchung Basalt of Traissic age--are utilized primarily for domestic water supplies in Passaic County. Reported yields of wells tapping the Paleozoic rocks range from less than 1 to 35 gallons per minute (.06 to 2 litres per second) and the median yield is 10 gallons per minute (.63 litres per second). Reported yields of domestic wells tapping the Watchung Basalt range from less than 1 to 40 gallons per minute (.06 to 3 litres per second) and the median yield is 12 gallons per minute (.76 litres per second). However, reported yields of nine industrial and commercial wells range from 50 to 180 gallons per minute (3 to 11 litres per second).Unconsolidated stratified deposits of Quaternary age are locally an important source of ground water for public supply and industrial use in parts of Passaic County. These deposits have not been extensively explored but are potentially an important source of ground water for future development. Reported yields of wells tapping the stratified deposits range from 4 to 920 gallons per minute (.25 to 58 litres per second). The median reported yield of domestic wells is 16 gallons per minute (1 litre per second) and that of public supply and industrial wells is 130 gallons per minute (8 litres per second. Depths of wells depend upon the thickness of the deposits. Reported depths range from 22 to 170 feet (7 to 52 metres).The quality of ground water in Passaic County varies from one aquifer to another. Water from the Precambrian rocks is soft to moderately hard (34 to 104 milligrams per litre) and is low in dissolved solids (66 to 159 milligrams per litre). Water from the Brunswick Formation is moderately hard to very hard (89 to 540 milligrams per litre). The dissolved solids content ranges from 129 to 563 milligrams per litre). The occurrence of more highly mineralized water at depth in the Brunswick Formation is indicated by an analysis, made in 1885, of 16,000 milligrams per litre of dissolved solids at a depth of 2,050 feet (625 metres) in a well in Paterson. Water from two wells tapping the Quaternary deposits is moderately hard (65 and 83 milligrams per litre) and has dissolved solids contents of 122 and 133 milligrams per litre).Water use from both surface and ground-water supplies in Passaic County averaged about 106 million gallons per day (4.6 cubic metres per second) in 1965. Ground water probably accounts for 5 to 10 percent of this total. Ground-water pumpage by the major public supply companies in the county has increased from 2.1 million gallons per day (.09 cubic metres per second) in 1951 to 4.39 million gallons per day (.19 cubic metres per second) in 1968. About 80 percent of the 4.39 million gallons per day (.19 cubic metres per second) was from wells tapping the Brunswick Formation in the southern part of the county.

  3. Geohydrology and water quality of Kalamazoo County, Michigan, 1986-88

    USGS Publications Warehouse

    Rheaume, S.J.

    1990-01-01

    Thick, glacial sand and gravel deposits provide most ground-water supplies in Kalamazoo County. These deposits range in thickness from 50 to about 600 feet in areas that overlie buried bedrock valleys. Most domestic wells completed at depths of less than 75 feet in the sands and gravels yield adequate water supplies. Most industry, public supply, and irrigation wells completed at depths of 100 to 200 feet yield 1,000 gallons per minute or more. The outwash plains include the most productive of the glacial aquifers in the county. The Coldwater Shale of Mississippian age, which underlies the glacial deposits in most of the county, usually yields only small amounts of largely mineralized water. Ground-water levels in Kalamazoo County reflect short- and long-term changes in precipitation and local pumpage. Ground-water levels increase in the spring and decline in the fall. Ground-water recharge rates, for different geologic settings, were estimated from ground-water runoff to the streams. Recharge rates ranged from 10.86 to 5.87 inches per year. A countywide-average ground-water recharge rate is estimated to be 9.32 inches per year. Chemical quality of precipitation and dry fallout at two locations in Kalamazoo County were similar to that of other areas in the State. Total deposition of dissolved sulfate is 30.7 pounds per acre per year, of total nitrogen is 13.2 pounds per acre per year, and of total phosphorus is 0.3 pounds per acre per year. Rainfall and snow data indicated that the pH of precipitation is inversely proportional to its specific conductance. Water of streams and rivers of Kalamazoo County is predominately of the calcium bicarbonate type, although dissolved sulfate concentrations are slightly larger in streams in the southeastern and northwestern parts of the county. The water in most streams is hard to very hard. Concentrations of dissolved chloride in streams draining urban-industrial areas are slightly larger than at other locations. Concentrations of total nitrogen and total phosphorus in streams are directly proportional to streamflow. Except for elevated concentrations of iron, none of the trace elements in streams exceeded maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Pesticides were detected in some streams. Ground water in the surficial aquifers is of the calcium bicarbonate type, although sodium, sulfate, and chloride ions predominate at some locations. Specific conductance and hardness and concentrations of total dissolved-solids slightly exceed statewide averages. Concentrations of dissolved sodium and dissolved chloride in 6 wells were greater than most natural ground waters in the State, indicating possible contamination from road salts. Water samples from 6 of the 46 wells sampled contained concentrations of total nitrate as nitrogen greater than 10.0 milligrams per liter. Elevated concentrations of total nitrate as nitrogen in water from wells in rural-agricultural areas probably are related to fertilizer applications. Results of partial chemical analyses by the Michigan Department of Public Health indicates specific conductance, and concentrations of hardness, dissolved fluoride, and total iron are fairly uniform throughout the county. Concentrations of dissolved sodium, dissolved chloride, and total nitrate as nitrogen differed among townships. Pesticides were detected in water from only one well. Water from five wells contained volatile organics. A map of susceptibility of ground water to contamination in Kalamazoo County was developed using a system created by the U.S. Environmental Protection Agency. Seven geohydrologic factors that affect and control ground-water movement are mapped and composited onto a countywide map. All seven factors have some effect on countywide susceptibility, but the most important factors are depth to water and composition of the materials above the aquifer.

  4. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    USGS Publications Warehouse

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches in the Virgin River Gorge containing known fault zones accounted for about 48 percent of this total seepage loss. An additional seepage loss of 6.7 ft3/s was calculated for the reach of the Virgin River between Bloomington, Utah, and the Utah/Arizona State line. This loss in flow is small compared to total flow in the river and is comparable to the rated error in streamflow measurements in this reach; consequently, it should be used with caution. Littlefield Springs were studied to determine the fraction of its discharge that originates as upstream seepage from the Virgin River and residence time of this water in the subsurface. Geochemical and environmental tracer data from groundwater and surface-water sites in the Virgin River Gorge area suggest that discharge from Littlefield Springs is a mixture of modern (post-1950s) seepage from the Virgin River upstream of the springs and older groundwater from a regional carbonate aquifer. Concentrations of the chlorofluorocarbons (CFCs) CFC-12 and CFC-113, chloride/fluoride and chloride/bromide ratios, and the stable isotope deuterium indicate that water discharging from Littlefield Springs is about 60 percent seepage from the Virgin River and about 40 percent discharge from the regional carbonate aquifer. The river seepage component was determined to have an average subsurface traveltime of about 26 ±1.6 years before discharging at Littlefield Springs. Radiocarbon data for Littlefield Springs suggest groundwater ages from 1,000 to 9,000 years. Because these are mixed waters, the component of discharge from the carbonate aquifer is likely much older than the groundwater ages suggested by the Littlefield Springs samples. If the dissolved-solids load from Dixie Hot Springs to the Virgin River were reduced, the irrigation water subsequently applied to agricultural fields in the St. George and Washington areas, which originates as water from the Virgin River downstream of Dixie Hot Springs, would have a lower dissolved-solids concentration. Dissolved-solids concentrations in excess irrigation water draining from the agricultural fields are about 1,700 mg/L higher than the concentrations in the Virgin River water that is currently (2014) used for irrigation that contains inflow from Dixie Hot Springs; this increase results from evaporative concentration and dissolution of mineral salts in the irrigated agricultural fields. The water samples collected from drains downgradient from the irrigated areas are assumed to include the dissolution of all available minerals precipitated in the soil during the previous irrigation season. Based on this assumption, a change to more dilute irrigation water will not dissolve additional minerals and increase the dissolved-solids load in the drain discharge. Following the hypothetical reduction of salts from Dixie Hot Springs, which would result in more dilute Virgin River irrigation water than is currently used, the dissolution of minerals left in the soil from the previous irrigation season would result in a net increase in dissolved-solids concentrations in the drain discharge, but this increase should only last one irrigation season. After one (or several) seasons of irrigating with more dilute irrigation water, mineral precipitation and subsequent re-dissolution beneath the agricultural fields should be greatly reduced, leading to a reduction in dissolved-solids load to the Virgin River below the agricultural drains. A mass-balance model was used to predict changes in the dissolved-solids load in the Virgin River if the salt discharging from Dixie Hot Springs were reduced or removed. Assuming that 33.4 or 26.7 ft3/s of water seeps from the Virgin River to the groundwater system upstream of the Virgin River Gorge Narrows, the immediate hypothetical reduction in dissolved-solids load in the Virgin River at Littlefield, Arizona is estimated to be 67,700 or 71,500 ton/yr, respectively. The decrease in dissolved-solids load in seepage from the Virgin River to the groundwater system is expected to reduce the load discharging from Littlefield Springs in approximately 26 years, the estimated time lag between seepage from the river and discharge of the seepage water, after subsurface transport, from Littlefield Springs. At that time, the entire reduction in dissolved solids seeping from the Virgin River is expected to be realized as a reduction in dissolved solids discharging from Littlefield Springs, resulting in an additional reduction of 24,700 ton/yr (based on 33.4 ft3/s of seepage loss) or 21,000 ton/yr (based on 26.7 ft3/s of seepage loss) in the river’s dissolved-solids load at Littlefield.

  5. Fabrication and characterization of microstructure of stainless steel matrix composites containing up to 25 vol% NbC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Wen Hao, E-mail: wkan6795@uni.sydney.edu.au

    AISI 440 stainless steels reinforced with various volume fractions of niobium carbide (NbC) particles of up to 25 vol% were fabricated in-situ using an argon arc furnace and then heat-treated to produce a martensitic matrix. Optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and electron back-scatter diffraction (EBSD) techniques were used to analyze the microstructure, phases and composition of these composites. Interestingly, it was found that Chinese-script NbC could nucleate on existing primary NbC particles creating NbC clusters with complex microstructures. Additionally, hardness tests were used to evaluate viability in mining and mineral processing applications. The increasemore » in NbC content resulted in an overall increase in the hardness of the composites while causing a marginal decrease in the amount of Cr in solid solution with the matrix, which could be a concern for corrosion resistance. The latter was due to the fact that the NbC lattice could dissolve a minor amount of Cr. Thermodynamic simulations also attributed this to a slight increase in M{sub 7}C{sub 3} precipitation. Nonetheless, these novel composites show great promise for applications in wear and corrosive environments. - Highlights: •Stainless steels reinforced with NbC particles of up to 25 vol% were fabricated. •NbC was formed in-situ in the steels using an arc melter. •Martensitic transformation of the matrix of each sample was achieved. •NbC reinforcements increased the bulk hardness values of the steels. •Dissolved Cr in the matrix of each sample was sufficient for passivity in theory.« less

  6. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Sheyenne River, North Dakota, 1980-2006

    USGS Publications Warehouse

    Ryberg, Karen R.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the North Dakota State Water Commission, to estimate water-quality constituent concentrations at seven sites on the Sheyenne River, N. Dak. Regression analysis of water-quality data collected in 1980-2006 was used to estimate concentrations for hardness, dissolved solids, calcium, magnesium, sodium, and sulfate. The explanatory variables examined for the regression relations were continuously monitored streamflow, specific conductance, and water temperature. For the conditions observed in 1980-2006, streamflow was a significant explanatory variable for some constituents. Specific conductance was a significant explanatory variable for all of the constituents, and water temperature was not a statistically significant explanatory variable for any of the constituents in this study. The regression relations were evaluated using common measures of variability, including R2, the proportion of variability in the estimated constituent concentration explained by the explanatory variables and regression equation. R2 values ranged from 0.784 for calcium to 0.997 for dissolved solids. The regression relations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.7 for dissolved solids to 11.5 for sulfate. The regression relations also may be used to estimate daily constituent loads. The relations should be monitored for change over time, especially at sites 2 and 3 which have a short period of record. In addition, caution should be used when the Sheyenne River is affected by ice or when upstream sites are affected by isolated storm runoff. Almost all of the outliers and highly influential samples removed from the analysis were made during periods when the Sheyenne River might be affected by ice.

  7. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    PubMed

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km(2) for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km(2) for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km(2) for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km(2) for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km(2) for the Salton Sea accounting unit.

  8. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States1

    PubMed Central

    Anning, David W

    2011-01-01

    Abstract Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit. PMID:22457583

  9. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    USGS Publications Warehouse

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Results from the trend analysis and from the SPARROW model indicate that, compared to monitoring stations with no trends or decreasing trends, stations with increasing trends are associated with a smaller percentage of the predicted dissolved-solids load originating from geologic sources, and a larger percentage originating from urban lands and road deicers. Conversely, compared to stations with increasing trends or no trends, stations with decreasing trends have a larger percentage of the predicted dissolved-solids load originating from geologic sources and a smaller percentage originating from urban lands and road deicers. Stations with decreasing trends also have larger percentages of predicted dissolved-solids load originating from cultivated lands and pasture lands, compared to stations with increasing trends or no trends.

  10. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.

    2015-12-01

    In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.

  11. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    USGS Publications Warehouse

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.

  12. Dissolved Solids in Streams of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Anning, D. W.; Flynn, M.

    2014-12-01

    Studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey's National Water-Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model to improve the understanding of dissolved solids in streams of the United States. Using the SPARROW model, annual dissolved-solids loads from 2,560 water-quality monitoring stations were statistically related to several spatial datasets serving as surrogates for dissolved-solids sources and transport processes. Sources investigated in the model included geologic materials, road de-icers, urban lands, cultivated lands, and pasture lands. Factors affecting transport from these sources to streams in the model included climate, soil, vegetation, terrain, population, irrigation, and artificial-drainage characteristics. The SPARROW model was used to predict long-term mean annual conditions for dissolved-solids sources, loads, yields, and concentrations in about 66,000 stream reaches and corresponding incremental catchments nationwide. The estimated total amount of dissolved solids delivered to the Nation's streams is 272 million metric tons (Mt) annually, of which 194 million Mt (71%) are from geologic sources, 38 million Mt (14%) are from road de-icers, 18 million Mt (7%) are from pasture lands, 14 million Mt (5 %) are from urban lands, and 8 million Mt (3%) are from cultivated lands. The median incremental-catchment yield delivered to local streams is 26 metric tons per year per square kilometer [(Mt/yr)/km2]. Ten percent of the incremental catchments yield less than 4 (Mt/yr)/km2, and 10 percent yield more than 90 (Mt/yr)/km2. In 13% of the reaches, predicted flow-weighted concentrations exceed 500 mg/L—the U.S. Environmental Protection Agency secondary non-enforceable drinking-water standard.

  13. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production

    PubMed Central

    Narendranath, Neelakantam V.; Power, Ronan

    2005-01-01

    The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306

  14. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  15. Evaluation of increases in dissolved solids in ground water, Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, Anthony; Packard, E.M.

    1982-01-01

    Increases in dissolved solids have been monitored in two observation wells near Stovepipe Wells Hotel, Death Valley National Monument, California. One of the hotel 's supply wells delivers water to a reverse-osmosis treatment plant that produces the area 's potable water supply. Should water with increased dissolved solids reach the supply well, the costs of production of potable water will increase. The reverse-osmosis plant supply well is located about 0.4 mile south of one of the wells where increases have been monitored, and 0.8 mile southwest of the well where the most significant increases have been monitored. The direction of local ground-water movement is eastward, which reduces the probability of the supply well being affected. Honey mesquite, a phreatophyte located about 1.5 miles downgradient from the well where the most significant increases have been monitored, might be adversely affected should water with increased dissolved solids extend that far. Available data and data collected during this investigation do not indicate the source of the dissolved-solids increases. Continued ground-water-quality monitoring of existing wells and the installation of additional wells for water-quality monitoring would be necessary before the area affected by the increases, and the source and direction of movement of the water with increased dissolved solids, can be determined. (USGS)

  16. Water-Quality Trends in the Neuse River Basin, North Carolina, 1974-2003

    NASA Astrophysics Data System (ADS)

    Harned, D. A.

    2003-12-01

    Data from two U.S. Geological Survey (USGS) sites in the Neuse River basin were reviewed for trends in major ions, sediment, nutrients, and pesticides during the period 1974-2003. In 1997, the North Carolina Division of Water Quality implemented management rules to reduce nitrogen loading to the Neuse River by 30 percent by 2003. Therefore, the 1997-2003 period was reviewed for trends associated with the management changes. The Neuse River at Kinston basin (2,695 square miles) includes much of Raleigh, N.C., with 8-percent urban and 30-percent agricultural land use (1992 data). The Contentnea Creek basin (734 square miles), a Neuse River tributary, is 42-percent agricultural and 3-percent urban. Agricultural land uses in the Contentnea Creek basin have changed over the last decade from predominantly corn, soybean, and tobacco row crops to corn, soybeans, and cotton, with reduced tobacco acreages, and development of the hog industry. Data for this analysis were collected by the USGS for the National Stream Quality Accounting Network and National Water-Quality Assessment Program. Data were examined for trends using the Seasonal Kendall trend test or Tobit regression. The Seasonal Kendall test, which accounts for seasonal variability and adjusts for effects of streamflow on concentration with residuals from LOWESS (LOcally Weighted Sum of Squares) curves, was used to analyze trends in major ions, nutrients, and sediment. The Tobit test, appropriate for examining values with reporting limits, was used for the pesticide analysis. Monotonic trends are considered significant at the alpha < 0.05 probability level. Long-term (1974-2003) decreasing trends in the Neuse River at Kinston were detected for dissolved oxygen, silica, and sediment concentrations; increasing trends were detected for potassium, alkalinity, and chloride. Decreasing trends in Contentnea Creek were detected for silica, sulfate, and sediment concentrations during 1979-2003; increasing trends were detected for pH, hardness, and alkalinity. A pattern of increase until 1990 followed by little change or decline was observed for specific conductance, dissolved solids, hardness, and sulfate in the Neuse River and for potassium in Contentnea Creek. No significant recent (1997-2003) trends were detected for dissolved oxygen, pH, specific conductance, hardness, dissolved solids, or major ions. The Neuse River data indicated a recent declining trend in sediment concentration. Nitrogen concentrations in the form of ammonia, total ammonia and organic nitrogen, and nitrite plus nitrate have declined in both the Neuse River and Contentnea Creek. Total nitrogen concentrations increased in the Neuse River until about 1990 and then declined, primarily because of declines in nitrate. Recent declines are evident in nitrite plus nitrate in the Neuse River and in ammonia concentrations in Contentnea Creek. The data also show a reduction in variation of extreme values after 1990 in Contentnea Creek. Both observations suggest that the 1997 Neuse River management rules have had a detectable effect on nitrogen concentrations. Concentrations of dissolved and total phosphorus and orthophosphate reduced in a step trend in 1988 at both locations. This reflects the 1988 phosphate detergent ban in North Carolina. Orthophosphate concentrations have continued a recent decline in Contentnea Creek. Contentnea Creek has sufficient period of record (1994-2003) of concentrations of atrazine, deethyl atrazine, alachlor, carbaryl, diazinon, and prometon to test for trends. Both alachlor and prometon concentrations showed significant declines. Recent changes in agricultural practices coupled with a 5-year drought probably have affected pesticide use and transport to surface waters.

  17. System and process for dissolution of solids

    DOEpatents

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  18. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States

    USGS Publications Warehouse

    Anning, D.W.

    2011-01-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10(kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000(kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000(kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000(kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000(kg/year)/km2 for the Salton Sea accounting unit. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  19. Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device

    USGS Publications Warehouse

    Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.

    1999-01-01

    This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.

  20. Estimated dissolved-solids loads and trends at selected streams in and near the Uinta Basin, Utah, Water Years 1989–2013

    USGS Publications Warehouse

    Thiros, Susan A.

    2017-03-23

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).

  1. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    PubMed

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  3. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    EPA Science Inventory

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  4. Method for dissolving plutonium oxide with HI and separating plutonium

    DOEpatents

    Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.

    1979-01-01

    PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

  5. Relations of surface-water quality to streamflow in the Raritan River basin, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 21 surface-water stations within the drainage area of the Raritan River Basin for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow trends in concentrations were determined for some constituents at 13 of the 21 water-quality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of the dilution of instream concentrations by storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. The slopes of load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. The slopes of load-to-streamflow relations increase in the downstream direction for alkalinity at North Branch Raritan and Millstone Rivers, for some or all of the nutrient species at South Branch and North Branch Raritan Rivers, for hardness at South Branch Raritan River, for dissolved solids at North Branch Raritan River, for dissolved sodium at Lamington River, and for suspended sediment and dissolved oxygen at Millstone River. Likewise, the slopes of load-tostreamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The slopes of load-to-streamflow relations decrease in the downstream direction for dissolved solids at Raritan and Millstone Rivers; for dissolved sodium, dissolved chloride, total ammonia plus organic nitrogen, and total ammonia at South Branch Raritan, Raritan, and Millstone Rivers; for dissolved oxygen at North Branch Raritan and Lamington Rivers; for total nitrite at Lamington, Raritan, and Millstone Rivers; for total boron at South Branch Raritan and Millstone Rivers; for total organic carbon at North Branch Raritan River; for suspended sediment and total nitrogen at Raritan River; and for hardness, total phosphorus, and total lead at Millstone River.

  6. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    USGS Publications Warehouse

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were

  7. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    NASA Astrophysics Data System (ADS)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  8. Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldys, S.

    1990-01-01

    Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less

  9. Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, S.J.; Spangler, L.E.; Kimball, B.A.; Wilberg, D.E.; Naftz, D.L.

    2006-01-01

    Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River.The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter.Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons.Water samples collected from selected sites within the Green River agricultural areas were analyzed for naturally occurring isotopes of strontium and boron, which can be useful for differentiating dissolved-solids sources. Substantial variations in the delta strontium-87 and delta boron-11 values among the sites were measured. Canal and river samples had relatively low concentrations of strontium and the most positive (heavier) isotopic ratios, while drains and seeps had a wide range of strontium concentrations and isotopic ratios that generally were less positive (lighter). Further study of the variation in strontium and boron concentrations and isotope ratios may provide a means to distinguish end members and discern processes affecting dissolved solids within the Green River study area; however, the results from isotope data collected during this study are inconclusive.Flow and seepage losses were estimated for the three main canals in the study area for May 2 to October 4 in any given year. This period coincides with the frost-free period in the Green River area. Estimated diversion from the Green River into the Thayn, East Side, and Green River Canals is 6,600, 6,070, and 19,900 acre-feet, respectively. The estimated seepage loss to ground water from the Thayn, East Side, and Green River Canals during the same period is 1,550, 1,460, and 4,710 acre-feet, respectively.

  10. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1986-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from the tailings was 330 mg/L, and beneath and downgradient from the tailings the concentrations were 864 and 1,240 mg/L. The minimum volume of contaminated water in the confined aquifer was estimated to be about 12,000 acre-ft. (Lantz-PTT)

  11. Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California

    USGS Publications Warehouse

    Bright, Daniel J.; Nash, David B.; Martin, Peter

    1997-01-01

    Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams per liter from concentrations in 1988. During 1941-88 about 1,096,000 acre-feet of water was pumped from the aquifer system. Average pumpage for this period (22,830 acre-feet per year) exceeded pumpage for the steady-state simulation by 16,590 acre-feet per year. The results of the transient simulation indicate that about 60 percent of this increase in pumpage was contributed by increased recharge, 28 percent by decreased natural discharge from the system (primarily discharge to the Santa Ynez River and transpiration), and 13 percent was withdrawn from storage. Total simulated downward leakage from the middle zone to the main zone in the central plain and upward leakage from the consolidated rocks to the main zone significantly increased in response to increased pumpage, which increased from about 6,240 to 30,870 acre-feet per year from 1941 to 1988. Average dissolved-solid concentration in the middle zone in 1987-88 ranged from 2,000 to 3,000 milligrams per liter beneath the northeastern plain and the dissolved-solids concentration of two samples from the consolidated rocks beneath the western plain averaged 4,300 milligrams per liter. Because the dissolved-solids concentration for the middle zone and the consolidated rocks is higher than the simulated steady-state dissolved-solids concentration of the main zone, the increase in the leakage from these two sources resulted in increased dissolved-solids concentration in the main zone during the transient period. The model results indicate that the main source of increased dissolved- solids concentration in the northeastern and central plains was downward leakage from the middle zone; whereas, upward leakage from the consolidated rocks was the main source of the increased dissolved-solids concentrations in the northwestern and western plains. The models were used to estimate changes in hydraulic head and in dissolved-solids concentration resulting from three proposed management alternatives: (1) average recharge

  12. Drinking Water Quality Assessment Studies for an Urbanized Part of the Nagpur District, Central India.

    PubMed

    Varade, Abhay M; Yenkie, Rajshree; Shende, Rahul; Kodate, Jaya

    2014-01-01

    The water quality of Hingna area of Nagpur district, Central India was assessed for its suitability as drinking water. 22 water samples, representing both the surface and groundwater sources, were collected and analysed for different inorganic constituents by using the standard procedures. The result depicted abundance of major ions; Ca2+ > Mg2+ > Na+ > K+ = HCO3- > Cl- > SO4(2-) > NO3-. The concentrations of different elements in water were compared with the drinking water standards defined by World Health Organization (WHO). The hydro-chemical results reveal that most of the samples were within the desirable limits of the drinking water quality. However, few samples of the area, showed higher values of total dissolved solids (TDS), total hardness (TH), and magnesium (Mg) indicating their 'hard water type' nature and found to be unfit for the drinking purpose. Such poor water quality of these samples is found due to the combined effect of urbanization and industrial activities. The potential health risks associated with various water parameters have also been documented in this paper.

  13. Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah

    USGS Publications Warehouse

    Shope, Christopher L.; Gerner, Steven J.

    2014-01-01

    Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.

  14. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of themore » Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.« less

  15. Dissolved Solids as HD Bioeffluent Toxicants.

    DTIC Science & Technology

    1998-12-01

    12 The question still remains about whether the toxicity of the SBR effluent was caused by either the animals’ inability to osmoregulate in a high...the dissolved solids. The inability of freshwater organisms to osmoregulate in such high saline environments caused toxicity. Freshwater organisms are

  16. Effects of elevated total dissolved solids on bivalves

    EPA Science Inventory

    A series of experiments were performed to assess the toxicity of different dominant salt recipes of excess total dissolved solids (TDS) to organisms in mesocosms. Multiple endpoints were measured across trophic levels. We report here the effects of four different TDS recipes on b...

  17. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  18. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades

    PubMed Central

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  19. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    PubMed

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.

  20. Silica removal from steamflood produced water: South Texas Tar Sands Pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.A.; Cathey, S.R.; Yost, M.E.

    1984-09-01

    Steamflood produced waters commonly contain suspended solids, oil, hardness, sulfide, and silica. Removal of these contaminants would make many of these waters suitable candidates for recycling as steam feedwater. Reuse of steamflood produced waters will increase steamer feedwater supplies, as well as reduce water disposal requirements. This paper describes a field pilot study of silica removal from steamflood produced water in the South Texas Tar Sands region. A hot-lime precipitation process was used to reduce dissolved silica concentrations from 400 mg/l to less than 50 mg/l SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-limemore » precipitation for silica removal call for the addition of magnesium salts, as well as lime, to enhance silica removal. In this field study, however, magnesium salt addition did not improve silica removal efficiency. Hydrated lime ((Ca(OH)/sub 2/), alone, was sufficient to attain the desired silica residual, 50 mg/l SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/lCa(OH)/sub 2/. Residual silica concentrations were found to be strongly related to both precipitator pH and calcium ion concentration. Therefore, on-line pH and hardness monitoring may be used to estimate and control residual silica concentration. A 50,000-BPD (7,900 m/sup 3//d) produced water treating plant has been designed using results from this pilot study.« less

  1. Flavor release and perception in hard candy: influence of flavor compound-flavor solvent interactions.

    PubMed

    Schober, Amanda L; Peterson, Devin G

    2004-05-05

    The release kinetics of l-menthol dissolved in propylene glycol (PG), Miglyol, or 1,8-cineole (two common odorless flavor solvents differing in polarity and a hydrophobic flavor compound) were monitored from a model aqueous system via atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Breath analysis was also conducted via APCI-MS to monitor release of l-menthol from hard candy that used PG and Miglyol for l-menthol incorporation. The quantities of l-menthol released when dissolved in PG or Miglyol from the model aqueous system were found to be similar and overall significantly greater in comparison to when dissolved in 1,8-cineole. Analogous results were reported by the breath analysis of hard candy. The release kinetics of l-menthol from PG or Miglyol versus from 1,8-cineole were notably more rapid and higher in quantity. Results from the sensory time-intensity study also indicated that there was no perceived difference in the overall cooling intensity between the two flavor solvent delivery systems (PG and Miglyol).

  2. Water-quality and ground-water-level trends, 1990-99, and data collected from 1995 through 1999, East Mountain area, Bernalillo County, central New Mexico

    USGS Publications Warehouse

    Rankin, D.R.

    2000-01-01

    Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.

  3. THE RELATIONSHIP OF TOTAL DISSOLVED SOLIDS MEASUREMENTS TO BULK ELECTRICAL CONDUCTIVITY IN AN AQUIFER CONTAMINATED WITH HYDROCARBON

    EPA Science Inventory

    A recent conceptual model links high bulk electrical conductivities at hydrocarbon impacted sites to higher total dissolved solids (TDS) resulting from enhanced mineral weathering due to acids produced during biodegradation. In this study, we investigated the vertical distributio...

  4. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...

  5. A SURROGATE SUBCHRONIC TOXICITY TEST METHOD FOR WATERS WITH HIGH TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Total dissolved solids (TDS) are often identified as a toxicant in whole-effluent toxicity (WET) testing. The primary test organism used in WET testing, Ceriodaphnia dubia, is very sensitive to TDS ions, which can be problematic when differentiating the toxicity of TDS from those...

  6. Community-Level Effects of Excess Total Dissolved Solids Doses Using Model Streams

    EPA Science Inventory

    Model stream chronic dosing studies (42 days) were conducted with four different total dissolved solids (TDS) recipes. The recipes differed in their relative dominance of major ions. One was made from sodium and calcium chloride salts only. Another was similar to the first, but a...

  7. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan.

    PubMed

    Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan

    2015-02-01

    Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water.

  8. Application and evaluation of scale dissolver treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielder, G.D.

    1994-12-31

    In order to provide an improved basis for the design of barium sulfate scale dissolver treatments both laboratory testing and monitoring of field applications were carried out. The deleterious effects of mixing produced water with dissolver prior to contacting scale are shown. Increasing total dissolved solids (TDS) levels can reduce dissolution depending upon temperature. Precomplexation with divalent cations reduces the capacity of the dissolver to solubilize solid scales. Magnesium may adversely affect dissolver performance at elevated temperatures. Several oil and gas wells were closely monitored during initial flowback after treatment. Samples were collected on a frequent basis and analyzed formore » pH, dissolver content, chlorides and various cations. The resulting data were used to construct flowback profiles for evaluation of the treatments. Evidence of scale dissolution is presented. The presence of an incompatible flush brine was discovered in one case and possible reverse order of addition of preflush and dissolver in another. The importance of establishing and following treatment procedures is briefly discussed.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kedar G.; Pannu, Satinderpall S.

    An integrated circuit system having an integrated circuit (IC) component which is able to have its functionality destroyed upon receiving a command signal. The system may involve a substrate with the IC component being supported on the substrate. A module may be disposed in proximity to the IC component. The module may have a cavity and a dissolving compound in a solid form disposed in the cavity. A heater component may be configured to heat the dissolving compound to a point of sublimation where the dissolving compound changes from a solid to a gaseous dissolving compound. A triggering mechanism maymore » be used for initiating a dissolution process whereby the gaseous dissolving compound is allowed to attack the IC component and destroy a functionality of the IC component.« less

  10. Characterization of the structure, clean-sand percentage, dissolved-solids concentrations, and estimated quantity of groundwater in the Upper Cretaceous Nacatoch Sand and Tokio Formation, Arkansas

    USGS Publications Warehouse

    Gillip, Jonathan A.

    2014-01-01

    The West Gulf Coastal Plain, Mississippi embayment, and underlying Cretaceous aquifers are rich in water resources; however, large parts of the aquifers are largely unusable because of large concentrations of dissolved solids. Cretaceous aquifers are known to have large concentrations of salinity in some parts of Arkansas. The Nacatoch Sand and the Tokio Formation of Upper Cretaceous age were chosen for investigation because these aquifers produce groundwater to wells near their outcrops and have large salinity concentrations away from their outcrop areas. Previous investigations have indicated that dissolved-solids concentrations of groundwater within the Nacatoch Sand, 2–20 miles downdip from the outcrop, render the groundwater as unusable for purposes requiring freshwater. Groundwater within the Tokio Formation also exhibits large concentrations of dissolved solids downdip. Water-quality data showing elevated dissolved-solids concentrations are limited for these Cretaceous aquifers because other shallower aquifers are used for water supply. Although not suitable for many uses, large, unused amounts of saline groundwater are present in these aquifers. Historical borehole geophysical logs were used to determine the geologic and hydrogeologic properties of these Cretaceous aquifers, as well as the quality of the groundwater within the aquifers. Based on the interpretation of borehole geophysical logs, in Arkansas, the altitude of the top of the Nacatoch Sand ranges from more than 200 to less than -4,000 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Nacatoch Sand ranges from 0 to over 550 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. Other areas of large thickness include the area of the Desha Basin structural feature in southeastern Arkansas and in an area on the border of Cross and St. Francis Counties in eastern Arkansas. The clean-sand percentage of the total Nacatoch Sand thickness ranges from less than 20 percent to more than 60 percent and generally decreases downdip. The Nacatoch Sand contains more than 120.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 milligrams per liter (mg/L), more than 57.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and more than 122.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L. The altitude of the top of the Tokio Formation, in Arkansas, ranges from more than 200 feet to less than -4,400 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Tokio Formation, in Arkansas, ranges from 0 to over 400 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. The clean-sand percentage of the total Tokio Formation thickness ranges from less than 20 percent to more than 60 percent and generally decreases away from the outcrop area. The Tokio Formation contains more than 2.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 mg/L, more than 12.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and nearly 43.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L.

  11. Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982

    USGS Publications Warehouse

    Clifton, Daphne G.

    1983-01-01

    Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)

  12. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  13. Macroinvertebrate assemblages in agricultural, mining, and urban tropical streams: implications for conservation and management.

    PubMed

    Mwedzi, Tongayi; Bere, Taurai; Mangadze, Tinotenda

    2016-06-01

    The study evaluated the response of macroinvertebrate assemblages to changes in water quality in different land-use settings in Manyame catchment, Zimbabwe. Four land-use categories were identified: forested commercial farming, communal farming, Great Dyke mining (GDM) and urban areas. Macroinvertebrate community structure and physicochemical variables data were collected in two seasons from 41 sites following standard methods. Although not environmentally threatening, urban and GDM areas were characterised by higher conductivity, total dissolved solids, salinity, magnesium and hardness. Chlorides, total phosphates, total nitrogen, calcium, potassium and sodium were significantly highest in urban sites whilst dissolved oxygen (DO) was significantly higher in the forested commercial faming and GDM sites. Macroinvertebrate communities followed the observed changes in water quality. Macroinvertebrates in urban sites indicated severe pollution (e.g. Chironomidae) whilst those in forested commercial farming sites and GDM sites indicated relatively clean water (e.g. Notonemouridae). Forested watersheds together with good farm management practices are important in mitigating impacts of urbanisation and agriculture. Strategies that reduce oxygen-depleting substances must be devised to protect the health of Zimbabwean streams. The study affirms the wider applicability of the South African Scoring System in different land uses.

  14. Silica removal from steamflood-produced water: South Texas tar sands pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.A.; Yost, M.E.; Cathey, S.R.

    1987-05-01

    Steamflood-produced waters commonly contain suspended solids, oil, hardness-causing minerals, sulfide, and silica. Removal of these contaminants would make many of these waters suitable for recycling as steamer feedwater. Reuse of steamflood-produced waters increases steamer feedwater supplies and reduces water disposal requirements. This paper describes a field pilot study of silica removal from steamflood-produced water in the south Texas tar sands region. A hot-lime precipitation process was used to reduce dissolved silica (SiO/sub 2/) concentrations from 400 to less than 50 mg/L SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-lime precipitation for silica removal requiremore » the addition of magnesium salt, as well as lime, to enhance silica removal. In this field study, however, addition of magnesium salt did not improve silica removal efficiency. Hydrated lime, CA(OH)/sub 2/, alone was sufficient to attain desired silica residual, 50 mg/L SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/L Ca(OH)/sub 2/.« less

  15. Composition characteristics and regularities of dissolving of hydroxyapatite materials obtained in water solutions with varied content of silicate ions

    NASA Astrophysics Data System (ADS)

    Solonenko, A. P.

    2018-01-01

    Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.

  16. Evaluating pond sand filter as sustainable drinking water supplier in the Southwest coastal region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Harun, M. A. Y. A.; Kabir, G. M. M.

