Trace metals in upland headwater lakes in Ireland.
Burton, Andrew; Aherne, Julian; Hassan, Nouri
2013-10-01
Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.
Turner, Andrew; Mawji, Edward
2005-05-01
The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.
Thanh-Nho, Nguyen; Strady, Emilie; Nhu-Trang, Tran-Thi; David, Frank; Marchand, Cyril
2018-04-01
Mangroves can be considered as biogeochemical reactors along (sub)tropical coastlines, acting both as sinks or sources for trace metals depending on environmental factors. In this study, we characterized the role of a mangrove estuary, developing downstream a densely populated megacity (Ho Chi Minh City, Vietnam), on the fate and partitioning of trace metals. Surface water and suspended particulate matter were collected at four sites along the estuarine salinity gradient during 24 h cycling in dry and rainy seasons. Salinity, pH, DO, TSS, POC, DOC, dissolved and particulate Fe, Mn, Cr, As, Cu, Ni, Co and Pb were measured. TSS was the main trace metals carrier during their transit in the estuary. However, TSS variations did not explain the whole variability of metals distribution. Mn, Cr and As were highly reactive metals while the other metals (Fe, Ni, Cu, Co and Pb) presented stable log K D values along the estuary. Organic matter dynamic appeared to play a key role in metals fractioning. Its decomposition during water transit in the estuary induced metal desorption, especially for Cr and As. Conversely, dissolved Mn concentrations decreased along the estuary, which was suggested to result from Mn oxidative precipitation onto solid phase due to oxidation and pH changes. Extra sources as pore-water release, runoff from adjacent soils, or aquaculture effluents were suggested to be involved in trace metal dynamic in this estuary. In addition, the monsoon increased metal loads, notably dissolved and particulate Fe, Cr, Ni and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.
A primer on trace metal-sediment chemistry
Horowitz, Arthur J.
1985-01-01
In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic matter) and ways in which the metals are entrained by the sediments (such as adsorption, complexation, and within mineral lattices).
Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia
NASA Astrophysics Data System (ADS)
Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina
2011-11-01
This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.
Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N
2014-04-01
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
NASA Astrophysics Data System (ADS)
Ganaha, S.; ITOH, A.
2011-12-01
Coastal seawater on coral reef near Okinawa island in Japan, which is in oligotrophic condition, has a diverse and unique ecosystem. It is possible that nutritive sals and trace metals, classified into nutrient type, are effectively supplied to marine phytoplankton and zooxanthellae from seawater. However, the concentrations and chemical forms of trace metals in coastal seawater on coral reef have been scarcely reported so far. In the present study, the characteristics of the concentrations and chemical forms of trace metals in such a seawater were investigated with seasonal variation by analyzing the coastal seawater at every month, after an analytical method for a simple chemical speciation including on-site treatment was established. The analytical method using a chelating resin and a disposable syringe was employed for de-salt and preconcentration of trace metals in costal seawater. After that, trace metals in the concentrated solution were measured by ICP-MS. Three types of chemical forms of an ionic, a dissolved, and an acid-soluble were separated without any treatment, by filtering with membrane filter of 0.45 μm, and by filtering after adding nitric acid, respectively. Then, a monitoring investigation of the coastal seawater on coral reef, located at Sesoko island near the northern part of Okinawa island, was carried out once at every month from Sep. 2010 to Aug. 2011. As a result, 10 elements in the dissolved form in each sample could be determined. The average concentrations for all samples from Sep. 2010 to Apr. 2011 were as follows: Mo:10.7 ppb, U:3.2 ppb, V:1.5 ppb, Mn:0.17 ppb, Ni:0.16 ppb, Zn:0.13 ppb, Cu:0.070 ppb, Pb:0.024 ppb, Co:0.0022 ppb, Cd:0.0016ppb. The concentrations for most trace metals were almost close to ones in open surface seawater of the Pacific ocean. For the acid-soluble form, the concentrations of V, Mo, and U were almost same with those of the dissolved form, and ones of Mn, Co, Ni, Cu, and Cd were slightly larger than ones in the dissolved form, while ones in Zn and Pb were 3.1- and 2.5-fold larger. These results suggest that a part of trace metals in the nutrient type exists as biogenic particulate matters. For the ionic form, the concentration of Cu was 3-fold smaller than one in the dissolved form. It is considered from the result that a part of Cu in the dissolved form exists not only as the ionic form but also as the colloids and organic complexes. The seasonal variation for each chemical form is now being investigated.
Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh
Lion, Leonard W.
1982-01-01
The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.
NASA Astrophysics Data System (ADS)
Suresh Babu, S.
2016-12-01
Forty two samples were acquired from the surface and bottom water profiles along 5 transects spread over Bahia Magdalena lagoon, Baja California Sur to assess the behavior of trace metals in a high influenced upwelling region on the Pacific coast. To elaborate the fate of metals, also the physico-chemical parameters (pH, temperature, salinity, conductivity, dissolved oxygen). Determination of the concentrations of trace metals (Fe, Mn, Cr, Cu, Co, Pb, Ni, Zn, Cd As, Hg) were measured using Atomic absorption spectrometry. The results demonstrated high values of As, Ni and Co which is attributed to the local geology and phosphate deposits. Low values of Fe and Mn are attested to the oxic conditions of the lagoon which are responsible for the oxidation of Fe and Mn. The region witnesses raised temperatures (28.92ºC) and salinities of 35.2 PSU for its arid climatic conditions and high rates of evaporation. In general, the region presented minor quantities of dissolved trace metals due to dispersion and high intense interaction with the open sea. The results were also compared with other studies to understand the enrichment pattern in this side of the pacific coast which experiences various geothermal activities and upwelling phenomenon.
Wirt, Laurie; Leib, K.J.; Bove, D.J.; Mast, M.A.; Evans, J.B.; Meeker, G.P.
1999-01-01
Prospect Gulch is a major source of iron, aluminum, zinc, and other metals to Cement Creek. Information is needed to prioritize remediation and develop strategies for cleanup of historical abandoned mine sites in Prospect Gulch. Chemical-constituent loads were determined in Prospect Gulch, a high-elevation alpine stream in southwestern Colorado that is affected by natural acid drainage from weathering of hydro-thermally altered igneous rock and acidic metal-laden discharge from historical abandoned mines. The objective of the study was to identify metal sources to Prospect Gulch. A tracer solution was injected into Prospect Gulch during water-quality sampling so that loading of geochemical constituents could be calculated throughout the study reach. A thunderstorm occurred during the tracer study, hence, metal loads were measured for storm-runoff as well as for base flow. Data from different parts of the study reach represents different flow conditions. The beginning of the reach represents background conditions during base flow immediately upstream from the Lark and Henrietta mines (samples PG5 to PG45). Other samples were collected during storm runoff conditions (PG100 to PG291); during the first flush of metal runoff following the onset of rainfall (PG303 to PG504), and samples PG542 to PG700 were collected during low-flow conditions. During base-flow conditions, the percentage increase in loads for major constituents and trace metals was more than an order of magnitude greater than the corresponding 36 % increase in stream discharge. Within the study reach, the highest percentage increases for dissolved loads were 740 % for iron (Fe), 465 % for aluminum (Al), 500 % for lead (Pb), 380 % for copper (Cu), 100 % for sulfate (SO4), and 50 % for zinc (Zn). Downstream loads near the mouth of Prospect Gulch often greatly exceeded the loads generated within the study reach but varied by metal species. For example, the study reach accounts for about 6 % of the dissolved-Fe load, 13 % of the dissolved-Al load, and 18 % of the dissolved-Zn load; but probably contributes virtually all of the dissolved Cu and Pb. The greatest downstream gains in dissolved trace-metal loads occurred near waste-rock dumps for the historical mines. The major sources of trace metals to the study reach were related to mining. The major source of trace metals in the reach near the mouth is unknown, however is probably related to weathering of highly altered igneous rocks, although an unknown component of trace metals could be derived from mining sources The late-summer storm dramatically increased the loads of most dissolved and total constituents. The effects of the storm were divided into two distinct periods; (1) a first flush of higher metal concentrations that occurred soon after rainfall began and (2) the peak discharge of the storm runoff. The first flush contained the highest loads of dissolved Fe, total and dissolved Zn, Cu, and Cd. The larger concentrations of Fe and sulfate in the first flush were likely derived from iron hydroxide minerals such as jarosite and schwertmanite, which are common on mine dumps in the Prospect Gulch drainage basin. Peak storm runoff contained the highest measured loads of total Fe, and of total and dissolved calcium, magnesium, silica and Al, which were probably derived from weathering of igneous rocks and clay minerals in the drainage basin.
Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis
Wang, W.-X.; Fisher, N.S.; Luoma, S.N.
1996-01-01
Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.
Strontium and Trace Metals in the Mississippi River Mixing Zone
NASA Astrophysics Data System (ADS)
Xu, Y.; Marcantonio, F.
2001-12-01
Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.
Szymczycha, Beata; Kroeger, Kevin D.; Pempkowiak, Janusz
2016-01-01
Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1–2.8 nmol L− 1), Co (8.70–8.76 nmol L− 1), Cr (18.1–18.5 nmol L− 1), Mn (2.4–2.8 μmol L− 1), Pb (1.2–1.5 nmol L− 1), Zn (33.1–34.0 nmol L− 1). Concentrations of Cu (0.5–0.8 nmol L− 1) and Ni (4.9–5.8 nmol L− 1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.
Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota.
Nguyen, H L; Leermakers, M; Osán, J; Török, S; Baeyens, W
2005-03-20
During the period 1999-2002, five sampling cruises have been carried out on Lake Balaton to assess trace metal distribution in the lake and to identify major sources. Eighteen elements, including Cr, Co, Ni, Cu, Zn, Cd, Pb (trace metals) and Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Sr (major metals), were determined in one or more of the lake's compartments. Lower trace metal concentrations in rainwater were observed in June and February 2000, while much higher levels were present in September 2001 (during a storm event) and in snow (February 2000). In the Northern and Western parts of the lake, especially at the inflow of river Zala and the locations of the yacht harbours, metal concentrations were higher in almost all compartments. Because the lake is very shallow, storm conditions also change significantly the metal distributions in the dissolved and particulate phases. The Kis-Balaton protection system located on Zala river functions very efficiently for retaining suspended particulate matter (SPM; 72% retention) and associated metals. Metal concentrations in surface sediments of the lake showed a high variability. After normalisation for the fine sediment fraction, only a few stations including Zala mouth appeared to be enriched in trace metals. In zooplankton, Zn seemed to be much more elevated compared to the other trace metals. Based on the molar ratios of the trace metals in the various compartments and input flows of the lake, several trends could be deduced. For example, molar ratios of the trace metals in the dissolved and solid (suspended particulate matter and sediments) phases in the lake are fairly similar to those in Zala River.
McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.
1992-01-01
Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.
Trace Metals in Urban Stormwater Runoff and their Management
NASA Astrophysics Data System (ADS)
Li, T.; Hall, K.; Li, L. Y.; Schreier, H.
2009-04-01
In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.
The biogeochemical distribution of trace elements in the Indian Ocean
NASA Astrophysics Data System (ADS)
Saager, Paul M.
1994-06-01
The present review deals with the distributions of dissolved trace metals in the Indian Ocean in relation with biological, chemical and hydrographic processes. The literature data-base is extremely limited and almost no information is available on particle processes and input and output processes of trace metals in the Indian Ocean basin and therefore much research is needed to expand our understanding of the marine chemistries of most trace metals. An area of special interest for future research is the Arabian Sea. The local conditions (upwelling induced productivity, restricted bottom water circulation and suboxic intermediate waters) create a natural laboratory for studying trace metal chemistry.
Impact of diatom growth on trace metal dynamics (Mn, Mo, V, U)
NASA Astrophysics Data System (ADS)
Osterholz, Helena; Simon, Heike; Beck, Melanie; Maerz, Joeran; Rackebrandt, Siri; Brumsack, Hans-Jürgen; Feudel, Ulrike; Simon, Meinhard
2014-03-01
In order to examine the specific role of diatoms in cycling of the trace metals manganese (Mn), molybdenum (Mo), vanadium (V), and uranium (U) Thalassiosira rotula, Skeletonema marinoi, Chaetoceros decipiens, and Rhizosolenia setigera were grown in batch cultures axenically and inoculated with three different bacterial strains isolated from the North Sea. Algal and bacterial growth, concentrations of trace metals and dissolved organic carbon (DOC) were monitored over time and showed that Mn and V were removed from the dissolved phase whereas Mo and U were not. R. setigera and T. rotula exhibited lowest growth and lowest removal whereas S. marinoi grew best and removed highest fractions of Mn and V. The high potential of Mn removal by S. marinoi was also evident from its 7 × higher Mn/P elemental ratio relative to T. rotula. The presence of bacteria modified the timing of the growth of S. marinoi but not directly trace metal removal whereas bacteria enhanced trace metal removal in the cultures of T. rotula and C. decipiens. Modeling of phytoplankton growth, concentrations of Mn and DOC fraction in axenic T. rotula cultures indicated that processes of binding and desorption of Mn to excreted organic components are important to explain the varying proportions of dissolved Mn and thus must be considered as an active component in Mn cycling. The results show distinct differences in the potential of the diatoms in the removal of Mn and V and that bacteria can play an active role in this context. S. marinoi presumably is an important player in Mn and V dynamics in coastal marine systems.
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dissolved sulfides in the oxic water column of San Francisco Bay, California
Kuwabara, J.S.; Luther, G.W.
1993-01-01
Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.
Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream
Nimick, D.A.; Cleasby, T.E.; McCleskey, R. Blaine
2005-01-01
Substantial diel (24-h) cycles in dissolved (0.1-??m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34-61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17-152% for Mn and 70-500% for Zn. Diel increases of As concentrations (17-55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH. ?? Springer-Verlag 2005.
Grotti, M; Soggia, F; Ardini, F; Magi, E
2011-09-01
In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).
Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.
2009-01-01
A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.
Adsorption of humic acids and trace metals in natural waters
NASA Technical Reports Server (NTRS)
Leung, W. H.
1982-01-01
Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.
Diverse stoichiometry of dissolved trace metals in the Indian Ocean
Thi Dieu Vu, Huong; Sohrin, Yoshiki
2013-01-01
Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.
Li, Siyue; Zhang, Quanfa
2011-06-15
Water samples were collected for determination of dissolved trace metals in 56 sampling sites throughout the upper Han River, China. Multivariate statistical analyses including correlation analysis, stepwise multiple linear regression models, and principal component and factor analysis (PCA/FA) were employed to examine the land use influences on trace metals, and a receptor model of factor analysis-multiple linear regression (FA-MLR) was used for source identification/apportionment of anthropogenic heavy metals in the surface water of the River. Our results revealed that land use was an important factor in water metals in the snow melt flow period and land use in the riparian zone was not a better predictor of metals than land use away from the river. Urbanization in a watershed and vegetation along river networks could better explain metals, and agriculture, regardless of its relative location, however slightly explained metal variables in the upper Han River. FA-MLR analysis identified five source types of metals, and mining, fossil fuel combustion, and vehicle exhaust were the dominant pollutions in the surface waters. The results demonstrated great impacts of human activities on metal concentrations in the subtropical river of China. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.
2016-02-01
Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.
Angel, Brad M; Simpson, Stuart L; Jarolimek, Chad V; Jung, Rob; Waworuntu, Jorina; Batterham, Grant
2013-08-15
The Batu Hijau copper-gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009. Copyright © 2013 Elsevier Ltd. All rights reserved.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
Water-quality data from lakes and streams in the Grand Portage Reservation, Minnesota, 1997-98
Winterstein, Thomas A.
1999-01-01
The purpose of this report is to present the data collected by the USGS from the study during 1997-98. Water-quality data include temperature, pH, specific conductance, dissolved oxygen, alkalinity, and concentrations of major ions, nutrients, and trace metals. Lake sediment data include concentrations of trace metals and selected organic compounds.
Plutonium oxalate precipitation for trace elemental determination in plutonium materials
Xu, Ning; Gallimore, David; Lujan, Elmer; ...
2015-05-26
In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.
Shulkin, Vladimir; Zhang, Jing
2014-11-15
This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Dredging-related mobilisation of trace metals: a case study in The Netherlands.
van den Berg, G A; Meijers, G G; van der Heijdt, L M; Zwolsman, J J
2001-06-01
Mobilisation of contaminants is an important issue in environmental risk assessment of dredging projects. This study has aimed at identifying the effects of dredging on mobilisation of trace metals (Zn, Cu, Cd and Pb). The intensities and time scales of trace metal mobilisation were investigated during an experimental dredging project conducted under field conditions. The loss of contaminated dredge spoil is mainly reflected by increasing levels of trace metals in the suspended matter, dissolved trace metal concentrations in the water column are not significantly influenced by the dredging activities. This indicates a strong binding mechanism of trace metals to the solid phase or a fast redistribution over sorptive phases in response to oxidation of e.g. trace metal sulphides. Given the differences in levels of reactive phases (Mn, Fe, sulphides and organic matter) between the riverine suspended matter and the sediments, changes in the levels of these parameters in the suspended matter upon dredging may give information on the processes influencing the behaviour of trace metals and on the potential loss of sediment during dredging operations. Therefore, we recommend to routinely measure these parameters in studies on contaminant behaviour related to dredging activities.
NASA Astrophysics Data System (ADS)
Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.
2016-02-01
The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.
Rosales-Hoz, L; Carranza-Edwards, A; Sanvicente-Añorve, L; Alatorre-Mendieta, M A; Rivera-Ramirez, F
2009-11-01
A reef system in the southwestern Gulf of Mexico is affected by anthropogenic activities, sourced by urban, fluvial, and sewage waters. Dissolved metals have higher concentrations during the rainy season. V and Pb, were derived from an industrial source and transported to the study area by rain water. On the other hand, Jamapa River is the main source for Cu and Ni, which carries dissolved elements from adjacent volcanic rocks. Principal Component Analysis shows a common source for dissolved nitrogen, phosphates, TOC, and suspended matters probably derived from a sewage treatment plant, which is situated near to the study area.
Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J
2016-12-01
Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.
Serrano, A; Pinto-Ibieta, F; Braga, A F M; Jeison, D; Borja, R; Fermoso, F G
2017-12-01
Low concentrations of trace elements in many organic wastes recommend their supplementation in order to avoid potential limitations. Different chelating agents have been used to ensure an adequate trace metal pool in the soluble fraction, by forming dissolved complexes. Ethylenediaminetetraacetic acid (EDTA) is probably the most common, although several negative effects could be associated with its usage. Biomethane potential tests were performed using Olive Mill Solid Waste as the substrate, supplementing different combinations of Fe, Co, Ni, Ba, always under the presence of EDTA. Results show that Ni and Co slightly recovered biodegradability. However, Ba supplementation resulted in worsening the methane yield coefficient in all cases. High concentration of EDTA led to decrease in the activity of anaerobic digestion. High availability of EDTA induces the capture of trace metals like Co or Ni, key trace metals for anaerobic biomass activity. While supplementing trace metals, the addition of Ba and/or EDTA must be carefully considered.
Establishing the environmental risk of metal contaminated river bank sediments
NASA Astrophysics Data System (ADS)
Lynch, Sarah; Batty, Lesley; Byrne, Patrick
2016-04-01
Climate change predictions indicate an increase in the frequency and duration of flood events along with longer dry antecedent conditions, which could alter patterns of trace metal release from contaminated river bank sediments. This study took a laboratory mesocosm approach. Chemical analysis of water and sediment samples allowed the patterns of Pb and Zn release and key mechanisms controlling Pb and Zn mobility to be determined. Trace metal contaminants Pb and Zn were released throughout flooded periods. The highest concentrations of dissolved Pb were observed at the end of the longest flood period and high concentrations of dissolved Zn were released at the start of a flood. These concentrations were found to exceed environmental quality standards. Key mechanisms controlling mobility were (i) evaporation, precipitation and dissolution of Zn sulphate salts, (ii) anglesite solubility control of dissolved Pb, (iii) oxidation of galena and sphalerite, (iv) reductive dissolution of Mn/Fe hydroxides and co-precipitation/adsorption with Zn. In light of climate change predictions these results indicate future scenarios may include larger or more frequent transient 'pulses' of dissolved Pb and Zn released to river systems. These short lived pollution episodes could act as a significant barrier to achieving the EU Water Framework Directive objectives.
Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.
Flynn, Elaine D; Catalano, Jeffrey G
2018-06-05
During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. The present study thus explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurally incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.
NASA Astrophysics Data System (ADS)
Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.
2017-05-01
Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant ( P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.
Seasonal variation and sources of dissolved trace metals in Maó Harbour, Minorca Island.
Martínez-Soto, Marly C; Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Rodellas, Valentí; Garcia-Orellana, Jordi; Basterretxea, Gotzon
2016-09-15
The environmental conditions of semi-enclosed coastal water-bodies are directly related to the catchment, human activities, and oceanographic setting in which they are located. As a result of low tidal forcing, and generally weak currents, waters in Mediterranean harbours are poorly renewed, leading to quality deterioration. Here, we characterise the seasonal variation of trace metals (i.e. Co, Cd, Cu, Fe, Mo, Ni, Pb, and Zn) in surface waters, and trace metal content in sediments from Maó Harbour, a semi-enclosed coastal ecosystem in the NW Mediterranean Sea. Our results show that most of the dissolved trace metals in the waters of Maó Harbour exhibit a marked inner-outer concentration gradient, suggesting a permanent input into the inner part of the harbour. In general, metal concentrations in the waters of Maó Harbour are higher than those in offshore waters. Concentration of Cu (21±8nM), Fe (9.2±3.2nM) and Pb (1.3±0.4nM) are particularly high when compared with other coastal areas of the Mediterranean Sea. The concentration of some metals such as Cu and Zn increases during summertime, when the human population and boat traffic increase during the tourism season, and when resuspension from the metal enriched sediments is higher. The evaluation of the metal sources in the harbour reveals that, compared with other putative sources such as runoff, aerosol deposition and fresh groundwater discharges, contaminated sediments are the main source of the metals found in the water column, most likely through vessel-driven resuspension events. This study contributes to the understanding of the processes that control the occurrence and distribution of trace metals in Maó Harbour, thus aiding in the effective management of the harbour, and enhancing the overall quality of the seawater ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Shiller, Alan M.
2003-01-01
It is well-established that sampling and sample processing can easily introduce contamination into dissolved trace element samples if precautions are not taken. However, work in remote locations sometimes precludes bringing bulky clean lab equipment into the field and likewise may make timely transport of samples to the lab for processing impossible. Straightforward syringe filtration methods are described here for collecting small quantities (15 mL) of 0.45- and 0.02-microm filtered river water in an uncontaminated manner. These filtration methods take advantage of recent advances in analytical capabilities that require only small amounts of waterfor analysis of a suite of dissolved trace elements. Filter clogging and solute rejection artifacts appear to be minimal, although some adsorption of metals and organics does affect the first approximately 10 mL of water passing through the filters. Overall the methods are clean, easy to use, and provide reproducible representations of the dissolved and colloidal fractions of trace elements in river waters. Furthermore, sample processing materials can be prepared well in advance in a clean lab and transported cleanly and compactly to the field. Application of these methods is illustrated with data from remote locations in the Rocky Mountains and along the Yukon River. Evidence from field flow fractionation suggests that the 0.02-microm filters may provide a practical cutoff to distinguish metals associated with small inorganic and organic complexes from those associated with silicate and oxide colloids.
Ruhl, J.F.
1997-01-01
This report is a compilation of data on the physical and chemical properties of water and sediments in Grand Portage and Wauswaugoning Bays of Lake Superior along the shoreline of the Grand Portage Indian Reservation. The data were collected during 1993-96 by the U.S. Geological Survey in cooperation with the Grand Portage Indian Reservation. The data include: (1) temperature, pH, and specific conductance measurements and dissolved oxygen concentrations; (2) Secchi disk transparency, alkalinity, and turbidity measurements; (3) fecal Coliform and fecal Streptococcal bacteria colony counts (per 100 milliliters of sample water); (4) major and minor ion, nutrient, and trace-metal concentrations; (5) dissolved and suspended residue concentrations; (6) pesticide, phenol, and asbestos concentrations; (7) suspended sediment trace-metal concentrations; and (8) bottom sediment trace-metal concentrations. Water samples were collected from nine sites; suspended and bottom sediment samples were collected from five sites. The data in this report can be used to evaluate present water-quality conditions and as a reference to monitor potential long-term changes in these conditions.
Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan.
Karim, Zahida
2011-06-01
Health risk caused by the exposure to trace metals in water through different exposure pathways was investigated. Graphite furnace atomic absorption spectrometry was used for the determination of trace metals (nickel, copper, chromium, lead, cobalt, manganese and iron) in drinking water samples. The concentration of metals was compared with the world health organization (WHO) drinking water quality guideline values. Risk of metals on human health was evaluated using Hazard Quotient (HQ). Hazard quotients of all metals through oral ingestion and dermal absorption are found in the range of 1.11 × 10⁻² to 1.35 × 10⁻¹ and 8.52 × 10⁻⁵ to 9.75 × 10⁻², respectively. The results of the present study reflect the unlikely potential for adverse health effects to the inhabitants of Karachi due to the oral ingestion and dermal absorption of water containing these metals.
NASA Astrophysics Data System (ADS)
Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen
2015-06-01
In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation of sulfide, which precipitates dissolved iron as iron sulfide. These findings are due to slower advective pore water exchange in the tidal flat sediments. This study illustrates how different energy regimes affect biogeochemical cycling in intertidal permeable sediments.
Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.
2000-01-01
Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15 percent. During irrigation drainage season from rice fields (May-June 1997) loads were cadmium, 53 percent; copper, 42 percent; lead, 20 percent; and zinc, 75 percent. These estimates must be qualified by the following factors: (1) metal loads at Colusa in December 1996 and at Verona in May-June 1997 generally exceeded those determined at Freeport during those sampling periods. Therefore, the above percentages represent maximum estimates of the apparent total proportion of metals from mineralized areas upstream of Keswick Dam; and (2) for logistics reasons, the Sacramento River was sampled at Tower Bridge instead of at Freeport during January 1997.Available data suggest that trace metal loads from agricultural drainage may be significant during certain flow conditions in areas where metals such as copper and zinc are added as agricultural amendments. Copper loads for sampling periods in July and September 1996 and in May-June 1997 show increases of dissolved and colloidal copper and in colloidal zinc between Colusa and Verona, the reach of the Sacramento River along which the Colusa Basin Drain, the Sacramento Slough, and other agricultural return flows are tributaries. Monthly sampling of these two agricultural drains by the USGS National Water-Quality Assessment Program shows seasonal variations in metal concentrations, reaching maximum concentrations of 4 to 6 micrograms per liter in "dissolved" (0.45-micrometer filtrate) copper concentrations in May 1996, December 1996, and June 1997. The total (dissolved plus colloidal) load of copper from the Colusa Basin Drain in June 1997 was 18 kilograms per day, whereas the copper load in Spring Creek, which drains the inactive mines on Iron Mountain, was 20 kilograms per day during the same sampling period. For comparison, during the January 1997 flood, the copper load in Spring Creek was about 1,100 kilograms per day and the copper load in the Yolo Bypass was about 7,300 kilograms per day. The data clearly indicate that most copper and zinc loads during the January 1997 flood entered the Sacramento River upstream of Colusa, and upstream of the influence of the most intense agricultural drainage return flows in the Sacramento River watershed.This study has demonstrated that some trace metals of environmental significance (cadmium, copper, and zinc) in the Sacramento River are transported largely in dissolved form at upstream sites (below Shasta Dam, below Keswick Dam, and at Bend Bridge) proximal to the mineralized areas of the West Shasta and East Shasta mining districts. In contrast, these trace metals are transported largely in colloidal form at downstream sites (Colusa, Verona, Freeport, and Yolo Bypass). Aluminum, iron, and lead were observed to be transported predominantly in the colloidal phase at all mainstem Sacramento River sampling sites during all sampling periods in this study. Despite continuous water treatment, which has removed 85 to 90 percent of the cadmium, copper, and zinc from the mine drainage at Iron Mountain, Spring Creek remains a significant source of these metals to the Sacramento River system.
Reactive solute transport in streams: A surface complexation approach for trace metal sorption
Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.
1999-01-01
A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.
NASA Astrophysics Data System (ADS)
Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.
2014-09-01
Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds, they can be responsible for soil pollution. In this context, this paper proposes a modelling exercise aimed at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semiempirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. An innovative point in this study is the assessment of the usefulness of dissolved trace metal contamination information for model calibration. Moreover, for supporting the modelling exercise, an extensive database was set up during two flood events. It includes water surface elevation records, discharge measurements and geochemistry data such as time series of dissolved/particulate contaminants and suspended-sediment concentrations. The most sensitive parameters were found to be the hydraulic friction coefficients and the sediment particle settling velocity in water. It was also found that model calibration did not benefit from dissolved trace metal contamination information. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.
Complexation by dissolved humic substances has an important influence on
trace metal behavior in natural systems. Unfortunately, few analytical
techniques are available with adequate sensitivity and selectivity to measure
free metal ions reliably at the low concent...