    2013-03-01

    This study investigates existing water supply scenario, and evaluates the performance of pond sand filter (PSF) in meeting drinking water demand of Dacope Upazila in southwest coastal Bangladesh. Questionnaire survey to the villagers reveals that PSF is the major drinking water sources (38 %) of the study area followed by tubewells (30.4 %), rainwater harvesting (RWH) systems (12.6 %), ponds (10.3 %) and others (8.7 %). The spot test and laboratory analysis show that odour, colour, pH, dissolved oxygen, hardness, calcium, magnesium, nitrate, sulphate and phosphate of the PSFs water meet Bangladesh standard. The efficiency of PSF in reducing total dissolved solids (TDS) (15 %) and potassium (8.2 %) is not enough to meet the standard of 20 % PSFs for TDS and one-third PSFs for potassium. The study proves that PSF is unable to remove coliform bacteria by 100 % from highly contaminated water. Hence, disinfection should be adopted before distribution to ensure safe drinking water. Majority of the PSF's users (80 %) are either partially satisfied or dissatisfied with the existing system. The beneficiary's willingness to pay for drinking water technologies seems that the combination of PSF and RWH could ensure sustainable drinking water in coastal region of Bangladesh.

  17. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas; summary and analysis of water-quality data for the basic-fixed-site network, 1993-95

    USGS Publications Warehouse

    Healy, D.F.

    1997-01-01

    The Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment Program collected monthly water- quality samples at a network of surface-water sites from April 1993 through September 1995. This basic-fixed-site network consisted of nine main-stem sites on the Rio Grande, five sites on tributaries of the Rio Grande, two sites on streams in the Rio Grande Valley study unit that are not directly tributary to the Rio Grande, and one site on a conveyance channel. During each monthly sampling, field properties were measured and samples were collected for the analysis of dissolved solids, major constituents, nutrients, selected trace elements, and suspended-sediment concentrations. During selected samplings, supplemental samples were collected for the analysis of additional trace elements, organic carbon, and/or pesticides. Spatial variations of dissolved-solids, major-constituent, and nutrient data were analyzed. The report presents summary statistics for the monthly water-quality data by sampling site and background information on the drainage basin upstream from each site. Regression equations are presented that relate dissolved-solids, major-constituent, and nutrient concentrations to streamflow, selected field properties, and time. Median instantaneous streamflow at each basic-fixed site ranged from 1.4 to 1,380 cubic feet per second. Median specific conductance at each basic-fixed site ranged from 84 to 1,680 microsiemens per centimeter at 25 degrees Celsius, and median pH values ranged from 7.8 to 8.5. The water sampled at the basic-fixed sites generally was well oxygenated and had a median dissolved-oxygen percent of saturation range from 89 to 108. With the exception of Rio Grande above mouth of Trinchera Creek, near Lasauses, Colorado, dissolved-solids concentrations in the main stem of the Rio Grande generally increased in a downstream direction. This increase is from natural sources such as ground-water inflow and evapotranspiration and from anthropogenic sources such as irrigation- return flows, urban runoff, and wastewater-treatment plant discharges. The smallest median dissolved-solids concentration detected at a basic- fixed site was 58 milligrams per liter and the largest was 1,240 milligrams per liter. The spatial distribution of calcium, magnesium, sodium, sulfate, chloride, and fluoride was similar to the spatial distribution of dissolved solids. The spatial distribution of potassium and bicarbonate varied slightly from that of dissolved solids. Median silica concentrations generally decreased in a downstream direction. Of all cations, calcium and sodium had the largest concentrations at most basic-fixed sites. Bicarbonate and sulfate were the anions having the largest concentrations at most sites. The largest median silica concentration was at Rito de los Frijoles in Bandelier National Monument, New Mexico, where silica composed approximately 50 percent of the dissolved solids. The largest concentrations and largest median concentrations of dissolved-nutrient analytes were detected at Santa Fe River above Cochiti Lake, New Mexico, and Rio Grande at Isleta, New Mexico. The relatively large dissolved-nutrient concentrations at these sites probably were due to discharges from wastewater-treatment plants and urban runoff. The largest concentrations and largest median concentrations of total ammonia plus organic nitrogen and total phosphorus were detected at Rio Puerco near Bernardo, New Mexico. The largest concentrations of these nutrients at this site were associated with runoff from summer thunderstorms. Dissolved-iron concentrations ranged from censored concentrations to 914 micrograms per liter. Median dissolved-iron concentrations ranged from 3 to 160 micrograms per liter. Dissolved-manganese concentrations ranged from censored concent

  18. Evaluation of Total Dissolved Solids and Specific Conductance Water Quality Targets with Paired Single-Species and Mesocosm Community Exposures

    EPA Science Inventory

    Isolated single-species exposures were conducted in parallel with 42 d mesocosm dosing studies that measured in-situ and whole community responses to different recipes of excess total dissolved solids (TDS). The studies were conducted with cultured species and native taxa from mo...

  19. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  20. Comparing Single species Toxicity Tests to Mesocosm Community-Level Responses to Total Dissolved Solids Comprised of Different Major Ions

    EPA Science Inventory

    Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...

  1. Quality of major ion and total dissolved solids data from groundwater sampled by the National Water-Quality Assessment Program, 1992–2010

    USGS Publications Warehouse

    Gross, Eliza L.; Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Field blank samples help determine the frequency and magnitude of contamination bias, and replicate samples help determine the sampling variability (error) of measured analyte concentrations. Quality control data were evaluated for calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, silica, and total dissolved solids. A 99-percent upper confidence limit is calculated from field blanks to assess the potential for contamination bias. For magnesium, potassium, chloride, sulfate, and fluoride, potential contamination in more than 95 percent of environmental samples is less than or equal to the common maximum reporting level. Contamination bias has little effect on measured concentrations greater than 4.74 mg/L (milligrams per liter) for calcium, 14.98 mg/L for silica, 4.9 mg/L for sodium, and 120 mg/L for total dissolved solids. Estimates of sampling variability are calculated for high and low ranges of concentration for major ions and total dissolved solids. Examples showing the calculation of confidence intervals and how to determine whether measured differences between two water samples are significant are presented.

  2. Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.

    PubMed

    Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo

    2017-04-27

    In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.

  3. Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74

    USGS Publications Warehouse

    Fretwell, M.O.

    1977-01-01

    This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).

  4. Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended- and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2-6, 2004

    NASA Astrophysics Data System (ADS)

    Milliman, J. D.; Lee, T. Y.; Huang, J. C.; Kao, S. J.

    2017-05-01

    Small mountainous rivers deliver disproportionately large quantities of suspended and dissolved solids to the global ocean, often in response to catastrophic events such as earthquakes or floods. Here we report on the impact of a major flood on the Choshui River, central-western Taiwan, generated by typhoon Mindulle, July 2-6, 2004, five years after the nearby Mw 7.6 Chichi earthquake. Water samples taken at 3-h intervals at three stations along main stem, as well as from two downriver tributaries, allow us to delineate the temporal and spatial variability in concentrations and fluxes of suspended and dissolved constituents within the middle and lower portions of the river in response to this flood. High suspended-sediment concentrations, some as high as 200 g/l, reflected the rapid erosion of landslide scars and debris deposits generated by super-typhoon Herb in 1996 and the 1999 Chichi earthquake. Dissolved-solid and suspended-sediment discharges totaled 0.22 and 70 million tons (mt), 50 mt of which were discharged in just two days. Particulate organic carbon (POC) discharge, most of which was pre-modern in age, was 195,000 t. More than half of the discharged water, POC and dissolved solids came from upriver, whereas about 70% of the suspended sediment and 60% of the dissolved nitrate came from two downriver tributaries, the Chenyoulan and Qingshui rivers. Spatial and temporal differences in the character and discharge of suspended and dissolved solids within and between rivers in the Choshui drainage basin reflect different geologies, landslide histories, the effects of human impact, and the abrupt draining of the Tsaoling landslide lake in the Qingshui basin, as well as the possible shifting of importance of groundwater vs. overland flow. Neither wind-blown pollutants nor sea salts appear to have contributed significantly to dissolved solid character or discharge. Sediment contribution from the landslides in the Chenyoulan basin generated by super-typhoon Herb and reactivated by the Chichi earthquake declined during Mindulle. In contrast, sediment erosion and discharge from the Qingshui basin, derived primarily from landslides generated during the Chichi earthquake and reactivated during Mindulle, remained elevated for several more years.

  5. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    USGS Publications Warehouse

    Thiros, Susan A.; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some areas used for public supply, raising concerns as to the source(s) and cause(s) of the higher concentrations and the potential long-term effects on groundwater quality.

  6. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    DOE PAGES

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...

    2015-07-29

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  7. Copper speciation and binding by organic matter in copper-contaminated streamwater

    USGS Publications Warehouse

    Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.

    1996-01-01

    Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.

  8. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N. S.; Kaliraj, S.

    2017-03-01

    A total of 20 groundwater samples were collected from both dug and bore wells of southern Tiruchirappalli district and analyzed for various hydrogeochemical parameters. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking and irrigational uses. The results of the chemical analysis indicates that the groundwater in the study area is slightly alkaline and mainly contains Na+, Ca2+, and Mg2+ cations as well as HCO3 2-, Cl-, SO4 2-and NO3 - anions. The total dissolved solids mainly depend on the concentration of major ions such as Ca, Mg, Na, K, HCO3, Cl, and SO4. Based on TDS, 55 % of the samples are suitable for drinking and rest of the samples are unsuitable for drinking. The total hardness indicates that majority of the groundwater samples are found within the permissible limit of WHO. The dominant hydrochemical facies for groundwater are Ca-Mg-Cl, Ca-HCO3, and Ca-Cl type. The USSL graphical geochemical representation of groundwater quality suggests that majority of the water samples belongs to high medium salinity with low alkali hazards. The Gibb's plot indicates that the groundwater chemistry of the study area is mainly controlled by evaporation and rock-water interaction. Spearman's correlation and factor analysis were used to distinguish the statistical relation between different ions and contamination source in the study area.

  9. Investigating the effect of hardness cations on coagulation: The aspect of neutralisation through Al(III)-dissolved organic matter (DOM) binding.

    PubMed

    Zhou, Yuxuan; Yan, Mingquan; Liu, Ruiping; Wang, Dongsheng; Qu, Jiuhui

    2017-05-15

    Hardness cations are ubiquitous and abundant in source water, while the effect of hardness on the performance of coagulation for dissolved organic matter (DOM) removal in water treatment remains unclear due to the limitation of methods that can characterise the subtle interactions between DOM, coagulant and hardness cations. This work quantified the competition between coagulant Al 3+ and hardness cations to bind onto DOM using absorbance spectroscopy acquired at different Al 3+ concentrations in the absence and presence of Ca 2+ or Mg 2+ . The results indicate that, in the presence of either Mg 2+ or Ca 2+ , an increasing depression of the binding of Al 3+ -DOM could be observed in the differential spectra of DOM with the increasing of Mg 2+ or Ca 2+ at a level of 10, 100 and 1000 μM, with the observation being more significant at higher pH from 6.5 to 8.5. The results of zeta potentials of DOM indicate that the competition of hardness cations results in the negative DOM being less efficiently neutralised by Al 3+ . This study demonstrates that the removal of DOM by coagulation would significantly deteriorate with the presence of hardness cations, which would compete with coagulant Al 3+ to neutralise the unsaturated sites in DOM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    year period 1947-51, inclusive. Most irrigation wells in the Douglas basin are less than 200 feet in depth and usually produce less than 400 gpm (gallons per minute). The average specific capacity of the wells is about 12 gpm per foot of drawdown. Although water in some parts of the basin is artesian, all irrigation wells must be pumped. Ground water in the basin is generally of excellent to good quality for irrigation use, In small areas along the southern part of Whitewater Draw and east of Douglas the ground water is high in dissolved-solids content. Although most of the water is hard, it is generally satisfactory for domestic use. In many areas the fluoride content is more than 1.5 ppm (parts per million).

  11. Rechargeable Seawater Battery and Its Electrochemical Mechanism

    DOE PAGES

    Kim, Jae-Kwang; Lee, Eungje; Kim, Hyojin; ...

    2014-11-25

    Here in this paper, we explore the electrochemical mechanism of a novel rechargeable seawater battery system that uses seawater as the cathode material. Sodium is harvested from seawater while charging the battery, and the harvested sodium is discharged with oxygen dissolved in the seawater, functioning as oxidants to produce electricity. The seawater provides both anode (Na metal) and cathode (O 2) materials for the proposed battery. Based on the discharge voltage (~2.9 V) with participation of O 2 and the charge voltage (~4.1 V) with Cl 2 evolution during the first cycle, a voltage efficiency of about 73% is obtained.more » If the seawater battery is constructed using hard carbon as the anode and a Na super ion conductor as the solid electrolyte, a strong cycle performance of 84% is observed after 40 cycles.« less

  12. Dissolver vessel bottom assembly

    DOEpatents

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  13. Gain-loss study along two streams in the upper Sabine River basin, Texas; August-September 1981

    USGS Publications Warehouse

    Myers, Dennis R.

    1983-01-01

    Dissolved solids concentrations in the Sabine River, estimated from specific conductance, increased from about 120 milligrams per liter near the upstream end of the reach to about 400 milligrams per liter near the downstream end of the reach. Water with these concentrations of dissolved solids generally is suitable for most uses.

  14. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashwani Kumar; Singh, Abhay Kumar; Singh, Amit Kumar; Singh, M. P.

    2017-07-01

    The hydrogeochemical study of surface water in Pratapgarh district has been carried out to assess the major ion chemistry and water quality for drinking and domestic purposes. For this purpose, twenty-five surface water samples were collected from river, ponds and canals and analysed for pH, electrical conductivity, total dissolved solids (TDS), turbidity, hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 -, F-, Cl-, NO3 -, SO4 2-) and dissolved silica concentration. The analytical results show mildly acidic to alkaline nature of surface water resources of Pratapgarh district. HCO3 - and Cl- are the dominant anions, while cation chemistry is dominated by Na+ and Ca2+. The statistical analysis and data plotted on the Piper diagram reveals that the surface water chemistry is mainly controlled by rock weathering with secondary contributions from agriculture and anthropogenic sources. Ca2+-Mg2+-HCO3 -, Ca2+-Mg2+-Cl- and Na+-HCO3 --Cl- are the dominant hydrogeochemical facies in the surface water of the area. For quality assessment, values of analysed parameters were compared with Indian and WHO water quality standards, which shows that the concentrations of TDS, F-, NO3 -, Na+, Mg2+ and total hardness are exceeding the desirable limits in some water samples. Water Quality Index (WQI) is one of the most effective tools to communicate information on the quality of any water body. The computed WQI values of Pratapgarh district surface water range from 28 to 198 with an average value of 82, and more than half of the study area is under excellent to good category.

  15. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    NASA Astrophysics Data System (ADS)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  16. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry.

    PubMed

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-28

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  17. Reconnaissance of geology and water resources along the north flank of the Sweet Grass Hills, north-central Montana

    USGS Publications Warehouse

    Tuck, L.K.

    1993-01-01

    Mississippian through Holocene rocks crop out in the area. Emplaced Tertiary igneous rocks have caused structural deformation. Aquifers are Holocene alluvium, Quaternary interstratified sand and gravel, and Upper Cretaceous Judith River Formation and Virgelle Sandstone Member of Eagle Sandstone. Recharge to each aquifer is through combinations of infiltration of precipitation, streamflow, irrigation return flow, stored surface water, and subsurface inflow. Discharge is through combinations of seepage to streams, withdrawals from wells, flow of springs and seeps, evapotranspiration, and subsurface outflow. Water in alluvium flows sub- parallel to stream channels. One water sample had a dissolved-solids concentration of 439 milligrams per liter. Water in the interstratified sand and gravel generally moves northward. Transmissivity was estimated at 900 feet squared per day. Dissolved- solids concentration ranged from 154 to 1,600 milligrams per liter. Water quality is least feasible for irrigation, marginal for domestic use, and generally suitable for livestock. Water in the Judith River Formation probably flows northeast and southeast. One water sample had a dissolved-solids concentration of 855 milligrams per liter. Water in the Virgelle Sandstone Member generally flows north. Transmissivity ranges from 200 to 3,700 feet squared per day. Dissolved-solids concentration ranged from 213 to 1,360 milligrams per liter. Water quality near outcrops is mostly adequate for domestic and livestock use and marginal for irrigation, but deteriorates downgradient. Unknown perennial yields and water quality could limit development of this resource. Miners Coulee, Breed Creek, and Bear Gulch flow intermittently. Dissolved-solids concentration ranged from 241 to 774 milligrams per liter.

  18. Reconnaissance of ground-water quality in the Papio-Missouri River Natural Resources District, eastern Nebraska, July through September 1992

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Ellis, M.J.

    1995-01-01

    A reconnaissance of ground-water quality was conducted in the Papio-Missouri River Natural Resources District of eastern Nebraska. Sixty-one irrigation, municipal, domestic, and industrial wells completed in the principal aquifers--the unconfined Elkhorn, Missouri, and Platte River Valley alluvial aquifers, the upland area alluvial aquifers, and the Dakota aquifer--were selected for water-quality sampling during July, August, and September 1992. Analyses of water samples from the wells included determination of dissolved nitrate as nitrogen and triazine and acetanilide herbicides. Waterquality analyses of a subset of 42 water samples included dissolved solids, major ions, metals, trace elements, and radionuclides. Concentrations of dissolved nitrate as nitrogen in water samples from 2 of 13 wells completed in the upland area alluvial aquifers exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Thirty-nine percent of the dissolved nitrate-as-nitrogen concentrations were less than the detection level of 0.05 milligram per liter. The largest median dissolved nitrate-as-nitrogen concentrations were in water from the upland area alluvial aquifers and the Dakota aquifer. Water from all principal aquifers, except the Dakota aquifer, had detectable concentrations of herbicides. Herbicides detected included alachlor (1 detection), atrazine (13 detections), cyanazine (5 detections), deisopropylatrazine (6 detections), deethylatrazine (9 detections), metolachlor (6 detections), metribuzin (1 detection), prometon (6 detections), and simazine (2 detections). Herbicide concentrations did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water. In areas where the hydraulic gradient favors loss of surface water to ground water, the detection of herbicides in water from wells along the banks of the Platte River indicates that the river could act as a line source of herbicides. Water from the alluvial and bedrock aquifers generally was a calcium bicarbonate type and was hard. Two of nine water samples collected from the Dakota aquifer contained calcium sulfate type water. Results of analyses of 42 groundwater samples for major ions, metals, trace elements, and radionuclide constituents indicated that statistically at least one principal aquifer had significant differences in its water chemistry. In general, the water chemistry of the Dakota aquifer was similar to the water chemistry of the upland area alluvial aquifers in areas where there was a hydraulic connection. The water from the Dakota aquifer had large dissolved-solids, calcium, sulfate, chloride, iron, lithium, manganese, and strontium concentrations in areas where the aquifer is thought not to be in hydraulic connection with the Missouri River Valley and upland area alluvial aquifers. Ground-water quality in the Papio-MissouriRiver Natural Resources District is generally suitable for most uses. However, the numerous occurrences of herbicides in water of the Elkhorn and Platte River Valley alluvial aquifers, especially near the Platte River, are of concern because U.S. Environmental Protection Agency Maximum Contaminant Levels could be exceeded. Concentrations in three of nine water samples collected from wells completed in the Dakota aquifer exceeded the U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for gross alpha activity, radon-222 activity, dissolved solids, sulfate, or iron. Also of concern are the exceedances of the U.S Environmental Protection Agency proposed Maximum Contaminant Level for radon-222 activity.

  19. Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988-2010

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or nitrate - had a statistically significant increase in concentration in 66 percent of the networks. Statistically significant decreases in concentrations were identified in 4 percent of the networks for chloride, 2 percent of the networks for dissolved solids, and 9 percent of the networks for nitrate. A larger percentage of urban land-use networks had statistically significant increases in chloride, dissolved solids, and nitrate concentrations than agricultural land-use networks. In order to assess the magnitude of statistically significant changes, the median of the differences between constituent concentrations from the first full-network sampling event and those from the second full-network sampling event was calculated using the Turnbull method. The largest median decadal increases in chloride concentrations were in networks in the Upper Illinois River Basin (67 mg/L) and in the New England Coastal Basins (34 mg/L), whereas the largest median decadal decrease in chloride concentrations was in the Upper Snake River Basin (1 mg/L). The largest median decadal increases in dissolved solids concentrations were in networks in the Rio Grande Valley (260 mg/L) and the Upper Illinois River Basin (160 mg/L). The largest median decadal decrease in dissolved solids concentrations was in the Apalachicola-Chattahoochee-Flint River Basin (6.0 mg/L). The largest median decadal increases in nitrate as nitrogen (N) concentrations were in networks in the South Platte River Basin (2.0 mg/L as N) and the San Joaquin-Tulare Basins (1.0 mg/L as N). The largest median decadal decrease in nitrate concentrations was in the Santee River Basin and Coastal Drainages (0.63 mg/L). The magnitude of change in networks with statistically significant increases typically was much larger than the magnitude of change in networks with statistically significant decreases. The magnitude of change was greatest for chloride in the urban land-use networks and greatest for dissolved solids and nitrate in the agricultural land-use networks. Analysis of data from all networks combined indicated statistically significant increases for chloride, dissolved solids, and nitrate. Although chloride, dissolved solids, and nitrate concentrations were typically less than the drinking-water standards and guidelines, a statistical test was used to determine whether or not the proportion of samples exceeding the drinking-water standard or guideline changed significantly between the first and second full-network sampling events. The proportion of samples exceeding the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level for dissolved solids (500 milligrams per liter) increased significantly between the first and second full-network sampling events when evaluating all networks combined at the national level. Also, for all networks combined, the proportion of samples exceeding the USEPA Maximum Contaminant Level (MCL) of 10 mg/L as N for nitrate increased significantly. One network in the Delmarva Peninsula had a significant increase in the proportion of samples exceeding the MCL for nitrate. A subset of 261 wells was sampled every other year (biennially) to evaluate decadal-scale changes using a time-series analysis. The analysis of the biennial data set showed that changes were generally similar to the findings from the analysis of decadal-scale change that was based on a step-trend analysis. Because of the small number of wells in a network with biennial data (typically 4-5 wells), the time-series analysis is more useful for understanding water-quality responses to changes in site-specific conditions rather than as an indicator of the change for the entire network.

  20. Collaborative Study of Daphnia magna Static Renewal Assays.

    DTIC Science & Technology

    1986-01-01

    established that for acceptable results and practicality, the standardized medium would be a modification of Marking’s and Dawson’s formulation for hard ...by SBI personnel included the results of physical - - 12 measurements (pH, dissolved oxygen, temperature, lighting regime, hardness and alkalinity...oxygen (D.O.), temperature, hardness and alkalinity (Tables 3-6). For all four tests at each laboratory and among all laboratories, pH’s ranged from 7.3

  1. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOEpatents

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  2. Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet.

    PubMed

    Cho, Jung Hyun; Kim, Yong-Il; Kim, Dong-Wuk; Yousaf, Abid Mehmood; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2014-04-11

    The goal of this research was to develop a novel prolonged release tablet bioequivalent to the commercial sustained release capsule. A number of tacrolimus-loaded fast-dissolving solid dispersions containing various amounts of DOSS were prepared using the spray drying technique. Their solubility, dissolution and pharmacokinetics in rats were studied. DOSS increased drug solubility and dissolution in the solid dispersions. Compared with the drug powder, the solubility, dissolution and bioavailability of tacrolimus with the fast-dissolving solid dispersion containing tacrolimus/HP-β-CD/DOSS in the weight ratio of 5:40:4 were boosted by approximately 700-, 30- and 2-fold, respectively. Several tablet formulations were accomplished with this solid dispersion in combination with various ratios of HPMC/ethylcellulose. The release behaviour and pharmacokinetic studies in beagle dogs were assessed compared with the commercial prolonged release capsule. A decrease in HPMC/ethylcellulose ratios reduced the dissolution of tacrolimus from the tablets. Particularly, the tacrolimus-loaded prolonged release tablet consisting of fast-dissolving tacrolimus solid dispersion, HPMC, ethylcellulose and talc at the weight ratio of 20:66:112:2 exhibited a dissolution profile similar to that produced by the commercial prolonged release capsule. Furthermore, there were no significant differences in the AUC, Cmax, Tmax and MRT values between them in beagle dogs. Consequently, this tacrolimus-loaded prolonged release tablet might be bioequivalent to the tacrolimus-loaded commercial capsule. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  4. Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel

    NASA Astrophysics Data System (ADS)

    Sun, Qian; Nie, Xiao-Kang; Li, Yang; Di, Hong-Shuang

    2018-02-01

    Mechanical Performance of traditional gas-shielded arc welded joints of 700 MPa grade microalloyed C-Mn steel cannot meet service requirements. Laser welding, with its characteristic high energy density, is known to improve the welding performance of experimental steels. In the present study, Nb-Ti microalloyed steel with a thickness of 4.5 mm was welded using a 4 kW fiber laser. The microstructure, precipitation, and mechanical properties of the welded joints were studied. The hardness and tensile strength of the welded joints were higher than those of the base metal (BM). The microstructure of the fusion zone (FZ) and coarse grain heat affected zone (CGHAZ) was lath martensite (LM), while the microstructure of the fine grain HAZ and mixed grain HAZ consisted of ferrite and martensite/austenite islands. Although LM was observed in both the FZ and CGHAZ, the hardness and calculated tensile strength of the FZ were lower than those of the CGHAZ, due to a reduction in solid solution strengthening by element loss and the dissolution of high-hardness precipitates in FZ. Most precipitates such as [(Nb,Ti)C and (Nb,Ti)(C,N)] that were present in the BM were dissolved, which led to an increase in C and N in solid solution in the FZ. Thus, the elastic modulus of the FZ was higher than that of the BM. Similarly, the elastic modulus of the CGHAZ was higher than that of the BM due to the segregation of C and N atoms during the welding process. The toughness of the FZ was superior to that of the BM, and the toughness of the HAZ approached 91% of that of the BM. The change in toughness primarily depended on the microstructural refinement, the increase in the fraction of grains with high misorientation, the residual austenite in the FZ and CGHAZ, and the dissolution of coarse precipitates.

  5. Spatiotemporal evaluation of the groundwater quality in Gharbiya Governorate, Egypt.

    PubMed

    Masoud, Alaa A; El Bouraie, Mohamed M; El-Nashar, Wafaa; Mashaly, Hamdy

    2017-03-01

    Groundwater quality indicators were monitored over 6 years (2007-2012) from 55 drinking water supply wells in Gharbiya Governorate (Egypt). The prime objective was to characterize, for the first time, the governorate-wide significant and sustained trends in the concentrations of the groundwater pollutants. Quality indicators included turbidity, pH, total dissolved solid (TDS), electric conductivity (EC), Cl - , SO 4 2- , Na + , total alkalinity, hardness (total, Mg, and Ca), Fe 2+ , Mn 2+ , Cu 2+ , Zn 2+ , F - , NH 4 + , NO 2 - , NO 3 - , PO 4 3- , dissolved oxygen (DO), and SiO 2 contents. Detection and estimation of trends and magnitude were carried out applying the non-parametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Factor analysis was applied to identify significant sources of quality variation and their loads. Violation of groundwater quality standards clarified emergence of Mn 2+ (46%), Fe 2+ (35%), and NH 4 + (33%). Out of the 55 wells, notable upward trends (deterioration) were significant (>95% level) for TDS (89%), NO 3 - (85), PO 4 3- (75%), NH 4 + (65%), total alkalinity (62%), Fe 2+ (58%), NO 2 - (47%), Mg hardness (36%), turbidity (25%), and Mn 2+ (24%). Ranges of attenuation rates (mg/l/year) varied for TDS (24.3, -0.7), Mg hardness (3.8, -0.85), total alkalinity (1.4, -1.2), NO 3 - (0.52, -0.066), PO 4 3- (0.069, -0.064), NH 4 + (0.038, -0.019), Mn 2+ (0.015, -0.044), Fe 2+ (0.006, -0.014), and NO 2 - (0.006, -0.00003). Highest rates marked Tanta (total alkalinity and Fe 2+ ), Al-Mehala Al-Kubra (TDS, Mg hardness, and NO 3 - ), Kafr Al-Zayat (NH 4 + ), Zifta (Mn 2+ ), Bassyun (NO 2 - ), and Qutur (PO 4 3- ). Precision of the trend estimate varied in goodness of fit, for TDS (86%), Mg hardness (76%), total alkalinity (73%), PO 4 3- (67.4%), NH 4 + (66.8%), Mn 2+ (55%), and Fe 2+ (49.6%), arranged in decreasing order. Two main varimax-rotated factors counted for more than 55% of the quality variance and, in particular, significant loads of salinity (TDS, EC, Cl - , Na + , and SO 4 2- ), followed by the alkalinity, hardness, redox potentials (Mn 2+ and Fe 2+ ), and NH 4 + , in decreasing order were identified. The spatial-temporal variation in pollutants originated from organic matter degradation, either naturally from the aquifer peaty sediments or anthropogenic due to improper well head protection in the urban centers or from the agricultural drains in low relief areas. Considering the latest contents of indicators and their rate of increase, the time that the permissible limits would be reached can be accurately estimated and alleviative actions could be effectively set.

  6. Characterization of urban runoff pollution between dissolved and particulate phases.

    PubMed

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  7. Sediment transport and water-quality characteristics and loads, White River, northwestern Colorado, water years 1975-88

    USGS Publications Warehouse

    Tobin, R.L.

    1993-01-01

    Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.

  8. Destruction of Navy Hazardous Wastes by Supercritical Water Oxidation

    DTIC Science & Technology

    1994-08-01

    cleaning and derusting (nitrite and citric acid solutions), electroplating ( acids and metal bearing solutions), electronics and refrigeration... acid forming chemical species or that contain a large amount of dissolved solids present a challenge to current SCWO •-chnology. Approved for public...Waste streams that contain a large amount of mineral- acid forming chemical species or that contain a large amount of dissolved solids present a challenge

  9. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less

  10. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    PubMed

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  11. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    USGS Publications Warehouse

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  12. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  13. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, J. R.

    1990-01-01

    The effect of a prior stretching of an aluminum alloy Al-5.3Cu-1.4Li-0.4Ag-0.4Mg-0.17Zr (in wt pct) on the microstructure that develops during aging of this alloy was investigated by comparing TEM and SAD observations and hardness curves with results for the unstretched alloy. The results suggest that stretching introduces a significant number of dislocations which may act as vacanacy sinks by sweeping vacancies away and thereby decreasing the vacancy concentration available for influencing the natural aging response. In the stretched and near-peak aged condition, a fine homogeneous distribution of T1, theta-prime, and S-prime phases were observed in an alpha solid solution matrix. Upon overaging, virtually all of the theta-prime and most of the S-prime phases were found to dissolve, leaving behind a microstructure of T1 precipitates.

  14. Reconnaissance of ground-water resources in the vicinity of Gunnison and Crested Butte, West-central Colorado

    USGS Publications Warehouse

    Giles, T.F.

    1980-01-01

    Hydrologic data was collected in the Gunnison-Crested Butte area , Colo., to determine the availability and chemical quality of groundwater. Parts of the area have undergone rapid population growth in recent years due to an increase of winter sports activities. This rapid growth has resulted in a demand for additional domestic, recreational, and municipal water supplies. Maximum yields of 100 gallons per minute are available from wells completed in the alluvial aquifers while as much as 60 gallons per minute may be obtained from wells completed in the Dakota and Entrada Sandstones. Yields from other aquifers generally are less than 25 gallons per minute. Calcium magnesium bicarbonate water is the predominant water type in the study area. Dissolved solids concentrations ranged from 30 to 829 milligrams per liter and hardness ranged from 18 to 400 milligrams per liter. (USGS)

  15. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  16. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    PubMed

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  17. The effect of question order on evaluations of test performance: Can the bias dissolve?

    PubMed

    Bard, Gabriele; Weinstein, Yana

    2017-10-01

    Question difficulty order has been shown to affect students' global postdictions of test performance. We attempted to eliminate the bias by letting participants experience the question order manipulation multiple times. In all three experiments, participants answered general knowledge questions and self-evaluated their performance. In Experiment 1, participants studied questions and answers in easy-hard or hard-easy question order prior to taking a test in the same order. In Experiment 2, participants took the same test twice in the opposite question order (easy-hard then hard-easy, or hard-easy then easy-hard). In Experiment 3, participants took two different tests in the opposite question order (easy-hard then hard-easy, or hard-easy then easy-hard). In all three experiments, we were unable to eliminate the bias, which suggests that repeated exposure is insufficient to overcome a strong initial anchor.

  18. Hydrology of area 38, Western Region, Interior Coal Province, Iowa and Missouri

    USGS Publications Warehouse

    Detroy, M.G.; Skelton, John

    1983-01-01

    In Area 38 dissolved-solids concentrations in water from the Cambrian-Ordovician aquifer range from 300 to 15,000 milligrams per liter; in southcentral Iowa and where the aquifer underlies the Missouri River alluvium, as in Boone County, Missouri, dissolved-solids concentrations are less than 1,000 milligrams per liter. In these areas the Cambrian-Ordovician aquifer is suitable for domestic and other uses. Chemical quality of water from Quaternary aquifers generally is suitable for domestic uses and other uses, dissolved-solids concentrations averaged less than 1,000 milligrams per liter. Iron, manganese and nitrate are excessive in some instances. Chemical quality of water from Mississippian and Pennsylvanian aquifers is unsuitable for domestic use and may be unsuitable for other uses. The Pennsylvanian and Misissippian aquifers have average sulfate concentrations in excess of 1,000 milligrams per liter.

  19. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  20. Assessment of fluoride in groundwater and urine, and prevalence of fluorosis among school children in Haryana, India

    NASA Astrophysics Data System (ADS)

    Haritash, A. K.; Aggarwal, Ankur; Soni, Jigyasa; Sharma, Khyati; Sapra, Mohnish; Singh, Bhupinder

    2018-05-01

    Considering the health effects of fluoride, the present study was undertaken to assess the concentration of fluoride in groundwater, and urine of school children in Bass region of Haryana state. Fluoride in groundwater was observed to vary from 0.5 to 2.4 mg/l with an average concentration of 0.46 mg/l. On the other hand, F- in urine ranged from below the detection limit to 1.8 mg/l among girls and 0.17-1.2 mg/l among the boys. Higher average concentration of fluoride in urine (0.65 mg/l for boys and 0.34 mg/l for girls) may be ascribed to exposure to bioavailable fluoride through food, milk, tea, toothpaste, etc., in addition to intake through groundwater. Relatively more intake of water and food by the boys might be the reason for more cases of severe dental fluorosis (44%) among boys compared to girls (29% cases of moderate to severe dental fluorosis). The groundwater quality for drinking was compromised with respect to dissolved solids, hardness, magnesium ions, and dissolved iron. Hydro-geochemical investigation revealed that rock-water interaction, in terms of direct cation exchange, dominantly regulates groundwater chemistry, and groundwater is of Ca-Na-HCO3 type.

  1. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    PubMed

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    USGS Publications Warehouse

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  3. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent.

    PubMed

    Brix, Kevin V; Gerdes, Robert; Grosell, Martin

    2010-10-01

    A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mostafa, M. G.; Uddin, S. M. Helal; Haque, A. B. M. H.

    2017-12-01

    The study was carried out to understand the hydro-geochemistry and ground water quality in the Rajshahi City of Bangladesh. A total of 240 groundwater samples were collected in 2 years, i.e., 2009 and 2010 covering the pre-monsoon, monsoon and post-monsoon seasons. Aquifer soil samples were collected from 30 locations during the monsoon in 2000. All the samples were analyzed for various physicochemical parameters according to standard methods of analysis, these includes pH, electrical conductivity, total dissolved solids, total hardness, and total alkalinity, major cations such as Na+, K+, Ca2+, Mg2+, and Fe2+, major anions such as HCO3 -, NO3 -, Cl-, and SO4 2- and heavy metals such as Mn, Zn, Cu, As, Cd and Pb. The results illustrated that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under the hard to a very hard category. The bicarbonate and calcium concentration in the groundwater exceeded the permissible limits may be due to the dissolution of calcite. The concentration of calcium, iron, manganese, arsenic and lead were far above the permissible limit in most of the shallow tube well samples. The study found that the major hydrochemical facies was identified to be calcium-bicarbonate-type (CaHCO3). A higher concentration of metals including Fe, Mn, As and Pb was found indicating various health hazards. The rock-water interaction was the major geochemical process controlling the chemistry of groundwater in the study area. The study results revealed that the quality of the groundwater in Rajshahi City area was of great concern and not suitable for human consumption without adequate treatment.

  5. Geology and ground-water resources of Nobles County, and part of Jackson County, Minnesota

    USGS Publications Warehouse

    Norvitch, Ralph F.

    1964-01-01

    The quality of water in the Precambrian crystalline rocks, the Cretaceous strata, and the buried Pleistocene aquifers is poor. Chemical analyses of 22 water samples showed that dissolved solids ranged from 1,100 ppm (parts per million) to 3,050 ppm. Water from the surficial outwash deposits is good by comparison; dissolved solids in water from these aquifers ranged from 425 to 870 ppm.

  6. Geochemistry and geohydrology of the West Decker and Big Sky coal-mining areas, southeastern Montana

    USGS Publications Warehouse

    Davis, R.E.

    1984-01-01

    In the West Decker Mine area, water levels west of the mine at post-mining equilibrium may be almost 12 feet higher than pre-mining levels. Dissolved-solids concentration in water from coal aquifers is about 1,400 milligrams per liter and from mine spoils is about 2,500 milligrams per liter. About 13 years will be required for ground water moving at an average velocity of 2 feet per day to flow from the spoils to the Tongue River Reservoir. The increase in dissolved-solids load to the reservoir due to mining will be less than 1 percent. In the Big Sky Mine area, water levels at post-mining equilibrium will closely resemble pre-mining levels. Dissolved-solids concentration in water from coal aquifers is about 2,700 milligrams per liter and from spoils is about 3,700 milligrams per liter. About 36 to 60 years will be required for ground water moving at an average velocity of 1.2 feet per day to flow from the spoils to Rosebud Creek. The average annual increase in dissolved-solids load to the creek due to mining will be about 2 percent, although a greater increase probably will occur during summer months when flow in the creek is low. (USGS)

  7. Orodispersible tablets: A new trend in drug delivery

    PubMed Central

    Dey, Paramita; Maiti, Sabyasachi

    2010-01-01

    The most common and preferred route of drug administration is through the oral route. Orodispersible tablets are gaining importance among novel oral drug-delivery system as they have improved patient compliance and have some additional advantages compared to other oral formulation. They are also solid unit dosage forms, which disintegrate in the mouth within a minute in the presence of saliva due to super disintegrants in the formulation. Thus this type of drug delivery helps a proper peroral administration in pediatric and geriatric population where swallowing is a matter of trouble. Various scientists have prepared orodispersible tablets by following various methods. However, the most common method of preparation is the compression method. Other special methods are molding, melt granulation, phase-transition process, sublimation, freeze-drying, spray-drying, and effervescent method. Since these tablets dissolve directly in the mouth, so, their taste is also an important factor. Various approaches have been taken in order to mask the bitter taste of the drug. A number of scientists have explored several drugs in this field. Like all other solid dosage forms, they are also evaluated in the field of hardness, friability, wetting time, moisture uptake, disintegration test, and dissolution test. PMID:22096326

  8. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.

  9. Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010

    USGS Publications Warehouse

    Stevens, Michael R.; Slaughter, Cecil B.

    2012-01-01

    Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast, samples collected at Toll Gate Creek above 6th Avenue at Aurora station, Sand Creek at mouth near Commerce City station, and the South Platte River at Henderson station, each had about 30 to 50 percent exceedances of both acute and chronic dissolved manganese standards. Of the samples collected at Sand Creek at mouth near Commerce City, 1 sample exceeded the acute standard and 4 samples exceeded the chronic standard for dissolved zinc, but no samples collected from the other sites exceeded either standard for zinc. Almost all samples of stormwater analyzed for Escherichia coli exceeded Colorado numeric standards. A numerical standard for fecal coliform is no longer applicable as of 2004. Results from the 2002-2005 study indicated that the general quality of stormwater had improved during 2002-2005 compared to 1998-2001, having fewer exceedances of Colorado standards, and showing downward trends for many water-quality values and concentrations. These trends coincided with general downward or relatively similar mean streamflows for the 2002-2005 compared to 1998-2001, which indicates that dilution may be a smaller influence on values and concentrations than other factors. For this report, downward trends were indicated for many constituents at each station during 2006-2010 compared to 2002-2005. The trends for mean streamflow for 2006-2010 compared to 2002-2005 are upward at all sites except for the South Platte River at Henderson, indicating that dilution by larger flows could be a factor in the downward concentration trends. At the South Platte River below Union Avenue station, downward trends were indicated for hardness, dissolved ammonia, dissolved orthophosphate, and dissolved copper. Upward trends at South Platte River below Union Avenue were indicated for pH. At the South Platte River at Denver station, downward trends were indicated for total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved organic carbon, and dissolved lead, manganese, and zinc, and total recoverable zinc. An upward trend in properties and constituents at South Platte River at Denver was indicated for pH. At Toll Gate Creek above 6th Avenue at Aurora, downward trends were indicated for residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved orthophosphate, total phosphorus, and total recoverable copper, lead, manganese, and zinc. Upward trends in properties and constituents at Toll Gate Creek above 6th Avenue at Aurora were indicated for pH, specific conductance, and dissolved nitrite plus nitrate. At Sand Creek at mouth near Commerce City, downward trends were indicated for hardness, dissolved calcium, total ammonia plus organic nitrogen, and dissolved ammonia, orthophosphate, manganese, and zinc. An upward trend in properties and constituents at Sand Creek at mouth near Commerce City was indicated for pH. Downward trends at South Platte River at Henderson were indicated for specific conductance, hardness, dissolved magnesium, residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved lead and manganese, and total recoverable copper, lead, manganese, and zinc.

  10. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama.

    PubMed

    Seemann, Janina; González, Cindy T; Carballo-Bolaños, Rodrigo; Berry, Kathryn; Heiss, Georg A; Struck, Ulrich; Leinfelder, Reinhold R

    2014-03-01

    Environmental and biological reef monitoring was conducted in Almirante Bay (Bahía Almirante) in Bocas del Toro, Panama, to assess impacts from anthropogenic developments. An integrated monitoring investigated how seasonal temperature stress, turbidity, eutrophication and physical impacts threatened reef health and biodiversity throughout the region. Environmental parameters such as total suspended solids [TSS], carbon isotopes (δ(13)C), C/N ratios, chlorophyll a, irradiance, secchi depth, size fractions of the sediments and isotope composition of dissolved inorganic carbon [DIC] of the water were measured throughout the years 2010 and 2011 and were analysed in order to identify different impact sources. Compared to data from Collin et al. (Smithsonian Contributions to the Marine Sciences 38:324-334, 2009) chlorophyll a has doubled at sites close to the city and the port Almirante (from 0.46-0.49 to 0.78-0.97 μg l(-1)) and suspension load increased, visible by a decrease in secchi depth values. Visibility decreased from 9-13 m down to 4 m at the bay inlet Boca del Drago, which is strongly exposed to river run off and dredging for the shipping traffic. Eutrophication and turbidity levels seemed to be the determining factor for the loss of hard coral diversity, most significant at chlorophyll a levels higher than 0.5 μg l(-1) and TSS levels higher than 4.7 mg l(-1). Hard coral cover within the bay has also declined, at some sites down to <10 % with extremely low diversities (7 hard coral species). The hard coral species Porites furcata dominated the reefs in highly impacted areas and showed a strong recovery after bleaching and a higher tolerance to turbidity and eutrophication compared to other hard coral species in the bay. Serious overfishing was detected in the region by a lack of adult and carnivorous fish species, such as grunts, snappers and groupers. Study sites less impacted by anthropogenic activities and/or those with local protection showed a higher hard coral cover and fish abundance; however, an overall loss of hard coral diversity was observed.

  11. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    USGS Publications Warehouse

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.

  12. Crystal Chemistry and Electrochemistry of Li xMn 1.5Ni 0.5O 4 Solid Solution Cathode Materials

    DOE PAGES

    Kan, Wang Hay; Kuppan, Saravanan; Cheng, Lei; ...

    2017-07-19

    For ordered high-voltage spinel LiMn 1.5Ni 0.5O 4 (LMNO) with the P4 32 1 symmetry, the two consecutive two-phase transformations at ~4.7 V (vs Li +/Li), involving three cubic phases of LMNO, Li 0.5Mn 1.5Ni 0.5O 4 (L 0.5MNO), and Mn 1.5Ni 0.5O 4 (MNO), have been well-established. Such a mechanism is traditionally associated with poor kinetics due to the slow movement of the phase boundaries and the large mechanical strain resulting from the volume changes among the phases, yet ordered LMNO has been shown to have excellent rate capability. In this paper, we show the ability of the phasesmore » to dissolve into each other and determine their solubility limit. We characterized the properties of the formed solid solutions and investigated the role of non-equilibrium single-phase redox processes during the charge and discharge of LMNO. Finally, by using an array of advanced analytical techniques, such as soft and hard X-ray spectroscopy, transmission X-ray microscopy, and neutron/X-ray diffraction, as well as bond valence sum analysis, the present study examines the metastable nature of solid-solution phases and provides new insights in enabling cathode materials that are thermodynamically unstable.« less

  13. An introduction to fast dissolving oral thin film drug delivery systems: a review.

    PubMed

    Kathpalia, Harsha; Gupte, Aasavari

    2013-12-01

    Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.

  14. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  15. Occurrence and distribution of dissolved solids, selenium, and uranium in groundwater and surface water in the Arkansas River Basin from the headwaters to Coolidge, Kansas, 1970-2009

    USGS Publications Warehouse

    Miller, Lisa D.; Watts, Kenneth R.; Ortiz, Roderick F.; ,

    2010-01-01

    In 2007, the U.S. Geological Survey (USGS), in cooperation with City of Aurora, Colorado Springs Utilities, Colorado Water Conservation Board, Lower Arkansas Valley Water Conservancy District, Pueblo Board of Water Works, Southeastern Colorado Water Activity Enterprise, Southeastern Colorado Water Conservancy District, and Upper Arkansas Water Conservancy District began a retrospective evaluation to characterize the occurrence and distribution of dissolved-solids (DS), selenium, and uranium concentrations in groundwater and surface water in the Arkansas River Basin based on available water-quality data collected by several agencies. This report summarizes and characterizes available DS, dissolved-selenium, and dissolved-uranium concentrations in groundwater and surface water for 1970-2009 and describes DS, dissolved-selenium, and dissolved-uranium loads in surface water along the main-stem Arkansas River and selected tributary and diversion sites from the headwaters near Leadville, Colorado, to the USGS 07137500 Arkansas River near Coolidge, Kansas (Ark Coolidge), streamgage, a drainage area of 25,410 square miles. Dissolved-solids concentrations varied spatially in groundwater and surface water in the Arkansas River Basin. Dissolved-solids concentrations in groundwater from Quaternary alluvial, glacial drift, and wind-laid deposits (HSU 1) increased downgradient with median values of about 220 mg/L in the Upper Arkansas subbasin (Arkansas River Basin from the headwaters to Pueblo Reservoir) to about 3,400 mg/L in the Lower Arkansas subbasin (Arkansas River Basin from John Martin Reservoir to Ark Coolidge). Dissolved-solids concentrations in the Arkansas River also increased substantially in the downstream direction between the USGS 07086000 Arkansas River at Granite, Colorado (Ark Granite), and Ark Coolidge streamgages. Based on periodic data collected from 1976-2007, median DS concentrations in the Arkansas River ranged from about 64 mg/L at Ark Granite to about 4,060 mg/L at Ark Coolidge representing over a 6,000 percent increase in median DS concentrations. Temporal variations in specific conductance values (which are directly related to DS concentrations) and seasonal variations in DS concentrations and loads were investigated at selected sites in the Arkansas River from Ark Granite to Ark Coolidge. Analyses indicated that, for the most part, specific conductance values (surrogate for DS concentrations) have remained relatively constant or have decreased in the Arkansas River since about 1970. Dissolved-solids concentrations in the Arkansas River were higher during the nonirrigation season (November-February) than during the irrigation season (March-October). Average annual DS loads, however, were higher during the irrigation season than during the nonirrigation season. Average annual DS loads during the irrigation season were at least two times and as much as 23 times higher than average annual DS loads during the nonirrigation season with the largest differences occurring at sites located downstream from the two main-stem reservoirs at USGS 07099400 Arkansas River above Pueblo, Colorado (Ark Pueblo), (which is below Pueblo Reservoir) and USGS 07130500 Arkansas River below John Martin Reservoir, Colorado (Ark below JMR). View report for unabridged abstract.

  16. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models

    USGS Publications Warehouse

    Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.

    2014-01-01

    The effects of fallowing of Walker River Indian Irrigation Project fields from 2007 to 2010 on Walker Lake inflow, level, and dissolved solids were evaluated. Fallowing resulted in a near doubling of Walker River inflow to Walker Lake during this period, an increase in Walker Lake level of about 1.4 feet, and a decrease in dissolved-solids concentration of about 540 mg/L.

  17. Determination of total dissolved solids in water analysis

    USGS Publications Warehouse

    Howard, C.S.

    1933-01-01

    The figure for total dissolved solids, based on the weight of the residue on evaporation after heating for 1 hour at 180??C., is reasonably close to the sum of the determined constituents for most natural waters. Waters of the carbonate type that are high in magnesium may give residues that weigh less than the sum. Natural waters of the sulfate type usually give residues that are too high on account of incomplete drying.

  18. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.

    PubMed

    Shulkin, Vladimir; Zhang, Jing

    2014-11-15

    This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Occurrence, quality, and use of ground water in Orcas, San Juan, Lopez, and Shaw Islands, San Juan County, Washington

    USGS Publications Warehouse

    Whiteman, K.J.; Molenaar, Dee; Jacoby, J.M.; Bortleson, G.V.

    1983-01-01

    Ground water, which supplies most of San Juan County 's water needs, occurs in both bedrock and glacial drift. Water in the bedrock occurs in fractures in the otherwise dense, poorly permeable rock. Deposits of sand and gravel in the glacial drift provide the best yields to wells drilled into unconsolidated materials. Specific capacities of bedrock wells are typically low, and those of glacial-drift wells considerably higher. Ground water is high in dissolved solids and hardness; 29 of 56 wells sampled had water classified as very hard. Sixteen percent of the 171 ground-water sites tested for indicator bacteria had positive counts of one or more of these bacteria: total coliform , fecal coliform, fecal streptococcus. Nine percent of the 279 wells sampled for chloride in September 1981, appear to be affected by seawater intrusion. All of these wells are located within a mile of the coast; 60 percent of these wells are on Lopez Island. In 1980 an estimated total of 220 million gallons of ground water was withdrawn for all uses. Ninety percent of all ground-water use is for domestic and public supply purposes. Heavy pumpage on northern and southern Lopez Island correlates with areas having high chloride concentrations. (USGS)

  20. The biomechanics of burrowing and boring.

    PubMed

    Dorgan, Kelly M

    2015-01-15

    Burrowers and borers are ecosystem engineers that alter their physical environments through bioturbation, bioirrigation and bioerosion. The mechanisms of moving through solid substrata by burrowing or boring depend on the mechanical properties of the medium and the size and morphology of the organism. For burrowing animals, mud differs mechanically from sand; in mud, sediment grains are suspended in an organic matrix that fails by fracture. Macrofauna extend burrows through this elastic mud by fracture. Sand is granular and non-cohesive, enabling grains to more easily move relative to each other, and macrofaunal burrowers use fluidization or plastic rearrangement of grains. In both sand and mud, peristaltic movements apply normal forces and reduce shear. Excavation and localized grain compaction are mechanisms that plastically deform sediments and are effective in both mud and sand, with bulk excavation being used by larger organisms and localized compaction by smaller organisms. Mechanical boring of hard substrata is an extreme form of excavation in which no compaction of burrow walls occurs and grains are abraded with rigid, hard structures. Chemical boring involves secretion to dissolve or soften generally carbonate substrata. Despite substantial differences in the mechanics of the media, similar burrowing behaviors are effective in mud and sand. © 2015. Published by The Company of Biologists Ltd.

  1. Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.

    PubMed

    Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C

    2014-08-01

    This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evaluation of the hydrologic system in the New Leipzig coal area, Grant and Hettinger counties, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1982-01-01

    Aquifers in the New Leipzig coal area consist of sandstone beds in the Fox Hills Sandstone, the Hell Creek Formation, the Cannonball and Ludlow Members of the Fort Union Formation, and the basal part of the Tongue River Member of the Fort Union Formation. Aquifers also occur in sandstone and lignite beds in the upper part of the Tongue River Member and Sentinel Butte Member of the Fort Union Formation. Potential well yields from each of the aquifers are variable, but are less than 100 gallons per minute. Water in the Fox Hills, Hell Creek, Cannonball, and Ludlow is soft and of the sodium bicarbonate type. Water in basal Tongue River aquifer is either soft or very hard and generally is of the sodium bicarbonate type. Water in the upper Tongue River and Sentinel Butte aquifer system is very hard and generally is either of the calcium bicarbonate or sodium bicarbonate type. There is little or no contribution of ground water to Thirty Mile Creek or the Cannonball River from the area of minable coal. Coal mining will expose sulfide minerals to oxidation, and result in an increase in dissolved solids and sulfate in water in the basal Tongue River aquifer. (USGS)

  3. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  4. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  5. Fast dissolving drug-drug eutectics with improved compressibility and synergistic effects.

    PubMed

    Thipparaboina, Rajesh; Thumuri, Dinesh; Chavan, Rahul; Naidu, V G M; Shastri, Nalini R

    2017-06-15

    Combinational therapy has become increasingly popular in recent times due to various advantages like greater therapeutic effect, reduced number of prescriptions, lower administrative costs, and an increase in patient compliance. Drug-drug multicomponent adducts could help in combination of drugs at supramolecular level. Two drug-drug eutectics of etodolac with paracetamol (EP) and etodolac with propranolol hydrochloride (EPHC) were successfully designed and synthesized for the first time. These eutectics significantly improved dissolution and material properties. A 6 to 9 fold enhancement in % dissolution efficiency was found at 1min suggesting the fast dissolving capabilities of the eutectic mixtures when compared to plain drug. In addition, eutectic mixtures have shown improved hardness compared to plain drugs. EP and EPHC have shown around 5 fold and 3 fold improvements in hardness respectively at 10MPa when compared to plain etodolac. Cell culture studies have shown improved effects of EP. Western blotting analysis revealed that the said combination successfully reduced various inflammatory mediators like TNF-α, COX-2 and IL-6. Whereas, the eutectic combination EPHC has shown enhanced cytotoxic effects with synergistic combination index and favorable dose reduction index. The generated multi-component systems EP and EPHC with fast dissolving capabilities, improved hardness at lower pressures and synergistic effects represent prospective combinations for effective treatment of osteoarthritis and cancer chemotherapy respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Occurrence of dissolved solids, nutrients, atrazine, and fecal coliform bacteria during low flow in the Cheney Reservoir watershed, south-central Kansas, 1996

    USGS Publications Warehouse

    Christensen, V.G.; Pope, L.M.

    1997-01-01

    A network of 34 stream sampling sites was established in the 1,005-square-mile Cheney Reservoir watershed, south-central Kansas, to evaluate spatial variability in concentrations of selected water-quality constituents during low flow. Land use in the Cheney Reservoir watershed is almost entirely agricultural, consisting of pasture and cropland. Cheney Reservoir provides 40 to 60 percent of the water needs for the city of Wichita, Kansas. Sampling sites were selected to determine the relative contribution of point and nonpoint sources of water-quality constituents to streams in the watershed and to identify areas of potential water-quality concern. Water-quality constituents of interest included dissolved solids and major ions, nitrogen and phosphorus nutrients, atrazine, and fecal coliform bacteria. Water from the 34 sampling sites was sampled once in June and once in September 1996 during Phase I of a two-phase study to evaluate water-quality constituent concentrations and loading characteristics in selected subbasins within the watershed and into and out of Cheney Reservoir. Information summarized in this report pertains to Phase I and was used in the selection of six long-term monitoring sites for Phase II of the study. The average low-flow constituent concentrations in water collected during Phase I from all sampling sites was 671 milligrams per liter for dissolved solids, 0.09 milligram per liter for dissolved ammonia as nitrogen, 0.85 milligram per liter for dissolved nitrite plus nitrate as nitrogen, 0.19 milligram per liter for total phosphorus, 0.20 microgram per liter for dissolved atrazine, and 543 colonies per 100 milliliters of water for fecal coliform bacteria. Generally, these constituents were of nonpoint-source origin and, with the exception of dissolved solids, probably were related to agricultural activities. Dissolved solids probably occur naturally as the result of the dissolution of rocks and ancient marine sediments containing large salt deposits. Nutrients also may have resulted from point-source discharges from wastewater-treatment plants. An examination of water-quality characteristics during low flow in the Cheney Reservoir watershed provided insight into the spatial variability of water-quality constituents and allowed for between-site comparisons under stable-flow conditions; identified areas of the watershed that may be of particular water-quality concern; provided a preliminary evaluation of contributions from point and nonpoint sources of contamination; and identified areas of the watershed where long-term monitoring may be appropriate to quantify perceived water-quality problems.

  7. Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network

    NASA Astrophysics Data System (ADS)

    Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.

    2017-02-01

    Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.

  8. Fluoride, Nitrate, and Dissolved-Solids Concentrations in Ground Waters of Washington

    USGS Publications Warehouse

    Lum, W. E.; Turney, Gary L.

    1984-01-01

    This study provides basic data on ground-water quality throughout the State. It is intended for uses in planning and management by agencies and individuals who have responsibility for or interest in, public health and welfare. It also provides a basis for directing future studies of ground-water quality toward areas where ground-water quality problems may already exist. The information presented is a compilation of existing data from numerous sources including: the Washington Departments of Ecology and Social and Health Services, the Environmental Protection Agency, as well as many other local, county, state and federal agencies and private corporations. Only data on fluoride, nitrate, and dissolved-solids concentrations in ground water are presented, as these constituents are among those commonly used to determine the suitability of water for drinking or other purposes. They also reflect both natural and man-imposed effects on water quality and are the most readily available water-quality data for the State of Washington. The percentage of wells with fluoride, nitrate, or dissolved-solids concentrations exceeding U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations were about 1, about 3, and about 3, respectively. Most high concentrations occurred in widely separated wells. Two exceptions were: high concentrations of nitrate and dissolved solids in wells on the Hanford Department of Energy Facility and high concentrations of nitrate in the lower Yakima River basin. (USGS)

  9. Formulation and Evaluation of Mouth Dissolving Tablets of Cinnarizine

    PubMed Central

    Patel, B. P.; Patel, J. K.; Rajput, G. C.; Thakor, R. S.

    2010-01-01

    The purpose of this research was to develop mouth dissolve tablets of cinnarizine by effervescent, superdisintegrant addition and sublimation methods. All the three formulations were evaluated for disintegration time, hardness and friability, among these superdisintegrant addition method showed lowest disintegration time; hence it was selected for further studies. Further nine batches (B1-B9) were prepared by using crospovidone, croscarmellose sodium and L-HPC in different concentrations such as 5, 7.5 and 10%. All the formulations were evaluated for weight variation, hardness, friability, drug content, in vitro disintegration time, wetting time, in vitro dissolution. Formulation with 10% L-HPC showed the less disintegration time (25.3 s) and less wetting time (29.1 s). In vitro dissolution studies showed total drug release at the end of 6 min. PMID:21218071

  10. Water resources inventory of Connecticut Part 10: Lower Connecticut River basin

    USGS Publications Warehouse

    Weiss, Lawrence A.; Bingham, James W.; Thomas, Mendall P.

    1982-01-01

    The lower Connecticut River basin study area in south-central Connecticut includes 639 square miles and is drained principally by the Connecticut River and by seven smaller streams that flow directly to Long Island Sound between the West River on the west and the Connecticut River on the east. The population in 1979 was estimated to be 210,380. Much of the industrial development and population centers are in the Mattabesset River basin in the northwestern part, and the largest water use is also in the Mattabesset River basin. Precipitation averages 47 inches per year and provides an abundant supply of water. About 20 inches returns to the atmosphere as evapotranspiration, and the remainder either flows directly to streams or percolates to the water table, eventually discharging to Long Island Sound. Small quantities of water are exported from the basin by the New Haven and Meridan Water Departments, and small quantities are imported by the New Britain Water Department and Metropolitan Direct Commission. Precipitation during 1931-60 resulted in an average annual runoff of 302 billion gallons. In inflow from the Connecticut River is added to the average annual runoff, the 4,370 billion gallon s per year is potentially available for water ue. The domestic, institutional, commercial, and industrial (other than cooling water) water use for 1970 was 7 billion gallons, which is only 3 percent of the total water used, whereas 97 percent of the total is cooling water for power plants. Approximately 60 percent of the 7 billion gallons is treated before being discharged back to the streams. The total amount of fresh water used during 1970 was estimated to be 256,000 million gallons (Mgal), of which 247,000 Mgal was used for cooling water at stream electric-generating plants. The quantity for domestic, commercial, industrial, and agricultural used was 9,000 Mgal, which was approximately 120 gallons a day per person. Public water systems providing 70 percent of these requirement and all the systems supplying water met the drinking water standards of the Connecticut General Assembly (1975). Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and may be inadequate during dry periods. The thickness of of till ranges from 0 to 15 feet; a median thickness of 26 feet is estimated from information provided in drillers' logs of 467 wells penetrating underlying bedrock. The till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire area and include sedimentary and crystalline (igneous and metamorphic) rock types. These aquifers supply small and usually reliable quantities of water to wells and are the chief source of water for many rural homes and farms., About 90 percent of the wells tapping bedrock yield at least 2 gal/min. The median yields from wells tapping aquifers in sedimentary, igneous, and metamorphic rocks are 11, 8, and 6.5 gal/min, respectively. The quantity of water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers, mathematical modeling of the aquifer system, and evaluation of natural and induced recharge. Long-term yields estimated or ten areas underlain by significant thickness of stratified drift range from 0.4 to 4.4 million gallons per day (Mgal/d). A change in well spacing or numbering could increase the long-term yields, but detailed modeling verification studies are needed to confirm optimal well locations. The chemical and physical (turbidity, color, taste, and sediment load) quality of water is good. The water if generally low in dissolved solids and is classified as soft to hard. Surface water is less mineralized than ground water, especially during high flow, when it is primarily derived from surface runoff rather than groundwater runoff. A median dissolved-solids concentration of 42 milligrams per liter (mg/L) and median hardness of 18 mg/L were determined from water samples collected from 26 streams during the high-flow period. During the low-flow period, median dissolved-solids concentration of 61 mg/L and median hardness of 27 mg/L were determined from sample from the same streams. The quality of water in stratified-drift and crystalline-rock aquifers is generally better than that in the sedimentary-rock aquifers. Water from 32 wells tapping stratified drift had median dissolved-solids concentrations of 116 mg/L; and 33 wells tapping stratified drift and 42 tapping crystalline rock had median hardness of 73 mg/L and 68 mg/L, respectively. Water from 32 wells tapping sedimentary rock had median dissolved concentrations of 231 and 156 mg/L, respectively. Sedimentary rock generally yields the hardest water. Iron and manganese occur objectionable concentrations in places, particularly in water from streams draining swamps and in water from aquifers either rich in iron and manganese-nearing minerals or where the reducing environment for solution of these minerals is favorable. Concentrations of iron in excess of 0.3 mg/L were found in 35 percent of the high streamflow samples, and in 45 percent of the ground-water samples. Most of the high iron and manganese concentration in streams and aquifers are found east of the Connecticut River. Human activities and tidal influence along the coast have modified the quality of water in much f the study area. The greatest influence from human activities has been in the northwestern part, in the Mattabesset River basin. There, the quality of water has been affected by domestic and animal wastes, which cause high dissolved-solids concentrations, high nitrate and phosphate loads and high bacterial counts. In the entire area, high nitrate in groundwater occur only locally, and its presence in an individual water supply is chiefly a function of its proximity to sources of contamination, of well construction, and of thickness of overburden. Thirty public-supply wells did have water that had high sodium concentrations or objectionable iron and manganese concentrations, but these are not considered health hazards in the concentrations found in the water samples. Streams, wetlands, and some aquifers along the sough boundary of the basin contain salty water because of tidal movement or extensive ground-water withdrawals. High sediment concentrations also occur as a result of tidal influence in this area.

  11. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters.

    PubMed

    Güngör, Kerem; Karthikeyan, K G

    2008-01-01

    The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.

  12. CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Reboul, S.

    2012-06-19

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.« less

  13. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Physical characteristics of indigestible solids affect emptying from the fasting human stomach.

    PubMed Central

    Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A

    1989-01-01

    Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438

  15. Quality-of-water data and statistical summary for selected coal-mined strip pits in Crawford and Cherokee counties, southeastern Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Diaz, A.M.

    1982-01-01

    Quality-of-water data, collected October 21-23, 1980, and a statistical summary are presented for 42 coal-mined strip pits in Crawford and Cherokee Counties, Southeastern Kansas. The statistical summary includes minimum and maximum observed values , mean, and standard deviation. Simple linear regression equations relating specific conductance, dissolved solids, and acidity to concentrations of dissolved solids, sulfate, calcium, and magnesium, potassium, aluminum, and iron are also presented. (USGS)

  16. Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming

    Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less

  17. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  18. Reductive capacity measurement of waste forms for secondary radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less

  19. Evaluation of the hydrologic system and potential effects of mining in the Dickinson lignite area, eastern slope and western Stark and Hettinger counties, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1984-01-01

    The investigation of the water resources of the Dickinson lignite area, an area of about 500 square miles, was undertaken to define the hydrologic system of the area and to project probable effects of coal mining on the system.Aquifers occur in sandstone beds in: the Fox Hills Sandstone and the lower Hell Creek Formation of Cretaceous age, the upper Hell Creek Formation of Cretaceous age and the lower Ludlow Member of the Fort Union Formation of Tertiary age, and the upper Ludlow and lower Tongue River Members of the Fort Union Formation of Tertiary age. Aquifers also occur in the sandstone and lignite lenses in the upper Tongue River Member and the Sentinel Butte Member of the Fort Union Formation. Depths to the Fox Hills-lower Hell Creek aquifer system range from about 1,300 to 1,710 feet. Well yields range from 18 to 100 gallons per minute. The water is soft and is a sodium bicarbonate type. Dissolvedsolids concentrations in samples collected from the aquifer system ranged from 1,230 to 1,690 milligrams per liter.Depths to the upper Hell Creek-lower Ludlow aquifer system range from about 720 to 1,040 feet. Well yields generally are less than 30 gallons per minute but may be as much as 150 gallons per minute. The water is soft and a sodium bicarbonate type. Dissolved-solids concentrations in samples collected from the aquifer system ranged from 1,010 to 1,450 milligrams per liter.Depths to the upper Ludlow-lower Tongue River aquifer system range from about 440 to 713 feet. Well yields may range from about 1 to 100 gallons per minute. The water generally is soft and a sodium bicarbonate type but may be moderately hard and a sulfate type in the southwestern part of the area. Dissolved-solids concentrations in samples collected from the aquifer system ranged from 995 to 1,990 milligrams per liter. Depths to the upper Tongue River-Sentinel Butte aquifer system range from near land surface to about 530 feet below land surface. Well yields generally range from about 1 to 185 gallons per minute. Yields from the lignite parts of the system range from about 2 to 60 gallons per minute. The water generally is a sodium bicarbonate type, but locally sulfate is the dominant anion. Dissolved-solids concentrations in samples collected from the aquifer system generally ranged from 574 to 2,720 milligrams per liter.

  20. Water requirements of the copper industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration was higher in dissolved solids and was harder than the water used in smelting and refining. Water used in mining and ore concentration had a median dissolved solids content of about 400 ppm and a median hardness (as CaCO3) of about 200 ppm. The median values for water used in smelting and refining were only half these amounts.

  1. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Kumari, Kalpana; Ramanathan, Al.; Saxena, Rajinder

    2007-11-01

    Punjab is the most cultivated state in India with the highest consumption of fertilizers. Patiala and Muktsar districts are two agricultural dominated districts of Punjab located in extreme south-east and south-west of the state. This paper highlights temporal variations of the groundwater quality and compares its suitability for irrigation and drinking purpose in these two districts. Water samples were collected in March and September 2003, representing the pre-monsoon and post-monsoon seasons, respectively. Water samples were analysed for almost all major cations, anions, dissolved heavy metals and turbidity. Parameters like sodium adsorption ratio, % sodium, residual sodium carbonate, total hardness, potential salinity, Kelley’s ratio, magnesium ratio, index of base exchange and permeability index were calculated on the basis of chemical data. A questionnaire was also used to investigate perception of villagers on taste and odour. Comparison of the concentration of the chemical constituents with WHO (world health organization) drinking water standards of 2004 and various classifications show that present status of groundwater in Patiala is better for irrigation and drinking purposes except for a few locations with a caution that it may deteriorate in near future. In Muktsar, groundwater is not suitable for drinking. Higher total hardness (TH) and total dissolved solids at numerous places indicate the unsuitability of groundwater for drinking and irrigation. Results obtained in this forms baseline data for the utility of groundwater. In terms of monsoon impact, Patiala groundwater shows dilution and flushing but Muktsar samples show excessive leaching of different chemical components into the groundwater leading to the enrichment of different anions and cations indicating pollution from extraneous sources. No clear correlation between the quality parameters studied here and perceived quality in terms of satisfactory taste response were obtained at electrical conductivity values higher than the threshold minimum acceptable value.

  2. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    USGS Publications Warehouse

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical divisions of the United States, except the Central Lowland province of the Interior Plains, the Great Plains province of the Interior Plains, and the Basin and Ridge province of the Intermontane Plateaus. The relationship between dissolved-solids concentration and discharge per unit area is least variable in the New England province and Blue Ridge province of the Appalachian Highlands. The dissolved-solids concentration versus discharge per unit area in the Central Lowland province of the Interior Plains is highly variable. A sample collected from the hydrologic bench-mark station at Bear Den Creek near Mandaree, N. Dak., contained 3,420 milligrams per litre dissolved solids. This high concentration in the 'natural' environment indicates that natural processes can be principal agents in modifying the environment and can cause degradation. Average annual runoff and rock type can be used as predictive tools to determine the maximum dissolved-solids concentration expected in the 'natural' environment.

  3. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    NASA Astrophysics Data System (ADS)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and Enhanced Oil Recovery applications. References[1] Rice, R. G. and Do, D.D., Chem. Eng. Sci., 61, 775-778 (2006)[2] Boek, E.S. and Venturoli, M., Comp. and Maths with Appl. 59, 2305-2314 (2010)[3] Yang, J. and Boek, E.S., Comp. and Maths with Appl. 65, 882-890 (2013)[4] Yang, J. Crawshaw, J. and Boek, E.S., Water Resources Research 49, 8531-8538 (2013)

  4. Quality of ground water in the Payette River basin, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1986-01-01

    As part of a study to obtain groundwater quality data in areas of Idaho were land- and water-resource development is expected to increase, water quality, geologic, and hydrologic data were collected for 74 wells in the Payette River basin, west-central Idaho, from July to October 1982. Historical (pre-1982) data from 13 wells were compiled with more recent (1982) data to define, on a reconnaissance level, water quality conditions in major aquifers and to identify factors that may have affected groundwater quality. Water from the major aquifers generally contains predominantly calcium, magnesium, and bicarbonate plus carbonate ions. Sodium and bicarbonate or sulfate are the predominant ions in groundwater from 25% of the 1982 samples. Areally, groundwater from the upper Payette River basin has proportionately lower ion concentrations than water from the lower Payette River basin. Water samples from wells < 100 ft deep generally have lower ion concentrations than samples from wells > 100 ft deep. Variations in groundwater quality probably are most affected by differences in aquifer composition and proximity to source(s) of recharge. Groundwater in the study area is generally suitable for most uses. In localized areas, pH and concentrations of hardness, alkalinity, dissolved solids, or dissolved nitrite plus nitrate as nitrogen, sulfate, fluoride, iron, or manganese exceed Federal drinking water limits and may restrict some uses of the water.

  5. Preliminary results of geothermal desalting operations at the East Mesa test site Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Suemoto, S. H.; Mathias, K. E.

    1974-01-01

    The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage.

  6. Membrane technology for sustainable treated wastewater reuse: agricultural, environmental and hydrological considerations.

    PubMed

    Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph

    2008-01-01

    Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.

  7. Limnology of Kharland (saline) ponds of Ratnagiri, Maharashtra in relation to prawn culture potential.

    PubMed

    Saksena, D N; Gaidhane, D M; Singh, H

    2006-01-01

    The coastal saline soils, Kharlands, have great potential for their use in aquaculture. This study has been taken up to understand the limnology of the ponds in Kharland area for assessing their prawn culture potential. This study was carried out during September, 1999 to August, 2001. Each Kharland pond has an area of 0.045 hectare. During the study, depth of pond water was 47.7 to 120.0 cm, temperature varied from 25.7 to 34.5 degrees C; transparency from nil to 65.0 cm; specific conductivity from 1.78 to 94.5 microS.cm(-1); total dissolved solids from 0.89 to 27.55 ppt; pH 5.42 to 8.25; dissolved oxygen 1.6 to 8 mg.l(-1); free carbon dioxide 10.00 to 44.00 mg.l(-1); total alkalinity 5.00 to 142.00 mg.l(-1); salinity 0.45 to 39.55 ppt; total hardness 245.00 to 5945.00; calcium 56.05 to 1827.6; magnesium 110.74 to 4507.75 mg.l(-1); dissolved organic matter 1.45 to 9.68 mg.l(-1); ammonia 1.00-8.00 microg.l(-1); nitrite nil to 20.00 micro l(-1) and nitrate 7.5 to 17.5 microg.l(-1). These Kharland ponds are unique in physio-chemical characteristics during their seasonal cycle. From July to October, these ponds have nearly freshwater while from November to May pond water becomes saline. Thus, there is a great possibility of taking up monoculture of both the freshwater and brackish water prawns as well as polyculture of prawns and fishes in the Kharland ponds.

  8. Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60

    USGS Publications Warehouse

    Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.

    1968-01-01

    Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough to harm fish. Data on alpha and beta particle activities in Devils Lake were insufficient to determine if present activities are less than, equal to, or more than activities before nuclear tests began.Miscellaneous surface waters not in the Devils Lake chain contained dissolved solids that ranged from 239 to 61,200 ppm. The lakes that spill infrequently and have little or no ground-water inflow and outflow generally contain high concentrations of dissolved solids.Salt balance computations for Devils Lake for 1952-60 indicate that a net of as much as 89,000 tons of salts was removed from the bed by the water in some years and as much as 35,000 tons was added to the bed in other years. For the 9-year period, the tons removed exceeded the tons added; the net removed averaged 2.7 tons per acre per year. Pickup of these salts from the bed increased the dissolved solids in the lake water an average of 193 ppni per year. Between 1952 and 1960, 201,000 tons of salt was added to the bed of East Devils Lake, 15,100 tons to the bed of western Stump Lake, and 421,000 tons to the bed of eastern Stump Lake.Laboratory examination of shore and bed material indicated that the shore contained less weight of salt per unit weight of dry, inorganic material than the bed. Calcium and bicarbonate were the chief constituents dissolved from bed material of Devils Lake, whereas sodium and sulfate were the chief constituents dissolved from bed material of East Bay, East Devils Lake, and eastern and western Stump Lakes. Generally, calcium and bicarbonate were the chief constitutents dissolved from shore material of all these lakes.Evidence indicates that not more than 20 percent of the salt that "disappeared" from the water of Devils Lake west of State Route 20 as the lake altitudes decreased years ago will redissolve if the lake altitude is restored.