Giddings, Elis M.P.; Hornberger, Michelle I.; Hadley, Heidi K.
2001-01-01
The spatial distribution of metals in streambed sediment and surface water of Silver Creek, McLeod Creek, Kimball Creek, Spring Creek, and part of the Weber River, near Park City, Utah, was examined. From the mid-1800s through the 1970s, this region was extensively mined for silver and lead ores. Although some remediation has occurred, residual deposits of tailing wastes remain in place along large sections of Silver Creek. These tailings are the most likely source of metals to this system. Bed sediment samples were collected in 1998, 1999, and 2000 and analyzed using two extraction techniques: a total extraction that completely dissolves all forms of metals in minerals and trace elements associated with the sediment; and a weak-acid extraction that extracts the metals and trace elements that are only weakly adsorbed onto the sediment surface. This latter method is used to determine the more biologically relevant fraction of metal complexed onto the sediment. Water samples were collected in March and August 2000 and were analyzed for total and dissolved trace metals.Concentrations of silver, cadmium, copper, lead, mercury, and zinc in the streambed sediment of Silver Creek greatly exceeded background concentrations. These metals also exceeded established aquatic life criteria at most sites. In the Weber River, downstream of the confluence with Silver Creek, concentrations of cadmium, lead, zinc, and total mercury in streambed sediment also exceeded aquatic life guidelines, however, concentrations of metals in streambed sediment of McLeod and Kimball Creeks were lower than Silver Creek. Water-column concentrations of zinc, total mercury, and methylmercury in Silver Creek were high relative to unimpacted sites, and exceeded water quality criteria for the protection of aquatic organisms. Qualitative measurements of the macroinvertebrate community in Silver Creek were compared to the spatial distribution of metals in streambed sediment. The data indicate that impairment related to metal concentration exists in Silver Creek.
NASA Astrophysics Data System (ADS)
Runkel, R. L.; Jones, P. M.; Elliott, S. M.; Woodruff, L. G.
2017-12-01
Mining sulfide-bearing copper (Cu), nickel (Ni), and platinum-group-elements (PGE) deposits in the Duluth Complex of northeast Minnesota could have detrimental effects on surrounding water resources and associated ecosystems. A study was conducted to 1) assess copper, nickel, and other metal concentrations in surface water, bedrock, streambed sediments, and soils in watersheds where the basal part of the Duluth Complex is exposed or near the land surface; and 2) determine if these concentrations, and metal-bearing deposits, are currently influencing regional water quality in areas of potential base-metal mining. One of the watersheds that was assessed was the Filson Creek watershed, where shallow Cu-Ni-PGE deposits are present. Field water-quality, streambed sediments, soils, bedrock, and streamflow data set were collected in Filson Creek and it's watershed in 2014 and 2015. Surface-water samples were analyzed for 12 trace metals (dissolved and total concentrations), 14 inorganic constituents (dissolved concentrations), alkalinity, 18 O /16O and 2H/1H isotopes, and total and dissolved organic carbon. Background total Cu and Ni concentrations in the creek in 2014 and 2015 ranged from 1.2 to 10.8 micrograms per liter (µg/L), and 1.7 to 8.4 µg/L, respectively. The concentrations of copper, nickel, and other trace metals in surface waters and streambed sediments reflects the geochemistry of underlying rock types and glacially transported unconsolidated material, establishing baseline conditions prior to any mining. Dissolved and total organic carbon (DOC and TOC) concentrations in surface waters are very high compared to most surface waters in Minnesota, ranging from 21.3 to 43.2 milligrams per liter (mg/L), and 22.4 and 53.5 mg/L. Synoptic water-quality and flow data from a tracer test conducted over a stream segment of Filson Creek above a shallow Cu-Ni-PGE deposit (Spruce Road Deposit) was used with the 2014-15 water-quality and synthetic flow data to calibrate the reactive transport model. Results from transport modeling suggest that the high DOC content exert control on copper and other trace metal transport.
Automation of high-frequency sampling of environmental waters for reactive species
NASA Astrophysics Data System (ADS)
Kim, H.; Bishop, J. K.; Wood, T.; Fung, I.; Fong, M.
2011-12-01
Trace metals, particularly iron and manganese, play a critical role in some ecosystems as a limiting factor to determine primary productivity, in geochemistry, especially redox chemistry as important electron donors and acceptors, and in aquatic environments as carriers of contaminant transport. Dynamics of trace metals are closely related to various hydrologic events such as rainfall. Storm flow triggers dramatic changes of both dissolved and particulate trace metals concentrations and affects other important environmental parameters linked to trace metal behavior such as dissolved organic carbon (DOC). To improve our understanding of behaviors of trace metals and underlying processes, water chemistry information must be collected for an adequately long period of time at higher frequency than conventional manual sampling (e.g. weekly, biweekly). In this study, we developed an automated sampling system to document the dynamics of trace metals, focusing on Fe and Mn, and DOC for a multiple-year high-frequency geochemistry time series in a small catchment, called Rivendell located at Angelo Coast Range Reserve, California. We are sampling ground and streamwater using the automated sampling system in daily-frequency and the condition of the site is substantially variable from season to season. The ranges of pH of ground and streamwater are pH 5 - 7 and pH 7.8 - 8.3, respectively. DOC is usually sub-ppm, but during rain events, it increases by an order of magnitude. The automated sampling system focuses on two aspects- 1) a modified design of sampler to improve sample integrity for trace metals and DOC and 2) remote controlling system to update sampling volume and timing according to hydrological conditions. To maintain sample integrity, the developed method employed gravity filtering using large volume syringes (140mL) and syringe filters connected to a set of polypropylene bottles and a borosilicate bottle via Teflon tubing. Without filtration, in a few days, the dissolved concentration of Fe and Mn in the ground and streamwater samples stored in low density polyethylene (LDPE) sample bags decreased by 89% and 97%, respectively. In some cases of groundwater, the concentration of Ca decreased by 25%, due to degassing of CO2. However, DOC of the samples in LDPE bags without filtration increased up to 50% in 2 weeks, suggesting contamination from the bag. Performance of the new design was evaluated using the Fe-Mn-spiked Rivendell samples and environmental water samples collected from 1) Rivendell, 2) the Strawberry Creek located at the University of California, Berkeley campus, and 3) the San Francisco Bay. The samples were filtered using the developed method and stored in room temperature in 2 - 3 weeks without further treatment. The method improved the sample integrity significantly; the average recovery rates of Fe, Mn, DOC, and Ca were 92%, 98%, 90%, and 97%, respectively.
Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.
2015-01-01
To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.
NASA Astrophysics Data System (ADS)
Subramanian, M.; Muthumanikkam, J.
2013-05-01
The transport of trace metals from the land to ocean has a number of different routes and efficiencies. The sources of toxic elements into the rivers to be debouched into the sea through estuaries are either weathered naturally from the soils and rocks or introduced anthropogenically from point or non-point sources, in labile form or in particulate form. However, recent studies indicate that the transport of trace elements to the aquatic environment is much more complex than what has been thought. The chemistry and ecology of an estuarine system are entirely different from the fluvial as well as the marine system. Estuarine environment is characterized by a constantly changing mixture of salt and freshwater. In the present study area Manakudy estuary is situated about 8 kilometres north west of Kanyakumari (Latitude N 08 05 21.8 and Longitude E 077 29 03.7). To gain a better understanding of the geochemical behavior of physico-chemical parameters and trace elements in the estuary and to examine variations in associated chemical changes, 20 water samples were collected throughout the Manakudy estuary, a minor river in south-western India. These samples, collected in typical dry season during 2012, were analyzed for physico-chemical parameters, dissolved major and trace elements. Our results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient. The concentration of nutrients is normal and they are due to the higher organic activity in soils as well as faster rates of chemical weathering reaction in the source region. The concentration of major ions is due to tidal influence and it increases with salinity and the nutrients do behave non-conservatively due to biogenic removal. The conservative behaviour of the trace metals with salinity has been strongly affected by the introduction of these metals by external sources. Even though the trace metals in the contaminated water have been removed and incorporated in sediments due to flocculation, the concentration of these metals did not decrease. S.MUTHUSAMY M.sc.,M.phil., RESEARCH SCHOLAR UNIVERSITY OF MADRAS CHENNAI,TAMILNADU INDIA
Ancient Oceans Had Less Oxygen
ERIC Educational Resources Information Center
King, Angela G.
2004-01-01
The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.
NASA Astrophysics Data System (ADS)
Kim, Mi Seon; Choi, Man Sik; Kim, Chan-Kook
2016-03-01
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels ( Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving-Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.
Oursel, B; Garnier, C; Durrieu, G; Mounier, S; Omanović, D; Lucas, Y
2013-04-15
Quantification and characterization of chronic inputs of trace metals and organic carbon in a coastal Mediterranean area (the city of Marseille) during the dry season was carried out. The 625 km(2) watershed includes two small coastal rivers whose waters are mixed with treated wastewater (TWW) just before their outlet into the sea. Dissolved and particulate Cu, Pb, Cd, Zn, Co, Ni and organic carbon concentrations in the rivers were comparable to those in other Mediterranean coastal areas, whereas at the outlet, 2- to 18-fold higher concentrations reflected the impact of the TWW. A non-conservative behavior observed for most of the studied metals in the mixing zone was validated by a remobilization experiment performed in the laboratory. The results showed that sorption/desorption processes could occur with slow kinetics with respect to the mixing time in the plume, indicating non-equilibrium in the dissolved/particulate metal distribution. Thus, a sample filtration immediately after sampling is strictly required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982
Clifton, Daphne G.
1983-01-01
Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)
The trace metal composition of marine phytoplankton.
Twining, Benjamin S; Baines, Stephen B
2013-01-01
Trace metals are required for numerous processes in phytoplankton and can influence the growth and structure of natural phytoplankton communities. The metal contents of phytoplankton reflect biochemical demands as well as environmental availability and influence the distribution of metals in the ocean. Metal quotas of natural populations can be assessed from analyses of individual cells or bulk particle assemblages or inferred from ratios of dissolved metals and macronutrients in the water column. Here, we review the available data from these approaches for temperate, equatorial, and Antarctic waters in the Pacific and Atlantic Oceans. The data show a generalized metal abundance ranking of Fe≈Zn>Mn≈Ni≈Cu≫Co≈Cd; however, there are notable differences between taxa and regions that inform our understanding of ocean metal biogeochemistry. Differences in the quotas estimated by the various techniques also provide information on metal behavior. Therefore, valuable information is lost when a single metal stoichiometry is assumed for all phytoplankton.
Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Le Poupon, C; Angeletti, B; Ouammou, A; Mounier, S
2015-01-01
An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. Copyright © 2014 Elsevier B.V. All rights reserved.
Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C
2011-01-01
The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.
Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Bown, Johann; Laan, Patrick; Ossebaar, Sharyn; Bakker, Karel; Rozema, Patrick; de Baar, Hein J. W.
2017-05-01
The Western Antarctic Peninsula, one of the most productive regions of the Southern Ocean, is currently affected by the increasing of atmospheric and oceanic temperatures. For several decades, the Rothera Time Series (RaTS) site located in Ryder Bay has been monitored by the British Antarctic Survey and has shown long lasting phytoplankton summer blooms (over a month) that are likely driven by the length of the sea ice season. The dynamics of phytoplankton blooms in Ryder Bay may just as well be influenced by natural fertilization of iron and other bioactive trace metals due to the proximity of land, islands and glaciers. For the first time, temporal distributions in the surface layer (0-75 m depth) of six bioactive trace metals (dissolved: Fe, Mn, Zn, Cd, Cu and dissolved labile Co) have been investigated with high temporal and spatial resolution at the RaTS site during a total of 2 and 3.5 months respectively, over two consecutive summers. Most of the studied trace elements showed wide ranges of concentrations and this dynamics appears to be driven by phytoplankton uptake, remineralization and occasional vertical mixing associated with storm episodes. The biological uptake of DMn, DZn, DCd, DCoL and DCu was proportional to uptake of phosphate and silicate, which was associated with weak to strong linear relationships depending on which phytoplankton bloom events was considered. This further suggests that the surface water distributions of these studied bio-active trace metals were mainly driven by biological uptake and remineralization during austral spring and summer in Ryder Bay. Even though DFe did not show any strong relationship with phosphate, DFe decreasing concentrations during each bloom event suggest that Fe is a key essential element for phytoplankton in the area of study. The consistency of trace metals/nutrient ratios during two consecutive summers indicates that over-winter scavenging removal was slow relative to mixing. The increase of DCd/P and DCoL/P drawdown ratios during the two consecutive blooms monitored during the second season could reflect the substitution of DZn by trace metals DCd and DCoL due to lowered DZn concentrations after the first bloom. Relationships of trace elements versus silicate appear to be dominated by diatoms abundances which tend to vary both at the season and bloom time scale. Simultaneous short-term events of depletions of both nutrients and bio-active trace metals might induce stress in the growth of the phytoplankton assemblage.
Quality of ground water in the Columbia Basin, Washington, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turney, G.L.
1986-01-01
Groundwater from 188 sites in the Columbia Basin of central Washington was sampled and analyzed in 1983 for pH, specific conductance, and concentrations of fecal coliform bacteria, major dissolved ions, and dissolved iron, manganese, and nitrate. Twenty of the samples were also analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were sodium bicarbonate and calcium bicarbonate. The sodium bicarbonate water samples had higher pH, fluoride, and sodium:adsorption ratio values than samples with other water types. Most trace metal concentrations were also < 10 ug/Lmore » except for barium and zinc, which had maximum concentrations of 170 and 600 ug/L, respectively. Nitrate concentrations were < 1.0 mg/L in water from more than half the wells sampled. US EPA (Environmental Protection Agency) drinking water regulations were exceeded in several samples, most commonly involving pH and concentrations of fluoride, nitrate, and dissolved solids in samples from Adams and Grant Counties. Generally, the historical data lead to similar conclusions about the quality of groundwater in the Columbia Basin region. However, historical samples had higher dissolved solids concentrations in Douglas County. Historical samples also included fewer sodium bicarbonate type waters in the region as a whole than the 1983 samples. 24 refs., 2 figs., 4 tabs.« less
Li, Siyue; Zhang, Quanfa
2010-04-15
A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.
Wegner, S.J.
1989-01-01
Multiple water samples from 115 wells and 3 surface water sites were collected between 1980 and 1988 for the ongoing quality assurance program at the Idaho National Engineering Laboratory. The reported results from the six laboratories involved were analyzed for agreement using descriptive statistics. The constituents and properties included: tritium, plutonium-238, plutonium-239, -240 (undivided), strontium-90, americium-241, cesium-137, total dissolved chromium, selected dissolved trace metals, sodium, chloride, nitrate, selected purgeable organic compounds, and specific conductance. Agreement could not be calculated for purgeable organic compounds, trace metals, some nitrates and blank sample analyses because analytical uncertainties were not consistently reported. However, differences between results for most of these data were calculated. The blank samples were not analyzed for differences. The laboratory results analyzed using descriptive statistics showed a median agreement between all useable data pairs of 95%. (USGS)
Leeth, David C.; Holloway, Owen G.
2000-01-01
In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).
Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.
2017-12-01
Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.
Cukrov, Neven; Cmuk, Petra; Mlakar, Marina; Omanović, Dario
2008-08-01
The spatial distribution of dissolved and total trace metals (Zn, Cd, Pb and Cu) in the Krka River (partly located in the Krka National Park) has been studied using a "clean" sampling, handling and analysis technique. Differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) has been used for trace metal analysis. The Krka River has been divided into the upper and lower flow region with respect to the metals concentration and main physico-chemical parameters. A significant increase in trace metal concentration as the result of the untreated waste water discharge downstream of Knin Town has been registered in the upper flow region. Due to a specific characteristic of the Krka, the so-called self-purification process, a decrease in the elevated trace metals concentration from the water column takes place at numerous small lakes formed by tufa barriers (at the end of the upper flow region). The clean groundwater input at the beginning of the lower flow region additionally contributes to the observed decrease in trace metals concentration in the Krka, maintaining them at a very low level in the remaining region of fresh-water flow. The determined median total concentrations were zinc 120-7400 ng l(-1), cadmium 3-8 ng l(-1), lead 11-250 ng l(-1) and copper 110-440 ng l(-1). Karst rivers, such as the Krka River, with extremely low natural concentrations of trace metals are highly sensitive to the anthropogenic influence. Therefore, such aquatic systems require implementation of strict protection regimes in the entire catchments area.
Trace element distributions in the water column near the Deepwater Horizon well blowout.
Joung, DongJoo; Shiller, Alan M
2013-03-05
To understand the impact of the Deepwater Horizon well blowout on dissolved trace element concentrations, samples were collected from areas around the oil rig explosion site during four cruises in early and late May 2010, October 2010, and October 2011. In surface waters, Ba, Fe, Cu, Ni, Mn, and Co were relatively well correlated with salinity during all cruises, suggesting mixing with river water was the main influence on metal distributions in these waters. However, in deep oil/gas plumes (1000-1400 m depth), modestly elevated concentrations of Co and Ba were observed in late May, compared with postblowout conditions. Analysis of the oil itself along with leaching experiments confirm the oil as the source of the Co, whereas increased Ba was likely due to drilling mud used in the top kill attempt. Deep plume dissolved Mn largely reflected natural benthic input, though some samples showed slight elevation probably associated with the top kill. Dissolved Fe concentrations were low and also appeared largely topographically controlled and reflective of benthic input. Estimates suggest that microbial Fe demand may have affected the Fe distribution but probably not to the extent of Fe becoming a growth-limiting factor. Experiments showed that the dispersant can have some limited impact on dissolved-particulate metal partitioning.
Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan
2016-04-01
Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.
Peer reviewed: Characterizing aquatic dissolved organic matter
Leenheer, Jerry A.; Croué, Jean-Philippe
2003-01-01
Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
Three-dimensional flow and trace metal mobility in shallow Chalk groundwater, Dorset, United Kingdom
NASA Astrophysics Data System (ADS)
Schürch, Marc; Edmunds, W. Michael; Buckley, David
2004-06-01
The three-dimensional groundwater flow and the hydrogeochemical regime have been determined in the Bere Stream valley, North Dorset Downs, southern England. The dual porosity characteristics of the Portsdown Chalk have been established using geophysical and hydrochemical borehole logging. Chemical properties have been established using major and trace element analyses of depth samples and groundwaters. The study site is located at the unconfined-confined boundary of the Chalk aquifer, where it is overflowing in the observation boreholes. The Chalk dips locally at about 5 m/km to the south-east under Palaeogene confining beds and three distinctive flow horizons may be recognised. The Chalk groundwater is of Ca-HCO 3 type and three separate geochemical groundwater zones were also determined with depth, having different oxygen levels and trace element characteristics. (1) A shallow O 2-rich zone with around 80% dissolved O 2 and low trace element concentrations. (2) A mixing and transition zone with significant concentrations of trace elements and high trace metal concentrations at its base: manganese 29 μg/l, nickel 55 μg/l, cadmium 146 μg/l, and zinc 214 μg/l. (3) A deeper zone with depleted oxygen (5-20% dissolved O 2) and with longer water residence times shown by higher Mg/Ca and K/Na ratios as well as higher Sr and F. The groundwater geochemistry in the Chalk aquifer is dominated by incongruent reactions with the fine-grained carbonate sediments, which release trace element impurities to the water. Some of the metals are co-precipitated with Mn- and Fe-oxide phases on fissure surfaces, whilst producing a purer calcite. During subsequent recrystallisation to purer iron- and manganese-oxides on fissure surfaces under specific geochemical and hydrodynamic conditions, trace metals are released into the fissure water. The results demonstrate the need to monitor quality stratification and the changes in the groundwater baseline chemistry in areas close to the redox boundary which, in the dual porosity Chalk is likely to be a diffuse zone with exchange between oxygen poor matrix waters and more oxic water flowing through the fissures.
Wang, Deli; Lu, Shuimiao; Chen, Nengwang; Dai, Minhan; Guéguen, Céline
2018-03-15
Rivers contribute a substantial amount of trace metals including molybdenum (Mo) into the oceans. The driving forces controlling the riverine fluxes of dissolved metals still remain not fully understood. Our study then investigated the spatial variations of dissolved metals including molybdenum in a typically human perturbed river, the Jiulong River (JR), China. The aim of the study is to elucidate the relevance of anthropogenic perturbation on the fluxes of dissolved metals such as molybdenum from land to ocean. Our study shows a large spatial variability of dissolved Mo across tributary to main stream of the JR. Particularly, dissolved Mo was generally low (average: 5 ± 1 nM) in the "pristine" JR headwaters, and elevated (19 ± 6 nM) along the lower river continuum. Sporadically high levels of dissolved Mo occurred in the upper North River (77 ± 19 nM), as a result of mining activities locally. Significant correlations of dissolved Mo with total dissolved solids (TDS) and dissolved strontium (Sr) were observed in the whole JR (Mo = 1.4* TDS -1.7, R 2 = 0.86, p < .01; Mo = 1.2*Sr - 2.2, R 2 = 0.70, p < .01, logarithmic scales). This indicates that dissolved Mo is mobilized mainly along with other major ions such as Sr during similar mineral dissolution processes. From the "pristine" headwaters to the mouth of the JR, riverine Mo fluxes at the mouth of the JR has elevated by at least 3 times due to human perturbation. Compiled historic data regarding metal fluxes from world rivers further confirmed that small and medium rivers are relatively more sensitive to human perturbation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissolved and colloidal copper in the tropical South Pacific
NASA Astrophysics Data System (ADS)
Roshan, Saeed; Wu, Jingfeng
2018-07-01
Copper (Cu) as a bioactive trace metal in the ocean has widely been studied in the context of chemical speciation. However, this trace metal is extremely understudied in the context of physical speciation (i.e., size- or molecular weight-partitioning), which may help in characterizing dissolved Cu species. In this study, we determine total dissolved Cu (<0.2 μm) distribution and its physical speciation along the US GEOTRACES 2013 cruise, a 4300-km east-west transect in the tropical South Pacific. The distribution of dissolved Cu is rather uniform horizontally and exhibits a linear increase with depth from surface to 2500-3000 m, below which it varies less significantly both vertically and horizontally. Dissolved Cu shows a strong correlation with silicate (SiO44-) in the upper 1500 m, which is in agreement with previous studies in other regions. This correlation is weaker but with higher slope at depths below 1500 m, which supports the sedimentary source hypothesis. Although hydrothermal activity at the East Pacific Rise (EPR) does not show a readily evident impact on the dissolved Cu distribution, high-quality data at 2300-2800 m allow for diagnosing a subtle westward decrease in the background-subtracted dissolved Cu component. This component of dissolved Cu poorly correlates with mantle-derived 3He (R2 = 0.41), indicating a possible hydrothermal source for dissolved Cu, in contrast to previous studies. For the first time in a major basin, we also determined the physical speciation of dissolved Cu, which shows that Cu species lighter than 10 kDa (Da = 1 g mol-1) dominate the pool of dissolved Cu (<0.2 μm) below 1000 m with a contribution of 61 ± 6% (fraction of total dissolved). 39 ± 6% of dissolved Cu at depths below 1000 m, thus, occurs in the pool of colloidal matter (10 kDa-0.2 μm). Moreover, using a suite of molecular weight cutoffs indicate that Cu species are distributed between two distinct molecular weight classes: the lighter than 5 kDa and heavier than 300 kDa classes, which form 53 ± 6% and 37 ± 7% of dissolved Cu at 2200-2800 m, respectively. The Cu species with molecular weight between 5 kDa and 300 kDa contribute only to 10 ± 12% of the pool at 2200-2800 m. These results offer new insights into structure, reactivity and bioavailability of oceanic Cu compounds. As an organic-dominating metal, Cu physical speciation may also shed light on size-reactivity spectrum of dissolved organic matter (DOM) in the deep ocean.
Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0
Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C.; Taylor, C.D.
2008-01-01
High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates. Results indicate that the distributions of Fe and Cd are directly related to the rate of sphalerite dissolution throughout the reaction at pH 3.0 and 4.0 because these two elements substitute readily into sphalerite. These two metals are likely to be more amenable to usage in predictive acid dissolution models because of this behavior. The Pb distribution shows no strong relation to sphalerite dissolution and appears to be controlled by pH-dependent solubility, most likely related to trace amounts of galena. The distribution of Cu is similar to that of Fe but is the most-dependent of all metals on its mole fraction ratio (Zn:Cu) in sphalerite. The Mn distributions suggest an increase in the rate of Mn release relative to sphalerite dissolution occurs in low Mn samples as pH increases. The Mn distribution in high Mn samples is nearly independent of pH and sphalerite dissolution at pH 2.0 but shows a dependence on these two parameters at higher pH (3.0-4.0).
NASA Astrophysics Data System (ADS)
Crispo, S. M.; Peterson, T. D.; Lohan, M. C.; Crawford, D.; Orians, K. J.; Harrison, P. J.; Statham, P. J.
2004-12-01
In April 2001, a large dust storm originating in the Gobi and Takla Makan deserts resulted in large quantities of dust to be transported to the northeastern Pacific Ocean. Off the California coast, dissolved iron and aluminum concentrations determined before and after the dust traversed the North Pacific show increases of 0.5nM and 2nM respectively (Johnson, 2003). The most concentrated plume of dust traveled toward the eastern Gulf of Alaska. Every year anticyclonic mesoscale eddies, transporting coastal waters offshore, form off the coast of the Queen Charlotte Islands, British Columbia. These Haida eddies begin with high concentrations of trace metals which deplete over time. Evidence of 2001-dust deposition is seen in elevated dissolved aluminum concentrations (up to 7nM) in the eddy, which stay elevated months after the dust was deposited. By June 2001, dissolved zinc concentrations in the eddy surface mixed layer are low (below 0.3nM) and decrease slightly by September 2001. Dissolved cadmium concentrations dropped drastically (from 0.4nM to 0.09nM) from June to September 2001 in the Haida-2001 eddy coinciding with a large increase in coccolithophore production. This coccolithophore increase was five times greater than what was seen in the Haida-2000 eddy and twenty times that of the reference station. Based on our observations and by comparison with a shipboard Zn-Fe-enrichment study, we hypothesize that dust deposition into surface waters promotes growth first of diatoms and then of coccolithophores once zinc is depleted. The presence of dust remnants held within a quasi-isolated mesoscale eddy allows us to draw conclusions about succession following dust deposition events and yields further information regarding interactions between trace metal supply and primary production in the NE Subarctic Pacific.
Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.
2013-01-01
Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions. PMID:24790953
NASA Astrophysics Data System (ADS)
Noble, Abigail; Saito, Mak; Moran, Dawn; Allen, Andrew
2013-10-01
Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.
Kuwabara, James S.; Berelson, William M.; Balistrieri, Laurie S.; Woods, Paul F.; Topping, Brent R.; Steding, Douglas J.; Krabbenhoft, David P.
2000-01-01
A field study was conducted between August 16-27, 1999, to provide the first direct measurements of the benthic flux of dissolved (0.2-micron filtered) solutes between the bottom sediment and water column at two sites in Lake Coeur d'Alene, Idaho. Trace metals (namely, cadmium, copper, manganese, mercury species, and zinc) and nutrients (namely, ammonia, nitrate plus nitrite, oxygen, orthophosphate and silica) were solutes of primary interest. Benthic flux (sometimes referred to as internal recycling) represents the transport of dissolved chemical species between the water column and the underlying sediment.
Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou
2015-05-01
Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.
Fallon, J.D.; McChesney, J.A.
1993-01-01
Surface-water-quality data were collected from the lower Kansas River Basin in Kansas and Nebraska. The data are presented in 17 tables consisting of physical properties, concentrations of dissolved solids and major ions, dissolved and total nutrients, dissolved and total major metals and trace elements, radioactivity, organic carbon, pesticides and other synthetic-organic compounds, bacteria and chlorophyll-a, in water; particle-size distributions and concentrations of major metals and trace elements in suspended and streambed sediment; and concentrations of synthetic-organic compounds in streambed sediment. The data are grouped within each table by sampling sites, arranged in downstream order. Ninety-one sites were sampled in the study area. These sampling sites are classified in three, non-exclusive categories (fixed, synoptic, and miscellaneous sites) on the basis of sampling frequency and location. Sampling sites are presented on a plate and in 3 tables, cross-referenced by downstream order, alphabetical order, U.S. Geological Survey identification number, sampling-site classification category, and types of analyses performed at each site. The methods used to collect, analyze, and verify the accuracy of the data also are presented. (USGS)
Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico.