  9. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Miao; Turner, Christopher L.; Mohammadi, Reza

    In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  12. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    PubMed

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  13. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    NASA Astrophysics Data System (ADS)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (<20 °C) groundwater. The material includes water collected in earlier hydrochemical monitoring programs and secondary precipitates (fracture coatings) collected on the fracture walls, as follows: (a) hydraulically pristine fracture groundwater sampled through 23 surface boreholes equipped for the retrieval of representative groundwater at controlled depths (Laxemar area), (b) fracture groundwater affected by artificial drainage collected through 80 boreholes drilled mostly along the Äspö Hard Rock Laboratory (underground research facility), (c) surface water collected in local streams, a lake and sea bay, and shallow groundwater collected in 8 regolith boreholes, and (d) 84 new specimens of fracture coatings sampled in cores from the Äspö HRL and Laxemar areas. The groundwater in each area is different, which affects Cs concentrations. The highest Cs concentrations occurred in deep-seated saline groundwater (median Äspö HRL: 4.1 μg L-1; median Laxemar: 3.7 μg L-1) and groundwater with marine origin (Äspö HRL: 4.2 μg L-1). Overall lower, but variable, Cs concentrations were found in other types of groundwater. The similar concentrations of Cs in the saline groundwater, which had a residence time in the order of millions of years, and in the marine groundwater, which had residence times in the order of years, shows that duration of water-rock interactions is not the single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  14. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    USGS Publications Warehouse

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted farther downstream from the source. Differences in concentrations between the baseline condition and the 1.2, 1.5, and 2.0 times baseline concentration scenarios were smaller than the differences in the 5.0 and 10.0 times baseline concentration scenarios. The results for both the 2 m below the surface and 2 m above the bottom were similar, with the exception of concentrations resulting from the increased loading factors (5.0 and 10.0 times), where concentrations 2 m above the bottom were consistently greater than those 2 m below the surface at most segments.

  15. Composition of steam in the system NaCl-KCl-H2O-quartz at 600°C

    USGS Publications Warehouse

    Fournier, Robert O.; Thompson, J. Michael

    1993-01-01

    In the system NaCl-KCl-H2O, with and without ??-quartz present, steam was equilibrated in a large-volume reaction vessel with brine and/or precipitated salt at 600??C and pressures ranging from about 100 to 0.4 MPa. Episodically, steam was extracted for chemical analysis, accompanied by a decrease in pressure within the reaction vessel. In the absence of precipitated salt, within the analytical uncertainty stoichiometric quantities of Cl and total alkali, metals (Na + K) dissolve in steam coexisting with chloriderich brine. In contrast, in the presence of precipitated salt (in our experiments halite with some KCl in solid solution), significant excess chloride as associated hydrogen chloride (HCl0??) dissolves in steam. The HCl0 is generated by the reaction of steam with solid NaCl(s), producing solid NaOH(s) that diffuses into halite, forming a solid solution. In our quasistatic experiments, compared to dynamic flow-through experiments of others, higher initial ratios of H2O/NaCl have apparently resulted in higher model fractions of NaOH(s) in solid solution in halite. This, in turn, resulted in incrementally higher concentrations of associated NaOHo dissolved in steam. Addition of quartz to the system NaCl + KC1 + H2O resulted in an order of magnitude increase in the concentration of HCl0 dissolved in steam, apparently as a consequence of the formation of sodium disilicate by reaction of silica with NaOH(s). The measured dissolved silica in steam saturated with alkali halides at 600??C in the pressure range 7-70 MPa agrees nicely with calculated values of the solubility of ??-quartz obtained using the equation of Fournier and Potter (1982), corrected for dissolved salt by the method of fournier (1983). Na K ratios in steam at 600??C tend to be slightly greater than in coexisting brine. When precipitated halite is present, larger mole fractions of NaOH(s) in solid solution in that halite apparently result in even larger Na K ratios in coexisting steam. Precipitation of more halite as a consequence of repeated depressurization episodes results in decreased Na K ratios in both the brine and coexisting steam phases, indicating that the lower pressures begin to favor K over Na in the vapor. When steam is in contact with precipitated salts in the absence of brine, the Na K ratio in the steam is less than that of the bulk composition of the salt-H2O system. ?? 1993.

  16. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition

    PubMed Central

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305

  17. Radiation-Hardened Solid-State Drive

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.

    2010-01-01

    A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.

  18. Complete recovery of actinides from UREX-like raffinates using a combination of hard and soft donor ligands. II. soft donor structure variation

    DOE PAGES

    Zalupski, Peter R.; Klaehn, John R.; Peterman, Dean R.

    2015-07-30

    The feasibility of simultaneous separation of uranium, neptunium, plutonium, americium, and curium from a simulated dissolved used fuel simulant adjusted to 1.0 M nitric acid is investigated using a mixture of the soft donor bis(bis-3,5-trifluoromethyl)phenyl) dithiophosphinic acid (“0”) and the hard donor synergist trioctylphosphine oxide (TOPO) dissolved in toluene. The results reported in this work are compared to our recent demonstration of a complete actinide recovery from a simulated dissolved fuel solution using a synergistic combination of bis(o-trifluoromethylphenyl)dithiophosphinic acid (“1”) and TOPO dissolved in either toluene or trifluoromethylphenyl sulfone. While the extraction efficiency of americium was enhanced for the liquid-liquidmore » system containing “0”, enabling to accomplish a trivalent An/Ln separation at 1.0 M HNO3, the extraction of neptunium was drastically diminished, relative to “1”. The partitioning behavior of curium was also negatively impacted, introducing an effective opportunity for americium/curium separation. Radiometric and spectrophotometric studies demonstrate that the complete actinide recovery using the solvent based upon “0” and TOPO is not feasible. Additionally, the importance of radiolytic degradation processes is discussed through the comparisons of extraction properties of liquid-liquid systems based on both soft donor reagents.« less

  19. Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas

    USGS Publications Warehouse

    Hughes, Leon S.; Leifeste, Donald K.

    1967-01-01

    The kinds and quantities of minerals dissolved in the surface water of the Neches River basin result from such environmental factors as geology, streamflow patterns and characteristics, and industrial influences. As a result of high rainfall in the basin, much of the readily soluble material has been leached from the surface rocks and soils. Consequently, the water in the streams is usually low in concentrations of dissolved minerals and meets the U.S. Public Health Service drinking-water standards. In most streams the concentration of dissolved solids is less than 250 ppm (parts per million). The Neches River drains an area of about 10,000 square miles in eastern Texas. From its source in southeast Van Zandt County the river flows in a general southeasterly direction and empties into Sabine Lake, an arm of the Gulf of Mexico. In the basin the climate ranges from moist subhumid to humid, and the average annual rainfall ranges from 46 inches is the northwest to more than 52 inches in the southeast. Annual runoff from the basin has averaged 11 inches; however, runoff rates vary widely from year to year. The yearly mean discharge of the Neches River at Evadale has ranged from 994 to 12,720 cubic feet per second. The rocks exposed in the Neches River basin are of the Quaternary and Tertiary Systems and range in age from Eocene to Recent. Throughout most of the basin the geologic formations dip generally south and southeast toward the gulf coast. The rate of dip is greater than that of the land surface; and as a result, the older formations crop out to the north of the younger formations. Water from the outcrop areas of the Wilcox Group and from the older formations of the Claiborne Group generally has dissolved-solids concentrations ranging from 100 to 250 ppm; water from the younger formations has concentrations less than 100 ppm. The northern half of the basin has soft water, with less than 60 ppm hardness. The southern half of .the basin has very soft water, usually with less than 30 ppm hardness. The chloride concentrations are less than 20 ppm in surface water in the southern half of the basin and usually range from 20 to 100 ppm in the northern half of the basin. Concentrations greater than 100 ppm are found only where pollution is occurring. The Neches River basin has an abundance of surface water, but uneven distribution of runoff makes storage projects necessary to provide dependable water supplies. The principal existing reservoirs, with the exception of Striker Creek Reservoir, contain water of excellent quality. Chemical-quality data for the Striker Creek drainage area indicate that its streams are affected by .the disposal of brines associated with oil production. Sam Rayburn Reservoir began impounding water in 1965. The water impounded should prove of acceptable quality for most uses, but municipal and industrial wastes released into the Angelina River near Lufkin may have a degrading effect on the quality of the water, especially during extended periods of low flows. Water available for storage at the many potential reservoir sites will be of good quality; but, if the proposed salt-water barrier is to impound acceptable water, the disposal of oilfield brine into Pine Island Bayou should be discontinued.

  20. The fate of arsenic in a river acidified by volcanic activity and an acid thermal water and sedimentation mechanism.

    PubMed

    Ogawa, Yasumasa; Yamada, Ryoichi; Shinoda, Kozo; Inoue, Chihiro; Tsuchiya, Noriyoshi

    2014-01-01

    The Shozu-gawa river, located in the Aomori Prefecture, northern Japan, is affected by volcanic activities and acid thermal waters. The river is unique because both solid arsenic (As; as orpiment, As2S3) and dissolved As are supplied to the river from the uppermost caldera lake (Usori-ko Lake) and thermal ponds. The watershed is an excellent site for investigating the fate of different As species in a fluvial system. Upstream sediments near the caldera lake and geothermal ponds are highly contaminated by orpiment. This solid phase is transported as far as the mouth of the river. On the other hand, dissolved As is removed from the river system by hydrous ferric oxides (HFOs); however, HFO formation and removal of dissolved As do not occur in the uppermost area of the watershed, resulting in further downstream transport of dissolved As. Consequently, upstream river sediments are enriched in orpiment, whereas As(v), which is associated with HFOs in river sediments, increases downstream. Furthermore, orpiment particles are larger, and possibly heavier, than those of HFO with sorbed As. Fractionation between different chemical states of As during transport in the Shozu-gawa river is facilitated not only by chemical processes (i.e., sorption of dissolved As by HFOs), but also by physical factors (i.e., gravity). In contrast to acid mine drainage (AMD), in some areas of the Shozu-gawa river, both solid forms of As (as sulfide minerals) and dissolved As are introduced into the aquatic system. Considering that the stabilities of sulfide minerals are rather different from those of oxides and hydroxides, river sediments contacted with thermal waters possibly act as sources of As under both aerobic and anaerobic conditions.

  1. Prediction of ground water quality index to assess suitability for drinking purposes using fuzzy rule-based approach

    NASA Astrophysics Data System (ADS)

    Gorai, A. K.; Hasni, S. A.; Iqbal, Jawed

    2016-11-01

    Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert's opinion and author's judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.

  2. Phase behavior of a fluid with a double Gaussian potential displaying waterlike features

    NASA Astrophysics Data System (ADS)

    Speranza, Cristina; Prestipino, Santi; Malescio, Gianpietro; Giaquinta, Paolo V.

    2014-07-01

    Pair potentials that are bounded at the origin provide an accurate description of the effective interaction for many systems of dissolved soft macromolecules (e.g., flexible dendrimers). Using numerical free-energy calculations, we reconstruct the equilibrium phase diagram of a system of particles interacting through a potential that brings together a Gaussian repulsion with a much weaker Gaussian attraction, close to the thermodynamic stability threshold. Compared to the purely repulsive model, only the reentrant branch of the melting line survives, since for lower densities solidification is overridden by liquid-vapor separation. As a result, the phase diagram of the system recalls that of water up to moderate (i.e., a few tens of MPa) pressures. Upon superimposing a suitable hard core on the double-Gaussian potential, a further transition to a more compact solid phase is induced at high pressure, which might be regarded as the analog of the ice I-to-ice III transition in water.

  3. Evaluation of water quality and stability in the drinking water distribution network in the Azogues city, Ecuador.

    PubMed

    García-Ávila, Fernando; Ramos-Fernández, Lía; Pauta, Damián; Quezada, Diego

    2018-06-01

    This document presents the physical-chemical parameters with the objective of evaluating and analyzing the drinking water quality in the Azogues city applying the water quality index (WQI) and to research the water stability in the distribution network using corrosion indexes. Thirty samples were collected monthly for six months throughout the drinking water distribution network; turbidity, temperature, electric conductivity, pH, total dissolved solids, total hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulfates and phosphates were determined; the physical-chemical parameters were measured using standard methods. The processed data revealed that the average values ​​of LSI, RSI and PSI were 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99) respectively. The WQI calculation indicated that 100% of the samples are considered excellent quality water. According to the Langelier, Ryznar and Pukorius indexes showed that drinking water in Azogues is corrosive. The quality of drinking water according to the WQI is in a good and excellent category.

  4. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  5. Simple cubic equation of state applied to hard-sphere, Lennard-Jones fluids, simple fluids and solids

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Cai, Ling-Cang; Wu, Qiang; Jin, Ke

    2013-09-01

    Based on the expansion and extension of the virial equation of state (EOS) of hard-sphere fluids solved by the Percus-Yevick integration equation, a universal cubic (UC) EOS is developed. The UC EOS is applied to model hard-sphere and Lennard-Jones (LJ) fluids, simple Ar and N2 liquids at low temperatures, and supercritical Ar and N2 fluids at high temperatures, as well as ten solids, respectively. The three parameters are determined for the hard-sphere fluid by fitting molecular dynamics (MD) simulation data of the third to eighth virial coefficients in the literature; for other fluids by fitting isothermal compression data; and for solids by using the Einstein model. The results show that the UC EOS gives better results than the Carnahan-Starling EOS for compressibility of hard-sphere fluids. The Helmholtz free energy and internal energy for LJ fluids are predicted and compared with MD simulation data. The calculated pressures for simple Ar and N2 liquids are compared with experimental data. The agreement is fairly good. Eight three-parameter EOSs are applied to describe isothermals of ten typical solids. It is shown that the UC EOS gives the best precision with correct behavior at high-pressure limitation. The UC EOS considering thermal effects is used to analytically evaluate the isobaric thermal expansivity and isothermal compressibility coefficients. The results are in good agreement with experimental data.

  6. Methods of deoxygenating metals having oxygen dissolved therein in a solid solution

    DOEpatents

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang

    2017-06-06

    A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.

  7. Hydrology and water quality of the Forest County Potawatomi Indian Reservation, Wisconsin

    USGS Publications Warehouse

    Lidwin, R.A.; Krohelski, J.T.

    1993-01-01

    Water quality of three lakes on the Reservation is variable and depends on the degree of connection with the ground-water system. In general, Bug Lake and Devils Lake are in poor hydraulic connection with the ground-water system, and their waters contain low concentrations of dissolved solids and alkalinity and low pH. King Lake is in good hydraulic connection with the ground-water system, and its waters contain higher concentrations of dissolved solids and alkalinity and higher pH than Bug and Devils Lakes.

  8. SOURCE ASSESSMENT: RECLAIMING OF WASTE SOLVENTS, STATE OF THE ART

    EPA Science Inventory

    This document reviews the state of the art of air emissions from the reclaiming of waste solvents. The composition, quantity, and rate of emissions are described. Waste solvents are organic dissolving agents which are contaminated with suspended and dissolved solids, organics, wa...

  9. Effect of cobalt supplementation and fractionation on the biological response in the biomethanization of Olive Mill Solid Waste.

    PubMed

    Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G

    2016-07-01

    Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J

    2013-02-01

    Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  12. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    USGS Publications Warehouse

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  13. Groundwater quality around Tummalapalle area, Cuddapah District, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Sreedhar, Y.; Nagaraju, A.

    2017-11-01

    The suitability of groundwater for drinking and irrigation was assessed in Tummalapalle area. Forty groundwater samples were analysed for major cations, anions and other parameters such as pH, electrical conductivity, total dissolved solids (TDS), total alkalinity and total hardness (TH). The parameters such as sodium adsorption ratio, adjusted sodium adsorption ratio (adj.SAR), per cent sodium, potential salinity, residual sodium carbonate, non-carbonate hardness, Kelly's ratio and permeability index were calculated for the evaluation of irrigation water quality. Groundwater chemistry was also analysed by statistical analysis, USSL, Wilcox, Doneen, Piper and Chadhas diagrams, to find out their suitability for irrigation. TDS and TH were used as main parameters to interpret the suitability of groundwater for drinking purpose. The correlation coefficient matrix between the hydrochemical parameters was carried out using Pearson's correlation to infer the possible water-rock interactions responsible for the variation of groundwater chemistry and this has been supported by Gibbs diagram. The results indicate that the groundwater in Tummalapalle area is alkaline in nature. Ca-Mg-HCO3 is the dominant hydrogeochemical facies. Water chemistry of the study area strongly reflects the dominance of weathering of rock-forming minerals such as bicarbonates and silicates. All parameters and diagrams suggest that the water samples of the study are good for irrigation, and the plots of TDS and TH suggest that 12.5% of the samples are good for human consumption.

  14. Application of spherical silicate to prepare solid dispersion dosage forms with aqueous polymers.

    PubMed

    Nagane, Kentaro; Kimura, Susumu; Ukai, Koji; Takahashi, Chisato; Ogawa, Noriko; Yamamoto, Hiromitsu

    2015-09-30

    The objective of this study is to prepare and characterize solid dispersions of nifedipine (NP) using porous spherical silicate micro beads (MB) that were approximately 100 μm in diameter with vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) and a Wurster-type fluidized bed granulator. Compared with previously reported solid dispersion using only MB, the supersaturation of NP dissolved from the proposed system of MB and PVP/VA was maintained during dissolution tests. The proposed system produced a solid dispersion product coated on MB, and morphology was maintained after the coating process to prepare solid dispersion; therefore, the powder characteristics, such as flowability of the proposed solid dispersion product, was tremendously preferable to that of the conventional spray-dried solid dispersions of NP with PVP/VA, expecting to make the consequent manufacturing processes easy for development. Another advantage in the terms of manufacturing is its simple process to prepare solid dispersion by spraying the drug and polymer that were dissolved in an organic solvent onto a MB in a Wurster-type fluidized bed granulator, thus, simplifying the optimization and scale-up with ease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  16. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific conductance, water temperature, pH, and discharge) were made at up to 26 sites along the springs reach. These data demonstrate the interaction between the saline, thermal groundwater system and the Virgin River, and provide estimates of reductions in dissolved-solids loads to the river.The interference tests show that pumping thermal groundwater from the shallow carbonate aquifer adjacent to the springs is effective at capturing high dissolved-solids loads discharging from Pah Tempe Springs before they enter the Virgin River. Discharge measurements made in the Virgin River downstream of the springs reach show that streamflow is reduced by approximately the amount pumped, indicating that complete capture of thermal discharge is possible. During the February 2014 test, the dissolved-solids load removed by pumping (190 tons per day) was approximately equal to the dissolved-solids load reduction observed in the river below the springs reach, indicating near 100-percent efficient capture of spring-sourced dissolved solids. However, an observed decrease in temperature and specific conductance of the pumping discharge during the high-flow test in November 2014 showed that capture of the cool, fresh river water can occur and is more likely at a higher stage in the Virgin River.

  17. Recovery of gold from computer circuit board scrap using aqua regia.

    PubMed

    Sheng, Peter P; Etsell, Thomas H

    2007-08-01

    Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.

  18. Removal of Dissolved Salts and Particulate Contaminants from Seawater: Village Marine Tec., Expeditionary Unit Water Purifier, Generation 1

    EPA Science Inventory

    The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS), including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components incl...

  19. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  20. Hydrology of Crater, East and Davis Lakes, Oregon; with section on Chemistry of the Lakes

    USGS Publications Warehouse

    Phillips, Kenneth N.; Van Denburgh, A.S.

    1968-01-01

    Crater, East, and Davis Lakes are small bodies of fresh water that occupy topographically closed basins in Holocene volcanic terrane. Because the annual water supply exceeds annual evaporation, water must be lost by seepage from each lake. The seepage rates vary widely both in volume and in percentage of the total water supply. Crater Lake loses about 89 cfs (cubic feet per second), equivalent to about 72 percent of its average annual supply. East Lake loses about 2.3 cfs, or about 44 percent of its estimated supply. Davis Lake seepage varies greatly with lake level, but the average loss is about 150 cfs, more than 90 percent of its total supply. The destination of the seepage loss is not definitely known for any of the lakes. An approximate water budget was computed for stationary level for each lake, by using estimates 'by the writer to supplement the hydrologic data available. The three lake waters are dilute. Crater Lake contains about 80 ppm, (parts per million) of dissolved solids---mostly silica, sodium, and bicarbonate, and lesser amounts of calcium, sulfate, and chloride. Much of the dissolved-solids content of Crater Lake---especially the sulfate and chloride---may be related to fumarole and thermal-spring activity that presumably followed the collapse of Mount Mazama. Although Grater Lake loses an estimated 7,000 tons of its 1.5million-ton salt content each year by leakage, the chemical character of the lake did not change appreciably between 1912 and 1964. East Lake contains 200 ppm of dissolved solids, which includes major proportions of calcium, sodium, bicarbonate, and sulfate, but almost no chloride. The lake apparently receives much of its dissolved solids from subsurface thermal springs. Annual solute loss from East Lake by leakage is about 450 tons, or 3 percent of the lake's 15,000-ton estimated solute content. Davis Lake contains only 48 ppm of dissolved solids, much of which is silica and bicarbonate; chloride is almost completely absent. Approximate physical and hydrologic data for the lakes are summarized in the following table. [Table

  1. The geohydrologic system and probable effects of mining in the Sand Creek-Hanks lignite area, western Williams County, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1985-01-01

    The investigation was undertaken to define the geohydrology of the Sand Creek-Hanks area and to project probable hydrologic effects of lignite mining on the area. Aquifers occur in sandstone beds in the Fox Hills Sandstone and the Hell Creek Formation of Cretaceous age and in sandstone lenses and lignite beds in the Tongue River and Sentinel Butte Members of the Fort Union Formation of Tertiary age.The top of the Fox Hills aquifer ranges from about 1,200 to 2,000 feet below land surface. Yields of wells completed in the aquifer could be as much as 60 gallons per minute. Water in the Fox Hills aquifer is a sodium bicarbonate type and generallyDepths to the top of the Hell Creek aquifer range from about 900 to 1,600 feet. Well yields range from less than 10 to 40 gallons per minute. Water in the aquifer is a sodium bicarbonate type and generally contains between 1,000 and 2,200 milligrams per liter dissolved solids. Depths to aquifers in the Tongue River and Sentinel Butte Members of Fort Union Formation range from near land surface to about 1,000 feet below land surface. Wells completed in the aquifers may yield as much as 40 gallons per minute of sodium bicarbonate or a sodium sulfate type water that contains about 800 to 4,100 milligrams per liter dissolved solids.Glacial drift covers most of the study area. The drift thickness ranges from a veneer to about 380 feet. Well yields range from a few gallons per minute to 900 gallons per minute. Dissolved-solids concentrations in water from the glacial drift generally range from 477 to 2,050 milligrams per liter. Mining of lignite will destroy all aquifers in and above the mined lignite and will expose overburden to oxidation. Leaching will cause an increase in dissolved solids in ground water immediately beneath the mines and possibly will cause some increase in the dissolved solids in low flows in area streams.

  2. Streamflow and estimated loads of phosphorus and dissolved and suspended solids from selected tributaries to Lake Ontario, New York, water years 2012–14

    USGS Publications Warehouse

    Hayhurst, Brett A.; Fisher, Benjamin N.; Reddy, James E.

    2016-07-20

    This report presents results of the evaluation and interpretation of hydrologic and water-quality data collected as part of a cooperative program between the U.S. Geological Survey and the U.S. Environmental Protection Agency. Streamflow, phosphorus, and solids dissolved and suspended in stream water were the focus of monitoring by the U.S. Geological Survey at 10 sites on 9 selected tributaries to Lake Ontario during the period from October 2011 through September 2014. Streamflow yields (flow per unit area) were the highest from the Salmon River Basin due to sustained yields from the Tug Hill aquifer. The Eighteenmile Creek streamflow yields also were high as a result of sustained base flow contributions from a dam just upstream of the U.S. Geological Survey monitoring station at Burt. The lowest streamflow yields were measured in the Honeoye Creek Basin, which reflects a decrease in flow because of withdrawals from Canadice and Hemlock Lakes for the water supply of the City of Rochester. The Eighteenmile Creek and Oak Orchard Creek Basins had relatively high yields due in part to groundwater contributions from the Niagara Escarpment and seasonal releases from the New York State Barge Canal.Annual constituent yields (load per unit area) of suspended solids, phosphorus, orthophosphate, and dissolved solids were computed to assess the relative contributions and allow direct comparison of loads among the monitored basins. High yields of total suspended solids were attributed to agricultural land use in highly erodible soils at all sites. The Genesee River, Irondequoit Creek, and Honeoye Creek had the highest concentrations and largest mean yields of total suspended solids (165 short tons per square mile [t/mi2], 184 t/mi2, and 89.7 t/mi2, respectively) of the study sites.Samples from Eighteenmile Creek, Oak Orchard Creek at Kenyonville, and Irondequoit Creek had the highest concentrations and largest mean yields of phosphorus (0.27 t/mi2, 0.26 t/mi2, and 0.20 t/mi2, respectively) and orthophosphate (0.17 t/mi2, 0.13 t/mi2, and 0.04 t/mi2, respectively) of the study sites. These results were attributed to a combination of sources, including discharges from wastewater treatment plants, diversions from the New York State Barge Canal, and manure and fertilizers applied to agricultural land. Yields of phosphorus also were high in the Genesee River Basin (0.17 t/mi2) and were presumably associated with nutrient and sediment transport from agricultural land and from streambank erosion. The Salmon and Black Rivers, which drain a substantial amount of forested land and are influenced by large groundwater discharges, had the lowest concentrations and yields of phosphorus and orthophosphate of the study sites.Mean annual yields of dissolved solids were the highest in Irondequoit Creek due to a high percentage of urbanized area in the basin and in Oak Orchard Creek at Kenyonville and in Eighteenmile Creek due to groundwater contributions from the Niagara Escarpment. High yields of dissolved solids of 840 t/mi2, 829 t/mi2, and 715 t/mi2, respectively, from these basins can be attributed to seasonal chloride yields associated with use of road deicing salts. The Niagara Escarpment can produce large amounts of dissolved solids from the dissolution of minerals (a continual process reflected in base flow samples). Groundwater inflows in the Salmon River have very low concentrations of dissolved solids due to minimal bedrock interaction along the Tug Hill Plateau and discharge from the Tug Hill sand and gravel aquifer, which has minimal mineralization.

  3. Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed

    DTIC Science & Technology

    2016-04-08

    factors playing an augmenting role. The authors found a seasonal relationship with temperature , pH, and dissolved oxygen (DO). Additionally, they...2011 ), and nutrients (2013). In 1994, a Public Health Advisory ( fish consumption advisory) which is still in place today, was issued by the D.C...Dissolved Solids (TDS) Escherichia coli (E.coli) Temperature Dissolved Oxygen (DO) Total Colifonns - Electrical Conductivity (EC) Nitrate (N03-N

  4. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture.

    PubMed

    Joshi, Hemant N; Tejwani, Ravindra W; Davidovich, Martha; Sahasrabudhe, Vaishali P; Jemal, Mohammed; Bathala, Mohinder S; Varia, Sailesh A; Serajuddin, Abu T M

    2004-01-09

    Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.

  5. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  6. Alternative Water Processor Test Development

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray; hide

    2013-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  7. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.

    PubMed

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-05-15

    The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.

  8. Alternative Water Processor Test Development

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew

    2012-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  9. Preparation, certification and validation of a stable solid spike of uranium and plutonium coated with a cellulose derivative for the measurement of uranium and plutonium content in dissolved nuclear fuel by isotope dilution mass spectrometry.

    PubMed

    Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger

    2008-02-01

    A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.

  10. A water-quality assessment of the Busseron Creek watershed, Sullivan, Vigo, Greene, and Clay Counties, Indiana

    USGS Publications Warehouse

    Eikenberry, Stephen E.

    1978-01-01

    Chemical quality of surface water in the 237-square mile Busseron Creek watershed, in Indiana, is significantly affected by drainage from coal mines and municipalities. Drainage from coal mines is primarily a problem of higher than normal dissolved-solids concentration, whereas, drainage from municipalities is generally a problem of bacteria and phytoplankton. Generally, the water is calcium bicarbonate type, except in streams affected by drainage from coal mines, where the water is a mixed calcium and magnesium sulfate type. Ranges of concentration (in milligrams per liter) of dissolved solids and of some of the chemical constituents dissolved in streams from September 1975 to July 1976 were: dissolved solids, from 104 to 2,610; iron, from 0.00 to 150; sulfate, from 14 to 1,900; chloride, from 3.3 to 130; nitrate (as nitroglen), from 0.01 to 5.3; phosphate (as phosphorus), from 0.1 to 1.7; and total organic carbon, from 2.4 to 60. Range of pH was from 2.7 to 9.6 Ranges of concentration of chlorinated hydrocarbons (in micrograms per kilogram) detected in bed material of streams were: aldrin, from 0.2 to 0.4; chlordane, from 0 to 13; DDE, from 0.0 to 0.3; dieldrin, from 0.0 to 9.8; and heptachlor epoxide, from 0 to 1.0. Streams draining municipalities had high populations of fecal coliform bacteria (as many as 46,000 colonies per 100 milliliter) and phytoplankton (as many as 190 ,000 cells per milliliter). Dissolved-oxygen concentration ranged from 2.8 to 15.0 milligrams per liter. 

  11. The Colorado River in the Grand Canyon.

    ERIC Educational Resources Information Center

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…

  12. Bioaccumulation of selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado.

    PubMed

    Herrmann, S J; Turner, J A; Carsella, J S; Lehmpuhl, D W; Nimmo, D R

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 10(3) at Green Mountain Falls and 1.5 × 10(4) at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R (2) = 0.84) and fall (R (2) = 0.95) and dissolved Se and total hardness in the spring and fall (R (2) = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  13. Stagnant surface water bodies (SSWBs) as an alternative water resource for the Chittagong metropolitan area of Bangladesh: physicochemical characterization in terms of water quality indices.

    PubMed

    Rahman, Ismail Md Mofizur; Islam, M Monirul; Hossain, M Mosharraf; Hossain, M Shahadat; Begum, Zinnat A; Chowdhury, Didarul A; Chakraborty, Milan K; Rahman, M Azizur; Nazimuddin, M; Hasegawa, Hiroshi

    2011-02-01

    The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh--where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.

  14. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    PubMed

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.

  15. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation

    PubMed Central

    Cole, Grace; McCaffrey, Joanne; Ali, Ahlam A.; McBride, John W.; McCrudden, Cian M.; Vincente-Perez, Eva M.; Donnelly, Ryan F.; McCarthy, Helen O.

    2017-01-01

    ABSTRACT DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application. PMID:27846370

  16. Local thermodynamic mapping for effective liquid density-functional theory

    NASA Technical Reports Server (NTRS)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  17. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review.

    PubMed

    Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M

    2016-11-01

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vickers indentation hardness of stoichiometric and reduced single crystal TiO2 (rutile) from 25 to 800 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Deadmore, Daniel L.

    1993-01-01

    The indentation microhardness of stoichiometric and reduced single crystal rutile (TiO2) from 25 to 800 C is presented in this paper. The results serve two main purposes. One is to assess the effect of rutile's stoichiometry on its hardness. The other is to test recently suggested theory on solid lubrication with sub Stoichiometric rutile in an effort to better understand shear controlled phenomenon. Microhardness was measured using a Vickers diamond indentor on both vacuum and hydrogen reduced single crystal rutile from 25 to 800 C. The results indicate that stoichiometry and temperature have a pronounced effect on rutile's hardness. The measured effects lend support to theory on solid lubrication by enhanced crystallographic slip and suggest that solid lubricant materials may be produced by careful atomic level tailoring (stoichiometry control).

  19. Evaluation of acute copper toxicity to juvenile freshwater mussels (fatmucket, lampsilis siliquoidea) in natural and reconstituted waters

    USGS Publications Warehouse

    Wang, N.; Mebane, C.A.; Kunz, J.L.; Ingersoll, C.G.; May, T.W.; Arnold, W.R.; Santore, R.C.; Augspurger, T.; Dwyer, F.J.; Barniiart, M.C.

    2009-01-01

    The influence of dissolved organic carbon (DOC) and water composition on the toxicity of copper to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) were evaluated in natural and reconstituted waters. Acute 96-h copper toxicity tests were conducted at four nominal DOC concentrations (0, 2.5, 5, and 10 mg/L as carbon [C]) in dilutions of natural waters and in American Society for Testing and Materials (ASTM) reconstituted hard water. Toxicity tests also were conducted in ASTM soft, moderately hard, hard, and very hard reconstituted waters (nominal hardness 45-300 mg/L as CaCO3). Three natural surface waters (9.5-11 mg/L DOC) were diluted to obtain a series of DOC concentrations with diluted well water, and an extract of natural organic matter and commercial humic acid was mixed with ASTM hard water to prepare a series of DOC concentrations for toxicity testing. Median effective concentrations (EC50s) for dissolved copper varied >40-fold (9.9 to >396 ??g Cu/L) over all 21 treatments in various DOC waters. Within a particular type of DOC water, EC50s increased 5- to 12-fold across DOC concentrations of 0.3 to up to 11 mg C/L. However, EC50s increased by only a factor of 1.4 (21 30 ??g Cu/L) in the four ASTM waters with wide range of water hardness (52-300 mg CaCO 3/L). Predictions from the biotic ligand model (BLM) for copper explained nearly 90% of the variability in EC50s. Nearly 70% of BLM-normalized EC50s for fatmucket tested in natural waters were below the final acute value used to derive the U.S. Environmental Protection Agency acute water quality criterion for copper, indicating that the criterion might not be protective of fatmucket and perhaps other mussel species. ?? 2009 SETAC.

  20. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.

    PubMed

    Stoiber, Tasha; Croteau, Marie-Noële; Römer, Isabella; Tejamaya, Mila; Lead, Jamie R; Luoma, Samuel N

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  1. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    USGS Publications Warehouse

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  2. Water quality and bathymetry of Sand Lake, Anchorage, Alaska

    USGS Publications Warehouse

    Donaldson, Donald E.

    1976-01-01

    Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)

  3. Recovery of iron oxide from coal fly ash

    DOEpatents

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  4. Hydrology of carbonate aquifers in southwestern Linn County and adjacent parts of Benton, Iowa, and Johnson Counties, Iowa

    USGS Publications Warehouse

    Wahl, Kenneth; Bunker, Bill J.

    1986-01-01

    Water analyses from the Devonian and Silurian aquifers indicate that they are of similar chemical quality at most locations in the study area. However, they may commonly contain concentrations of sulfate that exceed 1,000 mil grams per liter. Dissolved-solids concentrations as much as 2,350 milligrams per liter occur in the Silurian aquifer in the western and southwestern part of the study area. Water from the Quaternary aquifer generally is suitable for most uses and dissolved-solids concentrations generally are less than 750 milligrams per liter.

  5. Water quality of the Quaternary and Ada-Vamoosa aquifers on the Osage Reservation, Osage County, Oklahoma, 1997

    USGS Publications Warehouse

    Abbott, Marvin M.

    2000-01-01

    The project was to provide information on the quality of ground water from rural-domestic-water wells within the Osage Reservation and compare the water-quality to proximity to oil wells. About 38,500 oil wells have been drilled in the Reservation since drilling began in 1896. About 1,480 square miles or 64 percent of the Reservation is within a quarter mile of an oil well. The unconfined Quaternary sand aquifer covers about 315 square miles or about 14 percent of the Reservation and the confined Ada-Vamoosa sandstone aquifer covers about 800 square miles or about 35 percent of the Reservation. Fifty-eight percent of the Quaternary aquifer and 69 percent of the outcrop area of the Ada-Vamoosa aquifer are within a quarter mile of an oil well . One hundred twenty domestic ground-water wells were sampled from the Quaternary and Ada-Vamoosa aquifers. Forty-nine percent of the Reservation is underlain by the aquifers. Ground-water quality is good on most of the Reservation, but the use of domestic water-supply wells tend to minimize water-quality problems. Existing water-supply wells commonly are located in areas that produce usable volumes of potable water. Several constituents in samples from the Ada-Vamoosa-aquifer within a quarter mile of an oil well were significantly greater than from the aquifer not near oil wells. The constituents include specific conductance, dissolved solids, sodium, sulfate, chloride, bromide, and silica. These ions are probably derived from brine water. In the Ada-Vamoosa aquifer subgroups, 57 percent of the samples near oil wells and 24 percent of the samples not near oil wells had dissolved-solids concentrations greater than 500 milligrams per liter. The water quality in the Quaternary and Ada-Vamoosa aquifers is similar in areas where no oil wells have been drilled but is significantly different for several constituents. Median concentrations of major constituents from the Ada-Vamoosa aquifer not near oil wells were less than or equal to values from the Quaternary aquifer. Sixty-four percent of the water-quality samples from the Quaternary and 51 percent from the Ada-Vamoosa aquifers have dissolved-solids concentrations less than the secondary drinking water regulations of 500 milligrams per liter. Fifty-nine percent of the aquifer samples in the Quaternary aquifer subgroups not near oil wells and 70 percent of the samples near oil wells had dissolved solids less than 500 milligrams per liter. Areas in the Ada-Vamoosa aquifer near Hominy, Pershing, and Hula Lake have dissolved-solids concentrations greater than the secondary drinking water regulations. Water-quality samples from the Quaternary aquifer in these areas also have dissolved-solids concentrations greater than 500 milligrams per liter.