Jonathan, M P; Roy, P D; Thangadurai, N; Srinivasalu, S; Rodríguez-Espinosa, P F; Sarkar, S K; Lakshumanan, C; Navarrete-López, M; Muñoz-Sevilla, N P
2011-04-01
A survey on the metal concentrations (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, Zn) in beach water and sediments is reported from the tourist destination of Acapulco city on the Pacific coast of Mexico. The concentration of dissolved trace metals (DTMs) in beach water and acid leachable trace metals (ALTMs) in sediments indicated that they are anthropogenic in nature due to the increased tourist activities in the crowded beach locations. The statistical analysis indicates Fe and Mn play a major role as metal scavengers in both the medium (water and sediment) and the higher value of other metals is site specific in the study area, indicating that they are transported from the local area. Comparison results suggest that the beach water quality has deteriorated more than the sediments and special care needs to be taken to restore the beach quality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles
NASA Astrophysics Data System (ADS)
Tu, Y.; You, C.
2010-12-01
Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.
Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97
Sarver, K.M.; Steiner, B.C.
1998-01-01
Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.
NASA Astrophysics Data System (ADS)
Milne, A.; Palmer, M.; Lohan, M. C.
2016-02-01
Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (< 40 nM of pFe). Overall, higher concentrations of all metals were observed in the bottom waters of the Argentine basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.
Elimination of cadmium trace contaminations from drinking water.
Zhao, Xuan; Höll, Wolfgang H; Yun, Guichun
2002-02-01
Raw waters polluted with trace heavy metals present serious problems to the part of the Chinese water supply. One of the important contaminants is cadmium. Removal of trace amounts of heavy metals can be achieved by means of selective sorption processes. One of the possibilities is the application of weak base anion exchangers. LEWIS-base/acid interactions lead to an exclusive sorption of heavy metal cations and an equivalent amount of anions of strong acids. The respective elimination of cadmium from pure solutions and spiked natural water and the regeneration of the exhausted exchanger has been investigated. The results demonstrate a very efficient elimination. The standards for drinking water are met for a very large relative volume of treated water. In addition, even a considerable share of dissolved organic matter is adsorbed. Regeneration requires a first step with sulfuric acid to remove the metals and a second one with sodium hydroxide to neutralize the exchanger and to displace the DOC adsorbed. The heavy metals can be concentrated in a small volume which facilitates the discharge of the waste.
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Aiken, George R.; Hsu-Kim, Heileen; Ryan, Joseph N.
2011-01-01
We have known for decades that dissolved organic matter (DOM) plays a critical role in the biogeochemical cycling of trace metals and the mobility of colloidal particles in aquatic environments. In recent years, concerns about the ecological and human health effects of metal-based engineered nanoparticles released into natural waters have increased efforts to better define the nature of DOM interactions with metals and surfaces. Nanomaterials exhibit unique properties and enhanced reactivities that are not apparent in larger materials of the same composition1,2 or dissolved ions of metals that comprise the nanoparticles. These nanoparticle-specific properties generally result from the relatively large proportion of the atoms located at the surface, which leads to very high specific surface areas and a high proportion of crystal lattice imperfections relative to exposed surface area. Nanoscale colloids are ubiquitous in nature,2 and many engineered nanomaterials have analogs in the natural world. The properties of these materials, whether natural or manmade, are poorly understood, and new challenges have been presented in assessing their environmental fate. These challenges are particularly relevant in aquatic environments where interactions with DOM are key, albeit often overlooked, moderators of reactivity at the molecular and nanocolloidal scales.
Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.
Gosavi, K; Sammut, J; Gifford, S; Jankowski, J
2004-05-25
Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.
Sokolowski, A; Wolowicz, M; Hummel, H
2001-10-01
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.
Baken, Stijn; Degryse, Fien; Verheyen, Liesbeth; Merckx, Roel; Smolders, Erik
2011-04-01
Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.
Trace metals in the Ob and Yenisei Rivers' Estuaries (the Kara Sea).
NASA Astrophysics Data System (ADS)
Demina, L. L.
2014-12-01
Behavior of some trace metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb) in water column (soluble <0.45 µm and particulate fractions) and bottom sediments (surface and cores) along the two transects from the Ob River and Yenisei River Estuaries to the Kara Sea was studied. The length of both transects was about 700 km. Water depth was 12-63 m, O2 dissolved :5.36-9.55 ml l-1. Along the transects salinity increased from 0.07 to 34.2 psu, while the SPM' concentration decreased from 10.31 to 0.31 mg/l. Total suspended particulate matter load is more than one order of magnitude higher in the Ob River Estuary comparing to that of the Yenisei River. It has led to a significant difference between the suspended trace metals' concentrations (µg/l) in water of the two estuaries. With salinity increase along transects Fe susp., Mn susp. and Zn susp. decreased by a factor of 100-500, that has led to a growth of a relative portion of dissolved trace metals followed by their bioaccumulation (Demina et al., 2010). A strong direct correlation between suspended Cu, Fe and SPM mass concentration was found. For the first time along the Yenisei River' Estuary -the Kara Sea transect a direct positive correlation between Cu suspended and volume concentration of SPM (mg/ml3) was found, that was attributed to contribution of phytoplankton aggregates in the SPM composition. A trend of relationship between content of suspended As and pelitic fraction (2-10 µm) of SPM was firstly found in theses basins also. Study of trace metal speciation in the bottom sediments (adsorbed, associated with Fe-Mn (oxyhydr)oxides, organic matter and fixed in the mineral lattice or refractory) has revealed the refractory fraction to be prevailing (70-95% total content) for Fe, Zn, Cu, Co, Ni, Cr, Cd and Pb. That means that toxic heavy metals were not available for bottom fauna. Mn was predominantly found in the adsorbed and (oxyhydr)oxides geochemically labile forms, reflecting the redox condition change along both transects and within the sedimentary cores. References. Demina L.L., Gordeev V.V., Galkin S.V., Kravchishina M.D. Biogeochemistry of some heavy metals and metalloids along the transect the Ob River Estuary - the Kara Sea. Oceanology, 2010, vo. 50, No 5, pp. 729- 742.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanudo-Wilhelmy, S.A.; Gill, G.A.
1999-10-15
To establish the impact of the Clean Water Act on the water quality of urban estuaries, dissolved trace metals and phosphate concentrations were determined in surface waters collected along the Hudson River estuary between 1995 and 1997 and compared with samples collected in the mid-1970s by Klinkhammer and Bender. The median concentrations along the estuary have apparently declined 36--56% for Cu, 55--89% for Cd, 53--85% for Ni, and 53--90% for Zn over a period of 23 years. These reductions appear to reflect improvements in controlling discharges from municipal and industrial wastewater treatment plants since the Clean Water Act was enactedmore » in 1972. In contrast, levels of dissolved nutrients (PO{sub 4}) have remained relatively constant during the same period of time, suggesting that wastewater treatment plant improvements in the New York/New Jersey Metropolitan area have not been as effective at reducing nutrient levels within the estuary. While more advanced wastewater treatment could potentially reduce the levels of Ag and PO{sub 4} along the estuary, these improvements would have a more limited effect on the levels of other trace metals.« less
NASA Astrophysics Data System (ADS)
Lechtenfeld, O. J.; Koch, B. P.; Kattner, G.
2010-12-01
Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) applications for dissolved organic matter (DOM) focus mainly on carbon, hydrogen, oxygen and nitrogen isotopes. Implementation of sulfur and especially phosphorus in the molecular formula assignment has been questionable because of ambiguous calculated elemental formulas. On the other hand, many compounds bearing these elements are well known to occur in the dissolved state as part of the permanent recycling processes (e.g. phospholipids, phosphonates) but analytics of dissolved organic phosphorus (DOP) and sulfur (DOS) are often hampered by the large inorganic P and S pools. Even less is known about complexation characteristics of the DOM moieties. Although electrochemical methods provide some information about trace metal speciation, the high amount of organic molecules and its insufficient description as chemical functional classes prevent the assignment of trace metals to ligand classes. Nevertheless, it is undoubtful that a varying but extensive amount of transition metals is bond in form of organic complexes. Hyphenation of reversed phase high performance liquid chromatography (RP-HPLC) with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) is a valuable tool to study these metal-organic interactions in a qualitative and quantitative approach. We established a desolvation method that allows direct transfer of high organic solvent loads into the plasma. Thus, in combination with internal standardization and external calibration, the investigation of a broad polarity scale was possible. This approach overcomes previous restrictions to non-organic solvent separation techniques like size exclusion chromatography (SEC). We used solid phase extracted DOM (SPE-DOM) from Atlantic and Southern Ocean water samples to show that organic sulfur and phosphorus species can be separated via RP-HPLC and that the partitioning can be correlated to trace metal binding capabilities in the different fractions. A molecular level investigation of these fractions via FT-ICR-MS revealed further details of the complexation features and connects the polarity-based separation on a C18 column to O/C and H/C elemental ratios. With our study, we showed that biologically relevant transition metals (e.g. Fe, Ni, Cu) and uranium are intrinsic constituents of the DOM fractions. Moreover, a comparison between samples from different ecological provinces and diagenetic conditions was performed to highlight the benefits of this approach for future marine biogeochemical research.
Porcal, Petr; Koprivnjak, Jean-François; Molot, Lewis A; Dillon, Peter J
2009-09-01
Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change. We review recent research on the mechanisms responsible for recent changes in aquatic DOC concentrations, DOC interactions with trace metals, N, and P, and on the possible impacts of climate change on DOC in mainly boreal lakes. We then speculate on how climate change may affect DOC export and in-lake processing and how these changes might alter nutrient and metal export and processing. Furthermore, the potential impacts of changing DOC cycling patterns on climate change are examined. It has been noted that DOC concentrations in lake and stream waters have increased during the last 30 years across much of Europe and North America. The potential reasons for this increase include increasing atmospheric CO(2) concentration, climate warming, continued N deposition, decreased sulfate deposition, and hydrological changes due to increased precipitation, droughts, and land use changes. Any change in DOC concentrations and properties in lakes and streams will also impact the acid-base chemistry of these waters and, presumably, the biological, chemical, and photochemical reactions taking place. For example, the interaction of trace metals with DOC may be significantly altered by climate change as organically complexed metals such as Cu, Fe, and Al are released during photo-oxidation of DOC. The production and loss of DOC as CO(2) from boreal lakes may also be affected by changing climate. Climate change is unlikely to be uniform spatially with some regions becoming wetter while others become drier. As a result, rates of change in DOC export and concentrations will vary regionally and the changes may be non-linear. Climate change models predict that higher temperatures are likely to occur over most of the boreal forests in North America, Europe, and Asia over the next century. Climate change is also expected to affect the severity and frequency of storm and drought events. Two general climate scenarios emerge with which to examine possible DOC trends: warmer and wetter or warmer and drier. Increasing temperature and hydrological changes (specifically, runoff) are likely to lead to changes in the quality and quantity of DOC export from terrestrial sources to rivers and lakes as well as changes in DOC processing rates in lakes. This will alter the quality and concentrations of DOC and its constituents as well as its interactions with trace metals and the availability of nutrients. In addition, export rates of nutrients and metals will also change in response to changing runoff. Processing of DOC within lakes may impact climate depending on the extent to which DOC is mineralized to dissolved inorganic carbon (DIC) and evaded to the atmosphere or settles as particulate organic carbon (POC) to bottom sediments and thereby remaining in the lake. The partitioning of DOC between sediments and the atmosphere is a function of pH. Decreased DOC concentrations may also limit the burial of sulfate, as FeS, in lake sediments, thereby contributing acidity to the water by increasing the formation of H(2)S. Under a warmer and drier scenario, if lake water levels fall, previously stored organic sediments may be exposed to greater aeration which would lead to greater CO(2) evasion to the atmosphere. The interaction of trace metals with DOC may be significantly altered by climate change. Iron enhances the formation of POC during irradiation of lake water with UV light and therefore may be an important pathway for transfer of allochthonous DOC to the sediments. Therefore, changing Fe/DOC ratios could affect POC formation rates. If climate change results in altered DOC chemistry (e.g., fewer and/or weaker binding sites) more trace metals could be present in their toxic and bioavailable forms. The availability of nutrients may be significantly altered by climate change. Decreased DOC concentrations in lakes may result in increased Fe colloid formation and co-incident loss of adsorbable P from the water column. Climate change expressed as changes in runoff and temperature will likely result in changes in aquatic DOC quality and concentration with concomitant effects on trace metals and nutrients. Changes in the quality and concentration of DOC have implications for acid-base chemistry and for the speciation and bioavailability of certain trace metals and nutrients. Moreover, changes in DOC, metals, and nutrients are likely to drive changes in rates of C evasion and storage in lake sediments. The key controls on allochthonous DOC quality, quantity, and catchment export in response to climate change are still not fully understood. More detailed knowledge of these processes is required so that changes in DOC and its interactions with nutrients and trace metals can be better predicted based on changes caused by changing climate. More studies are needed concerning the effects of trace metals on DOC, the effects of changing DOC quality and quantity on trace metals and nutrients, and how runoff and temperature-related changes in DOC export affect metal and nutrient export to rivers and lakes.
Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia
2017-08-21
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.
Harper, D.D.; Farag, A.M.; Hogstr, C.; MacConnell, Elizabeth
2009-01-01
A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT. USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16??C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16??C) compared to those at an experimental site 10 km downstream (26??C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. ?? 2009 SETAC.
Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove
2009-12-01
The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, C.; Vowinkel, E.F.; Nawyn, J.P.
The relation of water quality to hydrogeology and land use was evaluated using analysis of water samples from 71 wells in the northern part of the Potomac-Raritan-Magothy aquifer system in New Jersey. The sampling network was evaluated for variations in hydrogeology. Well depths, pumping rates, and the number of wells in the confined and unconfined parts of the aquifer system did not differ among land-use groups. The influences of hydrogeologic factors on water quality were evaluated without considering land use. Shallow wells had the highest specific conductance and major ion concentrations. Water from wells in the unconfined part of themore » aquifer system had the highest dissolved organic carbon concentration. Dissolved oxygen and nitrate concentrations were lowest, trace metals concentrations were highest, and phenols were detected most frequently in groundwater from undeveloped land. Major ions and trace metals concentrations were lowest, dissolved oxygen and copper concentrations were highest, and pesticides were most frequently detected in groundwater from agricultural land. Nitrate concentrations were highest and orthophosphate, nitrite, and purgeable organics were detected most frequently in groundwater from urban land. These water quality data were compared to data from the same aquifer system in southern New Jersey. Frequencies of detection of purgeable organics among land-use groups were similar in the northern and southern areas. 69 refs., 23 figs., 16 tab.« less
Autonomous water sampling for long-term monitoring of trace metals in remote environments.
Kim, Hyojin; Bishop, James K B; Wood, Todd J; Fung, Inez Y
2012-10-16
A remotely controlled autonomous method for long-term high-frequency sampling of environmental waters in remote locations is described. The method which preserves sample integrity of dissolved trace metals and major ions for month-long periods employs a gravitational filtration system (GFS) that separates dissolved and particulate phases as samples are collected. The key elements of GFS are (1) a modified "air-outlet" filter holder to maximize filtration rate and thus minimize filtration artifacts; and (2) the direct delivery of filtrate to dedicated bottle sets for specific analytes. Depth and screen filter types were evaluated with depth filters showing best performance. GFS performance is validated using ground, stream, and estuary waters. Over 30 days of storage, samples with GFS treatment had average recoveries of 95 ± 19% and 105 ± 7% of Fe and Mn, respectively; without GFS treatment, average recoveries were only 16% and 18%. Dissolved major cations K, Mg, and Na were stable independent of collection methodology, whereas Ca in some groundwater samples decreased up to 42% without GFS due to CaCO(3) precipitation. In-field performance of GFS equipped autosamplers is demonstrated using ground and streamwater samples collected at the Angelo Coast Range Reserve, California from October 3 to November 4 2011.
NASA Astrophysics Data System (ADS)
Kessaci, Kahina; Coynel, Alexandra; Blanc, Gérard; Deycard, Victoria N.; Derriennic, Hervé; Schäfer, Jörg
2014-05-01
Recent European legislation (2000/60/CE) has listed eight trace metal elements as priority toxic substances for water quality. Urban metal inputs into hydrosystems are of increasing interest to both scientists and managers facing restrictive environmental protection policies, population increase and changing metal applications. The Gironde Estuary (SW France; 625 km2) is known for its metal/metalloid pollution originating from industrial (e.g. Cd, Zn, Cu, As, Ag, Hg) or agricultural sources (e.g. Cu) in the main fluvial tributaries (Garonne and Dordogne Rivers). However, little peer-reviewed scientific work has addressed the impact of urban sources on the Gironde Estuary, especially the Urban Agglomeration of Bordeaux (~1 million inhabitants) located on the downstream branch of the Garonne River. In this study, a snapshot sampling campaign was performed in 2011 for characterizing the spatial distribution of dissolved and particulate metal/metalloid (As, Ag, Cd, Pb, Zn, Cu) concentrations in three suburban watersheds: the Jalle of Blanquefort (330 km2), Eau Bourde (140 km2), and Peugue (112 km2). Furthermore, particulate metal Enrichment Factors (EF) were calculated using local geochemical background measured at the bottom of a sediment core (492 cm). Results indicated that metal concentrations displayed a high spatial variability depending on the suburban watershed and the studied element. Local concentrations anomalies were observed for: (i) As in the Eau Bourde River in dissolved (4.2 μg/l) and particulate phases (246 mg/kg; EF= 20) and attributed to a nearby industrial incinerator; (ii) Zn in the Peugue River with maximum dissolved and particulate concentrations of 87 μg/l and 1580 mg/kg (EF=17), respectively, probably due to urban habitation runoff; (iii) Ag in the Jalle of Blanquefort River with high dissolved (74 ng/l) and particulate concentrations (33.7 mg/kg; EF=117) due to industrial activities in the downstream part. Based on hydro-geochemical monitoring of both suburban rivers and local wastewater treatment plants (WWTPs), we present a first estimate of metal/metalloid fluxes and compare them to the respective loads in the Garonne River. Our results suggest that suburban metal inputs may significantly increase metal concentrations and fluxes in the fluvial Gironde Estuary, especially for Ag due to inputs exported by WWTPS and the Jalle of Blanquefort River.
NASA Astrophysics Data System (ADS)
Wolfe, A. L.; Wikin, R. T.
2017-12-01
We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.
Moyano, Mario F; Mariño-Repizo, Leonardo; Tamashiro, Héctor; Villegas, Liliana; Acosta, Mariano; Gil, Raúl A
2016-07-01
The role of trace elements bound to proteins in the etiology and pathogenesis of rheumatoid arthritis (RA) remains unclear. In this sense, the identification and detection of metalloproteins has a strong and growing interest. Metalloprotein studies are currently carried out by polyacrylamide gel electrophoresis (PAGE) associated to inductively coupled plasma mass spectrometry (ICPMS), and despite that complete information can be obtained for metals such as Fe, Cu and Zn, difficulties due to poor sensitivity for other trace elements such as Sn, As, etc, are currently faced. In the present work, a simple and fast method for the determination of trace metals bound to synovial fluid (SF) proteins was optimized. Proteins from SF (long and short-term RA) were separated in ten fractions by native PAGE, then dissolved in nitric acid and peroxide hydrogen, and analyzed by ICPMS. Fifteen metals were determined in each separated protein fraction (band). Adequate calibration of proteins molecular weight allowed stablishing which protein type were bound to different metals. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Ianni, Carmela; Massolo, Serena; Abelmoschi, M. Luisa; De Vittor, Cinzia; Frache, Roberto
2011-05-01
The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900-130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.
Jones, Clain A.; Nimick, D.A.; McCleskey, R. Blaine
2004-01-01
Diel (24 hr) cycles in dissolved metal and As concentrations have been documented in many northern Rocky Mountain streams in the U.S.A. The cause(s) of the cycles are unknown, although temperature- and pH-dependent sorption reactions have been cited as likely causes. A light/dark experiment was conducted to isolate temperature and pH as variables affecting diel metal cycles in Prickly Pear Creek, Montana. Light and dark chambers containing sediment and a strand of macrophyte were placed in the stream to simulate instream temperature oscillations. Photosynthesis-induced pH changes were allowed to proceed in the light chambers while photosynthesis was prevented in the dark chambers. Water samples were collected periodically for 22 hr in late July 2001 from all chambers and the stream. In the stream, dissolved Zn concentrations increased by 300% from late afternoon to early morning, while dissolved As concentrations exhibited the opposite pattern, increasing 33% between early morning and late afternoon. Zn and As concentrations in the light chambers showed similar, though less pronounced, diel variations. Conversely, Zn and As concentrations in the dark chambers had no obvious diel variation, indicating that light, or light-induced reactions, caused the variation. Temperature oscillations were nearly identical between light and dark chambers, strongly suggesting that temperature was not controlling the diel variations. As expected, pH was negatively correlated (P < 0.01) with dissolved Zn concentrations and positively correlated with dissolved As concentrations in both the light and dark chambers. From these experiments, photosynthesis-induced pH changes were determined to be the major cause of the diel dissolved Zn and As cycles in Prickly Pear Creek. Further research is necessary in other streams to verify that this finding is consistent among streams having large differences in trace-element concentrations and mineralogy of channel substrate. ?? 2004 Kluwer Academic Publishers.
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida
Radell, M.J.; Katz, B.G.
1991-01-01
The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from the Biscayne aquifer. Sources for trace metals found in water from the Biscayne aquifer may include local contamination, well-construction techniques, canal - aquifer interactions, and natural occurrence in area soils and rock.
Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.
2007-01-01
Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.
Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia.
Al-Taani, Ahmed A; Batayneh, Awni; Nazzal, Yousef; Ghrefat, Habes; Elawadi, Eslam; Zaman, Haider
2014-09-15
The Gulf of Aqaba (GoA) is of significant ecological value with unique ecosystems that host one of the most diverse coral communities in the world. However, these marine environments and biodiversity have been threatened by growing human activities. We investigated the levels and distributions of trace metals in surface seawater across the eastern coast of the Saudi GoA. Zn, Cu, Fe, B and Se in addition to total dissolved solids and seawater temperature exhibited decreasing trends northwards. While Mn, Cd, As and Pb showed higher average levels in the northern GoA. Metal input in waters is dependent on the adjacent geologic materials. The spatial variability of metals in water is also related to wave action, prevailing wind direction, and atmospheric dry deposition from adjacent arid lands. Also, water discharged from thermal desalination plants, mineral dust from fertilizer and cement factories are potential contributors of metals to seawater water, particularly, in the northern GoA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana
2016-01-01
The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.
Zou, Yan-e; Jiang, Ping-ping; Zhang, Qiang; Tang, Qing-jia; Kang, Zhi-qiang; Gong, Xiao- ping; Chen, Chang-jie; Yu, Jian-guo
2015-12-01
High-frequency sampling was conducted at the outlet of Guangxi Bishuiyan karst subterranean river using an automatic sampler during the rainfall events. The hydrochemical drymanic variation characteristics of trace metals (Cu, Pb, Zn, Cd) at the outlet of Guangxi Bishuiyan karst subterranean river were analyzed, and the sources of the trace metals in the subterranean river as well as their response to rainfall were explored. The results showed that the rainfall provoked a sharp decrease in the major elements (Ca²⁺, Mg²⁺, HCO₃⁻, etc.) due to dilution and precipitation, while it also caused an increase in the concentrations of dissolved metals including Al, Mn, Cu, Zn and Cd, due to water-rock reaction, sediment remobilization, and soil erosion. The water-rock reaction was more sensitive to rainfall than the others, while the sediment remobilization and soil erosion took the main responsibility for the chemical change of the heavy metals. The curves of the heavy metal concentrations presented multiple peaks, of which the maximum was reached at 9 hours later after the largest precipitation. Different metal sources and the double-inlet structure of the subterranean river were supposed to be the reasons for the formation of multiple peaks. During the monitoring period, the average speed of the solute in the river reached about 0.47 km · h⁻¹, indicating fast migration of the pollutants. Therefore, monitoring the chemical dynamics of the karst subterranean river, mastering the sources and migration characteristics of trace metal components have great significance for the subterranean river environment pollution treatment.
Low biodegradability of dissolved organic matter and trace metals from subarctic waters.
Oleinikova, Olga V; Shirokova, Liudmila S; Drozdova, Olga Y; Lapitskiy, Sergey A; Pokrovsky, Oleg S
2018-03-15
The heterotrophic mineralization of dissolved organic matter (DOM) controls the CO 2 flux from the inland waters to the atmosphere, especially in the boreal waters, although the mechanisms of this process and the fate of trace metals associated with DOM remain poorly understood. We studied the interaction of culturable aquatic (Pseudomonas saponiphila) and soil (Pseudomonas aureofaciens) Gammaproteobacteria with seven different organic substrates collected in subarctic settings. These included peat leachate, pine crown throughfall, fen, humic lake, stream, river, and oligotrophic lake with variable dissolved organic carbon (DOC) concentrations (from 4 to 60mgL -1 ). The highest removal of DOC over 4days of reaction was observed in the presence of P. aureofaciens (33±5%, 43±3% and 53±7% of the initial amount in fen water, humic lake and stream, respectively). P. saponiphila degraded only 5% of DOC in fen water but did not affect all other substrates. Trace elements (TE) were essentially controlled by short-term (0-1h) adsorption on the surface of cells. Regardless of the nature of organic substrate and the identity of bacteria, the degree of adsorption ranged from 20 to 60% for iron (Fe 3+ ), 15 to 55% for aluminum (Al), 10 to 60% for manganese (Mn), 10 to 70% for nickel (Ni), 20 to 70% for copper (Cu), 10 to 60% for yttrium (Y), 30 to 80% for rare earth elements (REE), and 15 to 50% for uranium (U VI ). Rapid adsorption of organic and organo-mineral colloids on bacterial cell surfaces is novel and potentially important process, which deserves special investigation. The long-term removal of dissolved Fe and Al was generally consistent with solution supersaturation degree with respect to Fe and Al hydroxides, calculated by visual Minteq model. Overall, the biomass-normalized biodegradability of various allochthonous substrates by culturable bacteria is much lower than that of boreal DOM by natural microbial consortia. Copyright © 2017 Elsevier B.V. All rights reserved.
Green, W. Reed; Louthian, Bobbie L.
1993-01-01
Physical, chemical, and biological water-quality data were collected and compiled for sites located in the Lakes Maumelle and Winona reservoir systems May 5, 1989, to October 30, 1992. Data were collected in order to establish a comprehensive water-quality data base for the two systems and will be used in water-quality interpretive chemical variables (temperature, pH, specific conductance, dissolved oxygen, light transparency, and penetration); solids, and major cations and anions); trace metals; organics (pesticides and industrial organic chemicals); and biological components (bacteria and chlorophyll-a); and nutrients, trace metals, and organic contaminants in bed material. Reservoir sedimentation was measured by comparing fathometry measurements taken during the study to pre-impoundment tophographic maps.
Ground-water quality atlas of Wisconsin
Kammerer, Phil A.
1981-01-01
This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.
Quality of ground water in the Puget sound region, Washington, 1981
Turney, G.L.
1986-01-01
Groundwater from more than 100 sites in the Puget Sound region, Washington, was sampled and analyzed in 1981 for pH, specific conductance, and concentrations of fecal coliform bacteria, major ions, and dissolved iron, manganese, and nitrate. 20% of the samples were analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were calcium bicarbonate and calcium-magnesium bicarbonate. Some wells in San Juan and Island Counties contained sodium chloride as a result of seawater intrusion. Dissolved solids concentrations were generally < 150 mg/L. Iron concentrations > 300 micrograms/L in 14% of all samples. Manganese concentrations > 50 micrograms/L in 40% of all samples. Trace-metal concentrations were generally < 10 mg/L , except for barium, copper, lead, and zinc. Nitrate concentrations were < 1.0 mg/L in water for over 75% of the sites. Concentrations > 1.0 mg/L in samples from Skagit, Whatcom , and Pierce Counties, were probably due to agricultural activities or septic tanks. Fecal coliform bacteria were detected in isolated instances. EPA drinking water regulations were exceeded only in isolated instances, except for widespread excessive iron and manganese concentrations. The historical data for the region were also evaluated for the same constituents. There are quantitative differences between historical and 1981 data, but they may be due to inconsistencies in data collection and analytical methods. (Author 's abstract)
The Activity of Trace Metals in Aqueous Systems and the Effect of Corrosion Control Inhibitors
1975-10-01
corrosion product on metallic zinc 49 Uncombined slilica as quartz or cristobalite forms by the hydrothermal alteration of solid zilicates or by direct... hydrothermally . The com- position of the solids are dependent on temperature and pressure as well as on the relative concentrations of the dissolved...of the few anhydrous simple silicates formed hydrotherm - ally. The sodium silicates, Na2SiO 3 and BNa 2Si205, are somewhat soluble in high temperature
Donato, Mary M.