  6. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    PubMed

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  7. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  8. Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion.

    PubMed

    Sammour, Omaima A; Hammad, Mohammed A; Megrab, Nagia A; Zidan, Ahmed S

    2006-06-16

    The purpose of the present investigation was to increase the solubility and dissolution rate of rofecoxib by the preparation of its solid dispersion with polyvinyl pyrrolidone K30 (PVP K30) using solvent evaporation method. Drug-polymer interactions were investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). For the preparation of rofecoxib mouth dissolve tablets, its 1:9 solid dispersion with PVP K30 was used with various disintegrants and sublimable materials. In an attempt to construct a statistical model for the prediction of disintegration time and percentage friability, a 3(2) randomized full and reduced factorial design was used to optimize the influence of the amounts of superdisintegrant and subliming agent. The obtained results showed that dispersion of the drug in the polymer considerably enhanced the dissolution rate. The drug-to-carrier ratio was the controlling factor for dissolution improvement. FTIR spectra revealed no chemical incompatibility between the drug and PVP K30. As indicated from XRD and DSC data, rofecoxib was in the amorphous form, which explains the better dissolution rate of the drug from its solid dispersions. Concerning the optimization study, the multiple regression analysis revealed that an optimum concentration of camphor and a higher percentage of crospovidone are required for obtaining rapidly disintegrating tablets. In conclusion, this investigation demonstrated the potential of experimental design in understanding the effect of the formulation variables on the quality of mouth dissolve tablets containing solid dispersion of a hydrophobic drug.

  9. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    USGS Publications Warehouse

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.

  10. The rheological and textural characterization of Soluplus®/Vitamin E composites.

    PubMed

    Salawi, Ahmad; Nazzal, Sami

    2018-07-30

    Soluplus® is a graft amphiphilic copolymer that is frequently used as an excipient in solid dosage forms as a dissolution and a solubility enhancer. We discovered that Soluplus® can be dissolved in vitamin E. The result is a tacky and highly adhesive material. Our research objective was to evaluate the rheological, adhesive, and textural properties of the Soluplus®/Vitamin E composites. In this study, Soluplus® was dissolved under heat in vitamin E at increasing concentrations from 0 to 40% (by weight). The flow behavior of the Soluplus®/Vitamin E composites was determined by applying shear stress using an advanced AR2000 rheometer. Under the linear viscoelastic region (LVR), the rheological properties of the blends such as dynamic viscosity (η'), storage modulus (G'), loss modulus (G″), and the phase angle tangent (tan δ) were measured. Hardness, adhesiveness, and cohesiveness of the blends were also measured with a TA.XT plus texture analyzer. Rheological analysis showed that the viscosity of the Soluplus®/Vitamin E composites increased with an increase in Soluplus® concentration but decreased as the temperature increased from 20 to 90 °C. The adhesiveness of the blends also significantly increased with an increase in Soluplus® concentration. The results from this study indicated that Soluplus®/Vitamin E composites have the potential to be exploited in applications where the use of highly adhesive material is desirable. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    PubMed

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  12. Phase diagram of two-dimensional hard ellipses.

    PubMed

    Bautista-Carbajal, Gustavo; Odriozola, Gerardo

    2014-05-28

    We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.

  13. Laboratory Control for Wastewater Facilities, Wastewater Technology: A Two-Year Post High School Instructional Program. Volume III, Parts A, B, C, D, E, F, G.

    ERIC Educational Resources Information Center

    Wagner, David; And Others

    This volume is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and function of the process units in a wastewater treatment plant. Examples of modules include measuring settleable matter, total solids, dissolved solids, suspended solids, and volatile solids. The…

  14. Water requirements of the styrene, butadiene and synthetic-rubber industries

    USGS Publications Warehouse

    Durfor, Charles N.

    1963-01-01

    About 710 million gallons of makeup water is withdrawn daily by the styrene, butadiene, styrene-butadiene rubber (SBR), and specialty-rubber industries; 88 percent of this water is used only for once-through cooling. About 429 million gallons of water daily (mgd) is withdrawn by the butadiene industry; 158 ragd is withdrawn by the styrene industry; 94 mgd is used to make special-purpose synthetic rubber; and 29 mgd is used in the direct manufacture of SBR. The amount of makeup water withdrawn to produce SBR ranges from 11,400 to 418,000 gallons per long ton of finished rubber. The amount of makeup water withdrawn depends upon the type of rubber, the processes used to make SBR and its intermediates (styrene and butadiene), and the availability of water at the styrene, butadiene, and SBR plants. The amount of makeup water used to make styrene ranged from 2.19 to 123 gallons per pound; to make butadiene, ranged from 5.38 to 22.0 gallons per pound; and in the direct manufacture of SBR, ranged from 0.883 to 10.2 gallons per pound of finished rubber. The amount of makeup water withdrawn for use in the manufacture of special-purpose synthetic rubber ranged from 8.45 to 104 gallons per pound. About 64 percent of the makeup water was obtained from salty water sources. These waters, which were used only in once-through cooling, contained as much as 35,000 ppm of dissolved solids. About 26 percent of the makeup water was obtained from fresh-water streams and lakes, and most of the other makeup waters were obtained from ground water. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage. Most makeup water from fresh-water streams, lakes, and wells contained less than 1,000 ppm of dissolved solids, and most makeup water used in the manufacture of SBR contained less than 500 ppm of dissolved solids. The maximum hardness of the untreated fresh makeup waters; used in the manufacture of SBR was less than 500 ppm. About 97 percent of the makeup water withdrawn was discharged to surface waters; the warmed salty waters were returned to their source. The remaining 3 percent, or about 23.6 mgd, of makeup water was used consumptively. The styrene industry consumptively used about 2.0 percent of its intake; the butadiene industry, about 4.5 percent; the specialty-rubber industry, about 9.1 percent; and the SBR industry, about 11 percent. The water shipped in the synthetic-rubber products increased the consumptive use of water by these industries.

  15. Evolution of supersaturation of amorphous pharmaceuticals: the effect of rate of supersaturation generation.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2013-11-04

    The combination of a rapidly dissolving and supersaturating "spring" with a precipitation retarding "parachute" has often been pursued as an effective formulation strategy for amorphous solid dispersions (ASDs) to enhance the rate and extent of oral absorption. However, the interplay between these two rate processes in achieving and maintaining supersaturation remains inadequately understood, and the effect of rate of supersaturation buildup on the overall time evolution of supersaturation during the dissolution of amorphous solids has not been explored. The objective of this study is to investigate the effect of supersaturation generation rate on the resulting kinetic solubility profiles of amorphous pharmaceuticals and to delineate the evolution of supersaturation from a mechanistic viewpoint. Experimental concentration-time curves under varying rates of supersaturation generation and recrystallization for model drugs, indomethacin (IND), naproxen (NAP) and piroxicam (PIR), were generated from infusing dissolved drug (e.g., in ethanol) into the dissolution medium and compared with that predicted from a comprehensive mechanistic model based on the classical nucleation theory taking into account both the particle growth and ripening processes. In the absence of any dissolved polymer to inhibit drug precipitation, both our experimental and predicted results show that the maximum achievable supersaturation (i.e., kinetic solubility) of the amorphous solids increases, the time to reach maximum decreases, and the rate of concentration decline in the de-supersaturation phase increases, with increasing rate of supersaturation generation (i.e., dissolution rate). Our mechanistic model also predicts the existence of an optimal supersaturation rate which maximizes the area under the curve (AUC) of the kinetic solubility concentration-time profile, which agrees well with experimental data. In the presence of a dissolved polymer from ASD dissolution, these observed trends also hold true except the de-supersaturation phase is more extended due to the crystallization inhibition effect. Since the observed kinetic solubility of nonequilibrium amorphous solids depends on the rate of supersaturation generation, our results also highlight the underlying difficulty in determining a reproducible solubility advantage for amorphous solids.

  16. The Introduction of Crystallographic Concepts Using Lap-Dissolve Slide Techniques.

    ERIC Educational Resources Information Center

    Bodner, George M.; And Others

    1980-01-01

    Describes a method using lap-dissolve slide techniques with two or more slide projectors focused on a single screen for presenting visual effects that show structural features in extended arrays of atoms, or ions involving up to several hundred atoms. Presents an outline of an introduction to the structures of crystalline solids. (CS)

  17. Assessment of the quality of groundwater for drinking purposes in the Upper West and Northern regions of Ghana.

    PubMed

    Saana, Sixtus Bieranye Bayaa Martin; Fosu, Samuel Asiedu; Sebiawu, Godfred Etsey; Jackson, Napoleon; Karikari, Thomas

    2016-01-01

    Underground water is an important natural resource serving as a reliable source of drinking water for many people worldwide, especially in developing countries. Underground water quality needs to be given a primary research and quality control attention due to possible contamination. This study was therefore designed to determine the physico-chemical and bacteriological quality of borehole water in the Upper West and Northern regions of Ghana. The study was conducted in seven districts in Ghana (including six in the Upper West region and one in the Northern region). The bacterial load of the water samples was determined using standard microbiological methods. Physico-chemical properties including pH, total alkalinity, temperature, turbidity, true colour, total dissolved solids (TDS), electrical conductivity, total hardness, calcium hardness, magnesium hardness, total iron, calcium ion, magnesium ion, chloride ion, fluoride ion, aluminium ion, arsenic, ammonium ions, nitrate and nitrite concentrations were determined. The values obtained were compared with the World Health Organization (WHO) standards for drinking water. The recorded pH, total alkalinity and temperature ranges were 6.14-7.50, 48-240 mg/l and 28.8-32.8 °C, respectively. Furthermore, the mean concentrations of iron, calcium, magnesium, chloride, fluoride, aluminium, arsenic, ammonium, nitrate and nitrite were 0.06, 22.11, 29.84, 13.97, 0.00, 0.00, 0.00, 0.01, 2.09 and 0.26 mg/l, respectively. Turbidity, true colour, TDS and electrical conductivity of the water samples ranged from 0.13 to 105 NTU, 5 to 130 HU, 80.1 to 524 mg/l and 131 to 873 µS/cm, respectively. In addition, the mean total hardness value was found to be 178.07 mg/l whereas calcium hardness and magnesium hardness respectively were 55.28 and 122.79 mg/l. Only 14% of the water samples tested positive for faecal coliforms. The study revealed that only a few of the values for the bacteriological and physico-chemical parameters of the water samples were above the tolerable limits recommended by the WHO. This calls for regular monitoring and purification of boreholes to ensure good water quality.

  18. Comparison of ultrasonic and thermospray systems for high performance sample introduction to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Conver, Timothy S.; Koropchak, John A.

    1995-06-01

    This paper describes detailed work done in our lab to compare analytical figures of merit for pneumatic, ultrasonic and thermospray sample introduction (SI) systems with three different inductively coupled plasma-atomic emission spectrometry (ICP-AES) instruments. One instrument from Leeman Labs, Inc. has an air path echelle spectrometer and a 27 MHz ICP. For low dissolved solid samples with this instrument, we observed that the ultrasonic nebulizer (USN) and fused silica aperture thermospray (FSApT) both offered similar LOD improvements as compared to pneumatic nebulization (PN), 14 and 16 times, respectively. Average sensitivities compared to PN were better for the USN, by 58 times, compared to 39 times for the FSApT. For solutions containing high dissolved solids we observed that FSApT optimized at the same conditions as for low dissolved solids, whereas USN required changes in power and gas flows to maintain a stable discharge. These changes degraded the LODs for USN substantially as compared to those utilized for low dissolved solid solutions, limiting improvement compared to PN to an average factor of 4. In general, sensitivities for USN were degraded at these new conditions. When solutions with 3000 μg/g Ca were analyzed, LOD improvements were smaller for FSApT and USN, but FSApT showed an improvement over USN of 6.5 times. Sensitivities compared to solutions without high dissolved solids were degraded by 19% on average for FSApT, while those for USN were degraded by 26%. The SI systems were also tested with a Varian Instruments Liberty 220 having a vacuum path Czerny-Turner monochromator and a 40 MHz generator. The sensitivities with low dissolved solids solutions compared to PN were 20 times better for the USN and 39 times better for FSApT, and LODs for every element were better for FSApT. Better correlation between relative sensitivities and anticipated relative analyte mass fluxes for FSApT and USN was observed with the Varian instrument. LOD improvements averaged 18 times lower than PN with FSApT while with USN values averaged 8 times lower. When solutions with high dissolved solids were studied it was found that FSApT still offered 5.5 times better LODs than PN and USN offered 4.6 times better LODs than PN. Sensitivities for FSApT averaged 20 times better, while those for USN were 13 times better compared to PN. Finally, background RSDs on the Varian system were generally higher for FSApT than for the USN for similar sample types. A third instrument used for a small set of elements was a Perkin-Elmer model 5500 ICP-AES. This system has a 27 MHz generator with a N 2 purged Czerny-Turner monochromator. LOD trends, background RSDs, and sensitivities were similar to those with the Leeman instrument. However, matrix effects more closely resembled those seen with the Varian instrument for both SI systems. To compare performance and recoveries on a real sample, a National Institute of Standards and Technology, Standard Reference Material 1643c trace elements in water, was analyzed using the Varian system and it was found that both SI systems offered similar recoveries.

  19. Assessing the Nation's Brackish Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Stanton, J.; Anning, D. W.; Moore, R. B.; McMahon, P. B.; Bohlke, J. K.; McGuire, V. L.

    2014-12-01

    Declines in the amount of groundwater in storage as a result of groundwater development have led to concerns about the future availability of freshwater to meet drinking-water, agricultural, industrial, and environmental needs. Industry and public drinking-water suppliers have increasingly turned to nontraditional groundwater sources, such as moderately saline (brackish) groundwater, to supplement or replace the use of freshwater. Despite the growing demand for alternative water sources, a significant potential nontraditional water resource, brackish groundwater, was last assessed almost 50 years ago. The recently (2013) initiated USGS National Brackish Groundwater Assessment, which is part of the National Water Census, will provide an updated systematic national assessment of the distribution of significant brackish groundwater resources and critical information about the hydrogeologic and chemical characterization of brackish aquifers. As part of this study, updated national-scale maps of total dissolved-solids concentrations and chemical water types will be created using data from about 400,000 sites that have been compiled from over 30 national, regional, and state sources. However, available data are biased toward freshwater and shallow systems. Preliminary analysis indicates that about 75 percent of the dissolved-solids concentrations are from freshwater aquifers, and more than 80 percent represent depths less than 500 feet below land surface. Several techniques are used to extend the information contained in the compiled data. For about half of the sites, dissolved-solids concentration was estimated from specific conductance using statistical relations. In addition, for areas where chemical data are not available, regression models are being developed to predict the occurrence of brackish groundwater based on geospatial data such as geology and other variables that are correlated to dissolved-solids concentrations.

  20. Water quality in select regions of Cauvery Delta River basin, southern India, with emphasis on monsoonal variation.

    PubMed

    Solaraj, Govindaraj; Dhanakumar, Selvaraj; Murthy, Kuppuraj Rutharvel; Mohanraj, Rangaswamy

    2010-07-01

    Delta regions of the Cauvery River basin are one of the significant areas of rice production in India. In spite of large-scale utilization of the river basin for irrigation and drinking purposes, the lack of appropriate water management has seemingly deteriorated the water quality due to increasing anthropogenic activities. To assess the extent of deterioration, physicochemical characteristics of surface water were analyzed monthly in select regions of Cauvery Delta River basin, India, during July 2007 to December 2007. Total dissolved solids, chemical oxygen demand, and phosphate recorded maximum levels of 1,638, 96, and 0.43 mg/l, respectively, exceeding the permissible levels at certain sampling stations. Monsoonal rains in Cauvery River basin and the subsequent increase in river flow rate influences certain parameters like dissolved solids, phosphate, and dissolved oxygen. Agricultural runoff from watershed, sewage, and industrial effluents are suspected as probable factors of water pollution.

  1. General surface- and ground-water quality in a coal-resource area near Durango, southwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and Carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. (USGS)

  2. General surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. 10 refs., 11 figs., 10 tabs.

  3. Distribution of phthalates, pesticides and drug residues in the dissolved, particulate and sedimentary phases from transboundary rivers (France-Belgium).

    PubMed

    Net, Sopheak; Rabodonirina, Suzanah; Sghaier, Rafika Ben; Dumoulin, David; Chbib, Chaza; Tlili, Ines; Ouddane, Baghdad

    2015-07-15

    Various drug residues, pesticides and phthalates are ubiquitous in the environment. Their presence in the environment has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health. In this work, 14 drug residues, 24 pesticides and 6 phthalates have been quantified in three matrices (in the dissolved phase, associated to suspended solid matter (SSM), and in sediment) collected from fifteen watercourses and rivers located in a highly industrialized zone at the cross-border area of Northern France and Belgium. The extractions have been carried out using accelerated solvent extraction (ASE) for solid matrices (SSM and sediment) and using solid phase extraction (SPE) for liquid matrix. The final extract was analyzed using GC-MS technique. Among the three classes of compounds, phthalates have been found at highest level compared to pesticides and drug residues. The Σ6PAE concentrations were ranging from 17.2±2.58 to 179.1±26.9μgL(-1) in dissolved phase, from 2.9±0.4 to 21.1±3.2μgL(-1) in SSM and from 1.1±0.2 to 11.9±1.8μgg(-1)dw in sediment. The Σ14drug residue concentrations were lower than 1.3μgL(-1) in the dissolved phases, lower than 30ngL(-1) associated to SSM and from nondetectable levels to 60.7±9.1ngg(-1)dw in sediment. For pesticides, all compounds were below the LOQ values in dissolved phase and in sediment, and only EPTC could be quantified in SSM. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    PubMed

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  5. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Torres, M.; Verba, C.

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop themore » capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.« less

  7. Quality of storm-water runoff, Mililani Town, Oahu, Hawaii, 1980-84

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, C.M.; Lum, M.G.

    1985-01-01

    The data included results from analyses of 300 samples of storm water runoff. Turbidity, suspended solids, Kjeldahl nitrogen, and phosphorus concentrations exceeded the State of Hawaii Department of Health's streamwater standards in more than 50% of the samples. Mercury, lead, and fecal coliform bacteria levels exceeded the US EPAs recommended criteria for either freshwater aquatic life or shellfish harvesting waters in more than half the samples. Other constituents exceeding State or federal standards in at least one sample included pH, cadmium, nitrate plus nitrite, iron, alkalinity, manganese, chromium, copper, zinc, and the pesticides. No statistically significant relationships were found betweenmore » quantity of runoff and concentration of water quality constituents. A first flush effect was observed for chemical oxygen demand, suspended solids, lead, nitrate plus nitrite, fecal coliform bacteria, dissolved solids, and mercury. There were significant differences between the two basins for values of discharge, turbidity, specific conductance, chemical oxygen demand, suspended solids, nitrate plus nitrite, phosphorus, lead, dissolved solids, and mercury. The larger basin had higher median and maximum values, and wider ranges of values. 28 refs., 10 figs., 7 tabs.« less

  8. Quantitative Analysis of Uranium Accumulation on Sediments during Field-scale Biostimulation under Variable Bicarbonate Concentrations at the Rifle IFRC Site

    NASA Astrophysics Data System (ADS)

    Fox, P. M.; Davis, J. A.; Bargar, J.; Williams, K. H.; Singer, D. M.; Long, P.

    2011-12-01

    Bioremediation of uranium in subsurface environments is an approach that has been used at numerous field sites throughout the U.S in an attempt to lower dissolved U(VI) concentrations in groundwater. At the Rifle IFRC research site in Colorado, biostimulation of the native microbial population through acetate amendment for various periods of time has been tested in order to immobilize uranium through reduction U(VI) to U(IV). While this approach has successfully decreased U(VI) concentrations in the dissolved phase, often to levels below the EPA's maximum contaminant level of 0.13 μM, little work has examined the solid-phase accumulation of U during field-scale biostimulation. The lack of information on solid-phase U accumulation is due in large part to the difficulty of obtaining comparable pre- and post-biostimulation field sediment samples. In addition, the relatively low (<10 ppm) U concentrations present in most sediments preclude the use of spectroscopic techniques such as XAS for examining solid-phase U speciation. However, a recently developed technique of performing column experiments in situ has allowed us to overcome both of these problems, obtaining sediment samples which were exposed to the same biogeochemical conditions as subsurface sediments during the course of biostimulation. During the 2010 Rifle IFRC field experiment (dubbed "Super 8"), a number of in situ columns were deployed in various wells representing regions of the aquifer affected by acetate amendment (ambient bicarbonate) and concomitant acetate and bicarbonate amendment (elevated bicarbonate). Elevated levels of bicarbonate have been shown to cause desorption of U(VI) from the solid phase at the Rifle site under non-stimulated conditions, resulting in higher dissolved U(VI) concentrations in the aquifer. The Super 8 field experiment was designed in part to test the effect of elevated bicarbonate concentrations on U sequestration during biostimulation. Results from this experiment provide a comparison of temporal aqueous and solid-phase U concentrations under ambient and elevated bicarbonate conditions during field-scale biostimulation. Additionally, a subset of in situ columns amended with 20 μM U(VI) were analyzed by XANES in order to determine the relative importance of U(VI) and U(IV) in the solid phase. While the elevated bicarbonate concentrations did not impede reduction and sequestration of U, differences in the behavior of dissolved U(VI) after acetate amendment was stopped demonstrate the importance of U adsorption-desorption reactions in controlling dissolved U concentrations post-biostimulation.

  9. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.

  10. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  11. Influence of selected water quality characteristics on the toxicity of lambda-cyhalothrin and gamma-cyhalothrin to Hyalella azteca.

    PubMed

    Smith, S; Lizotte, R E

    2007-11-01

    This study was conducted to assess the influence of suspended solids, dissolved organic carbon, and phytoplankton (as chlorophyll a) water quality characteristics on lambda-cyhalothrin and gamma-cyhalothrin aqueous toxicity to Hyalella azteca using natural water from 12 ponds and lakes in Mississippi, USA with varying water quality characteristics. H. azteca 48-h immobilization EC50 values ranged from 1.4 to 15.7 ng/L and 0.6 to 13.4 ng/L for lambda-cyhalothrin and gamma-cyhalothrin, respectively. For both pyrethroids, EC50 values linearly increased as turbidity, suspended solids, dissolved organic carbon and chlorophyll a concentrations increased.

  12. Materials and Electronic Equipment Corrosion Tests in Some U.S. Navy Geothermal Environments.

    DTIC Science & Technology

    1983-03-01

    dissolved solids ə 5.0 ə 5.0 Mercury ɘ.0002 ɘ.0002 Lithium ɘ.01 ɘ.01 Silica as Si0 2 ə.0 ə.0 Aluminum 0.1 ɘ.1 Boron 0.01 ɘ.01 Phosphate ɘ.1 ɘ...Nitrate 2.7 Fluoride 2.80 Iron 0.08 Manganese 0.07 Arsenic 0.20 Copper 0.02 Zinc 0.27 Total dissolved solids 7013.0 Mercury ɘ.0002 Lithium 0.16 Silica as...Behavior of Passive Layers on Titanium," Corrosion, Vol. 38 (5), 1982, pp. 237-240. 7. J. S. Smith and J. D. A. Miller. "Nature of Sulphides and Their

  13. Physical environment and hydrologic characteristics of coal-mining areas in Missouri

    USGS Publications Warehouse

    Vaill, J.E.; Barks, James H.

    1980-01-01

    Hydrologic information for the north-central and western coal-mining regions of Missouri is needed to define the hydrologic system in these areas of major historic and planned coal development. This report describes the physical setting, climate, coal-mining practices, general hydrologic system, and the current (1980) hydrologie data base in these two coal-mining regions. Streamflow in both mining regions is poorly sustained. Stream water quality generally varies with location and the magnitude of coal-mining activity in a watershed. Streams in non coal-mining areas generally have dissolved-solids concentrations less than 400 milligrams per liter. Acid-mine drainage has seriously affected some streams by reducing the pH to less than 4.0 and increasing the dissolved-solids concentrations to greater than 1,000 milligrams per liter. This has resulted in fish kills in some instances. Ground-water movement is impeded both laterally and vertically in both mining regions, especially in western Missouri, because of the low hydraulic conductivity of the rocks of Pennsylvanian age. The quality of ground water varies widely depending on location and depth. Ground water commonly contains high concentrations of iron and sulfate, and dissolved-solids concentrations generally are greater than 1,000 milligrams per liter.

  14. Delineation and description of the regional aquifer systems of Tennessee; Cumberland Plateau aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Macy, J.A.; Mulderink, Dolores; Zemo, Dawn

    1986-01-01

    The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water, The Pennington Formation serves as the base of this aquifer system and is an effective confining unit, The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau, wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies, water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer. only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids, However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.

  15. Preliminary delineation and description of the regional aquifers of Tennessee : Cumberland Plateau aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Macy, Jo Ann; Mulderink, Dolores; Zemo, Dawn

    1986-01-01

    The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water. The Pennington Formation serves as the base of this aquifer system and is an effective confining unit. The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau. Wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies. Water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer, only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids. However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.

  16. Geophysical delineation of the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards Aquifer, Travis and Hays Counties, Texas, September 2006

    USGS Publications Warehouse

    Payne, J.D.; Kress, W.H.; Shah, S.D.; Stefanov, J.E.; Smith, B.A.; Hunt, B.B.

    2007-01-01

    During September 2006, the U.S. Geological Survey, in cooperation with the Barton Springs/Edwards Aquifer Conservation District, conducted a geophysical pilot study to determine whether time-domain electromagnetic (TDEM) sounding could be used to delineate the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards aquifer in Travis and Hays Counties, Texas. There was uncertainty regarding the application of TDEM sounding for this purpose because of the depth of the aquifer (200-500 feet to the top of the aquifer) and the relatively low-resistivity clayey units in the upper confining unit. Twenty-five TDEM soundings were made along four 2-3-mile-long profiles in a study area overlying the transition zone near the Travis-Hays County boundary. The soundings yield measurements of subsurface electrical resistivity, the variations in which were correlated with hydrogeologic and stratigraphic units, and then with dissolved solids concentrations in the aquifer. Geonics Protem 47 and 57 systems with 492-foot and 328-foot transmitter-loop sizes were used to collect the TDEM soundings. A smooth model (vertical delineation of calculated apparent resistivity that represents an estimate [non-unique] of the true resistivity) for each sounding site was created using an iterative software program for inverse modeling. The effectiveness of using TDEM soundings to delineate the transition zone was indicated by comparing the distribution of resistivity in the aquifer with the distribution of dissolved solids concentrations in the aquifer along the profiles. TDEM sounding data show that, in general, the Edwards aquifer in the study area is characterized by a sharp change in resistivity from west to east. The western part of the Edwards aquifer in the study area shows higher resistivity than the eastern part. The higher resistivity regions correspond to lower dissolved solids concentrations (freshwater), and the lower resistivity regions correspond to higher dissolved solids concentrations (saline water). On the basis of reasonably close matches between the inferred locations of the freshwater/saline-water transition zone in the Edwards aquifer in the study area from resistivities and from dissolved solids concentrations in three of the four profiles, TDEM sounding appears to be a suitable tool for delineating the transition zone.

  17. Drinking-water quality and variations in water levels in the fractured crystalline-rock aquifer, west-central Jefferson County, Colorado. Water-resources investigations (interim)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.C.; Johnson, C.J.

    1979-09-01

    In parts of the area, water for domestic use obtained from the fractured crystalline-rock aquifer contained excessive concentrations of dissolved fluoride, dissolved nitrite plus nitrate, dissolved solids, dissolved iron, dissolved manganese, dissolved zinc, coliform bacteria, gross alpha radiation, and gross beta radiation. Based on water-quality analyses from 26 wells located in small urbanized areas, water from 21 of the wells contained excessive concentrations of one or more constituents. Local variations in concentrations of 15 chemical constituents, specific conductance, and water temperature were statistically significant. Depths to water in 11 non-pumping wells ranged from 1 to 15 feet annually. Three-year trendsmore » in water-level changes in 6 of the 11 wells indicated a decrease in stored water in the aquifer.« less

  18. MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  19. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics.

    PubMed

    Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N

    2017-10-01

    A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration. 

  1. Simulation of Hydrodynamics and Water Quality in Pueblo Reservoir, Southeastern Colorado, for 1985 through 1987 and 1999 through 2002

    USGS Publications Warehouse

    Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to May 1986 and 1987, and slightly greater than measured data in August and September 1987. Relative to the calibration period, simulated water temperatures during the verification period did not compare as well to measured water temperatures. In general, simulated dissolved-oxygen concentrations for the calibration period compared well to measured concentrations in Pueblo Reservoir. Spatially, simulated concentrations deviated more from the measured values at the downstream part of the reservoir than at other locations in the reservoir. Overall, the absolute mean error ranged from 1.05 (site 1B) to 1.42 milligrams per liter (site 7B), and the root mean square error ranged from 1.12 (site 1B) to 1.67 milligrams per liter (site 7B). Simulated dissolved oxygen in the verification period compared better to the measured concentrations than in the calibration period. The absolute mean error ranged from 0.91 (site 5C) to 1.28 milligrams per liter (site 7B), and the root mean square error ranged from 1.03 (site 5C) to 1.46 milligrams per liter (site 7B). Simulated total dissolved solids generally were less than measured total dissolved-solids concentrations in Pueblo Reservoir from October 1985 through September 1987. The largest differences between simulated and measured total dissolved solids were observed at the most downstream sites in Pueblo Reservoir during the second year of the calibration period. Total dissolved-solids data were not available from reservoir sites during the verification period, so in-reservoir specific-conductance data were compared to simulated total dissolved solids. Simulated total dissolved solids followed the same patterns through time as the measured specific conductance data during the verification period. Simulated total nitrogen concentrations compared relatively well to measured concentrations in the Pueblo Reservoir model. The absolute mean error ranged from 0.21 (site 1B) to 0.27 milligram per liter as nitrogen (sites 3B and 7

  2. Development of a regionally consistent geospatial dataset of agricultural lands in the Upper Colorado River Basin, 2007-10

    USGS Publications Warehouse

    Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.

    2014-01-01

    Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.

  3. Natural Radium Detection and Inventory Flux of Isotopes in Particulate and Dissolved Phases of Seawater at Kapar Coastal Area Caused by Coal-Fired Power Plant

    NASA Astrophysics Data System (ADS)

    Mohamed, N.; Ariffin, N. A. N.; Mohamed, C. A. R.

    2016-07-01

    Distribution of 226Ra and 228Ra radioactive in marine have been studied at Kapar coastal area that closed to Sultan Salahudin Abdul Aziz Shah (SJSSAS) power station. The concentration level of 226Ra and 228Ra were measured in seawater include total suspended solids (TSSrw) and dissolved phases from September 2006 to February 2008. The measurement technique used for 226Ra and 228Ra was using cation exchange column and counted using Liquid Scintillator Ciunter (LSC). The radioactivities of 226Rasw and 228Rasw in the dissolved phase of seawater ranged from 1.29 ± 0.52 mBq/L - 3.69 ± 1.29 mBq/L and 2.12 ± 0.71 mbq/L - 17.07 ± 6.03 mBq/L respectively. The measurement of radioactivities of radium isotopes in the particulate phase of seawater ranged from 15.62 ± 1.99 Bq/kg - 241.76 ± 100.23 Bq/kg (226Ratsw) and 7.19 ± 3.21 Bq/kg - 879.66 ± 365.74 Bq/kg (228Ratsw). Radium isotopes inventory in this study showed that suspended solid have higher inventory value than seawater and sediment. Study also found that suspended solid play an important role for flux contribution at seawater. Based on the finding, the radioactivity concentration of 226Ra and 228Ra is higher in particulate phase than in dissolved phase.

  4. Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice.

    PubMed

    Gallagher, D L; Johnston, K M; Dietrich, A M

    2001-08-01

    The fate and distribution of copper-based crop protectants, applied to plasticulture tomato fields to protect against disease, were investigated in a greenhouse-scale simulation of farming conditions in a coastal environment. Following rainfall, 99% of the applied copper was found to remain on the fields sorbed to the soil and plants; most of the soil-bound copper was found sorbed to the top 2.5 cm of soil between the plasticulture rows. Of the copper leaving the agricultural fields, 82% was found in the runoff with the majority, 74%. sorbed to the suspended solids. The remaining copper, 18%, leached through the soil and entered the groundwater with 10% in the dissolved phase and 8% sorbed to suspended solids. Although only 1% copper was found to leave the field, this was sufficient to cause high copper concentrations (average 2102+/-433 microg/L total copper and 189+/-139 microg/L dissolved copper) in the runoff. Copper concentrations in groundwater samples were also high (average 312+/-198 microg/L total copper and 216+/-99 microg/L dissolved copper). Sedimentation, a best management practice for reducing copper loadings. was found to reduce the total copper concentrations in runoff by 90% to a concentration of 245+/-127 microg/L; however, dissolved copper concentrations remained stable, averaging 139+/-55 microg/L. Total copper concentrations were significantly reduced by the effective removal of suspended solids with sorbed copper.

  5. Study of the efficiency of some water treatment unit that present in houses in Erbil city-Iraq

    NASA Astrophysics Data System (ADS)

    Toma, Janan. Jabbar.; Hanna, Aveen. Matti.

    2017-09-01

    Many people in Erbil city started more than two decade to put special treatment units in their houses to purified water to become safer for drinking uses. The aim of this study was determine the efficiency of six kind water treatment units which include (two replicate of Crystal Water Purifier, So-Safe Water Filter, R O Water Purifier, Kontec Water Purified and Al-Kawther Purified Water). Water samples were collected in two sites one before and other after treatment unit. Each sample was collect with three replication during May to October-2016. Analyzed for Major cations concentration (calcium, magnesium, sodium and potassium), anions concentration (nitrate and chloride) and hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), alkalinity and total hardness by using standard methods. The water quality index values for all raw water sample befor and after treatment was good and excellent respectively for drinking purposes. Efficiency of So-Safe Water Filter was 66.32% it means was more efficiency than others special water treatment units while in RO Water Purifier was 27.14%, means less efficiency than other water purifier water under this study. Values for major cations, anions and others chemicals characteristics in the water samples after treatment became lower concentrations than befor treatment, likely an indication that these were removed by treatment. According to guideline of world health organization all of variables except total hardness befor treatment are safe and suitable for drinking purposes.

  6. Evaluation of corrosion and scaling tendency indices in a drinking water distribution system: a case study of Bandar Abbas city, Iran.

    PubMed

    Alipour, Vali; Dindarloo, Kavoos; Mahvi, Amir Hossein; Rezaei, Leila

    2015-03-01

    Corrosion and scaling is a major problem in water distribution systems, thus evaluation of water corrosivity properties is a routine test in water networks. To evaluate water stability in the Bandar Abbas water distribution system, the network was divided into 15 clusters and 45 samples were taken. Langelier, Ryznar, Puckorius, Larson-Skold (LS) and Aggressive indices were determined and compared to the marble test. The mean parameters included were pH (7.8 ± 0.1), electrical conductivity (1,083.9 ± 108.7 μS/cm), total dissolved solids (595.7 ± 54.7 mg/L), Cl (203.5 ± 18.7 mg/L), SO₄(174.7 ± 16.0 mg/L), alkalinity (134.5 ± 9.7 mg/L), total hardness (156.5 ± 9.3 mg/L), HCO₃(137.4 ± 13.0 mg/L) and calcium hardness (71.8 ± 4.3 mg/L). According to the Ryznar, Puckorius and Aggressive Indices, all samples were stable; based on the Langelier Index, 73% of samples were slightly corrosive and the rest were scale forming; according to the LS index, all samples were corrosive. Marble test results showed tested water of all 15 clusters tended to scale formation. Water in Bandar Abbas is slightly scale forming. The most appropriate indices for the network conditions are the Aggressive, Puckorius and Ryznar indices that were consistent with the marble test.

  7. Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, A.J.; Cherry, D.S.; Zipper, C.E.

    2005-08-01

    The United States Environmental Protection Agency has defined national in-stream water-quality criteria (WQC) for 157 pollutants. No WQC to protect aquatic life exist for total dissolved solids (TDS). Some water-treatment processes (e.g., pH modifications) discharge wastewaters of potentially adverse TDS into freshwater systems. Strong correlations between specific conductivity, a TDS surrogate, and several biotic indices in a previous study suggested that TDS caused by a coal-mine effluent was the primary stressor. Further acute and chronic testing in the current study with Ceriodaphnia dubia in laboratory-manipulated media indicated that the majority of the effluent toxicity could be attributed to the mostmore » abundant ions in the discharge, sodium (1952 mg/L) and/or sulfate (3672 mg/L), although the hardness of the effluent (792 43 mg/L as CaCO{sub 3}) ameliorated some toxicity. Based on laboratory testing of several effluent-mimicking media, sodium- and sulfate-dominated TDS was acutely toxic at approximately 7000 {mu} S/cm (5143 mg TDS/L), and chronic toxicity occurred at approximately 3200 {mu} S/cm (2331 mg TDS/L). At a lower hardness (88 mg/L as CaCO{sub 3}), acute and chronic toxicity end-points were decreased to approximately 5000 {mu} S/cm (3663 mg TDS/L) and approximately 2000 {mu} S/cm (1443 mg TDS/L), respectively. Point-source discharges causing in-stream TDS concentrations to exceed these levels may risk impairment to aquatic life.« less

  8. Characterization of surface-water quality based on real-time monitoring and regression analysis, Quivira National Wildlife Refuge, south-central Kansas, December 1998 through June 2001

    USGS Publications Warehouse

    Christensen, V.G.