2006-01-01
Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow differences in the two regression models, 1999-2001 and 1999-2004. Flow-weighted concentrations (FWCs) calculated from the estimated loads for 1999-2004 were examined to aid interpretation of metal load estimates, which were influenced by large spatial and temporal variations in streamflow. FWCs of total cadmium ranged from 0.04 micrograms per liter (?g/L) at Enaville to 14 ?g/L at Ninemile Creek. Total lead FWCs were lowest at Long Lake (1.3 ?g/L) and highest at Ninemile Creek (120 ?g/L). Elevated total lead FWCs at Harrison confirmed that the high total lead loads at this station were not simply due to higher streamflow. Conversely, relatively low total lead loads combined with high total lead FWCs at Ninemile and Canyon Creeks reflected low streamflow but high concentrations of total lead. Very low total lead FWCs (1.3 to 2.7 ?g/L) at the stations downstream of Coeur d'Alene Lake are a result both of deposition of lead-laden sediments in the lake and dilution by additional streamflow. Total zinc FWCs also demonstrated the effect of streamflow on load calculations, and highlighted source areas for zinc in the basin. Total zinc FWCs at Canyon and Ninemile Creeks, 1,600 ?g/L and 2,200 ?g/L, respectively, were by far the highest in the basin but contributed among the lowest total zinc loads due to their relatively low streamflow. Total zinc FWCs ranged from 38 to 67 ?g/L at stations downstream of Coeur d'Alene Lake, but total zinc load estimates at these stations were relatively high because of high mean streamflow compared to other stations in the basin. Long-term regression models for 1991 to 2003 or 2004 were developed and annual trace-metal loads and FWCs were estimated for Pinehurst, Enaville, Harrison, and Post Falls to better understand the variability of metal loading with time. Long-term load estimates are similar to the results for 1999-2004 in terms of spatial distribution of metal loads throughout the basin. LOADEST results for 1991-2004 indicated that statistically significant downward temporal trends for dissolved and total cadmium, dissolved zinc, and total lead were occurring at Pinehurst, Enaville, Harrison, and Post Falls. Additionally, data for Enaville and Post Falls showed significant downward trends for dissolved lead and total zinc loads; Harrison total zinc loads also decreased with time. The Mann-Kendall trend test results agreed with the LOADEST trend results in most cases, but gave contradictory results for total zinc at Pinehurst and at Post Falls. Long- and short-term load and flow-weighted concentration estimates yielded valuable information about metal storage and transport processes, and demonstrated that water quality data are a great aid in understanding these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua
2013-01-01
Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8more » nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua
Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sedimentmore » porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration« less
Parker, Stephen R.; Gammons, Christopher H.; Poulson, Simon R.; DeGrandpre, Michael D.
2007-01-01
Many rivers undergo diel (24-h) concentration fluctuations of pH, dissolved gases, trace metals, nutrients, and other chemical species. A study conducted in 1994 documented such behavior in the upper Clark Fork River, Montana, a stream whose headwaters have been severely impacted by historic metal mining, milling, and smelting. The purpose of the present investigation was to expand on these earlier findings by conducting simultaneous diel samplings at two sites on the upper Clark Fork River separated by 2.5 h of stream travel time. By monitoring two stations, it was possible to more closely examine the processes that control temporal and spatial gradients in stream chemistry. Another objective was to examine diel changes in the δ13C composition of dissolved inorganic C (DIC) and their relationship to biological activity in the stream. The most important findings of this study include: (1) concentrations of dissolved and particulate heavy metals increased during the night and decreased during the day, in agreement with previous work; (2) these changes were positively correlated to diel changes in pH, dissolved O2, and water temperature; (3) dissolved concentrations increased during the night at the lower site, but showed the opposite behavior at the upper site; and (4) diel changes in δ13C-DIC were noted at both sites, although the timing and magnitudes of the cycles differed. Hypotheses to explain the first two observations include: cyclic co-precipitation of divalent metals with carbonate minerals; pH- and temperature-dependent sorption of metal cations onto the streambed and suspended particles; or photosynthetically enhanced oxidation and removal of Fe and Mn oxides at biofilm surfaces during the daytime. The latter model explains the majority of the field observations, including night-time increases in particulate forms of Fe and other elements.
The occurrence and distribution of trace metals in the Mississippi River and its tributaries
Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.
1990-01-01
Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.
NASA Astrophysics Data System (ADS)
Brown, A. L.; Martin, J. B.; Screaton, E.; Spellman, P.; Gulley, J.
2011-12-01
Springs located adjacent to rivers can serve as recharge points for aquifers when allogenic runoff increases river stage above the hydraulic head of the spring, forcing river water into the spring vent. Depending on relative compositions of the recharged water and groundwater, the recharged river water could be a source of dissolved trace metals to the aquifer, could mobilize solid phases such as metal oxide coatings, or both. Whether metals are mobilized or precipitated should depend on changes in redox and pH conditions as dissolved oxygen and organic carbon react following intrusion of the river water. To assess how river intrusion events affect metal cycling in springs, we monitored a small recharge event in April 2011 into Madison Blue Spring, which discharges to the Withlacoochee River in north-central Florida. Madison Blue Spring is the entrance to a phreatic cave system that includes over 7.8 km of surveyed conduits. During the event, river stage increased over base flow conditions for approximately 25 days by a maximum of 8%. Intrusion of the river water was monitored with conductivity, temperature and depth sensors that were installed within the cave system and adjacent wells. Decreased specific conductivity within the cave system occurred for approximately 20 days, reflecting the length of time that river water was present in the cave system. During this time, grab samples were collected seven times over a period of 34 days for measurements of major ion and trace metal concentrations at the spring vent and at Martz sink, a karst window connected to the conduit system approximately 150 meters from the spring vent. Relative fractions of surface water and groundwater were estimated based on Cl concentrations of the samples, assuming conservative two end-member mixing during the event. This mixing model indicates that maximum river water contribution to the groundwater system was approximately 20%. River water had concentrations of iron, manganese, and other trace metals that were elevated by several orders of magnitude above the concentrations of groundwater at base flow. Maximum iron concentrations in the grab samples coincide with the peak of river water inflow into the cave system, but preliminary results suggest the maximum concentration is about 13% lower than expected based on mixing alone. This depletion below expected concentrations indicates that some of the iron intruded with the river water has been removed, presumably through precipitation of Fe-oxides. In contrast, peak manganese concentrations in the aquifer occur 14 days after the peak of the reversal when the spring is again discharging, suggesting that manganese within the cave system was mobilized. These data suggest that dissolution and precipitation reactions of Fe and Mn are decoupled in the system. This decoupling could result from changing redox conditions as river water intrudes the caves, driving oxidation of dissolved organic matter introduced with the river water.
What's in the mud?: Water-rock-microbe interactions in thermal mudpots and springs
NASA Astrophysics Data System (ADS)
Dahlquist, G. R.; Cox, A. D.
2016-12-01
Limited aspects of mudpot geochemistry, mineralogy, and microbiology have been previously investigated in a total of 58 mudpots in Yellowstone National Park (YNP), Kamchatka, Iceland, Italy, Valles Caldera, New Mexico, Nicaragua, and the Stefanos hydrothermal crater, Greece (Allen and Day, 1935; Raymahashay, 1968; Shevenell, 1987; Bradley, 2005; Prokofeva, 2006; Bortnikova, 2007; Kaasalainen, 2012; Szynkiewicz, 2012; Hynek, 2013; Pol, 2014; Kanellopoulos, 2016). The composition of 35 mudpots was analyzed for aqueous geochemistry of filtrate and solid phase characterization. Here mudpots are defined as thermal features with viscosities between 5 and 100 centipoise at the approximate temperature of the mudpot, which was measured by an Ofite hand cranked viscometer. Analogous samples of nearby hot springs provide comparisons between mudpots and non-viscous thermal features. Aqueous geochemistry from mudpots was obtained by a novel two-step filtration process consisting of gravity prefiltration by a 100 or 50 micron trace metal cleaned polyethylene bag filter followed by syringe filtration with 0.8/0.2 Supor membrane filters. This filtered sample water was preserved and analyzed for water isotopes, major anions and cations, dissolved organic carbon, and trace metals. Mudpot meter readings show dissolved oxygen values ranging from below the detection limit of 0.156 to 22.5uM, pH values ranging from 1.41 to 6.08, and temperatures ranging from 64.8 to 92.5°C. Mudpots and turbid hot springs exhibited an inverse relationship between dissolved rare earth element concentrations and dissolved calcium concentrations (where calcium concentrations > 0.4mM). Mudpots altered existing surficial geology to form clays, primarily kaolinite, montmorillionite, and alunite. This hydrothermal alteration leaches metals, allowing mudpots to concentrate metals. DNA was extracted from mudpot solids and amplified with eukaryotic, bacterial, archaeal, and universal primers, which yielded only bacterial and archaeal amplicons. Water, rock, and microbial communities interact to form diverse mudpots. The range of chemical conditions surveyed in YNP mudpots suggests varying underlying rock units, seasonal water variations, and sources of organic matter drastically affect geobiochemical characteristics.
Mobility of nutrients and trace metals during weathering in the late Archean
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-08-01
The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible dissolved Cr in Archean river water. However, amorphous Cr(OH)3 representing easily-weatherable Cr-bearing minerals dissolved totally during the weathering simulations, resulting in concentrations of Cr(III) in the river water of up to 0.14 μmolar, higher than at the present-day. Late Archean weathering of accessory chalcopyrite produced chalcocite and bornite, and extremely low concentrations of Cu (<10-15 molar) because of the low solubilities of the copper sulfides. However, pulses of either O2,g or HNO3 produced native copper, chalcocite, and bornite, much more hematite, and river water containing levels of dissolved Cu comparable to the present-day. Copper mineralogy predicted by weathering models might provide a new correlation with evidence from studies of copper mineral evolution. Overall, our results implied that the redox state of the atmosphere, the pH of surface waters, and the availability of easily-weatherable minerals are all important factors controlling the dissolution of trace elements in river water. Interpretation of the sedimentary signatures of trace elements should consider not only the redox state but also the pH and availability of accessory minerals.
Cleveland, Danielle; Brumbaugh, William G.; MacDonald, Donald D.
2017-01-01
Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater.
Poulin, Brett A.; Ryan, Joseph N.; Nagy, Kathryn L.; Stubbins, Aron; Dittmar, Thorsten; Orem, William H.; Krabbenhoft, David P.; Aiken, George R.
2017-01-01
Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.
Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon.
Rejomon, G; Kumar, P K Dinesh; Nair, M; Muraleedharan, K R
2010-12-01
Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (μg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009. Copyright © 2009 Wiley Periodicals, Inc.
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia
2005-02-01
We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.
Metal Separations and Recovery in the Mining Industry
NASA Astrophysics Data System (ADS)
Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil E.
2012-11-01
Molecular Recognition Technology (MRT) plays an important role in the hydrometallurgical processing dissolved entities in solutions in the mining industry. The status of this industry with respect to sustainability and environmental issues is presented and discussed. The roles of MRT and ion exchange in metal separation and recovery processes in the mining industry are discussed and evaluated. Examples of MRT separation processes of interest to the mining community are given involving gold, cobalt purification by extraction of trace cadmium, rhenium, and platinum group metals (PGMs). MRT processes are shown to be sustainable, economically viable, energy efficient, and environmentally friendly, and to have a low carbon footprint.
Marchand, C; Fernandez, J-M; Moreton, B
2016-08-15
Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. Copyright © 2016 Elsevier B.V. All rights reserved.
Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto
2015-11-01
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tovar-Sánchez, Antonio; Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell
2004-08-01
Despite the fact that Co is an essential trace element for the growth of marine phytoplankton, there is very limited information on the cycling of this trace metal in the marine environment. We report here the distribution of dissolved (<0.4 μm) and particulate (>0.4 μm) Co in surface waters of the Hudson River Estuary (HRE) and San Francisco Bay (SFB). Samples were collected during several cruises (from 1990 to 1995 in SFB and from 1995 to 1997 in the HRE) along the whole salinity gradient. Dissolved Co concentrations (mean±1 standard deviation) were nearly identical in magnitude in both estuaries despite differences in climate, hydrography, riverine-flow conditions and land-usage (HRE=0.91±0.61 nM; SFB=1.12±0.69 nM). Dissolved Co levels in each system showed non-conservative distributions when plotted as a function of salinity, with increasing concentrations downstream from the riverine end-members. Desorption from suspended particulates and sewage inputs, therefore, seems to be the major processes responsible for the non-conservative behavior of Co observed. Mass balance estimates also indicated that most of the estuarine Co is exported out of both estuaries, indicating that they and other estuarine systems are principal sources of this essential trace element to the open ocean.
Authigenesis of trace metals in energetic tropical shelf environments
Breckel, E.J.; Emerson, S.; Balistrieri, L.S.
2005-01-01
We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be removed from the oxide surfaces. Because a much greater percentage of Mn than Fe becomes remobilized in these shelf sediments, metals closely associated with Mn oxides (like Cd) are more likely to show losses during deposition. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.
2011-12-01
On April 20, 2010, the drilling rig Deepwater Horizon exploded in the Gulf of Mexico, resulting in the release of approximately 5 million barrels of crude oil into the environment. Oil and its associated trace metals have been demonstrated to have a detrimental effect on coastal wetland ecosystems. Wetlands are particularly susceptible to oil contamination because they are composed largely of fine-grained sediments, which have a high capacity to adsorb organic matter and metals. The biogeochemical cycling of trace metals can be strongly influenced by microbial activity, specifically those of sulfate- and iron-reducing bacteria. Microbial activity may be enhanced by an increase in amounts of organic matter such as oil. This research incorporates an assessment of levels of trace metals and associated biogeochemical changes from ten coastal marshes in Alabama, Mississippi, and Louisiana. These sampling sites range in their pollution levels from pristine to highly contaminated. A total digestion analysis of wetland sediments shows higher concentrations of certain trace metals (e.g., Ni, Cu, Pb, Zn, Sr, Co, V, Ba, Hg, As) in heavily-oiled areas compared to less-affected and pristine sites. Due to chemical complexation among organic compounds and metals, crude oils often contain elevated levels (up to hundreds of mg/kg) of trace metals At the heavily-oiled Louisiana sites (e.g., Bay Jimmy, Bayou Dulac, Bay Batiste), elevated levels of metals and total organic carbon have been found in sediments down to depths of 30 cm. Clearly the contamination is not limited to shallow sediments and oil, along with various associated metals, may be invading into deeper (pre-industrial) portions of the marsh sediments. Pore-waters extracted from contaminated sediments are characterized by very high levels of reduced sulfur (up to 80 mg/kg), in contrast to fairly low ferrous iron concentrations (<0.02 mg/kg). The influx of oil into the wetlands might provide the initial substrate and carbon source for stimulating sulfate-reducing bacteria. The high sulfur levels, coupled with the low levels of iron, indicate that iron-reducing bacteria are outcompeted by sulfate reducers in oiled salt marshes. Moreover, pore-water pH values show a general increasing trend (ranging from 6.6 to 8.0) with depth, possibly reflecting the combined effects of bacterial sulfate reduction and saltwater intrusion at depth. Despite high levels of trace metals in bulk sediments, concentrations of trace metals dissolved in pore-waters are generally low. It is very likely that high organic matter content and bacterially-mediated sulfate reduction promote metal retention through the formation of sulfide solids. Framboidal pyrites, as well as other sulfides, have been identified, and are currently undergoing XRD, SEM, and EDAX analyses. Continued research is needed to monitor possible re-mobilization of trace metals in changing redox and biogeochemical conditions.
NASA Astrophysics Data System (ADS)
Carrasco, G. G.; Morton, P. L.; Donat, J. R.
2008-12-01
We determined Zn and Cd total dissolved (0.45 µm-filtered) concentrations, organic complexation and chemical speciation in surface water samples collected along the transect of the 2002 IOC Baseline Contaminant Survey expedition in the Western North Pacific and in vertical profile water samples at nine stations. The goals of this work were (1) to compare and contrast various trace metal sources, including both natural and anthropogenic atmospheric deposition, upwelling, marginal seas and others; (2) to study the organic ligand sources, generally thought to be phytoplankton; and (3) to investigate metal and ligand transport mechanisms, residence times and eventual upwelling in the Eastern North Pacific. Total dissolved (TD) Zn and Cd values were obtained using a combination of differential pulse stripping anodic voltammetry (DPASV), preconcentration with 8-HQ or APDC/DDC and quantification at ICPMS or AA. Organic complexation and chemical speciation of Zn and Cd were determined simultaneously using DPASV at a thin-mercury-film, glassy-carbon-disk-electrode. Surface transect TDZn and TDCd concentrations were low in the Subtropical Gyre (STG), in contrast with high values in the Western Subarctic Gyre (WSG). Zn and Cd were organically complexed in most surface samples: at least one ligand class was detected for Zn and Cd, whose conditional stability constants (log K') averaged 10.2 and 10.5, respectively. These ligands were found in excess of the total dissolved metal throughout the region of study except in the WSG for Cd. Vertical distributions of TDZn and TDCd exhibited nutrient-type profiles for all the STG stations. While constant Zn/Si and Cd/P values were observed throughout the water column in the WSG, some deviations were observed within the STG. In addition, the mode and intermediate water masses of the STG displayed very high concentrations of a Zn-complexing ligand (log K' 10.0) in excess of TDZn. As these water masses moved eastward, we observed that the ligand concentrations decreased. In contrast to the STG, the upper 1000m of the WSG showed elevated concentrations of both metals. Despite elevated surface (0-200m) Zn concentrations (~2nM), a Zn-complexing ligand (log K' 9.8) was found in excess of TDZn; below the photic layer, even higher TDZn concentrations might have saturated the ligand. A ligand for Cd was present in lower-than-TDCd concentrations in the same surface waters; below them, organic complexation of Cd was observed rarely in both STG and WSG regions. By studying the geographic distribution of the total dissolved metals and ligands, along with other dissolved and particulate tracers, possible sources and transport mechanisms can be contrasted and evaluated. Furthermore, the influence of these sources and transport mechanisms on the distribution of Zn and Cd chemical species and, ultimately, the bioavailability of these micronutrient metals can be studied.
Mn solubility tested in seawater
NASA Astrophysics Data System (ADS)
Bell, Peter M.
It has been known for the past 2 or 3 years that the concentration of manganese in the upper several hundred meters of ocean water is unlike that of other trace metals such as copper, zinc, cadmium, and nickel. Trace metals are needed as a sort of ‘vitamin supplement’ by marine plants and animals; the surface supply is biologically scavenged and regenerated at depth. Thus ocean concentrations of trace metals increase with depth.Manganese, by contrast, appears to be concentrated in the photic zone and becomes relatively depleted in the depth interval 50-100 m from the surface. W. Landing and K. Bruland (Ear. Planet. Sci. Lett. 49, 45-56, 1980) described their observations of vertical distributions of manganese in a study of samples from the north Pacific. Recently, W. Sunda, S. A. Huntsman, and A. Harvey, in a study supported by the National Oceanic and Atmospheric Administration have found similar behavior of manganese in samples of coastal seawater and offshore seawater collected off North Carolina (Nature, 20, January 1983). They suggest on the basis of experiments conducted with these samples that the marine biological community itself serves to condition the surface seawater and, with the assistance of photoreduction, cause manganese to dissolve in the otherwise oxygenated zones.
Solubility of aerosol trace elements: Sources and deposition fluxes in the Canary Region
NASA Astrophysics Data System (ADS)
López-García, Patricia; Gelado-Caballero, María Dolores; Collado-Sánchez, Cayetano; Hernández-Brito, José Joaquín
2017-01-01
African dust inputs have important effects on the climate and marine biogeochemistry of the subtropical North Atlantic Ocean. The impact of dust inputs on oceanic carbon uptake and climate is dependent on total dust deposition fluxes as well as the bioavailability of nutrients and metals in the dust. In this work, the solubility of trace metals (Fe, Al, Mn, Co and Cu) and ions (Ca, sulphate, nitrate and phosphate) has been estimated from the analysis of a long-time series of 109 samples collected over a 3-year period in the Canary Islands. Solubility is primarily a function of aerosol origin, with higher solubility values corresponding to aerosols with more anthropogenic influence. Using soluble fractions of trace elements measured in this work, atmospheric deposition fluxes of soluble metals and nutrients have been calculated. Inputs of dissolved nutrients (P, N and Fe) have been estimated for the mixed layer. Considering that P is the limiting factor when ratios of these elements are compared with phytoplankton requirements, an increase of 0.58 nM of P in the mixed layer (∼150 m depth) and in a year can be estimated, which can support an increase of 0.02 μg Chla L-1 y-1. These atmospheric inputs of trace metals and nutrients appear to be significant relative to the concentrations reported in this region, especially during the summer months when the water column is more stratified and deep-water nutrient inputs are reduced.
Significance of floods in metal dynamics and export in a small agricultural catchment
NASA Astrophysics Data System (ADS)
Roussiez, Vincent; Probst, Anne; Probst, Jean-Luc
2013-08-01
High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72-82%) and moderate for dissolved elements (0-20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals - enriched by anthropogenic sources - associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.
NASA Astrophysics Data System (ADS)
Pédrot, M.; Dia, A.; Davranche, M.
2009-04-01
Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed of simple organic compounds little complexing. Consequently, the soil solution was depleted in trace elements such as Th, REE, Y, U, Cr, Cu, Al, Fe, V, Pb and Ti, but also enriched in Ca, Sr, Ba, Mn, Mg, Co, Zn and in a lesser proportion in Rb, Li and Ni. The aromaticity in the fractions <5 kDa was higher than in the fractions <30 kDa or <0.2 µm. Complementary experiments were performed to understand the HS size distribution and aromaticity according to pH and ionic strength .The molecular size and shape of HS is usually explained by two concepts: (i) the macropolymeric structure with heavy organic molecules considered to be flexible linear polyelectrolytes and (ii) the supramolecular structure with an association of a complex mixture of different molecules held together by dispersive weak forces. Ours results supported the HA supramolecular structure at neutral or basic pH conditions. But, at acid pH, a disruption of the humic supramolecular associations involved the release of small organic molecules with a high aromaticity. Moreover, this aromaticity variation can be due also to the presence of fulvic acids in the fractions <5 kDa and a mixture of heavy organic molecules little complexing in the fractions >5 kDa. These latter molecules displayed a low aromaticity decreasing the global aromaticity of the fractions <30 kDa and <0.2 µm. To summarize, these new data demonstrated that the DOC and trace element concentrations of the soil solutions were strongly controlled by pH. This parameter influenced the nature and the size of the DOC as well as, the trace element concentrations in the soil solutions, with a decreasing contribution of HA when pH decreased. This pH dependence is a key issue of concern since local (human pressure) and/or global (climatic) warning result in pH water changes.
Tang, Qiang; Bao, Yuhai; He, Xiubin; Zhou, Huaidong; Cao, Zhijing; Gao, Peng; Zhong, Ronghua; Hu, Yunhua; Zhang, Xinbao
2014-05-01
Impoundment of the Three Gorges Reservoir has created an artificial riparian zone with a vertical height of 30 m and a total area of 349 km(2), which has been subjected to seasonal inundation and exposure due to regular reservoir impoundment and the occurrence of natural floods. The significant alteration of hydrologic regime has caused numerous environmental changes. The present study investigated the magnitude and spatial pattern of sedimentation and metal enrichment in a typical section of the riparian zone, composed of bench terraces with previous agricultural land uses, and explored their links to the changed hydrologic regime. In particular, we measured the total sediment depths and collected surface riparian sediments and down-profile sectioned riparian soils (at 5 cm intervals) for trace metal determination. Our analysis showed that the annual average sedimentation rates varied from 0.5 to 10 cm·yr(-1) and they decreased significantly with increasing elevation. This lateral distribution was principally attributed to seasonal variations in water levels and suspended sediment concentrations. Enriched concentrations of trace metals were found both in the riparian sediments and soils, but they were generally higher in the riparian sediments than in riparian soils and followed a similar lateral decreasing trend. Metal contamination assessment showed that the riparian sediments were slightly contaminated by Ni, Zn, and Pb, moderately contaminated by Cu, and moderately to strongly contaminated by Cd; while riparian soils were slightly contaminated by As, and moderately contaminated by Cd. Trace metal enrichment in the riparian sediments may be attributed to external input of contaminated sediments produced from upstream anthropogenic sources and chemical adsorption from dissolved fractions during pure sediment mobilization and after sink for a prolonged flooding period due to reservoir impoundment. Copyright © 2014 Elsevier B.V. All rights reserved.
Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang
2016-02-15
Suspended particulate matter (SPM) samples were collected along a salinity gradient in the Changjiang Estuary in June 2011. A custom-built water elutriation apparatus was used to separate the suspended sediments into five size fractions. The results indicated that Cr and Pb originated from natural weathering processes, whereas Cu, Zn, and Cd originated from other sources. The distribution of most trace metals in different particle sizes increased with decreasing particle size. The contents of Fe/Mn and organic matter were confirmed to play an important role in increasing the level of heavy metal contents. The Cu, Pb, Zn, and Cd contents varied significantly with increasing salinity in the medium-low salinity region, thus indicating the release of Cu, Pb, Zn, and Cd particles. Thus, the transfer of polluted fine particles into the open sea is probably accompanied by release of pollutants into the dissolved compartment, thereby amplifying the potential harmful effects to marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario
NASA Astrophysics Data System (ADS)
Marcon, V.; Kaszuba, J. P.
2012-12-01
Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a similar manner, increasing in concentration with injection but continually decreasing after about 830 hours until termination of the experiment. SEM images and geochemical models indicate initial dissolution of all rocks and minerals, re-precipitation of Ca-Mg-Fe carbonates and Fe-sulfides, and precipitation of anhydrite in both systems. Calcite dissolves more readily than dolomite in these experiments, but re-precipitates in veins on dolomite. If brines leak from a storage reservoir and mix with a potable aquifer, the experimental results suggest that Ba, Cu, and Zn will not be contaminants of concern. Pb, Fe and As (still under consideration) initially exceed the EPA threshold and may require careful attention in a sequestration scenario. However, experimentally observed trends of decreasing trace metal concentration suggest that these metals could become less of a concern during the life of a carbon repository. Finally, the caprock plays an active role in trace metal mobilization in the system. The caprock provides a source of metals, although subsequent precipitation may remove metals from solution.
NASA Astrophysics Data System (ADS)
Vystavna, Yuliya
2014-05-01
The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage works, run-off) and uncontrolled discharges. Applying mass balance modeling, medicaments were described as relevant socio-economic indicators, which can give a picture of main social aspects of the region.
McKnight, Diane M.; Bencala, Kenneth E.
1990-01-01
Several studies were conducted in three acidic, metal-enriched, mountain streams, and the results are discussed together in this paper to provide a synthesis of watershed and in-stream processes controlling Fe, Al, and DOC (dissolved organic carbon) concentrations. One of the streams, the Snake River, is naturally acidic; the other two, Peru Creek and St. Kevin Gulch, receive acid mine drainage. Analysis of stream water chemistry data for the acidic headwaters of the Snake River shows that some trace metal solutes (Al, Mn, Zn) are correlated with major ions, indicating that watershed processes control their concentrations. Once in the stream, biogeochemical processes can control transport if they occur over time scales comparable to those for hydrologic transport. Examples of the following in-stream reactions are presented: (1) photoreduction and dissolution of hydrous iron oxides in response to an experimental decrease in stream pH, (2) precipitation of Al at three stream confluences, and (3) sorption of dissolved organic material by hydrous iron and aluminum oxides in a stream confluence. The extent of these reactions is evaluated using conservative tracers and a transport model that includes storage in the substream zone.
Mercury and trace metal partitioning and fluxes in suburban Southwest Ohio watersheds.
Naik, Avani P; Hammerschmidt, Chad R
2011-10-15
Many natural watersheds are increasingly affected by changes in land use associated with suburban sprawl and such alterations may influence concentrations, partitioning, and fluxes of toxic trace metals in fluvial ecosystems. We investigated the cycling of mercury (Hg), monomethylmercury, cadmium, copper, lead, nickel, and zinc in three watersheds at the urban fringe of Dayton, Ohio, over a 13-month period. Metal concentrations were related positively to discharge in each stream, with each metal having a high affinity for suspended particles and Hg also having a noticeable association with dissolved organic carbon. Although not observed for the other metals, levels of Hg in river water varied seasonally and among streams. Yields of Hg from two of the catchments were comparable to that predicted for runoff of atmospherically deposited Hg (∼25% of wet atmospheric flux), whereas the third watershed had a significantly greater annual flux associated with greater particle-specific and filtered water Hg concentrations, presumably from a point source. Fluxes of metals other than Hg were similar among each watershed and suggestive of a ubiquitous source, which could be either atmospheric deposition or weathering. Results of this study indicate that, with the exception of Hg being increased in one watershed, processes affecting metal partitioning and loadings are similar among southwest Ohio streams and comparable to other North American rivers that are equally or less impacted by urban development. Relative differences in land use, catchment area, and presence or absence of waste water treatment facilities had little or no detectable effect on most trace metal concentrations and fluxes. This suggests that suburban encroachment on agricultural and undeveloped lands has either similarly or not substantially impacted trace metal cycling in streams at the urban fringe of Dayton and, by extension, other comparable metropolitan areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Selected trace elements in the Sacramento River, California: occurrence and distribution.
Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P
2012-05-01
The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.
Selected trace elements in the Sacramento River, California: Occurrence and distribution
Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.
2012-01-01
The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.
Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors
NASA Astrophysics Data System (ADS)
Brown, Juliana; Burgos, William
2010-05-01
Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments decreased as residence time decreased and as water column depth increased. Control reactors with Co-60 irradiated sediments showed an increase in Fe concentration as a result of dissolution of the sediments; thus, it was concluded that Fe(II) oxidation in the reactors was a result of biological processes and not abiotic oxidation. It was also concluded that Fe(II) oxidation and removal rates were dependent upon geochemical gradients (pH, Fe(II) concentration) rather than depositional facies. Fluorescent in situ hybridization was also performed on field and reactor samples to determine which microbial communities were responsible for the highest Fe(II) oxidation rates.
NASA Astrophysics Data System (ADS)
Spencer, Todd J.; Chen, Yu-Chun; Saha, Rajarshi; Kohl, Paul A.
2011-06-01
Incorporation of copper ions into poly(propylene carbonate) (PPC) films cast from γ-butyrolactone (GBL), trichloroethylene (TCE) or methylene chloride (MeCl) solutions containing a photo-acid generator is shown to stabilize the PPC from thermal decomposition. Copper ions were introduced into the PPC mixtures by bringing the polymer mixture into contact with copper metal. The metal was oxidized and dissolved into the PPC mixture. The dissolved copper interferes with the decomposition mechanism of PPC, raising its decomposition temperature. Thermogravimetric analysis shows that copper ions make PPC more stable by up to 50°C. Spectroscopic analysis indicates that copper ions may stabilize terminal carboxylic acid groups, inhibiting PPC decomposition. The change in thermal stability based on PPC exposure to patterned copper substrates was used to provide a self-aligned patterning method for PPC on copper traces without the need for an additional photopatterning registration step. Thermal decomposition of PPC is then used to create air isolation regions around the copper traces. The spatial resolution of the self-patterning PPC process is limited by the lateral diffusion of the copper ions within the PPC. The concentration profiles of copper within the PPC, patterning resolution, and temperature effects on the PPC decomposition have been studied.
Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S
2016-06-01
The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.
Sorenson, Jason R.; Granato, Gregory E.; Smith, Kirk P.
2018-01-10
Flow-proportional composite water samples were collected in water years 2013 and 2014 by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, from the Blackstone River at Millville, Massachusetts (U.S. Geological Survey station 01111230), about 0.5 mile from the border with Rhode Island. Samples were collected in order to better understand the dynamics of selected nutrient and metal constituents, assist with planning, guide activities to meet water-quality goals, and provide real-time water-quality information to the public. An automated system collected the samples at 14-day intervals to determine total and dissolved nitrogen and phosphorus concentrations, to provide accurate monthly nutrient concentration data, and to calculate monthly load estimates. Concentrations of dissolved trace metals and total aluminum were determined from 4-day composite water samples that were collected twice monthly by the automated system. Results from 4-day composites provide stakeholders with information to evaluate trace metals on the basis of chronic 4-day exposure criteria for aquatic life, and the potential to use the biotic ligand model to evaluate copper concentrations. Nutrient, trace metal, suspended sediment, dissolved organic carbon, and chlorophyll a concentrations were determined from discrete samples collected at the Millville station and from across the stream transect at the upstream railroad bridge, and these concentrations served as a means to evaluate the representativeness of the Millville point location.Analytical results from samples collected with the automated flow-proportional sampling system provided the means to calculate monthly and annual loading data. Total nitrogen and total phosphorus loads in water year (WY) 2013 were about 447,000 and 36,000 kilograms (kg), respectively. In WY 2014, annual loads of total nitrogen and total phosphorus were about 342,000 and 21,000 kg, respectively. Total nitrogen and total phosphorus loads from WYs 2013 and 2014 were about 56 and 65 percent lower than those reported for WYs 2008 and 2009. The higher loads in 2008 and 2009 may be explained by the higher than average flows in WY 2009 and by facility upgrades made by wastewater treatment facilities in the basin.Median loads were determined from composite samples collected with the automated system between October 2012 and October 2014. Median dissolved cadmium and chromium 4-day loads were 0.55 and 0.84 kg, respectively. Dissolved copper and total lead median 4-day loads were 8.02 and 1.42 kg, respectively. The dissolved nickel median 4-day load was 5.45 kg, and the dissolved zinc median 4-day load was 36 kg. Median total aluminum 4-day loads were about 197 kg.Spearman’s rank correlation analyses were used with discrete sample concentrations and continuous records of temperature, specific conductance, turbidity, and chlorophyll a to identify correlations between variables that could be used to develop regression equations for estimating real-time concentrations of constituents. Correlation coefficients were generated for flow, precipitation, antecedent precipitation, physical parameters, and chemical constituents. A 95-percent confidence limit for each value of Spearman’s rho was calculated, and multiple linear regression analysis using ordinary least squares regression techniques was used to develop regression equations for concentrations of total phosphorus, total nitrogen, suspended sediment concentration, total copper, and total aluminum. Although the correlations are based on the limited amount of data collected as part of this study, the potential to monitor water-quality changes in real time may be of value to resource managers and decision makers.
Water resources of Sleeping Bear Dunes National Lakeshore, Michigan
Handy, A.H.; Stark, J.R.
1984-01-01
Sleeping Bear Dunes National Lakeshore in a water-rich area. It borders Lake Michigan and several small streams flow through the park to the lake. Small lakes are numerous within the park and near its boundaries. Ground water is available at most places in the park and wells yield as much as 100 gallons per minute. Water from streams, lakes, wells, and springs is of good quality. Dissolved solids range from 35 to 180 mg/L in lakes, from 145 to 214 mg/L in streams, and from 136 to 468 mg/L in groundwater. Analyses of samples for pesticides and trace metals indicate that no pesticides are present in the water, and that concentrations of trace metals do not exceed recommended drinking-water standards. Surface and ground water are available in sufficient quantity in most areas of the park for the development of water supplies for visitor 's centers, campgrounds, picnic areas, and other park facilities.
Fuhrer, Gregory J.
1984-01-01
Chemical analyses of elutriates, bottom sediment, and water samples for selected metals, nutrients and organic compounds including insecticides, herbicides, and acid/neutral extractables have been made to provide data to determine short-term water-quality conditions associated with dredging operations in rivers and estuaries. Between April and August 1982, data were collected from the Chetco and Rogue River estuaries in southwestern Oregon, and from the mouth of the Columbia River in the northwestern Oregon to Cathlamet Bay, 18.2 miles upstream. In an elutriation test, bottom materials from a potential dredge site are mixed with native water - collected from either a dredge or disposal site - and the liquid portion of the mixture is removed, filtered, and chemically analyzed. Presented in this report are chemical and physical analyses of elutriates, native water, and bottom material for selected metals, ammonia, organic carbon, pesticides, particle size, and gas chromatographic/mass spectrometric semi-quantitative organic scans. Elutriate and bottom-material samples were screened specifically for phenolic compounds, particularly the chlorinated phenols; phenol was the only compound identified. Elutriate-test results showed variability for selected trace-metal concentrations of dissolved chemicals as follows: in micrograms per liter, arsenic ranged from < 1 to 15, cadmium from 1 to 210, copper from < 1 to 13, chromium from < 1 to 5, and nickel from 2 to 18. Results of computations to determine the amount of a constituent associated with bottom material and interstitial water and subsequently released (dissolved) into the elutriate-test native-mixing water are presented for selected trace metals. The highest elutriate-test release was 35 percent for manganese; the second highest, 5 percent for cadmium. All other computed releases were less than or equal to 1 percent. (USGS)
NASA Astrophysics Data System (ADS)
Dasher, D. H.; Lomax, T. J.; Bethe, A.; Jewett, S.; Hoberg, M.
2016-02-01
A regional probabilistic survey of 20 randomly selected stations, where water and sediments were sampled, was conducted over an area of Simpson Lagoon and Gwydyr Bay in the Beaufort Sea adjacent Prudhoe Bay, Alaska, in 2014. Sampling parameters included water column for temperature, salinity, dissolved oxygen, chlorophyll a, nutrients and sediments for macroinvertebrates, chemistry, i.e., trace metals and hydrocarbons, and grain size. The 2014 probabilistic survey design allows for inferences to be made of environmental status, for instance the spatial or aerial distribution of sediment trace metals within the design area sampled. Historically, since the 1970's a number of monitoring studies have been conducted in this estuary area using a targeted rather than regional probabilistic design. Targeted non-random designs were utilized to assess specific points of interest and cannot be used to make inferences to distributions of environmental parameters. Due to differences in the environmental monitoring objectives between probabilistic and targeted designs there has been limited assessment see if benefits exist to combining the two approaches. This study evaluates if a combined approach using the 2014 probabilistic survey sediment trace metal and macroinvertebrate results and historical targeted monitoring data can provide a new perspective on better understanding the environmental status of these estuaries.
NASA Astrophysics Data System (ADS)
Chen, J.; Gaillardet, J.; Louvat, P.; Birck, J.
2009-05-01
Metal contamination is a major issue of human impact on the aqueous environment. River water is particularly susceptible to contamination for both dissolved and particulate loads, displaying a major challenge in understanding the dominant sources and pathways of metals in polluted drainage basins. Recent improvements in mass spectrometry allow isotopic measurements of "non-traditional" metals (Zn, Cu, Fe, etc.), making their isotopes a new potential device to investigate contamination of metals under dissolved and particulate forms in rivers. We focus here on Zn isotope geochemistry in the largely anthropized Seine River (France). A new protocol of two-column separation of Zn from dilute aqueous solution has been developed and proven to be reproducible and satisfactory for accurate measurement of Zn isotopic ratios in water samples by MC-ICP-MS (2σ = 0.04‰). Preliminary results show a total variation of 0.65‰ for δ66Zn in dissolved phases of the Seine basin, and a light isotope enrichment in anthropogenic sources compared to other water samples. The determined conservative behavior of Zn in river water makes its isotopes an effective probe of anthropogenic contamination. The natural and anthropogenic inputs were clearly identified and calculated based on Zn isotope compositions for dissolved loads. Suspended particular matters (SPM) display different Zn isotope compositions compared to dissolved loads, with a total δ66Zn variation of 0.22‰. Zn concentrations and its isotope compositions in SPM reveal inverse relationships as function of the distance from the headwater and the SPM content for geographical and temporal samples, respectively. The δ66Zn data in SPM are interpreted as reflecting the mixture of natural and anthropogenic particles. The correlation between dissolved and particulate δ66Zn shows that adsorption processes are not the dominant process making Zn enrichment in SPM. We report here for the first time systematic δ66Zn data in waters of a whole river basin, showing Zn isotopes a powerful probe to trace contamination sources and biogeochemical processes in hydrologic systems.
The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility
NASA Astrophysics Data System (ADS)
Schuwerack, P.-M. M.; Neal, M.; Neal, C.
2007-01-01
Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.
NASA Astrophysics Data System (ADS)
Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.
2015-12-01
Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Y.M.; DiSante, C.J.; Lion, L.W.
Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predictmore » metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.« less
García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela
2016-12-01
As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.
Composition and source apportionment of dust fall around a natural lake.
Latif, Mohd Talib; Ngah, Sofia Aida; Dominick, Doreena; Razak, Intan Suraya; Guo, Xinxin; Srithawirat, Thunwadee; Mushrifah, Idris
2015-07-01
The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%). Copyright © 2015. Published by Elsevier B.V.
Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment
Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.
2011-01-01
Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.
Analysis of engineered nanomaterials in the environment
NASA Astrophysics Data System (ADS)
Reed, Robert Bruce
With increasing incorporation of engineered nanoparticles (NPs) into consumer products, there is concern that these materials will be released to the environment with unknown ecological effects. Methods for detection and characterization of these materials at environmentally relevant concentrations are crucial to understanding this potential risk. A relatively new method, single particle inductively coupled plasma mass spectrometry (spICPMS), was applied to analysis of metal oxide NPs such as ZnO, CeO2, and TiO2, as well as silver nanowires and carbon nanotubes. A lack of nanoparticulate "pulses" in spICPMS analysis of nano-ZnO led to a study on ZnO NP solubility in a variety of matrices. Dissolution of nano-ZnO was observed in nanopure water (7.18 - 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco's Modified Eagle's Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. These results suggest that solution chemistry exerts a strong influence on ZnO NP dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. Detection and sizing of metal-containing NPs was achieved at concentrations predicted for environmental samples (part-per trillion levels) using spICPMS. Sizing of silver nanowires, titanium dioxide and cerium oxide NPs was done by correlating ICP-MS response (pulses) from NPs entering the plasma to mass of metal in dissolved standards. The ratio of NP pulse detections to the total number of readings during analysis was optimized at 2.5% or less to minimize coincident pulses while still allowing definition of a size distribution. Detection of single walled carbon nanotubes (CNTs) was performed using spICPMS. This study focuses on using trace catalytic metal nanoparticles intercalated in the CNT structure as proxies for the nanotubes. The small, variable, amount of trace metal in each CNT makes separation from instrumental background challenging, and multiple approaches to this problem were attempted. To highlight the potential of spICPMS in environmental studies the release of CNTs from polymer nanocomposites into solution was monitored, showcasing the technique's ability to detect changes in released CNT concentrations as a function of CNT loading.
NASA Astrophysics Data System (ADS)
Evans, G. N.; Tivey, M. K.; Seewald, J.; Rouxel, O. J.; Monteleone, B.
2016-12-01
Analyses of trace elements (Ag, As, Co, Mn, and Zn) hosted in the chalcopyrite linings of `black smoker' chimneys using secondary ion mass spectrometry (SIMS) have been combined with data for trace metal concentrations in corresponding vent fluids to investigate fluid-mineral partitioning of trace elements. Goals of this research include development of proxies for fluid chemistry based on mineral trace element content. The use of SIMS allows for the measurement of trace elements below the detection limits of electron microprobe and at the necessary spatial resolution (20 microns) to examine fine-grained and mixed-mineral samples. Results indicate that the chalcopyrite linings of many `black smoker' chimneys are homogeneous with respect to Ag, Mn, Co, and Zn. Minerals picked from samples exhibiting homogeneity with respect to specific elements were dissolved and analyzed by solution inductively coupled plasma mass spectrometry (ICP-MS) for use as working standards. Results also document a strong correlation between the Ag content of chalcopyrite and the Ag:Cu ratio of the corresponding hydrothermal fluid. This supports systematic partitioning of Ag into chalcopyrite as a substitute for Cu, providing a proxy for fluid Ag concentration. Additionally, the Ag content of chalcopyrite correlates with fluid pH, particularly at pH>3, and thus represents an effective proxy for fluid pH. Application of these proxies to chimney samples provides an opportunity to better identify hydrothermal conditions even when fluids have not been sampled, or not fully analyzed.
NASA Astrophysics Data System (ADS)
Grzymko, T. J.; Marcantonio, F.; McKee, B. A.; Stewart, C. M.
2004-12-01
The world's 25 largest river systems contribute nearly 50% of all freshwater to the global ocean and carry large quantities of dissolved trace metals annually. Trace metal concentrations in these systems show large variances on seasonal time scales. In order to constrain the causes of these variations, consistent sampling on sub-seasonal time intervals is essential. Here, we focus on the Mississippi River, the seventh largest river in the world in terms of freshwater discharge and the third largest in terms of drainage basin area. Biweekly sampling of the lower Mississippi River at New Orleans was performed from January 2003 to August 2004. Uranium concentrations and 234U/238U activity ratios were measured for the dissolved component (<0.2 μ m-fraction) of river water. Over the course of this study, dissolved U activity ratios spanned a range of about 25%, from 1.23 to 1.60. Dissolved U concentrations ranged from 0.28 to 1.06 ppb. The relationship between concentrations, activity ratios, and lower river discharge is complicated, and no clear pattern is observed on both biweekly and seasonal timescales. However, there does seem to be a relationship between the larger seasonal trends in the lower Mississippi River and variations in the discharge of its upstream tributaries. To constrain this relationship, we have sampled water from the Missouri River, the upper Mississippi River above the confluence with the Missouri, the Ohio River, and the Arkansas River in February, April, and August of 2004. For the upstream samples measured thus far, the highest dissolved uranium concentrations are observed for the Missouri River at 2.02 ppb, while the lowest are found in the Ohio River at 0.38 ppb. Dissolved 234U/238U activity ratios are as unique for each tributary and vary from 1.36 in the Ohio River to 1.51 in the Missouri River. A preliminary mass balance analysis reveals that the lower river uranium activity ratios are controlled simply by the quantity and isotope signature of the waters discharged from the upstream tributaries. A discussion of the implications of this work for global ocean budgets of uranium will be presented.
Hochreiter, Joseph J.
1982-01-01
This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed Environmental Protection Agency ' priority pollutants, ' including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds. Trace levels (1-50 micrograms per liter) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, were found in about 60% of the water samples taken. DDT, DDD, DDE, PCB 's and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 micrograms per kilogram at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.
NASA Astrophysics Data System (ADS)
Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.
2018-07-01
Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the coastal waters, and therefore enhance the likelihood of eutrophication in this environment.
NASA Astrophysics Data System (ADS)
Neubauer, E.; Kammer, F. v. d.; Knorr, K.-H.; Pfeiffer, S.; Reichert, M.; Hofmann, T.
2012-04-01
Soils can act as a source of metals and natural organic matter (NOM) in runoff from catchments. Amounts and intensity of rainfall may influence NOM export from catchments. The presence of NOM and other colloids in water may not only enhance metal export, but also significantly change metal speciation. In this study, we investigated the response of metal-colloid associations to short-term discharge variations in the runoff from a small forested catchment (Lehstenbach, Bavaria, Germany). Here, the discharge from the catchment outlet responds within hours to rain events. Near-surface flow in organic-rich layers and peat soils has been identified to increase dissolved organic carbon (DOC) concentrations during stormwater runoff. Flow Field-Flow Fractionation coupled to ICP-MS (FlowFFF-ICPMS) is a high-resolution size separation technique which was used for the detection and quantification of colloids and associated metals. Colloid-associated metals, dissolved metals and metals associated with low-molecular weight organic ligands were also separated by filtration (0.2 µm) and ultrafiltration (1000 g/mol MWCO). During baseflow DOC concentration was <6 mg/L and the pH ranged between 4.6 and 5.0. The DOC concentration exported at a given discharge was subject to strong seasonal variation and depended on the water level before the discharge event. DOC concentrations were up to 8 fold higher during stormwater runoff compared to baseflow. The export of aluminum, arsenic, rare earth elements (REE) and uranium from the catchment increased during stormwater runoff showing a strong correlation with NOM concentrations. This result was supported by FlowFFF-ICPMS data revealing that NOM was the only colloid type available for metal complexation during all hydrological conditions. A clear temporal pattern in the association with the NOM was observed for most of the metals under study: During baseflow, 70-100% (Fe), 90% (Al), 60-100% (REE) and 80-85% (U) were associated with the NOM. During stormwater runoff, the dissolved species concentration and those associated with small organic ligands (<1000 g/mol) increased. The pH drop during the stormwater runoff (pH <4) is most likely the main factor for weaker metal-NOM binding. However, only 25 to 50% of the arsenic was associated with NOM, but no relation to discharge, or pH was exhibited. The results show that fluxes of most trace metals from the catchment are governed by NOM-colloids, even though substantial concentrations are dissolved or associated to low-molecular weight organic substances during stormwater runoff.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Luisa Abelmoschi, Maria; Grotti, Marco; Ianni, Carmela; Magi, Emanuele; Margiotta, Francesca; Massolo, Serena; Saggiomo, Vincenzo
2012-04-01
Surface water (<100 m) samples were collected from the Terra Nova Bay polynya region of the Ross Sea (Antarctica) in January 2006, with the aim of evaluating the individual and combined effects of hydrographic structure, iron and copper concentration and availability on the phytoplankton growth. The measurements were conducted within the framework of the Climatic Long Term Interaction for the Mass-balance in Antarctica (CLIMA) Project of the Programma Nazionale di Ricerca in Antartide activities. Dissolved oxygen, nutrients, phytoplankton pigments and concentration and complexation of dissolved trace metals were determined. Experimental data were elaborated by Principal Component Analysis (PCA). As a result of solar heating and freshwater inputs from melting sea-ice, the water column was strongly stratified with an Upper Mixed Layer 4-16 m deep. The integrated Chl a in the layer 0-100 m ranged from 60 mg m-2 to 235 mg m-2, with a mean value of 138 mg m-2. The pigment analysis showed that diatoms dominated the phytoplankton assemblage. Major nutrients were generally high, with the lowest concentration at the surface and they were never fully depleted. The Si:N drawdown ratio was close to the expected value of 1 for Fe-replete diatoms. We evaluated both the total and the labile dissolved fraction of Fe and Cu. The labile fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The total dissolved Fe ranged from 0.48 to 3.02 nM, while the total dissolved Cu from 3.68 to 6.84 nM. The dissolved labile Fe ranged from below the detection limit (0.15 nM) to 1.22 nM, and the dissolved labile Cu from 0.31 to 1.59 nM, respectively. The labile fractions measured at 20 m were significantly lower than values in 40-100 m samples. As two stations were re-sampled 5 days later, we evaluated the short-term variability of the physical and biogeochemical properties. In particular, in a re-sampled station at 20 m, the total dissolved Fe increased and the total dissolved Cu decreased, while their labile fraction was relatively steady. As a result of the increase in total Fe, the percentage of the labile Fe decreased. An increase of the Si:N, Si:P and Si:FUCO ratios was measured also in the re-sampled station. On this basis, we speculated that a switch from a Fe-replete to a Fe-deplete condition was occurring.
Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris
2005-07-01
The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.
Nimick, D.A.; Harper, D.D.; Farag, A.M.; Cleasby, T.E.; MacConnell, Elizabeth; Skaar, D.
2007-01-01
Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-nai??ve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-??m filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 ??g/L; mean, 428 ??g/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 ??g/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 ??g/L; mean, 399 ??g/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 ??g/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologie conditions tested. ?? 2007 SETAC.
Whitney, P.R.
1981-01-01
Manganese oxide coatings on gravels from 255 sites on tributary streams in the Genesee River Watershed were analyzed for Mn, Fe, Zn, Cd, Co, Ni, Pb, and Cu. The results were compared with data on bedrock geology, surficial geology and land use, using factor analysis and stepwise multiple regression. All metals except Pb show strong positive correlation with Mn. This association results from the well-known tendency of Mn oxide precipitates to adsorb and incorporate dissolved trace metals. Pb may be present in a separate phase on the gravel surfaces; alternatively Pb abundance may be so strongly influenced by environmental factors that the effect of varying abundance of the carrier phase becomes relatively unimportant. When the effects of varying Mn abundance are allowed for, Pb and to a lesser extent Zn and Cu abundances are seen to be related to commercial, industrial and residential land use. In addition to this pollution effect, all the trace metals, Cd and Ni most strongly, tend to be more abundant in oxide coatings from streams in the forested uplands in the southern part of the area. This probably reflects increased geochemical mobility of the metals in the more acid soils and groundwater of the southern region. A strong Zn anomaly is present in streams draining areas underlain by the Lockport Formation. Oxide coatings in these streams contain up to 5% Zn, originating from disseminated sphalerite in the Lockport and secondary Zn concentrations in the overlying muck soils. The same group of metals, plus calcium and loss on ignition, were determined in the silt and clay (minus 230 mesh) fraction of stream sediments from 129 of the same sites, using a hot nitric acid leach. The amounts of manganese in the sediments are low (average 1020 ppm) and manganese oxides are, at most, of relatively minor significance in the trace-metal geochemistry of these sediments. The bulk of the trace metals in sediment appears to be associated with iron oxides, clays and organic matter. ?? 1981.
Nordstrom, D. Kirk
2011-01-01
Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.
McHugh, John B.; Miller, W. Roger
1989-01-01
In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.
Chan, Eric W; Kessler, John D; Shiller, Alan M; Joung, DongJoo; Colombo, Frank
2016-03-15
Previous studies of microbially mediated methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on what factor(s) are limiting in these types of environments. These factors include the availability of methane, O2, trace metals, nutrients, the density of cell population, and the influence that CO2 production may have on pH. To look at this process in its entirety, we developed an automated mesocosm incubation system with a Dissolved Gas Analysis System (DGAS) coupled to a myriad of analytical tools to monitor chemical changes during methane oxidation. Here, we present new high temporal resolution techniques for investigating dissolved methane and carbon dioxide concentrations and stable isotopic dynamics during aqueous mesocosm and pure culture incubations. These techniques enable us to analyze the gases dissolved in solution and are nondestructive to both the liquid media and the analyzed gases enabling the investigation of a mesocosm or pure culture experiment in a completely closed system, if so desired.
Potential cobalt limitation of vitamin B12 synthesis in the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Panzeca, C.; Beck, A. J.; Leblanc, K.; Taylor, G. T.; Hutchins, D. A.; SañUdo-Wilhelmy, S. A.
2008-06-01
While recent studies have confirmed the ecological importance of vitamin B12, it is unclear whether the production of this vitamin could be limited by dissolved Co, a trace metal required for B12 biosynthesis, but found at only subnanomolar concentrations in the open ocean. Herein, we demonstrate that the spatial distribution of dissolved B12 (range: 0.13-5 pmol L-1) in the North Atlantic Ocean follows the abundance of total dissolved Co (range: 15-81 pmol L-1). Similar patterns were observed for bacterial productivity (range: 20-103 pmol 3H leucine L-1 hr-1) and algal biomass (range: 0.4-3.9 μg L-1). In contrast, vitamin B1 concentrations (range: 0.7-30 pM) were decoupled from both Co and B12 concentrations. Cobalt amendment experiments carried out in low-dissolved Co waters (˜20 pmol L-1) enhanced B12 production two-fold over unamended controls. This study provides evidence that B12 synthesis could be limited by the availability of Co in some regions of the world ocean.
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.
2008-01-01
Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Use of induced fluorescence measurements to assess aluminum-organic interactions in acidified lakes
NASA Technical Reports Server (NTRS)
Vodacek, A.; Philpot, W. D.
1985-01-01
The application of laser fluorosensing to the tracing of metals in acid lakes is proposed. The effects of the metals on the dissolving organic carbon (DOC) fluorescence is studied using laboratory mixed water samples and natural water samples from Hamilton and Big Moose Lakes in New York. The operation of the laser fluorosensing system employed in the experiment is described. The DOC fluorescence was quenched by Al, Cu, and Fe, and the relation between pH and the quenching rate is examined. The humic substances fluorescence spectra are analyzed to estimate the concentrations of DOC in water and the relative concentration of Al. The interference problems caused by chemical competition between metal ions and ligands, and changes in the background DOC fluorescence are discussed. It is noted that an airborne laser fluorescence is useful for detecting elevated concentrations of metals.
Assessment of potable water quality including organic, inorganic, and trace metal concentrations.
Nahar, Mst Shamsun; Zhang, Jing
2012-02-01
The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011
Research and Technology Development Activities to Address the DOE-EM Environmental Mercury Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M; Peterson, Mark J
Human activities have altered trace metal distributions globally. This is especially true for the trace metal mercury (Hg), a pervasive global pollutant that can be methylated to form highly toxic methylmercury (MeHg), which bioaccumulates in aquatic food webs, endangering humans and other biota. Currently there are more than 3,000 mercury-contaminated sites identified worldwide and the United Nations Environment Programme has recently highlighted the risk of this contamination to human health [1, 2]. The Oak Ridge Reservation (ORR) represents an example of one of these mercury-contaminated sites. Unlike other contaminants metals, radionuclides, and organic solvents that impact the Department of Energymore » Office of Environmental Management (DOE-EM) cleanup program at the ORR and other DOE sites, mercury has several unique characteristics that make environmental remediation of the Y-12 National Security Complex one of the most formidable challenges ever encountered. These distinctive physicochemical properties for mercury include the following: it is a liquid at ambient temperature and pressure; it is the only metal that biomagnifies; and it is the only contaminant transported as a cation, as a dissolved or gaseous elemental metal (similar to an organic solvent), or as both a cation and a dissolved or gaseous elemental metal under environmental conditions. Because of these complexities, implementing cost effective and sustainable solutions that reduce mercury flux from various primary and secondary contamination sources will require linking basic science understanding and applied research advancements into Oak Ridge Office of Environmental Management s (OREM) cleanup process. Currently, DOE is investing in mercury-related research through a variety of programs, including the Office of Science sponsored Critical Interfaces Science Focus Area, EM headquarters sponsored Applied Field Research Initiative, OREM-sponsored Lower East Fork Poplar Creek (LEFPC) Mercury Technology Development Program, Small Business Innovative Research (SBIR), and EM s Minority Serving Institutions Partnership Program. Collectively, these multi-institutional and multidisciplinary programs are generating new tools, knowledge, and remediation approaches that will enable efficient cleanup of mercury contaminated systems locally and globally. In this talk we will highlight the progress made to date in addressing key knowledge gaps required to solve this watershed-scale conundrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, K.