    2001-01-01

    Because of the considerable wildlife benefits offered by the Quivira National Wildlife Refuge in south-central Kansas, there is a desire to ensure suitable water quality. To assess the quality of water flowing from Rattlesnake Creek into the refuge, the U.S. Geological Survey collected periodic water samples from December 1998 through June 2001 and analyzed the samples for physical properties, dissolved solids, total suspended solids, suspended sediment, major ions, nutrients, metals, pesticides, and indicator bacteria. Concentrations of 10 of the 125 chemicals analyzed did not meet water-quality criteria to protect aquatic life and drinking water in a least one sample. These were pH, turbidity, dissolved oxygen, dissolved solids, sodium, chloride, phosphorus, total coliform bacteria, E. coli bacteria, and fecal coliform bacteria. No metal or pesticide concentrations exceeded water-quality criteria. Twenty-two of the 43 metals analyzed were not detected, and 36 of the 46 pesticides analyzed were not detected. Because dissolved solids, sodium, chloride, fecal coliform bacteria, and other chemicals that are a concern for the health and habitat of fish and wildlife at the refuge cannot be measured continuously, regression equations were developed from a comparison of the analytical results of periodic samples and in-stream monitor measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen. A continuous record of estimated chemical concentrations was developed from continuously recorded in-stream measurements. Annual variation in water quality was evaluated by comparing 1999 and 2000 sample data- the 2 years for which complete data sets were available. Median concentrations of alkalinity, fluoride, nitrate, and fecal coliform bacteria were smaller or did not change from 1999 to 2000. Dissolved solids, total suspended solids, sodium, chloride, sulfate, total organic nitrogen, and total phosphorus had increases in median concentrations from 1999 to 2000. Increases in the median concentrations of the major ions were expected due to decreased rainfall in 2000 and very low streamflow late in the year. Increases for solids and nutrients may have been due to the unusually high streamflow in the early spring of 2000. This was the time of year when fields were tilled, exposing solids and nutrients that were transported with runoff to Rattlesnake Creek. Load estimates indicate the chemical mass transported into the refuge and can be used in the development of total maximum daily loads (as specified by the U.S. Environmental Protection Agency) for water-quality contaminants in Rattlesnake Creek. Load estimates also were used to evaluate seasonal variation in water quality. Seasonal variation was most pronounced in the estimates of nutrient loads, and most of the nutrient load transported to the refuge occurred during just a few periods of surface runoff in the spring and summer. This information may be used by resource managers to determine when water-diversion strategies would be most beneficial. Load estimates also were used to calculate yields, which are useful for site comparisons. The continuous and real-time nature of the record of estimated concentrations, loads, and yields may be important for resource managers, recreationalists, or others for evaluating water-diversion strategies, making water-use decisions, or assessing the environmental effects of chemicals in time to prevent adverse effects on fish or other aquatic life at the refuge.

  9. Geology and ground-water resources of the upper Lodgepole Creek drainage basin, Wyoming, with a section on chemical quality of the water

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Krieger, R.A.; Jochens, E.R.

    1959-01-01

    The principal sources of ground-water supply in the upper Lodgepole Creek drainage basin-the part of the basin west of the Wyoming-Nebraska State line-are the Brule formation of Oligocene age, the Arikaree formation of Miocene age, the Ogallala formation of Pliocene age, and the unconsolidated deposits of Quaternary age. The Brule formation is a moderately hard siltstone that generally is not a good aquifer. However, where it is fractured or where the upper part consists of pebbles of reworked siltstone, it will yield large quantities of water to wells. Many wells in the Pine Bluffs lowland, at the east end of the area, derive water from the Brule. The Arikaree formation, which consists of loosely to moderately cemented fine sand, will yield small quantities of water to wells but is not thick enough or permeable enough to supply sufficient water for irrigation. Only a few wells derive water from it. The Ogallala formation consists of lenticular beds of clay, silt, sand, and gravel which, in part, are cemented with calcium carbonate. Only the lower part of the formation is saturated. Nearly all the wells in the upland part of the area tap the Ogallala, but they supply water in amounts sufficient for domestic and stock use only. Two of the wells have a moderately large discharge, and other wells of comparable discharge probably could be drilled in those parts of the upland where the saturated part of the Ogallala is fairly thick. Most of the unconsolidated deposits of Quaternary age are very permeable and, where a sufficient thickness is saturated, will yield large quantities of water to wells. These deposits are a significant source of water supply in the southeastern part of the area. The Chadron formation of Oligocene age, which underlies the Brule formation, is a medium- to coarse-grained sandstone where it crops out in the Islay lowland. No wells tap the Chadron, but it probably would yield small quantities of water to wells. It lies at a relatively shallow depth beneath most of the Islay lowland, near the west end of the area, and at a depth of about 800 feet beneath the Pine Bluffs lowland. In the latter area it probably is finer grained and may not be permeable enough to yield water to wells. All the ground water in the area is derived from precipitation. It is estimated that about 5 percent of the precipitation infiltrates directly to the zone of saturation. The remainder either is evaporated immediately; is retained by the soil, later to be evaporated or transpired; or is discharged by overland flow to the surface drainage courses. Most of the water that reaches the surface drainage courses eventually sinks to the zone of saturation or is evaporated. The slope of the water table and the movement of ground water are generally eastward. The depth to water ranges from less than 10 feet in parts of the valley to about 300 feet in the upland areas. In much of the Pine Bluffs lowland, the depth to water is less than 50 feet. Ground water not pumped from wells within the area is discharged by evapotranspiration where the water table is close to the land surface, by outflow into streams, or by underflow eastward beneath the State line. The chemical quality of ground water from the principal sources is remarkably uniform, and the range in concentration of dissolved constituents is narrow. In general, the water is of the calcium bicarbonate type, is hard (hardness as CaC03 is as high as 246 ppm), and contains less than about 400 parts per million of dissolved solids, which is a moderate mineralization. Silica constitutes a large proportion of the dissolved solids. The water is suitable for irrigation and, except for iron in water from some wells that tap the Ogallala formation, meets the drinking water standards of the U.S. Public Health Service for chemical constituents. Because the water is siliceous, alkaline, and hard, it is unsuitable for many industrial uses unless treated.

  10. Changes of physicochemical and microbiologicalparameters of infiltration water at Debina intake in Poznan, unique conditions - a flood

    NASA Astrophysics Data System (ADS)

    Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław

    2018-02-01

    The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.

  11. Quality characterization and pollution source identification of surface water using multivariate statistical techniques, Nalagarh Valley, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Herojeet, Rajkumar; Rishi, Madhuri S.; Lata, Renu; Dolma, Konchok

    2017-09-01

    Sirsa River flows through the central part of the Nalagarh valley, belongs to the rapid industrial belt of Baddi, Barotiwala and Nalagarh (BBN). The appraisal of surface water quality to ascertain its utility in such ecologically sensitive areas is need of the hour. The present study envisages the application of multivariate analysis, water utility class and conventional graphical representation to reveal the hidden factor responsible for deterioration of water quality and determine the hydrochemical facies and its evolution processes of water types in Nalagarh valley, India. The quality assessment is made by estimating pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness, major ions (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, SO4 2-, NO3 - and PO4 3-), dissolved oxygen (DO), biological oxygen demand (BOD) and total coliform (TC) to determine its suitability for drinking and domestic purposes. The parameters like pH, TDS, TH, Ca2+, HCO3 -, Cl-, SO4 2-, NO3 - are within the desirable limit as per Bureau of Indian Standards (Indian Standard Drinking Water Specification (Second Edition) IS:10500. Indian Standard Institute, New Delhi, pp 1-18, 2012). Mg2+, Na+ and K+ ions for pre monsoon and EC during pre and post monsoon at few sites and approx 40% samples of BOD and TC for both seasons exceeds the permissible limits indicate organic contamination from human activities. Water quality classification for designated use indicates that maximum surface water samples are not suitable for drinking water source without conventional treatment. The result of piper trillinear and Chadha's diagram classified majority of surface water samples for both seasons fall in the fields of Ca2+-Mg2+-HCO3 - water type indicating temporary hardness. PCA and CA reveal that the surface water chemistry is influenced by natural factors such as weathering of minerals, ion exchange processes and anthropogenic factors. Thus, the present paper illustrates the importance of multivariate techniques for reliable quality characterization of surface water quality to develop effective pollution reduction strategies and maintain a fine balance between the industrialization and ecological integrity.

  12. TELEPHONIC PRESENTATION: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  13. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum, chromium, copper, iron, manganese, nickel, and zinc, none of which cause significant water-quality problems in the river.

  14. Water-resources appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado

    USGS Publications Warehouse

    Crouch, T.M.; Cain, Doug; Abbott, P.O.; Penley, R.D.; Hurr, R.T.

    1984-01-01

    Water used for agriculture and stock and municipal supplies in the upper Arkansas River basin is derived mostly from the Arkansas River and its tributaries. The flow regime of the river has been altered by increased reservoir capacities and importation of 69,200 acre-feet per year from the Colorado River drainage through transmountain diversions. An estimated 10.2 million acre-feet of hydrologically recoverable water is present in the first 200 feet of basin-fill alluvium. Well yields of 300 gallons per minute have been reported for the Dakota-Purgatoire aquifer aquifer located east of Canon City. Water quality of ground- and surface-water resources are generally acceptable for agriculture and stock watering, but concentrations of iron, manganese, sulfate, pH, and hardness may exceed recommended drinking-water criteria during periods of river low flow. Concentrations of mercury, selenium, and select radiochemical constituents also were high in the Dakota-Purgatoire aquifer. Dissolved solids increased downstream and in local areas as a result of water use and in the Leadville area because of mine drainage. (USGS)

  15. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  16. Water quality characterisation of rainwater in tanks at different times and locations.

    PubMed

    Kus, B; Kandasamy, Jaya; Vigneswaran, S; Shon, H K

    2010-01-01

    Rainwater collected from ten domestic roofs in Sydney and from one in Wollongong, a town south of Sydney, Australia was analysed to determine the water quality and to compare against the Australian Drinking Water Guidelines (ADWG) to determine its suitability as a potable water supply. The pollutants analysed were 13 heavy metals, 8 salts & minerals, pH, ammonia, orthophosphate, conductivity, water hardness, turbidity, total suspended solids, Total dissolved salts & Bicarbonate. The results indicate that the rainwater tested complied to most of the parameters specified in the ADWG. Molecular weight distribution of organic matter from one of the domestic rainwater tanks was analysed in terms of the effects of aging and roof contact. Molecular weight distribution of organic matter in rainwater showed prominent peaks at 37,500 daltons may be due to biopolymers, 850 Da to humic substances, 500 Da to building blocks, 220 Da to low MW acids, and less than 220 Da to amphiphilics. The findings also indicate that the first flush volumes that by-passed the tank can have a significant influence on the water quality in the rainwater tank.

  17. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals inmore » these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.« less

  18. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).

    PubMed

    Arnold, W R; Diamond, R L; Smith, D S

    2010-08-01

    This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.

  19. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  20. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  1. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  2. 40 CFR 131.36 - Toxics criteria for those states not complying with Clean Water Act section 303(c)(2)(B).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... comparative purposes, the values displayed in this matrix are shown as dissolved metal and correspond to a... paragraph (c)(3)(iii) of this section. (ii) The hardness values used shall be consistent with the design...

  3. 40 CFR 131.36 - Toxics criteria for those states not complying with Clean Water Act section 303(c)(2)(B).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... comparative purposes, the values displayed in this matrix are shown as dissolved metal and correspond to a... paragraph (c)(3)(iii) of this section. (ii) The hardness values used shall be consistent with the design...

  4. 40 CFR 131.36 - Toxics criteria for those states not complying with Clean Water Act section 303(c)(2)(B).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... comparative purposes, the values displayed in this matrix are shown as dissolved metal and correspond to a... paragraph (c)(3)(iii) of this section. (ii) The hardness values used shall be consistent with the design...

  5. 40 CFR 131.36 - Toxics criteria for those states not complying with Clean Water Act section 303(c)(2)(B).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... comparative purposes, the values displayed in this matrix are shown as dissolved metal and correspond to a... paragraph (c)(3)(iii) of this section. (ii) The hardness values used shall be consistent with the design...

  6. 40 CFR 131.36 - Toxics criteria for those states not complying with Clean Water Act section 303(c)(2)(B).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... comparative purposes, the values displayed in this matrix are shown as dissolved metal and correspond to a... paragraph (c)(3)(iii) of this section. (ii) The hardness values used shall be consistent with the design...

  7. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  8. PRESENTED 04/05/2006: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  9. PRESENTED MAY 10, 2005, MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  10. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  11. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  12. Quality of ground water in the Columbia Basin, Washington, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, G.L.

    1986-01-01

    Groundwater from 188 sites in the Columbia Basin of central Washington was sampled and analyzed in 1983 for pH, specific conductance, and concentrations of fecal coliform bacteria, major dissolved ions, and dissolved iron, manganese, and nitrate. Twenty of the samples were also analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were sodium bicarbonate and calcium bicarbonate. The sodium bicarbonate water samples had higher pH, fluoride, and sodium:adsorption ratio values than samples with other water types. Most trace metal concentrations were also < 10 ug/Lmore » except for barium and zinc, which had maximum concentrations of 170 and 600 ug/L, respectively. Nitrate concentrations were < 1.0 mg/L in water from more than half the wells sampled. US EPA (Environmental Protection Agency) drinking water regulations were exceeded in several samples, most commonly involving pH and concentrations of fluoride, nitrate, and dissolved solids in samples from Adams and Grant Counties. Generally, the historical data lead to similar conclusions about the quality of groundwater in the Columbia Basin region. However, historical samples had higher dissolved solids concentrations in Douglas County. Historical samples also included fewer sodium bicarbonate type waters in the region as a whole than the 1983 samples. 24 refs., 2 figs., 4 tabs.« less

  13. Investigation of Thermal Processing on the Properties of PS304: A Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Williams, Syreeta (Technical Monitor)

    2002-01-01

    The effect of thermal processing on PS304, a solid lubricant coating, was investigated. PS304 is a plasma sprayed solid lubricant consisting of 10% Ag and 10% BaF2 and CaF2 in a eutectic mixture for low and high temperature lubricity respectively. In addition, PS304 contains 20% Cr2O3 for increased hardness and 60% NiCr which acts as a binder. All percents are in terms of weight not volume. Previous research on thermal processing (NAG3-2245) of PS304 revealed that substrate affected both the pre- and post-anneal hardness of the plasma spray coating. The objective of this grant was to both quantify this effect and determine whether the root cause was an artifact of the substrate or an actual difference in hardness due to interaction between the substrate and the coating. In addition to clarifying past research developments new data was sought in terms of coating growth due to annealing.

  14. Controls on the quality of harvested rainwater in residential systems

    NASA Astrophysics Data System (ADS)

    Sojka, S. L.; Phung, D.; Hollingsworth, C.

    2014-12-01

    Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.

  15. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  16. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  17. Microindentation hardness testing of coatings: techniques and interpretation of data

    NASA Astrophysics Data System (ADS)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  18. Skylab study of water quality. [Kansas

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1975-01-01

    The author has identified the following significant results. Apparent reflectance levels in the Skylab S190A and S192 bands, from one pass over three Kansas reservoirs, exhibit good statistical correlation with suspended solids. Band ratios appear to yield the best results. The concentration of suspended solids, mostly inorganic sediment, has the most effect on the reflected energy. Dissolved solids concentrations up to 200 ppm were not detectable by the Skylab sensors.

  19. Kinetics of microbial reduction of Solid phase U(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K

    2006-10-15

    Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.

  20. Tritium trick

    NASA Technical Reports Server (NTRS)

    Green, W. V.; Zukas, E. G.; Eash, D. T.

    1971-01-01

    Large controlled amounts of helium in uniform concentration in thick samples can be obtained through the radioactive decay of dissolved tritium gas to He3. The term, tritium trick, applies to the case when helium, added by this method, is used to simulate (n,alpha) production of helium in simulated hard flux radiation damage studies.

  1. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  2. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    USGS Publications Warehouse

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  3. Solid lubricant materials for high temperatures: A review

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1985-01-01

    Solid lubricants that can be used above 300 C in air are discussed, including coatings and self-lubricating composite bearing materials. The lubricants considered are representative dichalcogenides, graphite, graphite fluoride, polyimides, soft oxides, oxidatively stable fluorides, and hard coating materials. A few general design considerations revelant to solid lubrication are interspersed.

  4. Biocompatible water softening system using cationic protein from moringa oleifera extract

    NASA Astrophysics Data System (ADS)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  5. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    PubMed

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  6. Development of a water quality index (WQI) for the Loktak Lake in India

    NASA Astrophysics Data System (ADS)

    Das Kangabam, Rajiv; Bhoominathan, Sarojini Devi; Kanagaraj, Suganthi; Govindaraju, Munisamy

    2017-10-01

    The present work was carried out to assess a water quality index (WQI) of the Loktak Lake, an important wetland which has been under pressure due to the increasing anthropogenic activities. Physicochemical parameters like temperature (Tem), potential hydrogen (pH), electrical conductivity (EC), turbidity (T), dissolved oxygen (DO), total hardness (TH), calcium (Ca), chloride (Cl), fluoride (F), sulphate ({SO}4^{2-}), magnesium (Mg), phosphate ({PO}4^{3-}), sodium (Na), potassium (K), nitrite (NO2), nitrate (NO3), total dissolved solids (TDS), total carbon (TC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed using standard procedures. The values obtained were compared with the guidelines for drinking purpose suggested by the World Health Organization and Bureau of Indian Standard. The result shows the higher concentration of nitrite in all the location which is beyond the permissible limit. Eleven parameters were selected to derive the WQI for the estimation of water potential for five sampling sites. A relative weight was assigned to each parameter range from 1.46 to 4.09 based on its importance. The WQI values range from 64 to 77 indicating that the Loktak Lake water is not fit for drinking, including both human and animals, even though the people living inside the Lake are using it for drinking purposes. The implementation of WQI is necessary for proper management of the Loktak Lake and it will be a very helpful tool for the public and decision makers to evaluate the water quality of the Loktak Lake for sustainable management.

  7. Torsemide Fast Dissolving Tablets: Development, Optimization Using Box-Bhenken Design and Response Surface Methodology, In Vitro Characterization, and Pharmacokinetic Assessment.

    PubMed

    El-Shenawy, Ahmed A; Ahmed, Mahmoud M; Mansour, Heba F; Abd El Rasoul, Saleh

    2017-08-01

    The present study planed to develop new fast dissolving tablets (FDTs) of torsemide. Solid dispersions (SDs) of torsemide and sorbitol (3:1) or polyvinylpyrrolidone (PVP) k25 were prepared. The prepared SDs were evaluated for in-vitro dissolution. Fourier transform infrared spectroscopy and differential scanning calorimetry for SDs revealed no drug/excipient interactions and transformation of torsemide to the amorphous form. Torsemide/sorbitol SD was selected for formulation of torsemide FDTs by direct compression method. Box-Bhenken factorial design was employed to design 15 formulations using croscarmellose sodium and crospovidone at different concentrations. The response surface methodology was used to analyze the effect of changing these concentrations (independent variables) on disintegration time (Y 1 ), percentage friability (Y 2 ), and amount torsemide released at 10 min. The physical mixtures of torsemide and the used excipients were evaluated for angle of repose, Hausner's ratio, and Carr's index. The prepared FDTs tablets were evaluated for wetting and disintegration time, weight variation, drug content, percentage friability, thickness, hardness, and in vitro release. Based on the in-vitro results and factorial design characterization, F10 and F7 were selected for bioavailability studies following administration to Albino New Zealand rabbits. They showed significantly higher C max and (AUC 0-12 ) and shorter T max than those obtained after administration of the corresponding ordinary commercial Torseretic ® tablets. Stability study was conducted for F10 that showed good stability upon storage at 30°C/75% RH and 40°C/75% RH for 3 months.

  8. Relationship between total dissolved solids and electrical conductivity in Marcellus hydraulic fracturing fluids.

    PubMed

    Taylor, Malcolm; Elliott, Herschel A; Navitsky, Laura O

    2018-05-01

    The production of hydraulic fracturing fluids (HFFs) in natural gas extraction and their subsequent management results in waste streams highly variable in total dissolved solids (TDS). Because TDS measurement is time-consuming, it is often estimated from electrical conductivity (EC) assuming dissolved solids are predominantly ionic species of low enough concentration to yield a linear TDS-EC relationship: TDS (mg/L) = k e × EC (μS/cm) where k e is a constant of proportionality. HHFs can have TDS levels from 20,000 to over 300,000 mg/L wherein ion-pair formation and non-ionized solutes invalidate a simple TDS-EC relationship. Therefore, the composition and TDS-EC relationship of several fluids from Marcellus gas wells in Pennsylvania were assessed. Below EC of 75,000 μS/cm, TDS (mg/L) can be estimated with little error assuming k e = 0.7. For more concentrated HFFs, a curvilinear relationship (R 2 = 0.99) is needed: TDS = 27,078e 1.05 × 10 -5 *EC . For hypersaline HFFs, the use of an EC/TDS meter underestimates TDS by as much as 50%. A single linear relationship is unreliable as a predictor of brine strength and, in turn, potential water quality and soil impacts from accidental releases or the suitability of HFFs for industrial wastewater treatment.

  9. Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial Desalination Cell.

    PubMed

    Pradhan, Harapriya; Jain, Sumat Chand; Ghangrekar, Makarand M

    2015-12-01

    Microbial desalination cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent desalination through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous desalination of water in middle desalination chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in desalination chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m(2) as compared to MDC-1 (95 %, 64 %, 12.8 mW/m(2), respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m(2), respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters.

  10. Appraisal of the water resources of Death Valley, California-Nevada

    USGS Publications Warehouse

    Miller, Glenn Allen

    1977-01-01

    The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)

  11. Quality of water on the Prairie Band Potawatomi Reservation, northeastern Kansas, May 2001 through August 2003

    USGS Publications Warehouse

    Ross Schmidt, Heather C.

    2004-01-01

    Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.

  12. Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California

    USGS Publications Warehouse

    Lamb, Charles E.

    1980-01-01

    The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)

  13. Chemical quality of water in the Walnut River basin, south-central Kansas

    USGS Publications Warehouse

    Leonard, Robert B.

    1972-01-01

    Improper disposal of oil-field brine and other wastes has adversely affected the naturally diverse chemical quality of much of the water in the Walnut River basin, south-central Kansas. The basin is an area of about 2,000 square miles in the shape of a rough triangle with its apex toward the south. The Whitewater River, a principal tributary, and the Walnut River below its junction with the Whitewater River flow southward toward the Arkansas River along courses nearly coincident with the contact of the Chase and overlying Sumner Groups of Permian age. The courses of many minor tributaries are parallel to a well-developed joint system in the Permian rock. Thick interbedded limestone and shale of the Chase Group underlie the more extensive, eastern part of the basin. Natural waters are dominantly of the calcium bicarbonate type. Shale and subordinate strata of limestone, gypsum, and dolomite of the Sumner Group underlie the western part of the basin. Natural waters are dominantly of the calcium sulfate type. Inflow from most east-bank tributaries dilutes streamflow of the Walnut River; west-bank tributaries, including the Whitewater River, contribute most of the sulfate. Terrace deposits and alluvial fill along the stream channels are assigned to the Pleistocene and Holocene Series. Calcium bicarbonate waters are common as a result of the dissolution of nearly ubiquitous fragments of calcareous rock, but the chemical quality of the water in the discontinuous aquifers depends mainly on the quality of local recharge. Concentrations of dissolved solids and of one or more ions in most well waters exceeded recommended maximums for drinking water. Nearly all the ground water is hard to very hard. High concentrations of sulfate characterize waters from gypsiferous aquifers; high concentrations of chloride characterize ground waters affected by drainage from oil fields. Extensive fracture and dissolution of the Permian limestones facilitated pollution of ground water by oil-field brine and migration of the polluted water into adjacent areas. Ground water containing more than 1,000 mg/o=l (milligrams per liter) dissolved solids .and more than 100 mg/o=l chloride is common near oil fields but is exceptional elsewhere. The concentration of nitrate in about 25 percent of the sampled well waters exceeded the recommended maximum for drinking water. High concentrations of nitrate generally were associated with shallow aquifers, local sources of organic pollution, and stagnation. Sodium and chloride are the principle ionic constituents of oil-field brine but are minor constituents of natural surface waters or shallow ground water in the basin. The ratios of the concentrations of sodium to chloride in brine from different oil fields varied within a narrow range from a mean of 0.52. Concentrations of chloride exceeding 50 mg/o=l in streamflow and 100 mg/l in ground water generally signified the presence of oil-field brine if the sodium-chloride ratios were less than 0.60. Higher sodium-chloride ratios characterized relatively rare occurrences of high concentrations of the ions that might have originated in evaporite minerals or in sewage. The concentration of chloride during low flow of the major streams generally increased, and the sodium-chloride ratio decreased, in a downstream direction from about 0.65 near the headwaters to about 0.51, which is characteristic of oil-field brine. The changes were most abrupt where polluted ground-water effluent augmented low streamflow adjacent to old oil fields. With increased direct runoff, the sodium-chloride ratio normally increased, and these ions constituted a smaller percentage of the dissolved-solids load. Annual runoff .decreased progressively from above normal to below normal during water years 1962-64. Higher concentrations .of the ions in streamflow persisted for longer periods during the periods of low runoff

  14. Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2-Ca (HCO3)2-CO2-H2O solutions

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.

    1992-01-01

    Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.

  15. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    NASA Astrophysics Data System (ADS)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  16. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150-1000 μm). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.« less

  17. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Wasylenki, Laura E.

    2017-06-01

    The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4% of total Ni, presumably surface-adsorbed) that were isotopically heavier (δ60/58Ni = +0.11 ± 0.06‰) than the residues (presumably dominated by incorporated Ni), which had δ60/58Ni of -0.26 ± 0.07‰. The preference of lighter isotopes for the incorporated Ni relative to the surface-adsorbed Ni after phase transformation (most had been released into solution) is probably due to distortion of Nisbnd O octahedra in the hematite structure, with weaker Nisbnd O bond strengths on average. Hence, the more variable Δ60/58Nisolution-solid values (-0.04 to +0.77‰) observed in hematite experiments most likely reflect thermodynamically driven Rayleigh fractionation, with incorporated Ni unavailable to exchange with dissolved Ni due to continuous reduction in size of the highly reactive surface pool of Ni, through which all solid-solution exchange must occur. Overall, the synthesized hematite was isotopically lighter than the ferrihydrite by ∼0.08‰ in δ60/58Ni, which is however within the current analytical uncertainties (±0.09‰). This implies that earliest diagenesis of BIFs results in very limited change in the isotopic composition of solid-associated Ni. Our experimental results, although conducted in a very simple system that differs from Archean seawater, represent an important step toward reconstruction of the Ni isotopic composition of ancient seawater from Ni isotopic signatures in BIFs.

  18. Ground-water resources of the Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    McGreevy, Laurence J.; Hodson, Warren Gayler; Rucker, Samuel J.

    1969-01-01

    The area of this investigation is in the western part of the Wind River Basin and includes parts of the Absaroka, Washakie, Wind River, and Owl Creek Mountains. The purposes of the study were to determine the general hydrologic properties of the rocks in the area and the occurrence and quality c f the water in them. Structurally, the area is a downfolded basin surrounded by upfolded mountain ranges. Igneous and metamorphic rocks of Precambrian age are exposed in the mountains: folded sedimentary rocks representing all geologic periods, except the Silurian, crop out along the margins of the basin; and relatively flat-lying Tertiary rocks are at the surface in the central part of the basin. Surficial sand and gravel deposits of Quaternary age occur along streams and underlie numerous terraces throughout the basin. The potential yield and quality of water from most rocks in the area are poorly known, but estimates are possible, based on local well data and on data concerning similar rocks in nearby areas. Yields of more than 1,000 gpm are possible from the rocks comprising the Bighorn Dolomite (Ordovician), Darby Formation (Devonian), Madison Limestone (Mississippian), and Tensleep Sandstone (Pennsylvanian). Total dissolved solids in the water range from about 300 to 3,000 ppm. Yields of as much as several hundred gallons per minute are possible from the Nugget Sandstone (Jurassic? and Triassic?). Yields of 20 gpm or more are possible from the Crow Mountain Sandstone (Triassic) and Sundance Formation (Jurassic). Dissolved solids are generally high but are less than 1,000 ppm near outcrops in some locations. The Cloverly and Morrison (Cretaceous and Jurassic), Mesaverde (Cretaceous) and Lance(?) (Cretaceous) Formations may yield as much as several hundred gallons per minute, but most wells in Cretaceous rocks yield less than 20 gpm. Dissolved solids generally range from 1,000 to 5,000 ppm but may be higher. In some areas, water with less than 1,000 ppm dissolved solids may be available from the Cloverly and Morrison Formations. Tertiary rocks yield a few to several hundred gallons per minute and dissolved solids generally range from 1,000 to 5,000 ppm. Wells in the Wind River Formation (Eocene) yield about 1.-500 gpm of water having dissolved solids of about 200-5,000 ppm. Yields of a few to several hundred gallons per minute are available from alluvium (Quaternary). Dissolved solids range from about 200 to 5,000 ppm. Many parts of the Wind River Irrigation Project have become waterlogged. The relation of drainage problems to geology and the character and thickness of rocks in the irrigated areas are partly defined by sections drawn on the basis of test drilling. The drainage-problem areas are classified according to geologic similarities into five general groups: flood plains, terraces, underfit-stream valleys, slopes, and transitional areas. Drainage can be improved by open drains, buried drains, relief wells, and pumped wells or by pumping from sumps or drains. The methods that will be most successful depend on the local geologic and hydrologic conditions. In several areas, the most effective means of relieving the drainage problem would be to reduce the amount of infiltration of water by lining canals and ditches and by reducing irrigation water applications to the optimum. Water from underground storage in alluvium could supplement water from surface storage in some areas. A few thousand acre-feet of water per square mile are in storage in some of the alluvium. The use of both surface and underground storage would reduce the need for additional surface-storage facilities and also would alleviate drainage problems in the irrigated areas.

  19. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  20. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining

    USGS Publications Warehouse

    Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.

  1. Adsorption of hard spheres via the non-uniform Percus-Yevick equation

    NASA Astrophysics Data System (ADS)

    Sokołowski, S.

    We study the adsorption of hard spheres on solids interacting according to potentials whose Boltzmann functions contain a δ-function. The nonuniform Percus-Yevick equation is solved by using the method introduced by Lado to study two dimensional fluids.

  2. Carbon cycling and snowball Earth.

    PubMed

    Goddéris, Yves; Donnadieu, Yannick

    2008-12-18

    The possibility that Earth witnessed episodes of global glaciation during the latest Precambrian challenges our understanding of the physical processes controlling the Earth's climate. Peltier et al. suggest that a 'hard snowball Earth' state may have been prevented owing to the release of CO(2) from the oxidation of dissolved organic carbon (DOC) in the ocean as the temperature decreased. Here we show that the model of Peltier et al. is not self-consistent as it implies large fluctuations of the ocean alkalinity content without providing any processes to account for it. Our findings suggest that the hard snowball Earth hypothesis is still valid.

  3. Process for coal liquefaction in staged dissolvers

    DOEpatents

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  4. Assessment of physico-chemical quality of borehole and spring water sources supplied to Robe Town, Oromia region, Ethiopia

    NASA Astrophysics Data System (ADS)

    Shigut, Dagim Abera; Liknew, Geremew; Irge, Dejene Disasa; Ahmad, Tanweer

    2017-03-01

    The study was carried out to find the physico-chemical water quality of borehole and spring water supplied to Robe Town. For this study, a total of six water samples were collected from three borehole and three spring water sources. The analyses for 14 physico-chemical parameters, pH, turbidity, electrical conductivity, total dissolved solids, total suspended solids total hardness cations (Ca2+, Mg2+), anions (NO2 -, NO3 -, SO4 2- and PO4 3-) and heavy metals (Fe and Mn), were done in the laboratory by adopting standard procedures suggested by the American Public Health Association (APHA). Descriptive statistics were used to describe data, while Pearson correlation was used to determine the influences of the physico-chemical variables. The single factor analysis of variance ( t test) was used to determine possible differences between the borehole and spring water, while means plots were used for further structure detection. From the total samples analyzed, most of the samples comply with the water quality guidelines of Ethiopian limit, WHO and U.SEPA. The pH of the water samples from borehole groundwater source was found to be slightly acidic and bove the maximum permissible limit (MPL). High concentration of Fe and Mn that exceeds the MPL set by WHO was found in the three boreholes. The spring water sources were found to be better for drinking than borehole water sources.

  5. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  6. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.

  7. Changes between early development (1930–60) and recent (2005–15) groundwater-level altitudes and dissolved-solids and nitrate concentrations In and near Gaines, Terry, and Yoakum Counties, Texas

    USGS Publications Warehouse

    Thomas, Jonathan V.; Teeple, Andrew; Payne, Jason; Ikard, Scott

    2016-06-21

    During the recent period, median dissolved-solids concentrations of less than 1,000 milligrams per liter (mg/L) were predominantly measured in the western part of the study area, and median concentrations of more than 1,000 mg/L were predominantly measured in the eastern part of the study area. A general pattern of increasing nitrate concentrations from west to the northeast was evident in the study area. Nitrate concentrations measured in samples collected from 16 wells completed in the Ogallala aquifer for the recent period were equal to or greater than 10 mg/L, the primary drinking water standard for finished drinking water.

  8. Natural ground-water quality in Michigan, 1974-87

    USGS Publications Warehouse

    Cummings, T. Ray

    1989-01-01

    Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 20 to 76,000 mg/L. Waters having low dissolved-solids concentrations are calcium bicarbonate-type waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium concentrations are higher at some locations than is common in most natural waters. Lead concentrations exceed U.S. Environmental Protection Agency 's primary drinking-water regulations at some locations in the northern part of the lower Peninsula. Generalized areal patterns of water-quality variability indicate that geology is a primary cause of differences across the State. Examples of chemical associations in water indicate that chemical analyses may be valuable in tracing and identifying mineral deposits.

  9. Chemical and physical characteristics of natural ground waters in Michigan: A preliminary report

    USGS Publications Warehouse

    Cummings, T. Ray

    1980-01-01

    Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 23 to 2,100 milligrams per liter. Waters having low dissolved-solids concentrations are calcium bicarbonate waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium are higher at some locations than is common in most natural waters. Lead concentrations exceed those desirable in drinking water at some locations in the northern part of the Lower Peninsula. Generalized areal patterns of water quality variation suggest that geology is a primary cause of differences across the State. Examples of chemical associations in water suggest that chemical analyses may be valuable in tracing and identifying mineral deposits.

  10. Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium

    NASA Technical Reports Server (NTRS)

    Grube, G.; Knabe, R.

    1985-01-01

    Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.

  11. Microstructural Modification of Sn-0.7Cu Solder Alloys by Fe/Bi-Addition for Achieving High Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Said, Suhana Mohd; Mahdavifard, Mohammad Hossein; Sukiman, Nazatul Liana; Jauhari, Iswadi

    2017-08-01

    In this work, we studied the Fe/Bi-bearing tin-copper (Sn-0.7Cu) solders for their microstructural and mechanical properties. The microstructure was studied using field emission scanning electron microscopy (FESEM) with a backscattered electron (BSE) detector, x-ray diffraction (XRD) analysis, and energy-dispersive x-ray spectroscopy (EDX). The microstructure study showed that Fe forms very few FeSn2 intermetallic compounds (IMCs) and does not significantly alter the microstructure of Sn-0.7Cu, whereas Bi controls the size of inter-dendritic regions containing Cu6Sn5 and Ag3Sn IMCs of the alloy, as well as significantly refines its primary β-Sn dendrites. Moreover, Bi atoms dissolve in β-Sn matrix, which in turn strengthen the solder by the Bi solid solution strengthening mechanism. Such microstructural modification leads to significant improvements in various mechanical properties of the alloy, including shear strength, impact toughness, and hardness values. Shear tests were performed with a 0.25 mm/min shear speed. The results showed that shear strength improves from 16.57 MPa to 38.36 MPa with the addition of Fe/Bi to Sn-0.7Cu, raising by about 130%. The energy absorbed during impact tests was measured for samples with the help of a Charpy impact testing machine with a 5.4 m/s impact speed. The results revealed that the addition of Fe/Bi to Sn-0.7Cu improves its impact absorbed energy by over 35%, increasing it from 7.5 J to 10.3 J. Vickers hardness tests were carried out for the test samples with a 245.2 mN applied load and 10 s dwell time. The results showed that the hardness number improves from 9.89 to 24.13 with Fe/Bi to Sn-0.7Cu, increasing by about 140%.

  12. Environmental water chemistry and possible correlation with Kaschin-Beck Disease (KBD) in northwestern Sichuan, China.