The principal study site is the landfill of the Niagara Mohawk Power Corp., Dunkirk, N.Y. Concentrations of dissolved metals are determined in the waters from the site and aquatic invertebrates from ponds and streams at the site are being identified and analyzed for trace metals. Elevated levels of Fe and Mn occur in the runoff from the site and in the aquatic invertebrates. The metals Cd, Zn, Cu, and Cr are found at low levels (ppB range) in the waters and in variable, generally low concentrations in the biota. Taxonomic study is focused primarily on the Chironomidae (10 general) andmore » Ephemeroptera (6 genera) with detailed studies in progress. The rate of leaching of metals from coal ash is also being studied in the laboratory by two methods. Sediments from Lake Erie at Dunkirk, N.Y., are being assessed for textural classification and composition. Attempts are being made to distinguish between coal wastes and other sediment in the silt and finer size range. The dump site is being evaluated for groundwater, surface water, and geological structure, so that trace element cycling can be evaluated.« less
NASA Astrophysics Data System (ADS)
Liu, Ruixia; Lead, Jamie R.; Zhang, Hao
2013-05-01
Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.
Jayaprakash, M; Kumar, R Senthil; Giridharan, L; Sujitha, S B; Sarkar, S K; Jonathan, M P
2015-10-01
Accumulation of trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were investigated in water, sediment (n=20) along with six fish of diverse feeding guilds (Sillago sihama, Liza parsia, Etroplus suratensis, Oreochromis mossambicus, Arius parkii and Gerres oyena) from the Ennore creek, northern part of Chennai metropolitan megacity, southeast coast of India. Dissolved trace metals (DTMs) in surface water samples and total trace metals (TTMs) in surface sediments (top 0-10cm) indicate that concentration pattern of metals was higher in the discharge point of the river/channels entering the main creek. The maximum mean values of DTMs exhibited the following decreasing order (expressed in µg/L): Fe (1698)>Mn (24)>Zn (14.50)>Pb (13.89)>Ni (6.73)>Cu (3.53)>Co (3.04)>Cr (2.01) whereas the trend is somewhat different in sediments (µgg(-1)): Fe (4300)>Mn (640)>Cr (383)>Zn (155)>Cu (102)>Ni (35)>Pb (32)>Cd (0.51) are mainly due to the industrial complexes right on the banks of the river/channels. Species-specific heterogeneous patterns of tissue metal loads were apparent and the overall metal enrichment exhibited the following decreasing order (expressed in µgg(-1)): Cu (7.33)>Fe (6.53)>Zn (4.91)>Cr (1.67)>Pb (1.33)>Ni (0.44)>Mn (0.43)>Co (0.36)>Cd (0.11). This indicates that metals are absorbed onto the different organs, which is also endorsed by the calculated values of bioaccumulation factor (BAFs) (avg. muscle 117, gill 126, liver 123, intestine 118) in fishes. The high calculated biota sediment accumulation factor (BSAF) (0.437) for the species Arius parkii is considered to be a potential bioindicator in this region. The enrichment of trace metals is also supported by the association of metals in water, sediments and different body organs (muscle, gill, liver, intestine) of fish samples. Comparative studies with other coastal regions indicate considerable enrichment of DTMs & TTMs in sediments as well as in various organs of fish samples. Holistic spatial, temporal monitoring and comprehensive regional strategies are required to prevent health risks and ensure nutritional safety conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shiller, A. M.
2002-12-01
Methods for obtaining reliable dissolved trace element samples frequently utilize clean labs, portable laminar flow benches, or other equipment not readily transportable to remote locations. In some cases unfiltered samples can be obtained in a remote location and transported back to a lab for filtration. However, this may not always be possible or desirable. Additionally, methods for obtaining information on colloidal composition are likewise frequently too cumbersome for remote locations as well as being time-consuming. For that reason I have examined clean methods for collecting samples filtered through 0.45 and 0.02 micron syringe filters. With this methodology, only small samples are collected (typically 15 mL). However, with the introduction of the latest generation of ICP-MS's and microflow nebulizers, sample requirements for elemental analysis are much lower than just a few years ago. Thus, a determination of a suite of first row transition elements is frequently readily obtainable with samples of less than 1 mL. To examine the "traditional" (<0.45 micron) dissolved phase, 25 mm diameter polypropylene syringe filters and all polyethylene/polypropylene syringes are utilized. Filters are pre-cleaned in the lab using 40 mL of approx. 1 M HCl followed by a clean water rinse. Syringes are pre-cleaned by leaching with hot 1 M HCl followed by a clean water rinse. Sample kits are packed in polyethylene bags for transport to the field. Results are similar to results obtained using 0.4 micron polycarbonate screen filters, though concentrations may differ somewhat depending on the extent of sample pre-rinsing of the filter. Using this method, a multi-year time series of dissolved metals in a remote Rocky Mountain stream has been obtained. To examine the effect of colloidal material on dissolved metal concentrations, 0.02 micron alumina syringe filters have been utilized. Other workers have previously used these filters for examining colloidal Fe distributions in lake and sea water. Filters are pre-cleaned in the lab using clean pH 2 water followed by a clean water rinse and then dried with clean air. Because of the significant pressure that must be placed on the syringe for some minutes to effect a filtration, a simple plastic press and stand has been devised. Polarization artifacts, which can affect this type of ultra-filtration, do not appear to be significant. This may be due to the comparatively large pore size of these filters (equivalent to approx. 40 kDa). These filters, in combination with the 0.45 micron filters, are being used in a multi-year study of trace elements in the Yukon River system.
Mo isotopes as redox indicators for the Southern Tethys during the PETM
NASA Astrophysics Data System (ADS)
Wouters, H.; Dickson, A.; Porcelli, D.; Hesselbo, S. P.; van den Boorn, S.; Gomez, V. G.; Mutterlose, J.
2014-12-01
As several ocean and climate models predict a decline in dissolved ocean oxygen concentrations associated with future global warming [1], recent research is increasingly focusing on past episodes of low ocean oxygen levels. Trace metals are generally enriched in organic-rich sediments deposited under such low oxygen conditions, and the concentration and isotopic signatures of several of these elements (e.g. Mo, U, Cr) may be applied as proxies to reconstruct the processes involved in these redox changes [2,3]. This project investigates the use of the molybdenum isotope system as a proxy for redox changes during an interval of abrupt environmental change spanning the Paleocene/Eocene boundary (the Paleocene/Eocene Thermal Maximum, PETM, ~56 Ma). The PETM is characterized by global warming and environmental and ecological changes including decreased ocean oxygen levels [4]. Study of the PETM can therefore offer us a valuable insight into how marine ecosystems and biogeochemical cycles may respond to future climate changes, and the predicted decrease of oxygen concentrations in seawater. The molybdenum concentrations and isotope compositions of organic-rich sediments spanning the PETM have been obtained from a Jordan oil shale drill core (OS-28). The obtained δ98/95Mo isotopic ratios range between -0.12‰ and 1.59‰ and coincide with significant fluctuations in trace metal abundances. The data together demonstrate that the global environmental changes associated with the PETM were manifest in the Jordanian basin as significant changes in basin hydrography and dissolved oxygen levels.
El Gharmali, A; Rada, A; El Adnani, M; Tahlil, N; El Meray, M; Nejmeddine, A
2004-12-01
The aim of the present study is the evaluation of the effects of the acid drainage of three abandoned mining sites: SB-Othmane, Kettara and Draâ-sfar, on water and sediment quality of the Tensift River and its two temporary tributaries, the Kettara and El-Coudia Oueds. These mining sites located near Marrakesh contain mining residues abandoned for ten to twenty years. They are presently in an agricultural region of the Haouz district. In each site, these uncontrolled mining residues present a high level of metallic sulphide and generate, during rainy periods, leaching products which have physical and chemical characteristics of acid mine drainage (AMD). These percolates display an acidic pH ranging from 2.5 to 5.2, a high electric conductivity, large amounts of sulphate and heavy metals, especially under dissolved form (e.g. Cd: 17.34 mg l(-1); Fe: 1734 mg l(-1); Zn: 3935 mg l(-1)). Except for Pb, the free ionic form is the most abundant metallic form, as showed by calculations using the speciation GEOCHEM program. The analysis of water and sediments of the surrounding superficial aquatic ecosystems shows a modification of water chemical facies and an enrichment in heavy metals, mainly under the solid phase for Fe, Pb, Cu, Co, Cr and Ni, and under dissolved fraction for Cd and Zn. The dissolved fraction of these metals is dominated by the free ionic form, considered as available for organisms. Furthermore, sediments contain important quantities of heavy metals (Pb: 1450 microg g(-1), Zn: 1562 microg g(-1)) with an available fraction which is higher than 40% for the Cd and Zn. The abundance of trace elements (free ionic and available forms) in water and sediment presents a durable risk of their transfer to food chains.
Davide, Vignati; Pardos, Michel; Diserens, Jérôme; Ugazio, Giancarlo; Thomas, Richard; Dominik, Janusz
2003-07-01
Grain-size distribution, major elements, nutrients and trace metals were determined in bed sediments and suspension collected at 10 representative sites along the river Po under normal and high flow conditions. Grain-size distribution and major element composition of suspension highlighted the presence of two distinct particle populations in the upper-middle Po (coarser particles, lower carbonate content) and in the lower Po (finer particles, higher carbonate content). This change partly reflects the geological differences between the two parts of the basin, and also the presence of a hydroelectric power plant at Isola Serafini (Piacenza). With respect to environmental quality issues, bed sediments and suspension provide similar results. A moderate nutrient pollution is found in all but the uppermost parts of the river basin, while the most significant inputs of trace metals appear to originate from the urban areas of Turin and Milan. Calculation of sediment enrichment factors identifies Cd, Cu, Hg and Zn as the most impacted elements by human activities. On the other hand, the high levels of Ni and Cr throughout the river seem to derive mainly from the presence of basic rocks in the upper and middle parts of the basin. Both nutrient and trace metal particulate concentrations substantially decrease under high flow conditions possibly due to "flushing" of contaminated bed sediments and resuspension of coarser material. Under normal flow conditions, water hydrochemistry and concentrations of some elements (As, Ca, Cr, Cu, K, Mg, Mn, Na, Ni, and Pb) in the dissolved phase (<0.45 microm) were also determined. Calculation of trace metals partition coefficients shows that the relative importance of the particulate and water phases varies in response to water hydrochemistry and suspended solid content, but that most elements achieve a conditional equilibrium in the lower stretches of the river Po. These results are the first of this kind reported for the whole river course and highlight the factors and mechanisms controlling the origin, mobility and fate of nutrients and trace metals in the river Po.
Parker, S.R.; Gammons, C.H.; Jones, Clain A.; Nimick, D.A.
2007-01-01
Mining-impacted streams have been shown to undergo diel (24-h) fluctuations in concentrations of major and trace elements. Fisher Creek in south-central Montana, USA receives acid rock drainage (ARD) from natural and mining-related sources. A previous diel field study found substantial changes in dissolved metal concentrations at three sites with differing pH regimes during a 24-h period in August 2002. The current work discusses follow-up field sampling of Fisher Creek as well as field and laboratory experiments that examine in greater detail the underlying processes involved in the observed diel concentration changes. The field experiments employed in-stream chambers that were either transparent or opaque to light, filled with stream water and sediment (cobbles coated with hydrous Fe and Al oxides), and placed in the stream to maintain the same temperature. Three sets of laboratory experiments were performed: (1) equilibration of a Cu(II) and Zn(II) containing solution with Fisher Creek stream sediment at pH 6.9 and different temperatures; (2) titration of Fisher Creek water from pH 3.1 to 7 under four different isothermal conditions; and (3) analysis of the effects of temperature on the interaction of an Fe(II) containing solution with Fisher Creek stream sediment under non-oxidizing conditions. Results of these studies are consistent with a model in which Cu, Fe(II), and to a lesser extent Zn, are adsorbed or co-precipitated with hydrous Fe and Al oxides as the pH of Fisher Creek increases from 5.3 to 7.0. The extent of metal attenuation is strongly temperature-dependent, being more pronounced in warm vs. cold water. Furthermore, the sorption/co-precipitation process is shown to be irreversible; once the Cu, Zn, and Fe(II) are removed from solution in warm water, a decrease in temperature does not release the metals back to the water column. ?? 2006 Springer Science+Business Media B.V.
Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Cleasby, T.E.; McCleskey, R. Blaine
2005-01-01
Three simultaneous 24-h samplings at three sites over a downstream pH gradient were conducted to examine diel fluctuations in heavy metal concentrations in Fisher Creek, a small mountain stream draining abandoned mine lands in Montana. Average pH values at the upstream (F1), middle (F2), and downstream (F3) monitoring stations were 3.31, 5.46, and 6.80, respectively. The downstream increase in pH resulted in precipitation of hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) on the streambed. At F1 and F2, Fe showed strong diel cycles in dissolved concentration and Fe(II)/Fe(III) ratio; these cycles were attributed to daytime photoreduction of Fe(III) to Fe(II), reoxidation of Fe(II) to Fe(III), and temperature-dependent hydrolysis and precipitation of HFO. At the near-neutral downstream station, no evidence of Fe(III) photoreduction was observed, and suspended particles of HFO dominated the total Fe load. HFO precipitation rates between F2 and F3 were highest in the afternoon, due in part to reoxidation of a midday pulse of Fe2+ formed by photoreduction in the upper, acidic portions of the stream. Dissolved concentrations of Fe(II) and Cu decreased tenfold and 2.4-fold, respectively, during the day at F3. These changes were attributed to sorption onto fresh HFO surfaces. Results of surface complexation modeling showed good agreement between observed and predicted Cu concentrations at F3, but only when adsorption enthalpies were added to the thermodynamic database to take into account diel temperature variations. The field and modeling results illustrate that the degree to which trace metals adsorb onto actively forming HFO is strongly temperature dependent. This study is an example of how diel Fe cycles caused by redox and hydrolysis reactions can induce a diel cycle in a trace metal of toxicological importance in downstream waters. Copyright ?? 2005 Elsevier Ltd.
Cleveland, Danielle; Brumbaugh, William G; MacDonald, Donald D
2017-11-01
Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater. Environ Toxicol Chem 2017;36:2906-2915. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Porter, Stephen D.; White, Kevin D.; Clark, J.R.
1995-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system. The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban stormwater runoff, point-source discharges, and waste-management practices. Concentrations of cadmium, chromium, copper, mercury, and silver were elevated in streambed sediments downstream from wastewater-treatment plant discharges. Streambed-sediment concentrations of barium, chromium, and lithium were elevated in streams that receive brine discharges from oil production. Elevated concentrations of antimony, arsenic, molybdenum, selenium, strontium, uranium, and vanadium in streambed sediments of the Kentucky River Basin were generally associated with natural sources. Concentrations of metals and other trace elements in water samples from fixed stations (stations where water-quality samples were collected for 3.5 years) in the Kentucky River Basin were generally related to stream discharge and the concentration of suspended sediment, whereas constituent concentrations in the suspended-sediment matrix were indicative of natural and human sources. Estimated mean annual loads and yields for most metals and other trace elements were associated with the transport of suspended sediment. Land disturbance, such as surface mining and agriculture, contribute to increased transport of sediment in streams, thereby increasing concentrations of metals in water samples during periods of intense or prolonged rainfall and increased stream discharge. Concentrations of many metals and trace elements were reduced during low streamflow. Although total-recoverable and dissolved concentrations of certain metals and trace elements were large in streams affected by land disturbance, concentrations of constituents in the suspendedsediment matrix were commonly large in streams in the Knobs and Eastern Coal Field Regions (because of relations with bedrock geochemistry) and in streams that receive wastewater or oil-well-brine discharges. Concentrations and mean annual load estimates for aluminum, chromium, copper, iron, lead, manganese, and mercury were larger than those obtained from data collected by a State agency, probably because of differences in sample-collection methodology, the range of discharge associated with water-quality samples, and laboratory analytical procedures. However, concentrations, loads, and yields of arsenic, barium, and zinc were similar to those determined from the State data. Significant upward trends in the concentrations of aluminum, iron, magnesium, manganese, and zinc were indicated at one or more fixed stations in the Kentucky River Basin during the past 10 to 15 years. Upward trends for concentrations of aluminum, iron, and manganese were found at sites that receive drainage from coal mines in the upper Kentucky River Basin, whereas upward trends for zinc may be associated with urban sources. Water-quality criteria established by the U.S. Environmental Protection Agency (USEPA) or the State of Kentucky for concentrations of aluminum, beryllium, cadmium, chromium, copper, iron, manganese, nickel, silver, and zinc were exceeded at one or more fixed stations in the Kentucky River Basin. On a qualitative basis, dissolved concentrations of certain metals and trace elements were large during low streamflow at sites where (1) concentrations of these constituents in underlying streambed sediments were large, or (2) dissolvedoxygen concentrations were small. Concentrations of barium, lithium, and strontium were large during low streamflow, which indicates the influence of ground-water baseflows on the quality of surface water during low flow. The effects of point-source discharges, landfills, and other wastemanagement practices are somewhat localized in the Kentucky River Basin and are best indicated by the spatial distribution of metals and other trace elements in streambed sediments and in the suspended-sediment fraction of water samples at stream locations near the source. It was not possible to quantify the contribution of point sources to the total transport of metals and other trace elements at fixed stations because data were not available for wastewater effluents. Quantification of baseline concentrations of metals and other trace elements in streambed sediments provides a basis for the detection of water-quality changes that may result from improvements in wastewater treatment or the implementation of best-management practices for controlling contamination from nonpoint sources in the Kentucky River Basin.
Wentz, Dennis A.
1977-01-01
Eighteen metal-mine drainage sources have been located in that part of Gilpin, Clear Creek, and Park Counties, Colo., lying within the Missouri River basin. At least 13 of these sources are known to contain high acidity and (or) trace-element concentrations or to contribute water to adversely affected streams. From January 1976 to March 1977, drainage from the Argo Tunnel in Idaho Springs--one of the major metal-mine drainage sources in the study area--exhibited variations in discharge from 0.35 to 0.55 cubic feet per second (0.010 to 0.016 cubic meters per second), a relatively constant temperature of 16 degrees Celsius, and variations in specific conductance from 2,680 to 3,410 micromhos per centimeter at 25 degrees Celsius (though a value of about 3,100 micromhos persisted throughout most of the period of record). High, but relatively constant, total concentrations (in micrograms per liter) of arsenic (100 to 180), cadmium (140 to 170), copper (5,000 to 6,000), iron (160,000 to 200,000), lead (less than 100 to 200), manganese (80,000 to 110,000), and zinc (40,000 to 49,000) were measured in the Argo Tunnel drainage from March 1976 to March 1977. Except for lead, the trace elements were mostly dissolved (82 percent or greater) and appear to represent baseline concentrations. Long-term degradation of water flowing from the Argo Tunnel is shown by increases of at least 2.5 to 8.0 times for dissolved solids, dissolved iron, calcium, magnesium, and sulfate since 1906. The acidity has changed from neutral in 1906 to a median pH value of 2.9 in 1976-77. Comparison of current Argo Tunnel data with those collected previously by other investigators indicates that spring chemical flushes containing higher than baseline trace-element concentrations occurred in 1973 and 1974, but not in 1975 or 1976, and probably not in 1972. The spring chemical flushes appear to be associated with increased infiltration from snowmelt in the catchment of the Argo Tunnel. Because of the wide ranges in mine-drainage quality and quantity expected for discharges from abandoned mines in the study area, each situation must be examined individually, and the management alternative chosen for mine-drainage abatement must be tailored to solve the particular mining and hydrologic problems at a given site.
Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica
NASA Astrophysics Data System (ADS)
De Carlo, Eric Heinen; Green, William J.
2002-04-01
We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ∼55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ∼50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration gradients. Furthermore, because the ultraoligotrophic nature of the lake limits the potential for organic phases to act as metal carriers, metal oxide coatings and sulfide phases appear to largely govern the distribution of trace elements. We discuss REE cycling in relation to the roles of redox reactions and competitive scavenging onto Mn- and Fe-oxides coatings on clay sized particles in the upper oxic water column and their release by reductive dissolution near the anoxic/oxic interface.
Alert to users of calcium supplements as antihypertensive agents due to trace metal contaminants.
Boulos, F M; von Smolinski, A
1988-07-01
Although there are controversies in the role of calcium as an antihypertensive agent, the use of "health food" supplements, such as dolomite and bone meal, is on the rise especially among the older population. One brand of commercial dolomite tablets were investigated for metallic contents such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), sclemium (Se), and zinc (Zn). Ten randomly selected tablets were weighted, dried, pulverized and low-temperature plasma ashed. An ash aliquot of each tablet was dissolved in 35% Ultrex nitric acid, and after dilution analyzed using a Perkin-Elmer Model 5000 atomic absorption spectrophotometer equipped with an HGA-500 graphite furnace, As-1 autosampler, and PRS-10 printer sequencer. The results (presented as mean wt/g of powder +/- 95% confidence limits) are: Al 900 +/- 300 micrograms/g; As 1.3 +/- 0.3 micrograms/g; Cd 0.16 +/- 0.04 micrograms/g; Cr 5.9 +/- 1.4 micrograms/g; Cu 3.0 +/- 0.6 micrograms/g; Pb 1.9 +/- 0.5 micrograms/g; Mn 66 +/- 7.0 micrograms/g; Se 1.6 +/- 0.4 micrograms/g; and Zn 147 +/- 88 micrograms/g. These trace metals could pose health hazards to the public such as lead poisoning, dementia, and hypertension due to cadmium. Also, zinc can potentiate cadmium-hypertensive effects. The need exists to initiate some regulations to limit maximal content of trace metals in "health food" supplements to protect high-risk groups and that sector of the population who use megadoses of such products.
Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk
2010-01-01
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007
Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.
2011-01-01
The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within the ERW. Exceedances of State water-quality standards (nitrite, nitrate, and un-ionized ammonia) and levels higher than U.S. Environmental Protection Agency recommendations (total phosphorus) occur in several areas within the ERW. The majority of the exceedances are from comparisons to the U.S. Environmental Protection Agency total phosphorus recommendations. A positive correlation was observed between suspended sediment and total phosphorus. An upward trend in total dissolved solids in Gore Creek may be the result of increases in chloride salts. Highly significant trends were detected in sodium, potassium, and chloride with a significant upward trend in magnesium and a weakly significant upward trend in calcium. A quantitative analysis of the relative abundance of calcium, magnesium, sodium, and potassium to the available anions suggests that chloride salts likely are the source for the detected upward trends because chloride is the only commonly occurring anion with a trend in Gore Greek. A potential source for the observed chloride salts may be the chemical anti-icing and deicing products used during winter road maintenance in municipal areas and on Interstate-70. A downward trend in dissolved solids in the Eagle River between Gypsum and Avon may be contributing to the detected trend on the Eagle River at Gypsum. Significant downward trends were detected in specific ions such as calcium, magnesium, sulfate, and silica. Measures of total dissolved solids as well as comparisons to specific ions show that in water-quality samples within the ERW concentrations generally are lower in the headwaters, with increases downstream from Wolcott. Differences in concentrations likely result from increased abundance of salt-bearing geologic units downstream from Avon. Few sites had measured concentrations that exceeded the State standards for chloride.
NASA Astrophysics Data System (ADS)
Lev, S.; Casey, R.; Ownby, D.; Snodgrass, J.
2009-12-01
The impact of human activities on surface water, groundwater and soil is nowhere more apparent than in urban and suburban systems. Dramatic changes to watersheds in urbanizing areas have led to changes in hydrology and an associated increase in the flux of sediment and contaminants to surface and ground waters. In an effort to mediate these impacts, Best Management Practices (BMP) have been established in order to increase infiltration of runoff and trap sediment and particulates derived from impervious surfaces before they enter surface waters. Perhaps the most ubiquitous BMP are storm water retention ponds. While these structures are designed to reduce runoff and particulate loading to urban streams, their addition to the urban landscape has created a large number of new wetland habitats. In the Red Run watershed, just outside of Baltimore, Maryland, 186 discrete natural or man-made wetland areas have been identified. Of these 186 wetland areas, 165 were created to manage stormwater and most were specifically designed as stormwater management ponds (i.e., human-created basins or depressions that hold runoff for some period during the annual hydrological year). Despite their abundance in the landscape, very little is known about how these systems impact the flux of stormwater pollutants or affect the organisms using these ponds as habitat. Results from a series of related projects in the Red Run watershed are presented here in an effort to summarize the range of issues associated with stormwater management ponds. The Red Run watershed is situated inside the Urban-Rural Demarcation Line (URDL) around Baltimore City and has been identified as a smart growth corridor by Baltimore County. This region is one of two areas in Baltimore County where new development is focused. In a series of investigations of soils, surface and ground waters, and amphibian and earthworm use of 68 randomly selected stormwater retention ponds from the Red Run watershed, a range of hydrologic, ecologic, and geochemical conditions have been identified. Results from these investigations suggest that pollutant conditions, specifically trace metals and chloride, limit the use of these ponds by amphibians and effect the distribution of earthworms within ponds. The soils in ponds associated with high use roadways contain elevated levels of PAHs, Zn and Cu and the groundwater beneath these same ponds tends to have elevated chloride levels year round. Pond and associated flood plain soils in these systems have been altered and exhibit elevated Na+ or Ca2+ concentrations suggesting years of interaction with road salt contaminated discharge. These Na+ and Ca2+ form soils affect the retention of dissolved trace metals with Ca-enriched soils potentially increasing the dissolved metal concentrations of surface and pore waters and enabling the transport of roadway derived metals to surface waters and Na-enriched soils scavenging trace metals from incoming runoff. The increase in dissolved metals may also increase the toxicity to amphibians and other organisms inhabiting the storm water ponds and ultimately, streams fed by ground water recharge from ponds. Our results to date suggest both the intended and unintended function of storm water ponds in urban landscapes are complicated and deserving of more attention.
Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.
Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J
2014-11-18
Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since metal may be transferred from phytoplankton through food webs vis à vis grazing by zooplankton or other pathways.
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.
2017-11-01
In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.
Bibby, Rebecca L; Webster-Brown, Jenny G
2005-05-01
Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO(4) concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K(D)=[Me(SPM)]/[Me(DISS)]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban SPM did not appear to affect the partitioning of Zn and Cu; however, Pb in the Kaipara and Waikato Rivers was found to be more associated with the dissolved phase. This is likely to reflect higher particulate Pb inputs to urban systems.
Bu, Hongmei; Wang, Weibo; Song, Xianfang; Zhang, Quanfa
2015-09-01
Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.
Wang, Guiqin; Wu, Yangsiqian; Lin, Yangting
2016-02-28
Nearly 99% of the total content of extraterrestrial metals is composed of Fe and Ni, but with greatly variable trace element contents. The accuracy obtained in the inductively coupled plasma mass spectrometry (ICP-MS) analysis of solutions of these samples can be significantly influenced by matrix contents, polyatomic ion interference, and the concentrations of external standard solutions. An ICP-MS instrument (X Series 2) was used to determine 30 standard solutions with different concentrations of trace elements, and different matrix contents. Based on these measurements, the matrix effects were determined. Three iron meteorites were dissolved separately in aqua regia and HNO3. Deviations due to variation of matrix contents in the external standard solutions were evaluated and the analysis results of the two digestion methods for iron meteorites were assessed. Our results show obvious deviations due to unmatched matrix contents in the external standard solutions. Furthermore, discrepancy in the measurement of some elements was found between the sample solutions prepared with aqua regia and HNO3, due to loss of chloride during sample preparation and/or incomplete digestion of highly siderophile elements in iron meteorites. An accurate ICP-MS analysis method for extraterrestrial metal samples has been established using external standard solutions with matched matrix contents and digesting the samples with HNO3 and aqua regia. Using the data from this work, the Mundrabilla iron meteorite previously classified as IAB-ung is reclassified as IAB-MG. Copyright © 2016 John Wiley & Sons, Ltd.
Kuhn, M. Keshia; Neubauer, Elisabeth; Hofmann, Thilo; von der Kammer, Frank; Aiken, George R.; Maurice, Patricia A.
2015-01-01
Concentrations and distributions of metals in Suwannee River (SR) raw filtered surface water (RFSW) and dissolved organic matter (DOM) processed by reverse osmosis (RO), XAD-8 resin (for humic and fulvic acids [FA]), and XAD-4 resin (for “transphilic” acids) were analyzed by asymmetrical flow field-flow fractionation (AsFlFFF). SR samples were compared with DOM samples from Nelson's Creek (NLC), a wetland-draining stream in northern Michigan; previous International Humic Substances Society (IHSS) FA and RO samples from the SR; and an XAD-8 sample from Lake Fryxell (LF), Antarctica. Despite application of cation exchange during sample processing, all XAD and RO samples contained substantial metal concentrations. AsFlFFF fractograms allowed metal distributions to be characterized as a function of DOM component molecular weight (MW). In SR RFSW, Fe, Al, and Cu were primarily associated with intermediate to higher than average MW DOM components. SR RO, XAD-8, and XAD-4 samples from May 2012 showed similar MW trends for Fe and Al but Cu tended to associate more with lower MW DOM. LF DOM had abundant Cu and Zn, perhaps due to amine groups that should be present due to its primarily algal origins. None of the fractograms showed obvious evidence for mineral nanoparticles, although some very small mineral nanoparticles might have been present at trace concentrations. This research suggests that AsFlFFF is important for understanding how metals are distributed in different DOM samples (including IHSS samples), which may be key to metal reactivity and bioavailability.