    PubMed

    Shi, Zeming; Pan, Pujing; Feng, Yanwei; Kan, Zezhong; Li, Zhonghui; Wei, Fei

    2017-02-01

    During the past several decades, etiological and geochemical studies tend to link the Kaschin-Beck Disease (KBD) to the deficiency of some specific trace elements (e.g., selenium and iodine) in the environment; however the link has been proven inconclusive. In this work, we have investigated the relationship between KBD and the environment in a broader scope by examining comprehensively the chemistry of the surface waters in northwestern Sichuan, China, in relation to the KBD prevalence. The surface waters in the study area were found to be near neutral to slightly alkaline (pH6.70 to 8.85 with a mean of 7.91) and mostly soft (total hardness 35.2 to 314.3mg/L, mean 118.8mg/L) with low salinity (total dissolved solids (TDS) 44.5mg/L to 376.6mg/L, mean 146.6mg/L). The waters were dominated by cations Ca 2+ and Mg 2+ and anion HCO 3 - ; whereas the alkali metal ions K + and Na + and the anions Cl - and S0 4 2- were relatively scarce. Spatially, the hardness/salinity of the surface waters exhibited a characteristic of being lower towards the center of the study area where most severe KBD endemic has been observed. Even though it is not conclusive at this stage, a correlation between KBD prevalence and the salinity/hardness of the surface waters of an area has been demonstrated. As a postulate, the long-term consumption of such low salinity waters may lead to a deficiency of some essential elements such as Ca, Mg, Se and I in humans, which may be a factor in inducing KBD. However, other factors such as high altitude and cold climate, poor nutrition and sanitary conditions may play an important role in the disease endemic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quality of ground water in southeastern and south-central Washington, 1982

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    In 1982 groundwater was sampled at over 100 sites in the southeastern-south central region of Washington and analyzed for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved irons, and dissolved iron, manganese, and nitrate. Twenty percent of the samples were analyzed for concentrations of dissolved aluminum, arsenic, barium, cadmium, chromium, cooper, lead, mercury, selenium, silver, and zinc. The predominant water type was calcium bicarbonate. Some sodium bicarbonate water was found in samples from the Lower Yakima, Horse Heaven Hills, and Walla Walla-Tucannon subregions. Dissolved solids concentrations were typically less than 500 mg/L (milligrams per liter). Median iron and manganese concentrations were less than 20 micrograms/L except in the Palouse subregion, where the median concentration of iron was 200 micrograms/L and the median concentrations of manganese was 45 micrograms/L. Generally, trace-metal concentrations were also less than 10 micrograms/L except for barium, copper, and zinc. Nitrate concentrations were less than 1.0 mg/L in waters from half the wells sampled. Concentrations greater than 5.0 mg/L were found in areas of the Lower Yakima, Walla Walla-Tucannon and Hanford subregions. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulation limits were generally not exceeded, except for occasional high concentrations of nitrate or dissolved solids. The historical data for the region were evaluated for these same constituents. Quantitative differences were found, but the historical and 1982 data led to similar qualitative conclusions. (USGS)

  14. Localized zones of denitrification in a floodplain aquifer in southern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Craig, Laura; Bahr, Jean M.; Roden, Eric E.

    2010-12-01

    A floodplain aquifer within an agricultural watershed near Madison, Wisconsin (USA), was studied to determine whether denitrification was occurring below the surface organic layer. Groundwater levels and concentrations of O2, Cl-, NO{3/-}, SO{4/2-}, dissolved organic carbon (DOC), and major cations were monitored over a 1-year period along a 230-m transect between an agricultural field and a stream discharge point. Seventeen groundwater samples were analyzed for δ15NNO3 and δ18ONO3 composition. Samples in which NO{3/-} was too low for stable isotope analysis were analyzed for excess dissolved N2. Groundwater NO{3/-} concentrations declined between the agricultural field and the discharge point. Chloride and δ15NNO3/δ18ONO3 data indicated that the drop in NO{3/-} was caused primarily by dilution of shallow NO{3/-}-rich water with deeper, NO{3/-}-depleted groundwater. Two localized zones of denitrification were identified in the upland-wetland transition by their δ15NNO3 and δ18ONO3 signatures, and two in the stream hyporheic zone by the presence of excess dissolved N2. The combined stratigraphic, hydrologic, and geochemical data in these locations correspond to groundwater mixing zones where NO{3/-} is delivered to subsurface layers that support denitrification fueled by dissolved (e.g. DOC or dissolved Fe(II)) and/or solid-phase (e.g. particulate organic carbon, solid-associated Fe(II), or pyrite) electron donors.

  15. Validation of Student Generated Data for Assessment of Groundwater Quality

    ERIC Educational Resources Information Center

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  16. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

  17. Significance of dissolved methane in effluents of anaerobically ...

    EPA Pesticide Factsheets

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  18. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  19. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1999-01-01

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  20. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  1. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  2. Photolysis of RDX and nitroglycerin in the context of military training ranges.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia

    2013-09-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroglycerin (NG) are two energetic materials commonly found in the environment on military training ranges. They are deposited on the ground in the form of solid particles, which can then dissolve in infiltration water or in surface water bodies. The objective of this study was to evaluate whether photolysis by sunlight can significantly contribute to the natural attenuation of RDX and NG (as solid particles or dissolved in surface water) at mid-northern latitudes, where training ranges of Canada and many European countries are located. Experiments conducted at 46.9°N show that both compounds are degraded by sunlight when dissolved in water, with half-lives between 1 and 120d, depending on the compound and time of year. Numerical models may be useful in predicting such photolysis rates, but the models should take into account current ozone levels, as older radiation datasets, collected before the ozone depletion observed since the late 1970s, underestimate the RDX/NG photolysis rate. For solid RDX or NG-bearing particles, photolysis is slower (half-lives of 2-4months), but the degradation rate is still rapid enough to make this process significant in a natural attenuation context. However, photolysis of NG embedded within solid propellant particles cannot proceed to completion, due to the stable nitrocellulose matrix of the propellant. Nonetheless, photolysis clearly constitutes an important attenuation mechanism that should be considered in conceptual models and included in numerical modeling efforts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. SUB-PPB QUANTITATION AND CONFIRMATION OF PERCHLORATE IN DRINKING WATERS CONTAINING HIGH TOTAL DISSOLVED SOLIDS USING ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  4. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    NASA Astrophysics Data System (ADS)

    Hu, Chengyao; Huang, Pei

    2011-05-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also the influence of the solution density change and the initial concentration conditions on the dissolved amount was investigated by the numerical results using the estimated parameters. It is found that the theoretical assumption to simplify the inverse measurement problem algorithm is reasonable for low solubility.

  5. Trends in the quality of water in New Jersey streams, water years 1998-2007

    USGS Publications Warehouse

    Hickman, R. Edward; Gray, Bonnie J.

    2010-01-01

    Trends were determined in flow-adjusted values of selected water-quality characteristics measured year-round during water years 1998-2007 (October 1, 1997, through September 30, 2007) at 70 stations on New Jersey streams. Water-quality characteristics included in the analysis are dissolved oxygen, pH, total dissolved solids, total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite. In addition, trend tests also were conducted on measurements of dissolved oxygen made only during the growing season, April to September. Nearly all the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the New Jersey Department of Environmental Protection Ambient Surface-Water Quality Monitoring Network. Monotonic trends in flow-adjusted values of water quality were determined by use of procedures in the ESTREND computer program. A 0.05 level of significance was selected to indicate a trend. Results of tests were not reported if there were an insufficient number of measurements or insufficient number of detected concentrations, or if the results of the tests were affected by a change in data-collection methods. Trends in values of dissolved oxygen, pH, and total dissolved solids were identified using the Seasonal Kendall test. Trends or no trends in year-round concentrations of dissolved oxygen were determined for 66 stations; decreases at 4 stations and increases at 0 stations were identified. Trends or no trends in growing-season concentrations of dissolved oxygen were determined for 65 stations; decreases at 4 stations and increases at 4 stations were identified. Tests of pH values determined trends or no trends at 26 stations; decreases at 2 stations and increases at 3 stations were identified. Trends or no trends in total dissolved solids were reported for all 70 stations; decreases at 0 stations and increases at 24 stations were identified. Trends in total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite were identified by use of Tobit regression. Two sets of trend tests were conducted-one set with all measurements and a second set with all measurements except the most extreme outlier if one could be identified. The result of the test with all measurements is reported if the results of the two tests are equivalent. The result of the test without the outlier is reported if the results of the two tests are not equivalent. Trends or no trends in total phosphorus were determined for 69 stations. Decreases at 12 stations and increases at 5 stations were identified. Of the five stations on the Delaware River included in this study, decreases in concentration were identified at four. Trends or no trends in total organic nitrogen plus ammonia were determined for 69 stations. Decreases and increases in concentrations were identified at six and nine stations, respectively. Trends or no trends in dissolved nitrate plus nitrite were determined for 66 stations. Decreases and increases in concentration were identified at 4 and 19 stations, respectively.

  6. Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction.

    PubMed

    Wang, Wenquan; Li, Wenmo; Xu, Hongyong

    2017-07-11

    The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.

  7. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  8. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    USGS Publications Warehouse

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  9. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    PubMed

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  10. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships

    PubMed Central

    Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator). PMID:29342204

  11. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    PubMed

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  12. Some factors influencing susceptibility of rainbow trout to the acute toxicity of an ethyl mercury phosphate formulation (Timsan)

    USGS Publications Warehouse

    Amend, Donald F.; Yasutake, William T.; Morgan, Reginald

    1969-01-01

    This study determined the influence of water temperature (55–68° F), dissolved oxygen (4–12 ppm), water hardness as CaCO3 (20–256 ppm), and chloride ions (to 2 mM) on the susceptibility of rainbow trout (Salmo gairdneri) to the acute toxicity of ethyl mercury phosphate (EMP). The fish were exposed for one hour to 0.125 ppm EMP, the active ingredient of Timsan, a commercial EMP formulation. The death rate because of the exposure to EMP increased with an increase in water temperature, a decrease in dissolved oxygen, and an increase in chloride ions; calcium appeared to have no effect. The effect of water temperature and dissolved oxygen was ascribed to changes in the respiration rate of the fish, and a chemical explanation is presented for the effect of chloride ions.

  13. Simultaneous nitrification, denitrification, and phosphorus removal in single-tank low-dissolved-oxygen systems under cyclic aeration.

    PubMed

    Ju, Lu-Kwang; Huang, Lin; Trivedi, Hiren

    2007-08-01

    Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.

  14. Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: The Orinoco, Venezuela

    NASA Astrophysics Data System (ADS)

    Laraque, Alain; Moquet, Jean-Sébastien; Alkattan, Rana; Steiger, Johannes; Mora, Abrahan; Adèle, Georges; Castellanos, Bartolo; Lagane, Christèle; Lopez, José Luis; Perez, Jesus; Rodriguez, Militza; Rosales, Judith

    2013-07-01

    Seasonal variations of total dissolved fluxes of the lower Orinoco River were calculated taking into account four complete hydrological cycles during a five-year period (2005-2010). The modern concentrations of total dissolved solids (TDS) of the Orinoco surface waters were compared with data collected during the second half of the last century published in the literature. This comparison leads to the conclusion that chemical composition did not evolve significantly at least over the last thirty to forty years. Surface waters of the Orinoco at Ciudad Bolivar are between bicarbonated calcic and bicarbonated mixed. In comparison to mean values of concentrations of total dissolved solids (TDS) of world river surface waters (89.2 mg l-1), the Orinoco River at Ciudad Bolivar presents mainly low mineralized surface waters (2005-10: TDS 30 mg l-1). The TDS fluxes passing at this station in direction to the Atlantic Ocean between 2005 and 2010 were estimated at 30 × 106 t yr-1, i.e. 36 t km-2 yr-1. It was observed that the seasonal variations (dry season vs wet season) of total dissolved fluxes (TDS and dissolved organic carbon (DOC)) are mainly controlled by discharge variations. Two groups of elements have been defined from dilution curves and molar ratio diagrams. Ca2+, Mg2+, HCO3-, Cl- and Na+ mainly come from the same geographic and lithologic area, the Andes. K+ and SiO2 essentially come from the Llanos and the Guayana Shield. These findings are important for understanding fundamental geochemical processes within the Orinoco River basin, but also as a baseline study in the perspective of the development of numerous mining activities related with aluminum and steel industries; and the plans of the Venezuelan government to construct new fluvial ports on the lower Orinoco for the transport of hydrocarbons.

  15. Consequences of land use cover change and precipitation regimes on water quality in a tropical landscape: the case of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.

    2017-12-01

    One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.

  16. Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory

    NASA Astrophysics Data System (ADS)

    Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter; Koch, Boris P.

    2016-10-01

    Although sulfur is an essential element for marine primary production and critical for climate processes, little is known about the oceanic pool of nonvolatile dissolved organic sulfur (DOS). We present a basin-scale distribution of solid-phase extractable DOS in the East Atlantic Ocean and the Atlantic sector of the Southern Ocean. Although molar DOS versus dissolved organic nitrogen (DON) ratios of 0.11 ± 0.024 in Atlantic surface water resembled phytoplankton stoichiometry (sulfur/nitrogen ~ 0.08), increasing dissolved organic carbon (DOC) versus DOS ratios and decreasing methionine-S yield demonstrated selective DOS removal and active involvement in marine biogeochemical cycles. Based on stoichiometric estimates, the minimum global inventory of marine DOS is 6.7 petagrams of sulfur, exceeding all other marine organic sulfur reservoirs by an order of magnitude.

  17. Estimation of Particle Material And Dissolved Flows During Floods In The Inaouene Watershed. (Northeast Of Morocco)

    NASA Astrophysics Data System (ADS)

    Sibari, Hayat; Haida, Souad; Foutlane, Mohamed

    2018-05-01

    This work aims to estimate the contributions of the Inaouene River during the floods. It is in this context that the dissolved and particulate matter flows were measured during the flood periods followed by the 1996/97 study year at the two hydrological stations Bab Marzouka (upstream) and El Kouchat (downstream). The specific flows of dissolved materials calculated upstream and downstream of the Inaouene watershed correspond respectively to 257 t/ km2/year and 117 t/ km2/year. Chlorides represent 30% and 41% respectively of the total dissolved transport upstream and downstream. The potential mechanical degradation affecting the Inaouene watershed can deliver a solid load estimated at 6.106 t/year corresponding to a specific flow of 2142 t/km2/year.

  18. Thermodynamics of phenanthrene partition into solid organic matter from water.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong; Tao, Shu

    2005-01-01

    The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids(three soils and a bentonite) from water were investigated. The thermodynamics parameters (deltaH, deltaG degrees, deltaS degrees) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from -7.93 to -17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid (i.e., -18.6 kJ/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2 kJ/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene (i.e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i.e., 18.6 kJ/mol). The standard free energy changes, deltaG degrees, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes, deltaS degrees, show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene, the partition coefficients normalized by organic carbon contents decrease with increasing system temperature (i.e., ln Koc = -0.284 ln S + 9.82 (n = 4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.

  19. Simulated effects of proposed Arkansas Valley Conduit on hydrodynamics and water quality for projected demands through 2070, Pueblo Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2013-01-01

    The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry annual hydrologic cycle. Each selected simulation scenario also was evaluated for differences in direct/indirect effects and cumulative effects on a particular scenario. Analysis of the results for the direct/indirect- and cumulative-effects analyses indicated that, in general, the results were similar for most of the scenarios and comparisons in this report focused on results from the direct/indirect-effects analyses. Scenario simulations that represented existing conditions in Pueblo Reservoir were compared to the No Action scenario to assess changes in water quality from current demands (2006) to projected demands in 2070. Overall, comparisons of the results between the Existing Conditions and the No Action scenarios for water-surface elevations, water temperature, and dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, and total iron concentrations indicated that the annual median values generally were similar for all three simulated years. Additionally, algal groups and chlorophyll-a concentrations (algal biomass) were similar for the Existing Conditions and the No Action scenarios at site 7B in the epilimnion for the simulated period (Water Year 2000 through 2002). The No Action scenario also was compared individually to the Comanche South, Joint Use Pipeline North, and Master Contract Only scenarios. These comparisons were made to describe changes in the annual median, 85th percentile, or 15th percentile concentration between the No Action scenario and each of the other three simulation scenarios. Simulated water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, algal groups, and chlorophyll-a concentrations in Pueblo Reservoir generally were similar between the No Action scenario and each of the other three simulation scenarios.

  20. Toxicological responses of the hard clam Meretrix meretrix exposed to excess dissolved iron or challenged by Vibrio parahaemolyticus.

    PubMed

    Zhou, Qing; Zhang, Yong; Peng, Hui-Fang; Ke, Cai-Huan; Huang, He-Qing

    2014-11-01

    The responses of genes encoding defense components such as ferritin, the lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), the inhibitor of nuclear factor-κB (IκB), metallothionein, and glutathione peroxidase were assessed at the transcriptional level in order to investigate the toxicological and immune mechanism of the hard clam Meretrix meretrix (HCMM) following challenge with iron or a bacterium (Vibrio parahaemolyticus). Fe dissolved in natural seawater led to an increase of Fe content in both the hepatopancreas and gill tissue of HCMM between 4 and 15 days of exposure. The ferritin gene responded both transcriptionally as indicated by real-time quantitative PCR and translationally as shown by western blotting results to iron exposure and both transcriptional and translational ferritin expression in the hepatopancreas had a positive correlation with the concentration of dissolved iron in seawater. Both iron and V. parahaemolyticus exposure triggered immune responses with similar trends in clam tissues. There was a significant post-challenge mRNA expression of LITAF and IκB at 3h, ferritin at 24h, and metallothionein and glutathione peroxidase at 48h. This behavior might be linked to their specific functions in physiological processes. These results suggested that similar signaling pathways were triggered during both iron and V. parahaemolyticus challenges. Here, we indicated that the ferritin of Meretrix meretrix was an intermediate in the pathway of iron homeostasis and in its innate immune defense mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The use of dissolvable layered double hydroxide components in an in situ solid-phase extraction for chromatographic determination of tetracyclines in water and milk samples.

    PubMed

    Phiroonsoontorn, Nattaphorn; Sansuk, Sira; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2017-10-13

    This research presents a simple and green in situ solid phase extraction (is-SPE) combined with high-performance liquid chromatography (HPLC) for the simultaneous analysis of tetracyclines (TCs) including tetracycline, oxytetracycline, and chlortetracycline. In is-SPE, TCs were efficiently extracted through the precipitation formation of dissolvable layered double hydroxides (LDHs) by mixing the LDH components such as magnesium and aluminum ions (both in metal chloride salts) thoroughly in an alkaline sample solution. After the centrifugation, the precipitate was completely dissolved with trifluoroacetic acid to release the enriched TCs, and then analyzed by HPLC. Under optimized conditions, this method gave good enrichment factors (EFs) of 41-93 with low limits of detection (LODs) of 0.7-6μg/L and limits of quantitation (LOQs) of 3-15μg/L. Also, the proposed method was successfully applied for the determination of TCs in water and milk samples with the recoveries ranging from 81.7-108.1% for water and 55.7-88.7% for milk. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dissolution and characterization of HEV NiMH batteries.

    PubMed

    Larsson, Kristian; Ekberg, Christian; Ødegaard-Jensen, Arvid

    2013-03-01

    Metal recovery is an essential part of the recycling of hybrid electric vehicle battery waste and the first step in a hydrometallurgical treatment is dissolution of the solid material. The properties of separated battery electrode materials were investigated. Focus was put on both the solid waste and then the dissolution behaviour. The cathode contains metallic nickel that remains undissolved when utilizing non-oxidizing conditions such as hydrochloric or sulphuric acid in combination with a low oxygen atmosphere. In these conditions the cathode active electrode material is fully dissolved. Not dissolving the nickel metal saves up to 37% of the acid consumption for the cathode electrode material. In the commonly used case of oxidizing conditions the nickel metal dissolves and a cobalt-rich phase remains undissolved from the cathode active material. For the anode material a complete and rapid dissolution can be achieved at mild conditions with hydrochloric, nitric or sulphuric acid. Optimal parameters for all cases of dissolution was pH 1 with a reaction time of approximately ≥ 20,000 s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  4. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con

  5. Initial dissolution kinetics of cocrystal of carbamazepine with nicotinamide.

    PubMed

    Hattori, Yusuke; Sato, Maiko; Otsuka, Makoto

    2015-11-01

    Objectives of this study are investigating the initial dissolution kinetics of the cocrystal of carbamazepine (CBZ) with nicotinamide (NIC) and understanding its initial dissolution process. Cocrystal solids of CBZ with NIC were prepared by co-milling and solvent evaporation methods. The formation of cocrystal solid was verified via X-ray diffraction measurement. Dissolution tests of the solids were performed using an original flow cell and ultraviolet-visible spectroscopic detector. The spectra monitored in situ were analyzed to determine the dissolved compounds separately using the classical least squares regression method. The initial dissolution profiles were interpreted using simultaneous model of dissolution and phase changes. In the initial dissolution, CBZ in the cocrystal structure dissolved in water and it was suggested that CBZ reached a metastable intermediate state simultaneously with dissolution. The cocrystal solid prepared by solvent evaporation provided a higher rate constant of the phase change than that prepared by co-milling. Our results thus support the use of evaporation as the method of choice to produce ordered cocrystal structures. We suggest that CBZ forms dihydrate during the dissolution process; however, during the initial phase of dissolution, CBZ changes to a metastable intermediate phase. © 2015 Royal Pharmaceutical Society.

  6. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    PubMed

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  7. Trace Metals in Urban Stormwater Runoff and their Management

    NASA Astrophysics Data System (ADS)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.

  8. Study of strain-stress behavior when reconstructing rotary kiln tyres from floating to welded-in type

    NASA Astrophysics Data System (ADS)

    Shchetinin, N. A.; Duganova, E. V.; Golubenko, N. V.; Novikov, I. A.; Korneev, A. S.

    2018-03-01

    The paper provides modeling results in the CAD/CAE SolidWorks system with embedded FE-analysis package SolidWorks Simulation to study the hardness of floating tyres during their reconstruction into welded-in tyres.

  9. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  10. Construction and Evaluation of Rainwater Harvesting System for Domestic Use in a Remote and Rural Area of Khulna, Bangladesh.

    PubMed

    Biswas, Biplob Kumar; Mandal, Bablu Hira

    2014-01-01

    Scarcity of pure drinking water during the dry season (November-March) is a major problem in Bangladesh, which needs to be addressed. This crisis has been further aggravated due to surging populations. Rainwater can provide some of the cleanest naturally occurring water and can hold a great potential in dealing with the current challenge of acute arsenic poisoning as well as physical water scarcity in many parts of Bangladesh. In this connection, rainwater harvesting (RWH) system has been constructed in a very remote and rural village in Khulna, Bangladesh, for a 4-membered household. It consists of a concrete catchment of 40 m(2) area, a supporting and collection system made of PVC pipes, and two locally available plastic storage tanks having capacity of 2000 L each. The study also investigates the quality aspects of the stored rainwater, which include measurement of pH, alkalinity, hardness, total dissolved solids (TDS), iron, chloride, nitrate, and turbidity, using standard methods. The results showed that not only the quality of harvested rainwater is good but also the amount of water is enough for a 4-membered household to meet its domestic use throughout the year.

  11. Heavy metal hazards of sachet water in Nigeria.

    PubMed

    Orisakwe, Orish Ebere; Igwilo, Innocent O; Afonne, Onyenmechi Johnson; Maduabuchi, John-Moses Ugwuona; Obi, Ejeatuluchukwu; Nduka, John C

    2006-01-01

    The authors assessed sachet water samples sold in Eastern Nigeria. Using an atomic absorption spectrophotometer, they analyzed levels of lead, cadmium, copper, and nickel. They also analyzed other parameters, such as nitrates, sulfates, chlorides, salinity, total hardness, biological oxygen demand, total dissolved solids, and pH level. Lead levels ranged from 0.002 to 0.036 mg/L in the samples; 5 samples (12.2%) had lead levels above the maximum contaminant level (MCL; 0.015 mg/L). Lead was not detectable in 20 samples (48.8%). Cadmium levels ranged from 0.002 to 0.036 mg/L and exceeded the MCL of 0.005 mg/L in 8 samples (19.5%); it was not detectable in 23 samples (56.1%). Copper was not detected in 2 (0.05%) of the samples. Its range was between 0.018 and 1.401 mg/L. Two samples (0.05%) had copper levels above the MCL (1.30 mg/L). Nickel levels ranged from 0.003 to 0.050 mg/l. The biological oxygen demand of the samples ranged from 3.20 to 36.80 mg/L. Other parameters were normal. The authors found that some of the sachet waters contain heavy metals, and consumers may be exposed to hazards.

  12. Comprehensive monitoring of drinking well water quality in Seoul metropolitan city, Korea.

    PubMed

    Kim, Ki-Hyun; Susaya, Janice P; Park, Chan Goo; Uhm, Jung-Hoon; Hur, Jin

    2013-08-01

    In this research, the quality of drinking well waters from 14 districts around Seoul metropolitan city, Korea was assessed by measuring a number of parameters with established guideline (e.g., arsenic, fluoride, nitrate nitrogen, benzene, 1,2-dichloroethene, dichloromethane, copper, and lead) and without such criteria (e.g., hardness, chloride ion, sulfate ion, ammonia nitrogen, aluminum, iron, manganese, and zinc). Physical parameters such as evaporation residue (or total dissolved solids) and turbidity were also measured. The importance of each parameter in well waters was examined in terms of the magnitude and exceedance frequency of guideline values established by international (and national) health agencies. The results of this study indicate that among the eight parameters with well-established guidelines (e.g., WHO), arsenic and lead (guideline value of 0.01 mg L(-1) for both) recorded the highest exceedance frequency of 18 and 16 well samples ranging in 0.06-136 and 2-9 mg L(-1), respectively. As such, a number of water quality parameters measured from many well waters in this urban area were in critical levels which require immediate attention for treatment and continuous monitoring.

  13. Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.

    2006-01-01

    Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most locations with measured dissolved-solids concentration in excess of 1,000 milligrams per liter, the model simulates salt-water intrusion with similar concentrations.Simulating an additional 1,650 acre-feet per year withdrawal increased simulated dissolved-solids concentration by 200 to 1,000 milligrams per liter throughout much of Lake Point and near Fac­tory Springs at a depth of about 250 to 300 feet below land surface. The increase in dissolved-solids concentration with increased withdrawals is greater at a depth of about 700 to 800 feet and exceeds 1,000 milligrams per liter throughout most of Lake Point. At the north end of Lake Point, increases exceed 10,000 milligrams per liter.

  14. 40 CFR 192.11 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...

  15. 40 CFR 192.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...

  16. 40 CFR 192.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...

  17. 40 CFR 192.11 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...

  18. 40 CFR 192.11 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of alpha particles with a total energy of 130 billion electron volts. (d) Soil means all... current or potential source of drinking water because (1) the concentration of total dissolved solids is...

  19. Hydrochemical and water quality assessment of groundwater in Doon Valley of Outer Himalaya, Uttarakhand, India.

    PubMed

    Dudeja, Divya; Bartarya, Sukesh Kumar; Biyani, A K

    2011-10-01

    The present study discusses ion sources and assesses the chemical quality of groundwater of Doon Valley in Outer Himalayan region for drinking and irrigational purposes. Valley is almost filled with Doon gravels that are main aquifers supplying water to its habitants. Recharged only by meteoric water, groundwater quality in these aquifers is controlled essentially by chemical processes occurring between water and lithology and locally altered by human activities. Seventy-six water samples were collected from dug wells, hand pumps and tube wells and were analysed for their major ion concentrations. The pH is varying from 5.6 to 7.4 and electrical conductivity from 71 to 951 μmho/cm. Groundwater of Doon valley is dominated by bicarbonate contributing 83% in anionic abundance while calcium and magnesium dominate in cationic concentrations with 88%. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The high ratio of (Ca + Mg)/(Na + K), i.e. 10, low ratio of (Na + K)/TZ+, i.e.0.2 and also the presence of carbonate lithology in the northern part of valley, is indicative of carbonate dissolution as the main controlling solute acquisition process in the valley. The low abundance of silica content and high HCO₃/H₄SiO₄ ratio also supports carbonate dissolution and less significant role of silicate weathering as the major source for dissolved ions in Doon Valley. The analytical results computed for various indices show that water is of fairly good quality, although, hard but have moderate dissolved solid content. It is free from sodium hazard lying in C₁-S₁ and C₂-S₁ class of USSL diagram and in general suitable for drinking and irrigation except few locations having slightly high salinity hazard.

  20. Developing a Water Quality Index (WQI) for an Irrigation Dam

    PubMed Central

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-01-01

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl−, NO3, SO4, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study. PMID:28468230

  1. Physicochemical quality and health implications of bottled water brands sold in Ethiopia.

    PubMed

    Amogne, Wossen T; Gizaw, Melaku; Abera, Daniel

    2015-06-01

    Water bottling companies often assert that their products are of the highest quality and are conforming to the standards. The objective of the study was to assess the physicochemical quality of bottled waters consumed in Ethiopia and to compare the findings with the national and international water quality standards. Eleven domestic and two imported bottled water brands were randomly purchased in Addis Ababa, Ethiopia at three different occasions from July 2013 to May 2014. A total of 39 composite samples were examined for aggregate parameters, major anions, and common cations in accordance with the procedures described in the standard methods. We found that 7.7% of the samples were containing higher levels of alkalinity, hardness, total dissolved solids, pH, HCO3-, Na+, and Ca2+ than the national standards and the WHO guidelines. However, the deviations from standards for all the above parameters were not statistically significant (one-sample t-test, P>0.05). Conversely, in some of the brands, some of the essential elements like Ca2+, K+, Mg2+, and F- were found at very low concentrations. The rest of the parameters, including CO3(2-), SO4(2-), PO4(3-) (orthophosphates), Cl-, F-, NO3-, NO2-, K+, Mg2+, Fe, Mn, Cr, Cd, Cu, Ni, and Pb were within the acceptable ranges in all the brands. Bottled water brands containing very high concentrations of dissolved substances may pose health risks for individuals living with heart and kidney related problems. On the other hand, brands having chemicals lower than the optimum level may also harm the health of consumers who choose those brands as a sole source of drinking water. Thus, we suggest those responsible authorities to ensure regular monitoring and testing for chemical compositions of bottled water.

  2. Soil salinization in different natural zones of intermontane depressions in Tuva

    NASA Astrophysics Data System (ADS)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  3. Reconnaissance of water quality of Pueblo Reservoir, Colorado: May through December 1985

    USGS Publications Warehouse

    Edelmann, Patrick

    1989-01-01

    Pueblo Reservoir is the farthest upstream, main-stream reservoir constructed on the Arkansas River and is located in Pueblo County approximately 6 miles upstream from the city of Pueblo, Colorado. During the 1985 sampling period, the reservoir was stratified, and underflow from the Arkansas River occurred that resulted in stratification with respect to specific conductance. Concentrations of dissolved solids decreased markedly below the thermocline during June. Later in the summer, dissolved-solids concentrations increased substantially below the thermocline. Substantial depletion of dissolved oxygen occurred near the bottom of the reservoir. The dissolved oxygen minimum of 0.1 mg/L occurred during August near the reservoir bottom at transect 7 (near the dam). The average total-inorganic-nitrogen concentration near the reservoir surface was about 0.2 mg/L; near the reservoir bottom, the average concentration was about 0.3 mg/L. Concentrations of total phosphorus ranged from less than 0.01 to 0.05 mg/L near the reservoir surface, and from less than 0.01 to 0.22 mg/L near the reservoir bottom. At transect 2 (about 7 miles upstream from the dam) near the bottom of the reservoir, concentrations of total iron exceeded aquatic-life standards, and dissolved-manganese concentrations exceeded standards for public water supply. Diatoms, green algae, blue-green algae, and cryptomonads comprised the majority of phytoplankton in Pueblo Reservoir in 1985. The maximum average of 41,000 cells/ml occurred in July. Blue-green algae dominated from June to September; diatoms were the dominant group of algae in October. The average concentrations of phytoplankton decreased from July to October. (USGS)

  4. Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters.

    PubMed

    Perez, Magali; Simpson, Stuart L; Lespes, Gaëtane; King, Josh J; Adams, Merrin S; Jarolimek, Chad V; Grassl, Bruno; Schaumlöffel, Dirk

    2016-12-01

    Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics. The performance was compared to an established Chelex-column method that measures labile copper concentrations by discrete sampling, and the ability to predict acute toxicity to the cladoceran, Ceriodaphnia dubia. The labile copper concentrations measured by the DMG and Chelex-column methods decreased with increasing dissolved organic carbon (DOC) (1.9-15 mg L -1 ) and hardness (21-270 mg CaCO 3  L -1 hardness), with 20-70% of total dissolved copper being present as labile copper. Toxicity decreased with increasing DOC and hardness. Strong linear relationships existed between the EC50 for C. dubia and DOC, and when the EC50 was related to either the labile copper concentrations measured by DMG (r 2  = 0.874) or the Chelex column (0.956) methods. The study demonstrates that the DMG passive sampler is a relevant tool for the in situ assessment of environmental risks posed by metals whose toxicity is strongly influenced by speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Qi, Sharon L.

    2007-01-01

    An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard, 22 percent exceeded the manganese standard, 19 percent exceeded the sulfate standard, 26 percent exceeded the uranium standard, and 38 percent exceeded the dissolved-solids standard. In addition, 78 percent of samples had at least one detectable pesticide and 22 percent of samples had at least one detectable VOC. In the Eastern Nebraska unit, 30 percent of the samples collected had dissolved-solids concentrations larger than the standard, 23 percent exceeded the iron standard, 13 percent exceeded the manganese standard, 10 percent exceeded the arsenic standard, 7 percent exceeded the sulfate standard, 7 percent exceeded the uranium standard, and 7 percent exceeded the selenium standard. No samples exceeded the nitrate standard. Thirty percent of samples had at least one detectable pesticide compound and 10 percent of samples had at least one detectable VOC. In contrast, the Sand Hills and Ogallala Formation units had fewer detections of anthropogenic compounds and drinking-water exceedances. In the Sand Hills unit, 15 percent of the samples exceeded the arsenic standard, 4 percent exceeded the nitrate standard, 4 percent exceeded the uranium standard, 4 percent exceeded the iron standard, and 4 percent exceeded the dissolved-solids standard. Fifteen percent of samples had at least one pesticide compound detected and 4 percent had at least one VOC detected. In the Ogallala Formation unit, 6 percent of water samples exceeded the arsenic standard, 4 percent exceeded the dissolved-solids standard, 3 percent exceeded the nitrate standard, 2 percent exceeded the manganese standard, 1 percent exceeded the iron standard, 1 percent exceeded the sulfate standard, and 1 percent exceeded the uranium standard. Eight percent of samples collected in the Ogallala Formation unit had at least one pesticide detected and 6 percent had at least one VOC detected. Differences in ground-water chemistry among the hydrogeologic units were attributed to variable depth to water, depth of the well screen below the water table, reduction-oxidation conditions, ground-water residence time, interactions with surface water, composition of aquifer sediments, extent of cropland, extent of irrigated land, and fertilizer application rates.

  6. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    USGS Publications Warehouse

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural, and non-agricultural purposes. All pesticide concentrations were below state and federal 2000 drinking-water standards. The relation of the ground-water quality to natural processes and human activities was tested using statistical methods (Spearman rank correlation, Kruskal?Wallis, or rank-sum tests) to determine whether an influence from rice land-use or other human activities on ground-water chemistry could be identified. The detection of pesticides in 89 percent of the wells sampled indicates that human activities have affected shallow ground-water quality. Concentrations of dissolved solids and inorganic constituents that exceeded state or federal 2000 drinking-water standards showed a statistical relation to geomorphic unit. This is interpreted as a relation to natural processes and variations in geology in the Sacramento River Basin; the high concentrations of dissolved solids and most inorganic constituents did not appear to be related to rice land use. No correlation was found between nitrate concentration and pesticide occurrence, indicating that an absence of high nitrate concentrations is not a predictor of an absence of pesticide contamination in areas with reducing ground-water conditions in the Sacramento Valley. Tritium concentrations, pesticide detections, stable isotope data, and dissolved-solids concentrations suggest that shallow ground water in the ricegrowing areas of the Sacramento Valley is a mix of recently recharged ground water containing pesticides, nitrate, and tritium, and unknown sources of water that contains high concentrations of dissolved solids and some inorganic constituents and is enriched in oxygen-18. Evaporation of applied irrigation water, which leaves behind salt, accounts for some of the elevated concentrations of dissolved solids. More work needs to be done to understand the connections between the land surface, shallow ground water, deep ground water, and the drinking-water supplies in the Sacramento Valley.

  7. Particle design using a 4-fluid-nozzle spray-drying technique for sustained release of acetaminophen.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2006-07-01

    We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.

  8. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers.

    PubMed

    Six, Karel; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van Den Mooter, Guy

    2004-01-01

    Solid dispersions were prepared of itraconazole-Eudragit E100, itraconazole-PVPVA64, and itraconazole-Eudragit E100/PVPVA64 using a corotating twin-screw hot-stage extruder. Modulated temperature differential scanning calorimetry (MTDSC) was used to evaluate the miscibility of the extrudates, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGF(sp)). Itraconazole and Eudragit E100 are miscible up to 13% w/w drug loading. From that concentration on, phase separation is observed. Pharmaceutical performance of this dispersion was satisfactory because 80% of the drug dissolved after 30 min. Extrudates of itraconazole and PVPVA64 were completely miscible but the pharmaceutical performance was low, with 45% of drug dissolved after 3 h. Combination of both polymers in different ratios, with a fixed drug loading of 40% w/w, was evaluated. MTDSC results clearly indicated a two-phase system consisting of itraconazole-Eudragit E100 and itraconazole-PVPVA64 phases. In these extrudates, no free crystalline or glassy clusters of itraconazole were observed; all itraconazole was mixed with one of both polymers. The pharmaceutical performance was tested in SGF(sp) for different polymer ratios, and Eudragit E100/PVPVA64 ratios of 50/50 and 60/40 showed significant increases in dissolution rate and level. Polymer ratios of 70/30 and 80/20, on the other hand, had a release of 85% after 30 min. Precipitation of the drug was never observed. The combination of the two polymers provides a solid dispersion with good dissolution properties and improved physical stability compared with the binary solid dispersions of itraconazole. Copyright 2004 Wiley-Liss, Inc.

  9. Development and characterization of fast-dissolving tablet formulations of glyburide based on solid self-microemulsifying systems.

    PubMed

    Cirri, Marzia; Roghi, Alessandra; Valleri, Maurizio; Mura, Paola

    2016-07-01

    The aim of this work was to develop effective fast-dissolving tablet formulations of glyburide, endowed with improved dissolution and technological properties, investigating the actual effectiveness of the Solid-Self MicroEmulsifying Drug Delivery System (S-SMEDDS) approach. An initial screening aimed to determine the solubility of the drug in different oils, Surfactants and CoSurfactants allowed the selection of the most suitable components for liquid SMEDDS, whose relative amounts were defined by the construction of pseudo-ternary phase diagrams. The selected liquid SMEDDS formulations (Capyol 90 as oil, Tween 20 as Surfactant and Glycofurol or Transcutol as CoSurfactant) were converted into Solid-SMEDDS, by adsorbing them onto Neusilin (1:1 and 1:0.8w/w S-SMEDDS:carrier), and fully characterized in terms of solid state (DSC and X-ray powder diffraction), morphological (ESEM) and dissolution properties, particle size and reconstitution ability. Finally, the 1:1 S-SMEDDS containing Glycofurol as CoSurfactant, showing the best performance, was selected to prepare two final tablet formulations. The ratio test (t10 min ratio and DE60 ratio) and pair-wise procedures (difference (f1) and similarity (f2) factors) highlighted the similarity of the new developed tablets and the marked difference between their drug dissolution profiles and those of formulations based on the micronized drug. The S-SMEDDS approach allowed to develop fast-dissolving tablets of glyburide, endowed with good technological properties and able to achieve the complete drug dissolution in a time ranging from 10 to 15min, depending on the formulation composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Francis E. Walter Dam and Reservoir Project, Water Quality Data Report (RCS-DAEN-CWE-15).

    DTIC Science & Technology

    1980-12-01

    downstream, as well as within, the lake. Analysis of these samples rives an understanding of the effect of the lake on water quality: • . The...regulation, are available for analysis . Water quality data;I (temperature, dissolved oxygen, conductivity, pH, phosphorous, total dissolved solids...depresses the pH following a rain storm. If the source of tre acid water is Fhallow lakes and swamps~lignin and tannin concentrations would be high

  11. Relation of stream quality to streamflow, and estimated loads of selected water-quality constituents in the James and Rappahannock rivers near the fall line of Virginia, July 1988 through June 1990

    USGS Publications Warehouse

    Belval, D.L.; Campbell, J.P.; Woodside, M.D.

    1994-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality-- Division of Intergovernmental Coordination to monitor and estimate loads of selected nutrients and suspended solids discharged to Chesapeake Bay from two major tributaries in Virginia. From July 1988 through June 1990, monitoring consisted of collecting depth-integrated, cross-sectional samples from the James and Rappahannock Rivers during storm- flow conditions and at scheduled intervals. Water- quality constituents that were monitored included total suspended solids (residue, total at 105 degrees Celsius), dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen (ammonia plus organic), total nitrogen, total phosphorus, dissolved orthopohosphorus, total organic carbon, and dissolved silica. Daily mean load estimates of each constituent were computed by month, using a seven-parameter log-linear-regression model that uses variables of time, discharge, and seasonality. Water-quality data and constituent- load estimates are included in the report in tabular and graphic form. The data and load estimates provided in this report will be used to calibrate the computer modeling efforts of the Chesapeake Bay region, evaluate the water quality of the Bay and the major effects on the water quality, and assess the results of best-management practices in Virginia.

  12. 27 CFR 30.1 - Gauging of distilled spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... correcting hydrometer indications at temperatures between 0 and 100 degrees Fahrenheit to true proof. If distilled spirits contain dissolved solids, temperature correction of the hydrometer reading by the use of...

  13. Utah FORGE Groundwater Data

    DOE Data Explorer

    Joe Moore

    2016-07-20

    This submission includes two modelled drawdown scenarios with new supply well locations, a total dissolved solids (TDS) concentration grid (raster dataset representing the spatial distribution of TDS), and an excel spreadsheet containing well data.

  14. Hydrologic reconnaissance of the Wasatch Plateau-Book Cliffs coal-fields area, Utah

    USGS Publications Warehouse

    Waddell, Kidd M.; Contratto, P. Kay; Sumsion, C.T.; Butler, John R.

    1981-01-01

    Data obtained during a hydrologic reconnaissance in 1975-77 in the Wasatch Plateau-Book Cliffs coal-fields area of Utah were correlated with existing long-term data. Maps were prepared showing average precipitation, average streamflow, stream temperature, ground- and surface-water quality, sediment yield, and geology. Recommendations were made for additional study and suggested approaches for continued monitoring in the coalfields areas.moDuring the 1931-75 water years, the minimum discharges for the five major streams that head in the area ranged from about 12,000 to 26,000 acre-feet per year, and the maximum discharges ranged from about 59,000 to 315,000 acre-feet per year. Correlations indicate that 3 years of low-flow records at stream sites in the Wasatch Plateau would allow the development of relationships with long-term sites that can be used to estimate future low-flow records within a standard error of about 20 percent.Most water-quality degradation in streams occurs along the flanks of the Wasatch Plateau and Book Cliffs. In the uplands, dissolved-solids concentrations generally ranged from less than 100 to about 250 milligrams per liter, and in the lowlands, the concentrations ranged from about 250 to more than 6,000 milligrams per liter.Most springs in the Wasatch Plateau and Book Cliffs discharge from the Star Point Sandstone or younger formations, and the water generally contains less than about 1,000 milligrams per liter of dissolved solids. The discharges of 65 springs ranged from about 0.2 to 200 gallons per minute. The Blackhawk Formation, which is the principal coal-bearing formation, produces water in many of the mines. The dissolved-solids concentration in water discharging from springs and mines in the Blackhawk ranged from about 60 to 800 milligrams per liter.In the lowland areas, the Ferron Sandstone Member of the Maneos Shale appears to have the most potential for subsurface development of water of suitable chemical quality for human consumption. Three wells in the Ferron yielded water with dissolved-solids concentrations ranging from about 650 to 1,230 milligrams per liter.

  15. Trends in groundwater quality in principal aquifers of the United States, 1988-2012

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2014-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program analyzed trends in groundwater quality throughout the nation for the sampling period of 1988-2012. Trends were determined for networks (sets of wells routinely monitored by the USGS) for a subset of constituents by statistical analysis of paired water-quality measurements collected on a near-decadal time scale. The data set for chloride, dissolved solids, and nitrate consisted of 1,511 wells in 67 networks, whereas the data set for methyl tert-butyl ether (MTBE) consisted of 1, 013 wells in 46 networks. The 25 principal aquifers represented by these networks account for about 75 percent of withdrawals of groundwater used for drinking-water supply for the nation. Statistically significant changes in chloride, dissolved-solids, or nitrate concentrations were found in many well networks over a decadal period. Concentrations increased significantly in 48 percent of networks for chloride, 42 percent of networks for dissolved solids, and 21 percent of networks for nitrate. Chloride, dissolved solids, and nitrate concentrations decreased significantly in 3, 3, and 10 percent of the networks, respectively. The magnitude of change in concentrations was typically small in most networks; however, the magnitude of change in networks with statistically significant increases was typically much larger than the magnitude of change in networks with statistically significant decreases. The largest increases of chloride concentrations were in urban areas in the northeastern and north central United States. The largest increases of nitrate concentrations were in networks in agricultural areas. Statistical analysis showed 42 or the 46 networks had no statistically significant changes in MTBE concentrations. The four networks with statistically significant changes in MTBE concentrations were in the northeastern United States, where MTBE was widely used. Two networks had increasing concentrations, and two networks had decreasing concentrations. Production and use of MTBE peaked in about 2000 and has been effectively banned in many areas since about 2006. The two networks that had increasing concentrations were sampled for the second time close to the peak of MTBE production, whereas the two networks that had decreasing concentrations were sampled for the second time 10 years after the peak of MTBE production.

  16. Production waters associated with the Ferron coalbed methane fields, central Utah: Chemical and isotopic composition and volumes

    USGS Publications Warehouse

    Rice, C.A.

    2003-01-01

    This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in isotopes along with compositional variations imply that the Ferron reservoir is heterogeneous and compartmentalized, and that multiple flow paths may exist. ?? 2003 Published by Elsevier B.V. All rights reserved.

  17. Monitoring requirements for groundwaters under the influence of reclaimed water.

    PubMed

    Fox, P

    2001-07-01

    Monitoring groundwaters under the influence of reclaimed water must consider the major constituents of concern in reclaimed water. This research focused on the fate of dissolved organic carbon and nitrogen species at field sites located throughout the Southwestern United States. A watershed approach was developed to predict the fate of dissolved organic carbon as a function of the drinking water dissolved organic carbon concentration and the total dissolved solids concentration in the reclaimed water. Extensive characterization of the dissolved organic carbon recovered from groundwaters under the influence of reclaimed water was done. With the exception of fluorescence spectroscopy, the dissolved organic carbon present in effluent organic matter was similar in structure, character and reactivity as compared to natural organic matter. Evidence for sustainable nitrogen removal mechanisms during groundwater recharge with reclaimed water was obtained. The autotrophic reaction between ammonia and nitrate appears to a mechanism for the removal nitrogen in a carbon-depleted environment. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of indirect potable reuse projects.

  18. Distribution of pyrethroid insecticides in secondary wastewater effluent

    PubMed Central

    Parry, Emily; Young, Thomas M.

    2014-01-01

    Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. We investigated the distribution of pyrethroids among three forms: freely dissolved, complexed with dissolved organic carbon (DOC), and sorbed to suspended particulate matter, during a yearlong study at a secondary wastewater treatment plant. Effluent was fractionated by laboratory centrifugation to determine if sorption was driven by particle size. Linear distribution coefficients were estimated for pyrethroid sorption to suspended particulate matter (Kid) and dissolved organic carbon (Kidoc) at environmentally relevant pyrethroid concentrations. Resulting Kid values were higher than those reported for other environmental solids, and variation between sampling events correlated well with available particle surface area. Fractionation results suggest that no more than 40% of the pyrethroid remaining in secondary effluent could be removed by extending settling periods. Less than 6%of the total pyrethroid load in wastewater effluent was present in the dissolved form across all sampling events and chemicals. PMID:23939863

  19. Scaling for hard-sphere colloidal glasses near jamming

    NASA Astrophysics Data System (ADS)

    Zargar, Rojman; DeGiuli, Eric; Bonn, Daniel

    2016-12-01

    Hard-sphere colloids are model systems in which to study the glass transition and universal properties of amorphous solids. Using covariance matrix analysis to determine the vibrational modes, we experimentally measure here the scaling behavior of the density of states, shear modulus, and mean-squared displacement (MSD) in a hard-sphere colloidal glass. Scaling the frequency with the boson-peak frequency, we find that the density of states at different volume fractions all collapse on a single master curve, which obeys a power law in terms of the scaled frequency. Below the boson peak, the exponent is consistent with theoretical results obtained by real-space and phase-space approaches to understanding amorphous solids. We find that the shear modulus and the MSD are nearly inversely proportional, and show a singular power-law dependence on the distance from random close packing. Our results are in very good agreement with the theoretical predictions.

  20. Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions

    NASA Astrophysics Data System (ADS)

    van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura

    2017-12-01

    Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.

  1. Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs

    NASA Astrophysics Data System (ADS)

    Liqing, TONG; Kefu, LIU; Yonggang, WANG

    2018-02-01

    For an all solid-state Marx modulator applied in dielectric barrier discharges (DBDs), hard switching results in a very low efficiency. In this paper, a series resonant soft switching circuit, which series an inductance with DBD capacitor, is proposed to reduce the power loss. The power loss of the all circuit status with hard switching was analyzed, and the maximum power loss occurred during discharging at the rising and falling edges. The power loss of the series resonant soft switching circuit was also presented. A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss. The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times.

  2. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  3. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications.

    PubMed

    Qian, Feng; Wang, Jennifer; Hartley, Ruiling; Tao, Jing; Haddadin, Raja; Mathias, Neil; Hussain, Munir

    2012-10-01

    To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.

  4. Observed and predicted reproduction of Ceriodaphnia dubia exposed to chloride, sulfate, and bicarbonate

    USGS Publications Warehouse

    Lasier, Peter J.; Hardin, Ian R.

    2010-01-01

    Chronic toxicities of Cl-, SO42-, and HCO3- to Ceriodaphnia dubia were evaluated in low- and moderate-hardness waters using a three-brood reproduction test method. Toxicity tests of anion mixtures were used to determine interaction effects and to produce models predicting C. dubia reproduction. Effluents diluted with low- and moderate-hardness waters were tested with animals acclimated to low- and moderate-hardness conditions to evaluate the models and to assess the effects of hardness and acclimation. Sulfate was significantly less toxic than Cl- and HCO3- in both types of water. Chloride and HCO3- toxicities were similar in low-hardness water, but HCO3- was the most toxic in moderate-hardness water. Low acute-to-chronic ratios indicate that toxicities of these anions will decrease quickly with dilution. Hardness significantly reduced Cl- and SO42- toxicity but had little effect on HCO3-. Chloride toxicity decreased with an increase in Na+ concentration, and CO3- toxicity may have been reduced by the dissolved organic carbon in effluent. Multivariate models using measured anion concentrations in effluents with low to moderate hardness levels provided fairly accurate predictions of reproduction. Determinations of toxicity for several effluents differed significantly depending on the hardness of the dilution water and the hardness of the water used to culture test animals. These results can be used to predict the contribution of elevated anion concentrations to the chronic toxicity of effluents; to identify effluents that are toxic due to contaminants other than Cl-, SO42-, and HCO3-; and to provide a basis for chemical substitutions in manufacturing processes.

  5. Parking Lot Runoff Quality and Treatment Efficiency of a Stormwater-Filtration Device, Madison, Wisconsin, 2005-07

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.

    2010-01-01

    To evaluate the treatment efficiency of a stormwater-filtration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD. Water-quality samples were collected for 51 runoff events from November 2005 to August 2007. Samples from all runoff events were analyzed for concentrations of suspended sediment (SS). Samples from 31 runoff events were analyzed for 15 constituents, samples from 15 runoff events were analyzed for PAHs, and samples from 36 events were analyzed for PSD. The treatment efficiency of the SFD was calculated using the summation of loads (SOL) and the efficiency ratio methods. Constituents for which the concentrations and (or) loads were decreased by the SFD include TSS, SS, volatile suspended solids, total phosphorous (TP), total copper, total zinc, and PAHs. The efficiency ratios for these constituents are 45, 37, 38, 55, 22, 5, and 46 percent, respectively. The SOLs for these constituents are 32, 37, 28, 36, 23, 8, and 48 percent, respectively. The SOL for chloride was -21 and the efficiency ratio was -18. Six chemical constituents or properties-dissolved phosphorus, chemical oxygen demand, dissolved zinc, total dissolved solids, dissolved chemical oxygen demand, and dissolved copper-were not included in the efficiency or SOL, because the difference between concentrations in samples from the inlet and outlet were not significant. Concentrations of TP and TSS were inexplicably high in samples at the inlet for one event.

  6. IN SITU SOURCE TREATMENT OF CR(VI) USING A FE(II)-BASED REDUCTANT BLEND: LONG-TERM MONITORING AND EVALUATION

    EPA Science Inventory

    The long-term effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved and solid phase Cr(VI) in a high pH chromite ore processing solid waste (COPSW) fill material was investigated. Two field pilot injection studies were cond...

  7. Water quality in the Bear River Basin of Utah, Idaho, and Wyoming prior to and following snowmelt runoff in 2001

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, Lawrence E.

    2006-01-01

    Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.

  8. Baseline well inventory and groundwater-quality data from a potential shale gas resource area in parts of Lee and Chatham Counties, North Carolina, October 2011-August 2012

    USGS Publications Warehouse

    Chapman, Melinda J.; Gurley, Laura N.; Fitzgerald, Sharon A.

    2014-01-01

    Records were obtained for 305 wells and 1 spring in northwestern Lee and southeastern Chatham counties, North Carolina. Well depths ranged from 26 to 720 feet and yields ranged from 0.25 to 100 gallons per minute. A subset of 56 wells and 1 spring were sampled for baseline groundwaterquality constituents including the following: major ions; dissolved metals; nutrients; dissolved gases (including methane); volatile and semivolatile organic compounds; glycols; isotopes of strontium, radium, methane (if sufficient concentration), and water; and dissolved organic and inorganic carbon. Dissolved methane gas concentrations were low, ranging from less than 0.00007 (lowest reporting level) to 0.48 milligrams per liter. Concentrations of nitrate, boron, iron, manganese, sulfate, chloride, total dissolved solids, and measurements of pH exceeded federal and state drinking water standards in a few samples. Iron and manganese concentrations exceeded the secondary (aesthetic) drinking water standard in approximately 35 to 37 percent of the samples.

  9. Alternative Manufacturing Concepts for Solid Oral Dosage Forms From Drug Nanosuspensions Using Fluid Dispensing and Forced Drying Technology.

    PubMed

    Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael

    2018-03-01

    Flexible manufacturing technologies for solid oral dosage forms with a continuous adjustability of the manufactured dose strength are of interest for applications in personalized medicine. This study explored the feasibility of using microvalve technology for the manufacturing of different solid oral dosage form concepts. Hard gelatin capsules filled with excipients, placebo tablets, and polymer films, placed in hard gelatin capsules after drying, were considered as substrates. For each concept, a basic understanding of relevant formulation parameters and their impact on dissolution behavior has been established. Suitable matrix formers, present either on the substrate or directly in the drug nanosuspension, proved to be essential to prevent nanoparticle agglomeration of the drug nanoparticles and to ensure a fast dissolution behavior. Furthermore, convection and radiation drying methods were investigated for the fast drying of drug nanosuspensions dispensed onto polymer films, which were then placed in hard gelatin capsules. Changes in morphology and in drug and matrix former distribution were observed for increasing drying intensity. However, even fast drying times below 1 min could be realized, while maintaining the nanoparticulate drug structure and a good dissolution behavior. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. A sediment resuspension and water quality model of Lake Okeechobee

    USGS Publications Warehouse

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  11. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk.

    PubMed

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-08-01

    Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pH<12. CaSO4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO3>Ca3(PO4)2>CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pH<7 and pH<12, resulting from CaCO3 and Ca3(PO4)2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Membrane water deaerator investigation. [fluid filter breadboard model

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The purpose of the membrane water deaerator program was to develop data on a breadboard hollow fiber membrane unit that removes both dissolved and evolved gas from a water transfer system in order to: (1) assure a hard fill of the EVLSS expendable water tank; (2) prevent flow blockage by gas bubbles in circulating systems; and (3) prevent pump cavitation.

  13. Improvement in hardness of soda-lime-silica glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Riya; De, Moumita; Roy, Sudakshina

    2012-06-05

    Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.

  14. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    PubMed

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  15. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  16. 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less

  17. The Geographic Information System applied to study schistosomiasis in Pernambuco

    PubMed Central

    Barbosa, Verônica Santos; Loyo, Rodrigo Moraes; Guimarães, Ricardo José de Paula Souza e; Barbosa, Constança Simões

    2017-01-01

    ABSTRACT OBJECTIVE Diagnose risk environments for schistosomiasis in coastal localities of Pernambuco using geoprocessing techniques. METHODS A coproscopic and malacological survey were carried out in the Forte Orange and Serrambi areas. Environmental variables (temperature, salinity, pH, total dissolved solids and water fecal coliform dosage) were collected from Biomphalaria breeding sites or foci. The spatial analysis was performed using ArcGis 10.1 software, applying the kernel estimator, elevation map, and distance map. RESULTS In Forte Orange, 4.3% of the population had S. mansoni and were found two B. glabrata and 26 B. straminea breeding sites. The breeding sites had temperatures of 25ºC to 41ºC, pH of 6.9 to 11.1, total dissolved solids between 148 and 661, and salinity of 1,000 d. In Serrambi, 4.4% of the population had S. mansoni and were found seven B. straminea and seven B. glabrata breeding sites. Breeding sites had temperatures of 24ºC to 36ºC, pH of 7.1 to 9.8, total dissolved solids between 116 and 855, and salinity of 1,000 d. The kernel estimator shows the clusters of positive patients and foci of Biomphalaria, and the digital elevation map indicates areas of rainwater concentration. The distance map shows the proximity of the snail foci with schools and health facilities. CONCLUSIONS Geoprocessing techniques prove to be a competent tool for locating and scaling the risk areas for schistosomiasis, and can subsidize the health services control actions. PMID:29166439

  18. Simulating water-quality trends in public-supply wells in transient flow systems

    USGS Publications Warehouse

    Starn, J. Jeffrey; Green, Christopher T.; Hinkle, Stephen R.; Bagtzoglou, Amvrossios C.; Stolp, Bernard J.

    2014-01-01

    Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources as pumping changes in the basin over time. At individual wells, however, predicting specific water-quality changes remains challenging. The influence of pumping-induced transient groundwater flow on changes in mean age and source areas is significant. Mean age and source areas were mapped across the model domain to extend the results from observation wells to the entire aquifer to see where changes in concentrations of dissolved solids are expected to occur. The timing of these changes depends on accurate estimates of groundwater velocity. Calibration to tritium concentrations was used to estimate effective porosity and improve correlation between source area changes, age changes, and measured dissolved solids trends. Uncertainty in the model is due in part to spatial and temporal variations in tracer inputs, estimated tracer transport parameters, and in pumping stresses at sampling points. For tracers such as tritium, the presence of two-limbed input curves can be problematic because a single concentration can be associated with multiple disparate travel times. These shortcomings can be ameliorated by adding hydrologic and geologic detail to the model and by adding additional calibration data. However, the Salt Lake Valley model is useful even without such small-scale detail.

  19. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  20. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less

  1. Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97

    USGS Publications Warehouse

    Sarver, K.M.; Steiner, B.C.

    1998-01-01

    Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.

  2. Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey

    USGS Publications Warehouse

    Anderson, Peter W.; Faust, Samuel Denton

    1973-01-01

    The findings of a problem-oriented river-system investigation of the water-quality and streamflow characteristics of the Passaic River above Little Falls, N.J. (drainage area 762 sq mi) are described. Information on streamflow duration, time-of-travel measurements, and analyses of chemical, biochemical, and physical water quality are summarized. This information is used to define relations between water quality, streamflow, geology, and environmental development in the basin's hydrologic system. The existence, nature, and magnitude of long-term trends in stream quality--as measured by dissolved solids, chloride, dissolved oxygen, biochemical oxygen demand, ammonia, nitrate, and turbidity--and in streamflow toward either improvement or deterioration are appraised at selected sites within the river system. The quality of streams in the upper Passaic River basin in northeastern New Jersey is shown to be deteriorating with time. For example, biochemical oxygen demand, an indirect measure of organic matter in a stream, is increasing at most stream-quality sampling sites. Similarly, the dissolved-solids content, a measure of inorganic matter, also is increasing. These observations suggest that the Passaic River system is being used more and more as a medium for the disposal of industrial and municipal waste waters. Dissolved oxygen, an essential ingredient for the natural purification of streams receiving waste discharges, is undersaturated (that is, below theoretical solubility levels) at all sampling sites and is decreasing with time at most sites. This is another indication of the general deterioration of stream quality in the upper basin. It also indicates that the ability of the river system to receive, transport, and assimilate wastes, although exceeded now only for short periods during the summer months, may be exceeded more continually in the future if present trends hold. Decreasing ratios of ammonia to nitrate in a downstream direction on the main stem Passaic River suggests that nitrification (the biochemical conversion of ammonia to nitrate) as well as microbiological decomposition of organic matter (waste waters) is contributing to the continued and increasing undersaturation of dissolved oxygen in the river system. Passaic River streams are grouped into five general regions of isochemical quality on the basis of predominant constituents and dissolved-solids content during low flows. The predominant cations in all but one region are calcium and magnesium (exceeding 50 percent of total cations) ; in that region, where man's activities probably have altered the natural stream waters, the percentage of sodium and potassium equals that of calcium and magnesium. In two of the five regions, the predominant anion is bicarbonate; a combination of sulfate, chloride, and nitrate is predominant in the other three regions. Dissolved-solids content during low flows generally ranges from 100 to 600 milligrams per liter. Several time-of-travel measurements within the basin are reported. These data provide reasonable estimates of the time required for soluble contaminants to pass through particular parts of the river system. For example, the peak concentration of a contaminant injected into the river system at Chatham during extreme low flow would be expected to travel to Little Falls, about 31 miles, in about 13 days; but at medium flow, in about 5 days.

  3. Groundwater quality assessment using geospatial and statistical tools in Salem District, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Arulbalaji, P.; Gurugnanam, B.

    2017-10-01

    The water quality study of Salem district, Tamil Nadu has been carried out to assess the water quality for domestic and irrigation purposes. For this purpose, 59 groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), major anions (HCO3 -, CO3 -, F-, Cl-, NO2 - + NO3 -, and SO4 2-), major cations (Ca2+ Mg2+, Na+, and K+), alkalinity (ALK), and hardness (HAR). To assess the water quality, the following chemical parameters were calculated based on the analytical results, such as Piper plot, water quality index (WQI), sodium adsorption ratio (SAR), magnesium hazard (MH), Kelly index (KI), and residual sodium carbonate (RSC). Wilcox diagram represents that 23% of the samples are excellent to good, 40% of the samples are good to permissible, 10% of the samples are permissible to doubtful, 24% of the samples are doubtful unsuitable, and only 3% of the samples are unsuitable for irrigation. SAR values shows that 52% of the samples indicate high-to-very high and low-to-medium alkali water. KI values indicate good quality (30%) and not suitable (70%) for irrigation purposes. RSC values indicate that 89% of samples are suitable for irrigation purposes. MH reveals that 17% suitable and 83% samples are not suitable for irrigation purposes and for domestic purposes the excellent (8%), good (48%), and poor (44%). The agricultural waste, fertilizer used, soil leaching, urban runoff, livestock waste, and sewages are the sources of poor water quality. Some samples are not suitable for irrigation purposes due to high salinity, hardness, and magnesium concentration. In general, the groundwater of the Salem district was polluted by agricultural activities, anthropogenic activities, ion exchange, and weathering.

  4. Groundwater hydrogeochemical characteristics in rehabilitated coalmine spoils

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Masemola, E.

    2016-04-01

    The investigation aims to identify and describe hydrogeochemical processes controlling the evolution of groundwater chemistry in rehabilitated coalmine spoils and their overall influence on groundwater quality at a study area located in the Karoo basin of South Africa. A good understanding of the processes that controls the evolution of the mine water quality is vital for the planning, application and management of post-mining remedial actions. The study utilises scatter plots, statistical analysis, PHREEQC hydrogeochemical modelling, stoichiometric reaction ratios analysis, and the expanded Durov diagram as complimentary tools to interpret the groundwater chemistry data collected from monitoring boreholes from 1995 to 2014. Measured pH ranging between 6-8 and arithmetic mean of 7.32 shows that the groundwater system is characterised by circumneutral hydrogeochemical conditions period. Comparison of measured groundwater ion concentrations to theoretical reaction stoichiometry identifies Dolomite-Acid Mine Drainage (AMD) neutralisation as the main hydrogeochemical process controlling the evolution of the groundwater chemistry. Hydrogeochemical modelling shows that, the groundwater has temporal variations of calcite and dolomite saturation indices characterised by alternating cycles of over-saturation and under-saturation that is driven by the release of sulphate, calcium and magnesium ions from the carbonate-AMD neutralization process. Arithmetic mean concentrations of sulphate, calcium and magnesium are in the order of 762 mg/L, 141 mg/L and 108 mg/L. Calcium and magnesium ions contribute to very hard groundwater quality conditions. Classification based on total dissolved solids (TDS), shows the circumneutral water is of poor to unacceptable quality for drinking purposes. Despite its ability to prevent AMD formation and leaching of metals, the dolomite-AMD neutralisation process can still lead to problems of elevated TDS and hardness which mines should be aware of when developing water quality management plans.

  5. Compilation of historical water-quality data for selected springs in Texas, by ecoregion

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Williams, Iona P.

    2006-01-01

    Springs are important hydrologic features in Texas. A database of about 2,000 historically documented springs and available spring-flow measurements previously has been compiled and published, but water-quality data remain scattered in published sources. This report by the U.S. Geological Survey, in cooperation with the Texas Parks and Wildlife Department, documents the compilation of data for 232 springs in Texas on the basis of a set of criteria and the development of a water-quality database for the selected springs. The selection of springs for compilation of historical water-quality data in Texas was made using existing digital and hard-copy data, responses to mailed surveys, selection criteria established by various stakeholders, geographic information systems, and digital database queries. Most springs were selected by computing the highest mean spring flows for each Texas level III ecoregion. A brief assessment of the water-quality data for springs in Texas shows that few data are available in the Arizona/New Mexico Mountains, High Plains, East Central Texas Plains, Western Gulf Coastal Plain, and South Central Plains ecoregions. Water-quality data are more abundant for the Chihuahuan Deserts, Edwards Plateau, and Texas Blackland Prairies ecoregions. Selected constituent concentrations in Texas springs, including silica, calcium, magnesium, sodium, potassium, strontium, sulfate, chloride, fluoride, nitrate (nitrogen), dissolved solids, and hardness (as calcium carbonate) are comparatively high in the Chihuahuan Deserts, Southwestern Tablelands, Central Great Plains, and Cross Timbers ecoregions, mostly as a result of subsurface geology. Comparatively low concentrations of selected constituents in Texas springs are associated with the Arizona/New Mexico Mountains, Southern Texas Plains, East Central Texas Plains, and South Central Plains ecoregions.

  6. Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times.

    PubMed

    Queiroz, F B; Brandt, E M F; Aquino, S F; Chernicharo, C A L; Afonso, R J C F

    2012-01-01

    This work investigated the occurrence of pharmaceuticals and endocrine disrupting compounds (EDCs) in raw sewage (from Belo Horizonte city, Minas Gerais state, Brazil) and assessed their behavior in demo-scale upflow anaerobic sludge blanket reactors (UASB reactors) operated at different hydraulic retention times (HRT). The dissolved concentration of the studied micropollutants in the raw and treated sewage was obtained using solid phase extraction (SPE) followed by analysis in a liquid chromatography system coupled to a hybrid high resolution mass spectrometer consisting of an ion-trap and time of flight (LC-MS-IT-TOF). The natural (estradiol) and synthetic (ethinylestradiol) estrogens were hardly detected; when present, however, their concentrations were lower than the method quantification limits. The concentrations of bisphenol A and miconazole in raw sewage were similar to that reported in the literature (around 200 ng L⁻¹ and hardly detected, respectively). The antibiotics sulfamethoxazole (median 13.0 ng L⁻¹) and trimethoprim (median 61.5 ng L⁻¹), and the other pharmaceutical compounds (diclofenac and bezafibrate, with median 99.9 and 94.4 ng L⁻¹, respectively) were found in lower concentrations when compared with reports in the literature, which might indicate a lower consumption of such drugs in Brazil. The UASB reactors were inefficient in the removal of bisphenol A, and led to an increased concentration of nonylphenol in the effluent. The anaerobic reactors were also inefficient in the removal of diclofenac, and led to a partial removal of bezafibrate; whereas, for sulfamethoxazole there seemed to be a direct relationship between the HRT and removal efficiencies. For trimethoprim the sludge retention time (SRT) seemed to play an important role, although it was only partially removed in the UASB reactors.

  7. Groundwater quality assessment of the quaternary unconsolidated sedimentary basin near the Pi river using fuzzy evaluation technique

    NASA Astrophysics Data System (ADS)

    Mohamed, Adam Khalifa; Liu, Dan; Mohamed, Mohamed A. A.; Song, Kai

    2018-05-01

    The present study was carried out to assess the groundwater quality for drinking purposes in the Quaternary Unconsolidated Sedimentary Basin of the North Chengdu Plain, China. Six groups of water samples (S1, S2, S3, S4, S5, and S6) are selected in the study area. These samples were analyzed for 19 different physicochemical water quality parameters to assess groundwater quality. The physicochemical parameters of groundwater were compared with China's Quality Standards for Groundwater (GB/T14848-93). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. Total hardness and total dissolved solid values show that the investigated water is classified as very hard and fresh water, respectively. The sustainability of groundwater for drinking purposes was assessed based on the fuzzy mathematics evaluation (FME) method. The results of the assessment were classified into five groups based on their relative suitability for portable use (grade I = most suitable to grade V = least suitable), according to (GB/T 14848-93). The assessment results reveal that the quality of groundwater in most of the wells was class I, II and III and suitable for drinking purposes, but well (S2) has been found to be in class V, which is classified as very poor and cannot be used for drinking. Also, the FME method was compared with the comprehensive evaluation method. The FME method was found to be more comprehensive and reasonable to assess groundwater quality. This study can provide an important frame of reference for decision making on improving groundwater quality in the study area and nearby surrounding.

  8. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  9. Kansas environmental and resource study: A Great Plains model. Monitoring fresh water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. ERTS MSS ratios derived from CCT's are very effective for quantitative detection of suspended solid up to at least 900 ppm. The relatively high inorganic suspended solids, characteristic of midcontinent reservoirs, dominates the reflected energy present in the four MSS bands. Dissolved solids concentrations up to 500 ppm and algal nutrients up to 20 ppm are not detectable. The MSS5/MSS4 ratio may be weakly correlated with total chlorophyll above approximately 8 micrograms/liter.

  10. Investigation of Flame Driving and Flow Turning in Axial Solid Rocket Instabilities

    DTIC Science & Technology

    1993-08-31

    theoretically sound. it is hard to cor.elate 0 first end order quantities with meassured experimental dR (16) data. Therefore, a naw theore"ia formulation...a porous plate that turning loss, an analysis was developed that allows for behaves as an acoustically ’ hard ’ termination. The the expansion of all

  11. Process for desulfurizing petroleum feedstocks

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  12. Incinerator ash dissolution model for the system: Plutonium, nitric acid and hydrofluoric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E V

    1988-06-01

    This research accomplished two goals. The first was to develop a computer program to simulate a cascade dissolver system. This program would be used to predict the bulk rate of dissolution in incinerator ash. The other goal was to verify the model in a single-stage dissolver system using Dy/sub 2/O/sub 3/. PuO/sub 2/ (and all of the species in the incinerator ash) was assumed to exist as spherical particles. A model was used to calculate the bulk rate of plutonium oxide dissolution using fluoride as a catalyst. Once the bulk rate of PuO/sub 2/ dissolution and the dissolution rate ofmore » all soluble species were calculated, mass and energy balances were written. A computer program simulating the cascade dissolver system was then developed. Tests were conducted on a single-stage dissolver. A simulated incinerator ash mixture was made and added to the dissolver. CaF/sub 2/ was added to the mixture as a catalyst. A 9M HNO/sub 3/ solution was pumped into the dissolver system. Samples of the dissolver effluent were analyzed for dissolved and F concentrations. The computer program proved satisfactory in predicting the F concentrations in the dissolver effluent. The experimental sparge air flow rate was predicted to within 5.5%. The experimental percentage of solids dissolved (51.34%) compared favorably to the percentage of incinerator ash dissolved (47%) in previous work. No general conclusions on model verification could be reached. 56 refs., 11 figs., 24 tabs.« less

  13. In situ removal of dissolved and suspended contaminants from a eutrophic pond using hybrid sand-filter.

    PubMed

    Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F

    2014-01-01

    In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 μg L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively.

  14. Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year

    USGS Publications Warehouse

    Blanchard, Stephen F.; Hahl, D.C.

    1981-01-01

    This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)

  15. Kinetics of Microbial Reduction of Solid Phase U(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solidmore » phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).« less

  16. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    EPA Pesticide Factsheets

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  17. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.

    PubMed

    Pan, Chao; Troyer, Lyndsay D; Liao, Peng; Catalano, Jeffrey G; Li, Wenlu; Giammar, Daniel E

    2017-06-06

    Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for reduction of Cr(VI). Close association of Fe(III), Cr(III), and HA in the solid products formed during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products were colloids (1-200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite high, while at pH 6 these concentrations were low due to aggregation of small particles. X-ray diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, and the coordination environment of the Cr(III) in the solids was similar regardless of the humic acid loading, pH, and dissolved oxygen level.

  18. Crystallization of Deformable Spherical Colloids

    NASA Astrophysics Data System (ADS)

    Batista, Vera M. O.; Miller, Mark A.

    2010-08-01

    We introduce and characterize a first-order model for a generic class of colloidal particles that have a preferred spherical shape but can undergo deformations while always maintaining hard-body interactions. The model consists of hard spheres that can continuously change shape at fixed volume into prolate or oblate ellipsoids of revolution, subject to an energetic penalty. The severity of this penalty is specified by a single parameter that determines the flexibility of the particles. The deformable hard spheres crystallize at higher packing fractions than rigid hard spheres, have a narrower solid-fluid coexistence region and can reach high densities by a second transition to an orientationally ordered crystal.

  19. On the phase behavior of hard aspherical particles

    NASA Astrophysics Data System (ADS)

    Miller, William L.; Cacciuto, Angelo

    2010-12-01

    We use numerical simulations to understand how random deviations from the ideal spherical shape affect the ability of hard particles to form fcc crystalline structures. Using a system of hard spheres as a reference, we determine the fluid-solid coexistence pressures of both shape-polydisperse and monodisperse systems of aspherical hard particles. We find that when particles are sufficiently isotropic, the coexistence pressure can be predicted from a linear relation involving the product of two simple geometric parameters characterizing the asphericity of the particles. Finally, our results allow us to gain direct insight into the crystallizability limits of these systems by rationalizing empirical data obtained for analogous monodisperse systems.

  20. Yield stress in amorphous solids: A mode-coupling-theory analysis

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic

    2013-11-01

    The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.

Top