Nasr, Samir M; Okbah, Mohamed A; El Haddad, Huda S; Soliman, Naglaa F
2015-07-01
A five-step sequential extraction technique, following Tessier's protocol, has been applied to determine the chemical association of Cd, Cu, Fe, Pb, and Zn with major sedimentary phases (exchangeable, carbonate, manganese and iron oxides, organic and residual fraction) in surface sediments from 14 stations off the Libyan Mediterranean coast. This study is a first approach of chemical fractionation of these metals in one of the most economically important area of the Libyan coastline in Mediterranean Sea. The total metal content was also determined. The total concentration of metals ranged from 5-10.5 mg/kg for Cd, 9.1-22.7 mg/kg for Cu, 141.8-1056.8 mg/kg for Fe, 18.9-56.9 mg/kg for Pb, and 11.6-30.5 mg/kg for Zn. The results of the partitioning study showed that the residual form was the dominant fraction of the selected metals among most of the studied locations. The degree of surface sediment contamination was computed for risk assessment code (RAC), individual contamination factor (ICF), and Global contamination factor (GCF). Risk assessment code classification showed that the relative amounts of easily dissolved phase of trace metals in the sediments are in the order of Pb>Zn>Cd>Cu>Fe. The results of ICF and GCF showed that Sirt and Abu Kammashand had higher GCF than other sites indicating higher environmental risk. In terms of ICF value, a decrease order in environmental risk by trace metals was Pb>Zn>Cu>Cd>Fe. Therefore, Pb had highest risk to water body.
Opsahl, Stephen P.
2012-01-01
During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.
NASA Astrophysics Data System (ADS)
Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.
2016-12-01
Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.
Uranium chloride extraction of transuranium elements from LWR fuel
Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.
1992-08-25
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.
Uranium chloride extraction of transuranium elements from LWR fuel
Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.
Lares, M L; Marinone, S G; Rivera-Duarte, I; Beck, A; Sañudo-Wilhelmy, S
2009-05-01
Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO(4), NO(3), and H(4)SiO(4)) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay's circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO(3), Zn, and Cu), and upwelling and mixing (PO(4), H(4)SiO(4), Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.
Baalousha, Mohamed; Stoll, Serge; Motelica-Heino, Mikaël; Guigues, Nathalie; Braibant, Gilles; Huneau, Frédéric; Le Coustumer, Philippe
2018-02-10
This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10-450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions. Graphical abstract Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.
NASA Astrophysics Data System (ADS)
McKnight, D. M.; Rue, G.
2017-12-01
Recent research in Snake River Watershed, located near the historic boomtown of Montezuma and adjacent the Continental Divide in the Colorado Rocky Mountains, has revealed the distinctive occurrence of rare earth elements (REE) at high concentrations. Here the weathering of the mineralized lithology naturally generates acid rock drainage (ARD) in addition to drainage recieved from abandoned mine adits throughout the area, results in aqueous REE concentrations three orders of magnitude higher than in most major rivers. The dominant mechanism responsible for this enrichment; their dissolution from secondary and accessory mineral stocks, abundant in REEs, promoted by the low pH waters generated from geochemical weathering of disseminated sulfide minerals. While REEs behave conservatively in acidic conditions, as well as in the presence of stabilizing ligands such as sulfate, downstream circumneutral inputs from pristine streams and a rising pH are resulting in observed fractional losses of heavy rare earth elements as well as partitioning towards colloidal and solid phases. These finding in combination with the established role of dissolved organic matter (DOM) in binding with both trace metals and REEs, suggest that competitive interactions, complexation, and scavenging are likely contributing to these proportional losses. However, outstanding questions yet remain regarding the effects of an increasing flux of trace metals as well as REEs from the Snake River Watershed into Dillon Reservoir, a major drinking water supply for the City of Denver, in part due to hydroclimatological drivers that are enhancing geochemical weathering and reducing groundwater recharge in alpine areas across the Colorado Rockies. Based on these findings also we seek to broaden this body of work to further investigate the behavior of rare earth elements (REE) in other aquatic environment as well the influence of trace metals, DOM, and pH in altering their reactivity and subsequent watershed transport.
A new strain for recovering precious metals from waste printed circuit boards.
Ruan, Jujun; Zhu, Xingjiong; Qian, Yiming; Hu, Jian
2014-05-01
A new strain, Pseudomonas Chlororaphis (PC), was found for dissolving gold, silver, and copper from the metallic particles of crushed waste printed circuit boards (PCBs). The optimized conditions that greatly improved the ability of producing CN- (for dissolving metals) were obtained. Dissolving experiments of pure gold, silver, and copper showed that the metals could be changed into Au+, Ag+, and Cu2+. PC cells and their secreta would adsorb metallic ions. Meanwhile, metallic ions destroyed the growth of PC. Dissolving experiments of metallic particles from crushed waste PCBs were performed by PC. The results indicated that 8.2% of the gold, 12.1% silver, and 52.3% copper were dissolved into solution. This paper contributed significance information to recovering precious metals from waste PCBs by bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C
2014-03-01
Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Conway, Tim M.; John, Seth G.
2015-09-01
Dissolved stable isotope ratios of the transition metals provide useful information, both for understanding the cycling of these bioactive trace elements through the oceans, and tracing their marine sources and sinks. Here, we present seawater dissolved Fe, Zn and Cd concentration and stable isotope ratio (δ56Fe, δ66Zn, and δ114Cd) profiles from two stations in the Pacific Ocean, the SAFe Station (30°N 140°W) in the subtropical North East Pacific from the GEOTRACES IC2 cruise, and the marginal San Pedro Basin (33.8°N 118.4°W) within the South California Bight. These data represent, to our knowledge, the first full-water column profiles for δ66Zn and δ56Fe from the open-ocean North Pacific, and the first observations of dissolved δ66Zn and δ114Cd in a low-oxygen marginal basin. At the SAFe station, δ56Fe is isotopically lighter throughout the water column (-0.6 to +0.1‰, relative to IRRM-014) compared to the North Atlantic, suggesting significant differences in Fe sources or Fe cycling between these two ocean basins. A broad minimum in δ56Fe associated with the North Pacific oxygen minimum zone (OMZ; <75 μmol kg-1 dissolved oxygen; ∼550-2000 m depth) is consistent with reductive sediments along the California margin being an important source of dissolved Fe to the North Pacific. Other processes which may influence δ56Fe at SAFe include biological cycling in the upper ocean, and input of Fe from hydrothermal vents and oxic sediments below the OMZ. Zn and Cd concentration profiles at both stations broadly match the distribution of the macronutrients silicate and phosphate, respectively. At SAFe, δ114Cd increases towards the surface, reflecting the biological preference for assimilation of lighter Cd isotopes, while negative Cd∗ (-0.12) associated with low oxygen waters supports the recently proposed hypothesis of water-column CdS precipitation. In contrast to δ114Cd, δ66Zn at SAFe decreases towards the surface ocean, perhaps due to scavenging of isotopically heavy Zn, while at intermediate depths δ66Zn provides further evidence of a mid-depth dissolved δ66Zn maximum. We suggest this may be a global feature of Zn biogeochemistry related to either regeneration of heavy adsorbed Zn, or to ZnS formation and removal within the water column. Data from San Pedro shows that anoxic sediments can be a source of isotopically light Zn to the water column (δ66Zn of ∼-0.3‰ relative to JMC Lyon), though evidence of this signal is not observed being transported to SAFe. Within North Pacific Intermediate Water at SAFe (NPIW; ∼500 m) elevated Cd∗ and Zn∗ and a focused minimum in δ56Fe suggest possible transport of Fe, Zn, and Cd over thousands of km from subpolar waters, meaning that NPIW may have a strong influence on the subsurface distribution of trace metals throughout the North Pacific.
Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments
2015-12-23
force on the sediment. Over the course of the experiment, dissolved and particulate metal concentrations, dissolved oxygen , temperature , turbidity, pH...dissolved oxygen , and temperature . A 16-hour multiple resuspension was also implemented in the SeFEC, intended to replicate intermittent ship traffic...was sampled at the end of hours 4, 8, 12, and 16. Samples were analyzed for: dissolved metals, pH, dissolved oxygen , and temperature (three
NASA Astrophysics Data System (ADS)
Rinna, J.; Warning, B.; Meyers, P. A.; Brumsack, H.-J.; Rullkötter, J.
2002-06-01
Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).
Impact fracture experiments simulating interstellar grain-grain collisions
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas
1990-01-01
Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture, plus metal vapor. This points: (1) at complex reaction mechanisms between dissolved H2O, CO/CO2 (and N2) components within the mineral structure or during fracture, and (2) at the possibility that similar emission processes occur following grain-grain collisions in interstellar dust clouds.
Fate of colloids during estuarine mixing in the Arctic
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Causserand, C.; Lanzanova, A.; Zouiten, C.
2014-02-01
The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river has a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed for three pore size cutoffs (1, 10, and 50 kDa) using an in situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease in concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~ 2-5‰, Ba, Mn) or intermediate (~ 10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the largest decrease occurring at low (< 5‰) salinities. Overall, the observed decrease in the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa-0.22 μm portion by the LMW< 1 kDa fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable) fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW< 1 kDa ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate versus dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either conservative (OC and related elements such as divalent metals) or non-conservative, coagulation-controlled (Fe, Al, and insoluble TE associated with organo-ferric colloids) behavior. The climate warming at high latitudes is likely to intensify the production of LMW< 1 kDa organic ligands and the associated TE; therefore, the delivery of potentially bioavailable trace metal micronutrients from the land to the ocean may increase.
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Casseraund, C.; Lanzanova, A.; Zouiten, C.
2013-10-01
The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river is a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed using three pore size cutoff (1, 10, and 50 kDa) using an in-situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease of concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~2-5‰, Ba, Mn) or intermediate (~10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the largest decrease occurring at low (< 5‰) salinities. Overall, the observed decrease of the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa-0.22 μm portion by the LMW< 1 kDa fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable) fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW< 1 kDa ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate vs. dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either a conservative (OC and related elements such as divalent metals) or non-conservative, coagulation-controlled (Fe, Al, and insoluble TE associated with organo-ferric colloids) behavior. The climate warming in high latitudes is likely to intensify the production of LMW< 1 kDa organic ligands and the associated TE; therefore, the delivery of potentially bioavailable trace metal micronutrients from the land to the ocean may increase.
Zhang, Hua; Jiang, Yinghui; Wang, Min; Wang, Peng; Shi, Guangxun; Ding, Mingjun
2017-01-01
Surface water samples were collected from 20 sampling sites throughout the Ganjiang River during pre-monsoon, monsoon, and post-monsoon seasons, and the concentrations of dissolved trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS) for the spatial and seasonal variations, risk assessment, source identification, and categorization for risk area. The result demonstrated that concentrations of the elements exhibited significant seasonality. The high total element concentrations were detected at sites close to the intensive mining and urban activities. The concentrations of the elements were under the permissible limits as prescribed by related standards with a few exceptions. The most of heavy metal pollution index (HPI) values were lower than the critical index limit, indicating the basically clean water used as habitat for aquatic life. As was identified as the priority pollutant of non-carcinogenic and carcinogenic concerns, and the inhabitants ingesting the surface water at particular site might be subjected to the integrated health risks for exposure to the mixed trace elements. Multivariate statistical analyses confirmed that Zn, As, Cd, and Tl were derived from mining and urban activities; V, Cd, and Pb exhibited mixed origin; and Co, Ni, and Cu mainly resulted from natural processes. Three categorized risk areas corresponded to high, moderate, and low risks, respectively. As a whole, the upstream of the Ganjiang River was identified as the high-risk area relatively.
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
NASA Astrophysics Data System (ADS)
Poigner, H.; Monien, D.; Monien, P.; Kriews, M.; Brumsack, H.-J.; Wilhelms-Dick, D.; Abele, D.
2012-04-01
Trace metals in bivalve carbonate shells are frequently used as environmental or paleoclimate proxies. Carbonate mineralogy and animals' physiology affect the incorporation of elements from different environmental sources into bivalve shells. Generally, metals from particulate matter are assimilated via the digestive tract; whereas dissolved metals are absorbed via gills. Therefore, measurements of element concentrations deposited in the shell matrix do not necessarily allow inference with respect to the assimilation pathways. In this study, we used element ratios between digestive gland (DG) and gills (cDG/cGill) of the Circum-Antarctic clam Laternula elliptica to identify predominating assimilation pathways and potential sources of bio-available metals. This normalization between tissues of each individual eliminates the effects of individual age and physiological condition (e.g. accumulation over lifetime, metabolic activity) on metal assimilation. These effects also minimize the reproducibility, when absolute element concentrations are compared between individuals from different locations. Therefore, an additional normalization is required. We favored "ellipsoid shell volume" over shell length or soft tissue weight as more conservative approximation for intra- and intersite comparisons. Metal concentrations in DG, gills, and hemolymph of the bivalve L. elliptica, collected at Potter Cove (King George Island, Antarctic Peninsula), were analyzed by means of inductively coupled plasma - optical emission spectroscopy and mass spectrometry after total acid digestion. The element ratios (cDG/cGill) indicate a predominant assimilation of Al, Ca, Fe, K, Mn, and Mg from the dissolved phase. These high Al and Fe concentrations in gill tissues and hemolymph are in contrast to the low solubility of Al and Fe in seawater. But high dissolved Fe concentrations in pore waters (up to 1400 μg L-1 due to suboxic sediment conditions) and glacial melt waters enriched in dissolved Al (of approx. 54 μg L-1 due to weathering processes) with respect to seawater concentrations (5.4-13.5 μg L-1) are likely bio-available sources at Potter Cove. In contrast, Cd, Cu, and Sr are mainly assimilated via the digestion of particulates. Since most studies on metal incorporation into bivalve shells have provided mathematical correlations to environmental data, this proxy-based approach provides a more causal relationship between sources and assimilation pathways. It improves the interpretation of element variations (if independent from shell mineralogy) in bivalve shells, especially, where a full characterization of the biogeochemical environment of the bivalves is lacking.
Hopkins, D.M.
1991-01-01
Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a large suite of metals is simultaneously determined with acceptable analytical accuracy and precision. The proposed analytical technique can provide direct evidence of mineralization and is useful in the exploration for unknown ore deposits. ?? 1991.
Swarzenski, Peter W.; Storlazzi, Curt; M.L. Dalier,; C.R. Glenn,; C.G. Smith,
2015-01-01
Based on the submarine groundwater discharge tracer 222Rn, coastal groundwater discharge rates ranged from about 22–50 cm per day at Kahekili, a site in the Ka’anapali region north of Lahaina in west Maui, while at Black Point in Maunalua Bay along southern O’ahu, coastal groundwater discharge rates ranged up to 700 cm per day, although the mean discharge rate at this site was 60 cm per day. The water chemistry of the discharging groundwater can be dramatically different than ambient seawater at both coastal sites. For example, at Kahekili the average concentrations of dissolved inorganic nitrogen (DIN), dissolved silicate (DSi) and total dissolved phosphorus (TDP) were roughly 188-, 36-, and 106-times higher in the discharging groundwater relative to ambient seawater, respectively. Such data extend our basic understanding of the physical controls on coastal groundwater discharge and provide an estimate of the magnitude and physical forcings of submarine groundwater discharge and associated trace metal and nutrient loads conveyed by this submarine route.
Water-quality data for the Russian River Basin, Mendocino and Sonoma Counties, California, 2005-2010
Anders, Robert; Davidek, Karl; Stoeckel, Donald M.
2011-01-01
Field measurements included discharge, barometric pressure, dissolved oxygen, pH, specific conductance, temperature, and turbidity. All samples were analyzed for nutrients, major ions, trace metals, total and dissolved organic carbon, organic wastewater compounds, standard bacterial indicators, and the stable isotopes of hydrogen and oxygen. Standard bacterial indicators included total coliform, Escherichia coli, enterococci, and Clostridium perfringens for the period 2005 through 2007, and total and fecal coliform, and enterococci for 2010. In addition, enrichment of enterococci was performed on all surface-water samples collected during summer 2006, for detection of the human-associated enterococcal surface protein in Enterococcus faecium to assess the presence of sewage effluent in the Russian River. Other analyses included organic wastewater compounds of bed sediment samples collected from four Russian River sites during 2005; carbon-13 isotopic values of the dissolved inorganic carbon for surface-water and groundwater samples collected during 2006; human-use pharmaceuticals on Russian River samples collected during 2007 and 2010; and the radiogenic isotopes tritium and carbon-14 for groundwater samples collected during 2008.
Quality of Tourist Beaches in Huatulco, SW of Mexico: Multiproxy Studies
NASA Astrophysics Data System (ADS)
Retama, I.; Jonathan, M. P.; Rodriguez-Espinosa, P. F.
2014-12-01
40 beach water and sediment samples were collected from the inter-tidal zones of tourist beaches of Huatulco in the State of Oaxaca, South Western part of Mexico. The samples were collected in an aim to know the concentration pattern of metals (Cu, Cd, Cr, Ni, Pb, Zn, Co, Mn, Fe, As, Hg) in sediments and microplastics. Physico-chemical parameters like temperature, pH, dissolved oxygen, conductivity and total dissolved solids, salinity and redox potential. Collection of samples was done during the peak season in April 2013. Our results from water samples indicate that the physico-chemical conditions of the beach water have been altered due to human activities in large numbers. The bioavailable metal concentrations indicate that enrichment of Pb, Cd, Cr and As and it is also supported by the higher values observed from the calculation of enrichment factor and geoaccumulation index. The higher values in the sediments is either due to natural sources like chemical weathering of rocks and external sources, which points to high tourism, agricultural activities in the region. Identification of micro-plastics was done through SEM photographs, indicating the type of plastic wastes deposited into the beach regions which can indicate the density, durability and the persistence level in the sediments. Eventhough the enrichment of metals and modification of beach water quality is observed, care need to be taken to avoid further damage to the coastal ecosystem. Keywords: Tourism, Beach sediments, Beach water, Micro plastics, Trace metals, Contamination indices, Huatulco, Mexico.
Recycling 100Mo for direct production of 99mTc on medical cyclotrons
NASA Astrophysics Data System (ADS)
Kumlin, Joel O.; Zeisler, Stefan K.; Hanemaayer, Victoire; Schaffer, Paul
2018-05-01
A scalable recycling technique for the recovery of 100Mo from previously irradiated and chemically processed targets is described. A combined process for both Cu and Ta supported targets and the respective `waste' solutions has been developed. This process involves selectively dissolving Cu target backings from undissolved portions of 100Mo pellets; precipitating Cu(OH)2 at pH 9; electrochemical removal of Cu traces; precipitating (NH4)2MoO4 at pH 2.5-3; thermally decomposing (NH4)2MoO4; and H2 reduction of MoO3 to Mo metal. Radionuclidic decontamination by a factor of 100 is observed, while overall 100Mo recovery from initial target plating to recycled Mo metal of 96% is achieved.
Effect of membrane filtration artifacts on dissolved trace element concentrations
Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.
1992-01-01
Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.
The effect of membrane filtration artifacts on dissolved trace element concentrations
Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.
1992-01-01
Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.
Pokrovsky, O S; Shirokova, L S
2013-02-01
This work describes variation of element concentration in surface water of a subarctic organic-rich lake during the diurnal cycle of photosynthesis. An unusually hot summer 2010 in European part of subarctic Russia produced elevated surface water temperature (28-30 °C) and caused massive cyanobacterial bloom. Diurnal variation of ~40 dissolved macro and trace elements and organic carbon were recorded in the humic Lake Svyatoe in the White Sea drainage basin. Two days continuous measurements with 3 h sampling steps at the surface (0.5 m) allowed tracing cyanobacterial activity via pH and O₂ measurement and revealed constant concentrations (within ±20-30%) of all major elements (Na, Mg, Cl, SO₄, K, Ca), organic and inorganic carbon and most trace elements (Li, B, Sc, Ti, Ni, Cu, Ga, As, Rb, Sr, Y, Zr, Mo, Sb, medium and heavy REEs, Hf, Pb, Th, U). The concentration of Mn demonstrated a factor of 3 decrease during the day following Mn adsorption onto cyanobacterial cells due to ~1 pH unit raise during the photosynthesis and Mn release during the night due to desorption from the cell surface. The role of Mn(II) photo-oxidation by reactive oxygen species could be also pronounced, although its contribution to Mn diurnal variation was much smaller than the adsorption at the cell surfaces. Similar pattern, but with much lesser variations (c.a., 10-20%), was recorded for Ba and Fe. On-site ultrafiltration technique allowed to distinguish between low molecular weight (LMW) complexes (<1 kDa) and high molecular weight (HMW) colloids (1 kDa-0.22 μm) and to assess their diurnal pattern. Colloidal Al and Fe were the highest during the night, when the contribution of HMW allochthonous colloids was maximal. Typical insoluble trivalent and tetravalent elements exhibited constant complexation (>80-90%) with HMW allochthonous organics, independent on the diel photosynthetic cycle. Finally, biologically-relevant metals (Cu, Co, Cr, V, and Ni) demonstrated significant variations of colloidal fractions (from 10 to 60%) not directly related to the photosynthesis. The majority of possible metal nutrients, being strongly associated with organic and organo-mineral colloids do not exhibit any measurable concentration variation during photosynthesis. The two types of element behavior during cyanobacterial bloom in the water column--constant concentration and sinusoidal variations--likely depend on element speciation in solution and their relative affinity to surfaces of aquatic microorganisms and complexation with authochthonous and allochthonous organic matter. Copyright © 2012 Elsevier Ltd. All rights reserved.
Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes
NASA Astrophysics Data System (ADS)
Lough, A. J. M.; Klar, J. K.; Homoky, W. B.; Comer-Warner, S. A.; Milton, J. A.; Connelly, D. P.; James, R. H.; Mills, R. A.
2017-04-01
Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that δ56Fe values of dFe (δ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from -2.39 ± 0.05‰ to -0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (δ56TDFe) was consistently heavier than dFe values, ranging from -0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a δ56Fe of -0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past hydrothermalism from ocean sediment records.
Ussher, Simon J; Milne, Angela; Landing, William M; Attiq-ur-Rehman, Kakar; Séguret, Marie J M; Holland, Toby; Achterberg, Eric P; Nabi, Abdul; Worsfold, Paul J
2009-10-12
A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II)+Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100microM concentrations of sulphite a reduction time of 4h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.
Fey, David L.; Desborough, George A.; Finney, Christopher J.
2000-01-01
IntroductionMetal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana, have been implicated in their detrimental effects on water quality with regard to acid generation and toxic-metal solubilization during snow melt and storm water runoff events. This degradation of water quality is defined chiefly by the “Class 1 Aquatic Life Standards” that give limits for certain dissolved metal concentrations according to water alkalinity.Veins enriched in base- and precious metals were explored and mined in the Basin, Cataract Creek, and High Ore Creek drainages over a period of more than 70 years. Extracted minerals included galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and arsenopyrite. Most of the metal-mining wastes in the study area were identified and described by the Montana Bureau of Mines and Geology. In 1997, the U.S. Geological Survey collected 20 composite samples of mine-dump or tailings waste from ten sites in the Basin and Cataract Creek drainages, and two samples from one site in the High Ore Creek drainage. Desborough and Fey presented data concerning acid generation potential, mineralogy, concentrations of certain metals by energy-dispersive X-ray fluorescence (EDXRF), and trace-element leachability of mine and exploration wastes from the ten sites of the Basin and Cataract Creek drainages. The present report presents total-digestion major- and trace-element analyses, net acid production (NAP), and results from the EPA-1312 synthetic precipitation leach procedure (SPLP) performed on the same composite samples from the ten sites from the Basin and Cataract Creek drainages, and two composite samples from the site in the High Ore Creek drainage.
Xu, Huacheng; Guo, Laodong; Jiang, Helong
2016-02-01
Dissolved organic matter (DOM) plays a significant role in regulating nutrients and carbon cycling and the reactivity of trace metals and other contaminants in the environment. However, the environmental/ecological role of sedimentary DOM is highly dependent on organic composition. In this study, fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis, two dimensional correlation spectroscopy (2D-COS), and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) were applied to investigate the depth-dependent variations of sediment-leached DOM components in a eutrophic lake. Results of EEM-PARAFAC and 2D-COS showed that fluorescent humic-like component was preferentially degraded microbially over fulvic-like component at greater sediment depths, and the relative abundance of non-fluorescent components decreased with increasing depth, leaving the removal rate of carbohydrates > lignins. The predominant sedimentary DOM components derived from FT-ICR-MS were lipids (>50%), followed by lignins (∼15%) and proteins (∼15%). The relative abundance of carbohydrates, lignins, and condensed aromatics decreased significantly at greater depths, whereas that of lipids increased in general with depth. There existed a significant negative correlation between the short-range ordered (SRO) minerals and the total dissolved organic carbon concentration or the relative contents of lignins and condensed aromatics (p < 0.05), suggesting that SRO mineral sorption plays a significant role in controlling the composition heterogeneity and releasing of DOM in lake sediments. Higher metal binding potential observed for DOM at deeper sediment depth (e.g., 25-30 cm) supported the ecological safety of sediment dredging technique from the viewpoint of heavy metal de-toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ingvertsen, Simon T; Cederkvist, Karin; Jensen, Marina B; Magid, Jakob
2012-01-01
Use of roadside infiltration systems using engineered filter soil for optimized treatment has been common practice in Germany for decades, but little documentation is available regarding their long-term treatment performance. Here we present the results of laboratory leaching experiments with intact soil columns (15 cm i.d., 25-30 cm length) collected from two German roadside infiltration swales constructed in 1997. The columns were irrigated with synthetic solutions of unpolluted or polluted (dissolved heavy metals and fine suspended solids) road runoff, as well as a soluble nonreactive tracer (bromide) and a dye (brilliant blue). The experiments were performed at two irrigation rates corresponding to catchment rainfall intensities of approximately 5.1 and 34 mm/h. The bromide curves indicated that preferential flow was more pronounced at high irrigation rates, which was supported by the flow patterns revealed in the dye tracing experiment. Nonetheless, the soils seemed to be capable of retaining most of the dissolved heavy metals from the polluted road runoff at both low and high irrigation rates, except for Cr, which appears to pass through the soil as chromate. Fluorescent microspheres (diameter = 5 μm) used as surrogates for fine suspended solids were efficiently retained by the soils (>99%). However, despite promising treatment abilities, internal mobilization of heavy metals and P from the soil was observed, resulting in potentially critical effluent concentrations of Cu, Zn, and Pb. This is mainly ascribed to high concentrations of in situ mobilized dissolved organic carbon (DOC). Suggestions are provided for possible improvements and further research to minimize DOC mobilization in engineered filter soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.
Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao
2017-01-01
Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.
Recrystallization of Manganite (γ-MnOOH) and Implications for Trace Element Cycling.
Hens, Tobias; Brugger, Joël; Cumberland, Susan A; Etschmann, Barbara; Frierdich, Andrew J
2018-02-06
The recrystallization of Mn(III,IV) oxides is catalyzed by aqueous Mn(II) (Mn(II) aq ) during (bio)geochemical Mn redox cycling. It is poorly understood how trace metals associated with Mn oxides (e.g., Ni) are cycled during such recrystallization. Here, we use X-ray absorption spectroscopy (XAS) to examine the speciation of Ni associated with Manganite (γ-Mn(III)OOH) suspensions in the presence or absence of Mn(II) aq under variable pH conditions (pH 5.5 and 7.5). In a second set of experiments, we used a 62 Ni isotope tracer to quantify the amount of dissolved Ni that exchanges with Ni incorporated in the Manganite crystal structure during reactions in 1 mM Mn(II) aq and in Mn(II)-free solutions. XAS spectra show that Ni is initially sorbed on the Manganite mineral surface and is progressively incorporated into the mineral structure over time (13% after 51 days) even in the absence of dissolved Mn(II). The amount of Ni incorporation significantly increases to about 40% over a period of 51 days when Mn(II) aq is present in solution. Similarly, Mn(II) aq promotes Ni exchange between Ni-substituted Manganite and dissolved Ni(II), with around 30% of Ni exchanged at pH 7.5 over the duration of the experiment. No new mineral phases are detected following recrystallization as determined by X-ray diffraction and XAS. Our results reveal that Mn(II)-catalyzed mineral recrystallization partitions Ni between Mn oxides and aqueous fluids and can therefore affect Ni speciation and mobility in the environment.
Metal biogeochemistry in surface-water systems; a review of principles and concepts
Elder, John F.
1988-01-01
Metals are ubiquitous in natural surface-water systems, both as dissolved constituents and as particulate constituents. Although concentrations of many metals are generally very low (hence the common term 'trace metals'), their effects on the water quality and the biota of surfacewater systems are likely to be substantial. Biogeochemical partitioning of metals results in a diversity of forms, including hydrated or 'free' ions, colloids, precipitates, adsorbed phases, and various coordination complexes with dissolved organic and inorganic ligands. Much research has been dedicated to answering questions about the complexities of metal behavior and effects in aquatic systems. Voluminous literature on the subject has been produced. This paper synthesizes the findings of aquatic metal studies and describes some general concepts that emerge from such a synthesis. Emphasis is on sources, occurrence, partitioning, transport, and biological interactions of metals in freshwater systems of North America. Biological interactions, in this case, refer to bioavailability, effects of metals on ecological characteristics and functions of aquatic systems, and roles of biota in controlling metal partitioning. This discussion is devoted primarily to the elements aluminum, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc and secondarily to cobalt, molybdenum, selenium, silver, and vanadium. Sources of these elements are both natural and anthropogenic. Significant anthropogenic sources are atmospheric deposition, discharges of municipal and industrial wastes, mine drainage, and urban and agricultural runoff. Biogeochemical partitioning of metals is controlled by various characteristics of the water and sediments in which the metals are found. Among the most important controlling factors are pH, oxidation-reduction potential, hydrologic features, sediment grain size, and the existence and nature of clay minerals, organic matter, and hydrous oxides of manganese and iron. Partitioning is also controlled by biological processes that provide mechanisms for detoxification of metals and for enhanced uptake of nutritive metals. Partitioning is important largely because availability to biota is highly variable among different phases. Hence, accumulation in biological tissues and toxicity of an element are dependent not only on total concentration of the element but also on the factors that control partitioning.
Metals transport in the Sacramento River, California, 1996-1997; Volume 1, Methods and data
Alpers, Charles N.; Taylor, Howard E.; Domagalski, Joseph L.
2000-01-01
Metals transport in the Sacramento River, northern California, was evaluated on the basis of samples of water, suspended colloids, streambed sediment, and caddisfly larvae that were collected on one to six occasions at 19 sites in the Sacramento River Basin from July 1996 to June 1997. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions; respectively. Tangential-flow ultrafiltration with 10,000 nominal molecular weight limit, or daltons (0.005 micrometer equivalent), pore-size membranes was used to separate metals in streamwater into ultrafiltrate (operationally defined dissolved fraction) and retentate (colloidal fraction) components, respectively. Conventional filtration with capsule filters (0.45 micrometer pore-size) and membrane filters (0.40 micrometer pore-size) and total-recoverable analysis of unfiltered (whole-body) samples were done for comparison at all sites. Because the total-recoverable analysis involves an incomplete digestion of particulate matter, a more reliable measurement of whole-water concentrations is derived from the sum of the dissolved component that is based on the ultrafiltrate plus the suspended component that is based on a total digestion of colloid concentrates from the ultra-filtration retentate. Metals in caddisfly larvae were determined for whole-body samples and cytosol extracts, which are intercellular solutions that provide a more sensitive indication of the metals that have been bioaccumulated. Trace metals in acidic, metal-rich drainage from abandoned and inactive sulfide mines were observed to enter the Sacramento River system (specifically, into both Shasta Lake and Keswick Reservoir) in predominantly dissolved form, as operationally defined using ultrafiltrates. The predominant source of acid mine drainage to Keswick Reservoir is Spring Creek, which drains the Iron Mountain mine area. Copper concentrations in filtered samples from Spring Creek taken during December 1996, January 1997, and May 1997 ranged from 420 to 560 micrograms per liter. Below Keswick Dam, copper concentrations in conventionally filtered samples ranged from 0.5 micrograms per liter during September 1996 to 9.4 micrograms per liter during January 1997; the latter concentration exceeded the applicable water-quality standard. The proportion of trace metals that was dissolved (versus colloidal) in samples collected at Shasta and Keswick dams decreased in the order cadmium zinc > copper > aluminum iron lead mercury. At four sampling sites on the Sacramento River at various distances downstream of Keswick Dam (Bend Bridge, 71 kilometers; Colusa, 256 kilometers; Verona, 360 kilometers; and Freeport, 412 kilometers) concentrations of these seven metals were predominantly colloidal during both high- and low-flow conditions. Because copper compounds are used extensively as algaecides in rice farming, agricultural drainage at the Colusa Basin Drain was sampled in June 1997 during a period shortly after copper applications to newly planted rice fields. Copper concentrations ranged from 1.3 to 3.0 micrograms per liter in filtered samples and from 12 to 13 micrograms per liter in whole-water samples (total recoverable analysis). These results are consistent with earlier work by the U.S. Geological Survey indicating that copper in rice-field drainage likely represents a detectable, but relatively minor source of copper to the Sacramento River. Lead isotope data from suspended colloids and streambed sediments collected during October and November 1996 indicate that lead from acid mine drainage sources became a relatively minor component of the total lead at the site located 71 kilometers downstream of Keswick Dam and beyond. Cadmium, copper, and zinc concentrations in caddisfly larvae were elevated at several sites downstream of Keswick Dam,
Kiah, Richard G.; Deacon, Jeffrey R.; Piatak, Nadine M.; Seal, Robert R.; Coles, James F.; Hammarstrom, Jane M.
2007-01-01
The hydrology and quality of surface water in and around the Pike Hill Brook watershed, in Corinth, Vermont, was studied from October 2004 to December 2005 by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (USEPA). Pike Hill was mined intermittently for copper from 1847 to 1919 and the site is known to be contributing trace elements and acidity to Pike Hill Brook and an unnamed tributary to Cookville Brook. The site has been listed as a Superfund site since 2004. Streamflow, specific conductance, pH, and water temperature were measured continuously and monthly at three sites on Pike Hill Brook to determine the variation in these parameters over an annual cycle. Synoptic water-quality sampling was done at 10 stream sites in October 2004, April 2005, and June 2005 and at 13 stream sites in August 2005 to characterize the quality of surface water in the watershed on a seasonal and spatial basis, as well as to assess the effects of wetlands on water quality. Samples for analysis of benthic macroinvertebrate populations were collected at 11 stream sites in August 2005. Water samples were analyzed for 5 major ions and 32 trace elements. Concentrations of trace elements at sites in the Pike Hill Brook watershed exceeded USEPA National Recommended Water Quality Criteria acute and chronic toxicity standards for aluminum, iron, cadmium, copper, and zinc. Concentrations of copper exceeded the chronic criteria in an unnamed tributary to Cookville Brook in one sample. Concentrations of sulfate, calcium, aluminum, iron, cadmium, copper, and zinc decreased with distance from a site directly downstream from the mine (site 1), as a result of dilution and through sorption and precipitation of the trace elements. Maximum concentrations of aluminum, iron, cadmium, copper, and zinc were observed during spring snowmelt. Concentrations of sulfate, calcium, cadmium, copper, and zinc, and instantaneous loads of calcium and aluminum were statistically different (p<0.05) among the three continuously monitored sites (sites 1, 4, and 5). Instantaneous loads of aluminum, iron, and copper decreased by one to three orders of magnitude from site 1 to a site 1.1 mi downstream (site 4). Instantaneous loads of sulfate were similar between sites 1, 4, and at a site 3 mi downstream (site 5). Instantaneous loads of cadmium and zinc were similar between sites 1 and 4, and loads of iron and copper were similar between sites 4 and 5. Loads of chemical constituents were compared at site 1 (closest to the mine waste piles) and site 5 (near the mouth of Pike Hill Brook and below a majority of the wetlands). Annually, the loads of dissolved cadmium and zinc at site 1 were about five times greater than loads at site 5, and the load of dissolved copper at site 1 was about 17 times greater than at site 5. The ratio of loads for dissolved cadmium, copper, and zinc to total cadmium, copper, and zinc at site 1 was about 1. Samples collected in Pike Hill Brook upstream and downstream from the wetlands during low flows in August 2005 showed that oxidation of ferrous iron and precipitation of iron-hydroxides were probably not affecting trace metals in the wetlands through sorption; however, a significant portion of the iron entering the wetlands was in particulate form and may have transported sorbed copper and other trace metals. Thus, aerobic activity in the wetlands was probably not affecting metal cycling in the watershed. Concentrations and loads of sulfate may be unlikely to define unequivocally the role of the wetlands with regard to anaerobic bacterial sulfate reduction; however, bacterial sulfate removal may have affected loads of sulfate. Loads of copper increased downstream from the wetlands and may reflect the reductive dissolution of ferric hydroxide particulates in anaerobic parts of the wetlands.Concentrations of dissolved iron increased downstream from the wetlands. The most apparent effects on the macroinvertebr
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Schott, J.; Dupré, B.
2006-07-01
The chemical status of ˜40 major and trace elements (TE) and organic carbon (OC) in pristine boreal rivers draining the basaltic plateau of Central Siberia (Putorana) and interstitial solutions of permafrost soils was investigated. Water samples were filtered in the field through progressively decreasing pore size (5 μm → 0.22 μm → 0.025 μm → 10 kDa → 1 kDa) using cascade frontal filtration technique. Most rivers and soil porewaters exhibit 2-5 times higher than the world average concentration of dissolved (i.e., <0.22 μm) iron (0.03-0.4 mg/L), aluminum (0.03-0.4 mg/L), OC (10-20 mg/L) and various trace elements that are usually considered as immobile in weathering processes (Ti, Zr, Ga, Y, REEs). Ultrafiltration revealed strong relationships between concentration of TE and that of colloidal Fe and Al. According to their partition during filtration and association with colloids, two groups of elements can be distinguished: (i) those weakly dependent on ultrafiltration and that are likely to be present as truly dissolved inorganic species (Li, Na, K, Si, Mn, Mo, Rb, Cs, As, Sb) or, partially (20-30%) associated with small size Fe- and Al-colloids (Ca, Mg, Sr, Ba) and to small (<1-10 kDa) organic complexes (Co, Ni, Cu, Zn), and (ii) elements strongly associated with colloidal iron and aluminum in all ultrafiltrates largely present in 1-100 kDa fraction (Ga, Y, REEs, Pb, V, Cr, Ti, Ge, Zr, Th, U). TE concentrations and partition coefficients did not show any detectable variations between different colloidal fractions for soil porewaters, suprapermafrost flow and surface streams. TE concentration measurements in river suspended particles demonstrated significant contribution (i.e., ⩾30%) of conventionally dissolved (<0.22 μm) forms for usually "immobile" elements such as divalent transition metals, Cd, Pb, V, Sn, Y, REEs, Zr, Hf, Th. The Al-normalized accumulation coefficients of TE in vegetation litter compared to basalts achieve 10-100 for B, Mn, Zn, As, Sr, Sn, Sb, and the larch litter degradation is able to provide the major contribution to the annual dissolved flux of most trace elements. It is hypothesized that the decomposition of plant litter in the topsoil horizon leads to Fe(III)-, Al-organic colloids formation and serves as an important source of elements in downward percolating fluids.
Nakatsuka, Seiji; Okamura, Kei; Norisuye, Kazuhiro; Sohrin, Yoshiki
2007-06-26
A new technique for the determination of suspended particulate trace metals (P-metals >0.2 microm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 microm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048+/-0.008, 10.3+/-0.3, 0.27+/-0.05, 3.3+/-1.8, 0.02+/-0.03 and 0.85+/-0.09 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively (n=14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.
Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15
Hermosillo, Edyth; Coes, Alissa L.
2017-03-01
Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China.
Song, Shiming; Mathur, Ryan; Ruiz, Joaquin; Chen, Dandan; Allin, Nicholas; Guo, Kunyi; Kang, Wenkai
2016-02-15
Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS2 has a 'tight' cluster of Cu isotope values (-0.15‰ to +1.65‰; +0.37 ± 0.6‰, 1σ, n=10), and the second mineral source, pyrite (FeS2), has a much larger range of Cu isotope values (-4‰ to +11.9‰; 2.7 ± 4.3‰, 1σ, n=16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately +1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (<0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ(65)Cu ranging between +2 to +5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. Copyright © 2015 Elsevier B.V. All rights reserved.
A comparison of landfill leachates based on waste composition.
Moody, Chris M; Townsend, Timothy G
2017-05-01
Samples of leachate were collected from fourteen landfills in the state of Florida, United States that contained primarily putrescible waste (municipal solid waste, MSW, and yard waste), MSW incinerator (MSWI) ash, or a combination of both. Assessment of leachates included trace metals, anions, and nutrients in order to create a mass balance of total dissolved solids (TDS). As expected from previously literature, MSW leached a complex matrix of contaminants while MSWI ash leachate TDS was more than 98% metallic salts. The pH of the MSWI ash leachate samples was slightly acidic or neutral in character, which is contradictory to the results commonly reported in the literature. The cause of this is hypothesized to be a short-circuiting of rainfall in the landfill due to low hydraulic conductivities reported in ash landfills. The difference in pH likely contributed to the findings with respect to MSWI ash-characteristic trace metals in leachates such as aluminum. The authors have concluded that the research findings in this study are an indication of the differences between laboratory leachate quality studies and the conditions encountered in the field. In addition, a characterization of organic matter using qualitative and quantitative analyses determined that COD is not an accurate indicator of organic matter in leachates from landfills with a significant fraction of MSWI ash. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of lichen biomass to monitor dissolved metals in natural waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, J.N.; Ramelow, G.J.
1990-02-01
The use of lichens for monitoring airborne metals is based on their immobility and a tendency to accumulate metals to a high degree by the trapping of atmospheric particles and by adsorptive ion exchange processes in which dissolved metals in rainwater are picked up by cellular membranes. The powerful metal-accumulating ability of lichens has been demonstrated in the laboratory. This strong metal accumulating ability of lichen biomass from aqueous solutions would seem to make lichen material an ideal biomonitor of dissolved metals in natural waters. To test this the present study was initiated to monitor dissolved zinc, copper, lead, nickel,more » cadmium, iron, manganese, chromium, and mercury in an industrially-impacted bayou in southwestern Louisiana. The results obtained with lichen biomonitors will be compared with other studies of the same metals in periphyton and sediments from this waterway.« less
Uranium and barium cycling in a salt wedge subterranean estuary: The influence of tidal pumping
Santos, I.R.; Burnett, W.C.; Misra, S.; Suryaputra, I.G.N.A.; Chanton, J.P.; Dittmar, T.; Peterson, R.N.; Swarzenski, P.W.
2011-01-01
The contribution of submarine groundwater discharge (SGD) to oceanic metal budgets is only beginning to be explored. Here, we demonstrate that biogeochemical processes in a northern Florida subterranean estuary (STE) significantly alter U and Ba concentrations entering the coastal ocean via SGD. Tidal pumping controlled the distribution of dissolved metals in shallow beach groundwater. Hourly observations of intertidal groundwaters revealed high U and low Ba concentrations at high tide as a result of seawater infiltration into the coastal aquifer. During ebb tide, U decreased and Ba increased due to freshwater dilution and, more importantly, biogeochemical reactions that removed U and added Ba to solution. U removal was apparently a result of precipitation following the reduction of U(VI) to U(IV). A significant correlation between Ba and dissolved organic carbon (DOC) in shallow beach groundwaters implied a common source, likely the mineralization of marine particulate organic matter driven into the beach face by tidal pumping. In deeper groundwaters, where the labile organic matter had been depleted, Ba correlated with Mn. We estimate that net SGD fluxes were − 163 and + 1660 μmol m− 1 d− 1 for U and Ba, respectively (or − 1 and + 8 μmol m− 2 d− 1 if a 200-m wide seepage area is considered). Our results support the emerging concept that subterranean estuaries are natural biogeochemical reactors where metal concentrations are altered relative to conservative mixing between terrestrial and marine endmembers. These deviations from conservative mixing significantly influence SGD-derived trace metal fluxes.
Silvey, W.D.; Brennan, R.
1962-01-01
A method for the quantitative spectrochemical determination of microgram amounts of 17 minor elements in water is given. The chelating reagents 8-quinolinol, tannic acid, and thionalide are utilized to concentrate traces (1 to 500 ??g.) of aluminum, cobalt, chromium, copper, iron, gallium, germanium, manganese, nickel, titanium, vanadium, bismuth, lead, molybdenum, cadmium, zinc, and beryllium. Indium is added as a buffer, and palladium is used as an internal standard. The ashed oxides of these 17 metals are subsequently subjected to direct current arcing conditions during spectrum analysis. The method can be used to analyze waters with dissolved solids ranging from less than 100 to more than 100,000 p.p.m. There is no limiting concentration range for the determination of the heavy metals since any volume of sample can be used that will contain a heavy metal concentration within the analytical range of the method. Both the chemical and spectrographic procedures are described, and precision and accuracy data are given.
NASA Astrophysics Data System (ADS)
McKinley, C. C.; Scudder, R.; Thomas, D. J.
2016-12-01
The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential extractions. Here we present results comparing the two sites, and examine how the composition of the sediment impacts the resulting Nd IC.
Petrology of enstatite chondrites and anomalous enstatite achondrites
NASA Astrophysics Data System (ADS)
van Niekerk, Deon
2012-01-01
Chondrites are meteorites that represent unmelted portions of asteroids. The enstatite chondrites are one class of chondrites. They consist of reduced mineral assemblages that formed under low oxygen fugacity in the solar nebula, prior to accretion into asteroids. There are two groups of enstatite chondrites---EH and EL. I studied EL3 meteorites, which are understood to be unmetamorphosed and thus to only preserve primitive nebular products. I show in a petrographic study that the EL3s are in fact melt--breccias in which impact-melting produced new mineral assemblages and textures in portions of the host chondrites, after accretion. I document meta- land sulfide assemblages that are intergrown with silicate minerals (which are often euhedral), and occur outside chondrules; these assemblages probably represent impact-melting products, and are different from those in EH3 chondrites that probably represent nebular products. In situ siderophile trace element compositions of the metal in EL3s, obtained by laser ablation inductively coupled plasma mass spectrometry, are consistent with an impact-melting hypothesis. The trace element concentrations show no clear volatility trend, and are thus probably not the result of volatile-driven petrogenetic processes that operated in the solar nebula. Trace element modeling suggests that the character of the trace element patterns together with deviations from the mean bulk EL metal pattern is consistent with metal that crystallized in a coexisting liquid-solid metal system in which dissolved carbon influenced element partitioning. I also conducted a petrographic and mineral-chemistry study of several anomalous enstatite meteorites. These have igneous textures, but unfractionated mineralogy similar to unmelted chondrites. I show that with the exception of one, the meteorites are related to each other, and probably formed by crystallization from an impact melt instead of metamorphism through the decay of short lived radionuclides. The broad importance of these studies lies in documenting the petrology of extraterrestrial materials that reveal the geological history of the young solar system prior to the existence of planets. Furthermore, they serve to identify which mineral assemblages record nebular processes and which record processes on asteroids, so that future studies may select the correct material to address particular questions.
Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.
Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro
2015-07-09
Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Asif, Muhammad B; Hai, Faisal I; Hou, Jingwei; Price, William E; Nghiem, Long D
2017-10-01
White-rot fungi (WRF) and their ligninolytic enzymes have been investigated for the removal of a broad spectrum of trace organic contaminants (TrOCs) mostly from synthetic wastewater in lab-scale experiments. Only a few studies have reported the efficiency of such systems for the removal of TrOCs from real wastewater. Wastewater derived organic and inorganic compounds can inhibit: (i) WRF growth and their enzyme production capacity; (ii) enzymatic activity of ligninolytic enzymes; and (iii) catalytic efficiency of both WRF and enzymes. It is observed that essential metals such as Cu, Mn and Co at trace concertation (up to 1 mM) can improve the growth of WRF species, whereas non-essential metal such as Pb, Cd and Hg at 1 mM concentration can inhibit WRF growth and their enzyme production. In the case of purified enzymes, most of the tested metals at 1-5 mM concentration do not significantly inhibit the activity of laccases. Organic interfering compounds such as oxalic acid and ethylenediaminetetraacetic acid (EDTA) at 1 mM concentration are potent inhibitors of WRF and their extracellular enzymes. However, inhibitory effects induced by interfering compounds are strongly influenced by the type of WRF species as well as experimental conditions (e.g., incubation time and TrOC type). In this review, mechanisms and factors governing the interactions of interfering compounds with WRF and their ligninolytic enzymes are reviewed and elucidated. In addition, the performance of WRF and their ligninolytic enzymes for the removal of TrOCs from synthetic and real wastewater is critically summarized. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.
2013-12-01
Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm) and Cd (2.4ppm). The underlying limestone and marl show, compared to average world carbonates, enrichments in the same elements and trace element distribution patterns similar to the soil suggesting their close genetic relationship. Pb, Sr and Nd isotope data allow to identify three principal components in the soil: a silicate-rich phase at close to the surface, a strongly trace metal enriched component at the bottom of the soil profile and an anthropogenic, atmosphere- derived component detected in the soil leachates. The isotopic mixing curves defined by the soil samples point to the close genetic connection between upper and lowermost soil horizons. The Nd isotopic composition of the leachates of all soil horizons are in contrast to the untreated soil and residual soil samples very homogeneous suggesting that the leachable phases of the upper and lower soil horizons are genetically connected. The downward migration of the trace metals is stopped at this soil level due to the presence of important secondary calcite precipitations, smectite and Fe-oxide accumulations. Mass balance calculations indicate that the enrichment process goes along with a volume increase relative to the bottom soil horizons.
Quality of ground water in southeastern and south-central Washington, 1982
Turney, G.L.
1986-01-01
In 1982 groundwater was sampled at over 100 sites in the southeastern-south central region of Washington and analyzed for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved irons, and dissolved iron, manganese, and nitrate. Twenty percent of the samples were analyzed for concentrations of dissolved aluminum, arsenic, barium, cadmium, chromium, cooper, lead, mercury, selenium, silver, and zinc. The predominant water type was calcium bicarbonate. Some sodium bicarbonate water was found in samples from the Lower Yakima, Horse Heaven Hills, and Walla Walla-Tucannon subregions. Dissolved solids concentrations were typically less than 500 mg/L (milligrams per liter). Median iron and manganese concentrations were less than 20 micrograms/L except in the Palouse subregion, where the median concentration of iron was 200 micrograms/L and the median concentrations of manganese was 45 micrograms/L. Generally, trace-metal concentrations were also less than 10 micrograms/L except for barium, copper, and zinc. Nitrate concentrations were less than 1.0 mg/L in waters from half the wells sampled. Concentrations greater than 5.0 mg/L were found in areas of the Lower Yakima, Walla Walla-Tucannon and Hanford subregions. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulation limits were generally not exceeded, except for occasional high concentrations of nitrate or dissolved solids. The historical data for the region were evaluated for these same constituents. Quantitative differences were found, but the historical and 1982 data led to similar qualitative conclusions. (USGS)
Modern Dust Deposition and Dissolved Iron Residence Times in the Eastern Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Vivancos, S. M.; Anderson, R. F.; Pavia, F. J.; Fleisher, M. Q.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.
2016-02-01
We use dissolved 230Th and 232Th data along the U.S. GEOTRACES Equatorial Pacific Zonal Transect (EPZT) from Peru to Tahiti to quantify dust input to the region. Dust in the global oceans is a mineral ballast that helps carry organic matter to depth, a reactive particle surface that scavenges trace metals such as Th and Pa from the water column, and through its dissolution dust provides essential micronutrients, such as iron, that stimulate productivity. When integrating Th inventories from the sea surface to 500 meters water depth (Hayes et al., Earth Planet. Sci. Lett., 383 (2013) 16-25), we find that dust fluxes along the EPZT are an order of magnitude lower (0.18-1.61 g/m2/yr) than along the U.S. GEOTRACES Atlantic Transect (Mauritania to Bermuda; 3.22 to 10.56 g/m2/yr). Dust fluxes decrease with distance away from the dust source (i.e., the continents). Using an Fe/Th ratio of 2660 g/g for dust and assuming a Fe/Th solubility ratio of 1.0 (Hayes et al., Geochim. Cosmochim. Acta, 169 (2015) 1-16), we calculate a dissolved iron flux of 12.06 to 109.88 µmol/m2/yr to the EPZT region. Utilizing dissolved iron data along the EPZT (Resing et al., Nature, 523 (2015) 200-203), we calculate a dissolved iron residence time integrated from the sea surface to 500 meters water depth of 4 to 11 years.
Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.
2001-01-01
Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.
Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.
2012-01-01
The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.
Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.
2012-01-01
The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67 km from Keswick Dam. The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250 m3/s (cubic meters per second), even flows as low as 0.3 m3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow. The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100.
The effect of membrane filtration on dissolved trace element concentrations
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.
Apparatus and method for making metal chloride salt product
Miller, William E [Naperville, IL; Tomczuk, Zygmunt [Homer Glen, IL; Richmann, Michael K [Carlsbad, NM
2007-05-15
A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specifies the limitation for the metal in the dissolved or valent or total form; or (2) In establishing... the metal in the dissolved or valent or total form to carry out the provisions of the CWA; or (3) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifies the limitation for the metal in the dissolved or valent or total form; or (2) In establishing... the metal in the dissolved or valent or total form to carry out the provisions of the CWA; or (3) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent...
Bird, D.A.
2003-01-01
Colorado's Cinnamon Gulch releases acid rock drainage (ARD) from anthropogenic and natural sources. In 2001, the total discharge from Cinnamon Gulch was measured at 1.02 cfs (29 L/s) at base flow and 4.3 cfs (122 L/s) at high flow (spring runoff). At base flow, natural sources account for 98% of the discharge from the watershed, and about 96% of the chemical loading. At high flow, natural sources contribute 96% of discharge and 92 to 95% of chemical loading. The pH is acidic throughout the Cinnamon Gulch watershed, ranging from 2.9 to 5.4. At baseflow, nearly all of the trace metals analyzed in the 18 samples exceeded state hardness-dependent water quality standards for aquatic life. Maximum dissolved concentrations of selected constituents included 16 mg/ L aluminum, 15 mg/L manganese, 40 mg/L iron, 2 mg/L copper, 560 ??g/L lead, 8.4 mg/L zinc, and 300 mg/L sulfate. Average dissolved concentrations of selected metals at baseflow were 5.5 mg/L aluminum, 5.5 mg/L manganese, 14 ??g/L cadmium, 260 ??g/L copper, 82 ??g/L lead, and 2.8 mg/L zinc.
Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan
2012-01-01
Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles react to form adsorbed nitrates and lead nitrate thin films with the extent of formation of nitrate relative humidity dependent. Surface adsorbed nitrate increases the amount of dissolved lead. These reacted particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to unreacted particles. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also show that surface intermediates, such as adsorbed nitrates, that form can yield higher concentrations of lead in water systems. In the environment, these water systems can include drinking water, ground water, estuaries and lakes. PMID:23057678
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupre, B.; Rousseau, D.; Gaillardet, J.
The Congo river Basin is the second largest drainage basin in the world, after the Amazon. The materials carried by its main rivers provide the opportunity to study the products of denudation of a large fraction of the upper continental crust of the African continent. This paper presents the chemical composition of the different phases carried in the Congo rivers and is followed by a companion paper, devoted to the modelling of major and trace elements. The Congo river between Bangui and Brazzaville as well as its main tributaries, including a few organic-rich rivers, also called Black Rivers, were sampledmore » during the 1989 high water stage. The three main phases (suspended load, dissolved load, and bedload) were analysed for twenty-five major and trace elements. Concentrations normalized to the upper continental crust show that in each river, suspended sediments and dissolved load are chemical complements for the most soluble elements (Ca, Na, Sr, K, Ba, Rb, and U). While these elements are enriched in the dissolved loads, they are considerably depleted in the corresponding suspended sediments. This is consistent with their high mobility during weathering. Another type of complementarity is observed for Zr and Hf between suspended sediments and bedload, related to the differential velocity of suspended sediments and zircons which are concentrated in bedloads. Compared to other rivers, absolute dissolved concentrations of Ca, Na, Sr, K, Ba, Rb, and U are remarkably low. Surprisingly, high dissolved concentrations are found in the Congo waters for other trace elements (e.g., REEs), especially in the Black rivers. On a world scale, these concentrations are among the highest measured in rivers and are shown to be pH dependent for a number of dissolved trace elements. The dissolved loads are systematically normalized to the suspended loads for each river, in order to remove the variations of the element abundances owing to source rock variations.« less
Barr, Miya N.
2009-01-01
On December 14, 2005, a 680-foot wide section of the upper reservoir embankment of the Taum Sauk pump-storage hydroelectric powerplant located in Reynolds County, Missouri, suddenly failed. This catastrophic event sent approximately 1.5 billion gallons of water into the Johnson's Shut-Ins State Park and into the East Fork Black River, and deposited enormous quantities of rock, soil, and vegetation in the flooded areas. Water-quality data were collected within and below the impacted area to study and document the changes to the riverene system. Data collection included routine, event-based, and continuous surface-water quality monitoring as well as suspended- and streambed-sediment sampling. Surface water-quality samples were collected and analyzed for a suite of physical and chemical constituents including: turbidity; nutrients; major ions such as calcium, magnesium, and potassium; total suspended solids; total dissolved solids; trace metals such as aluminum, iron, and lead; and suspended-sediment concentrations. Suspended-sediment concentrations were used to calculate daily sediment discharge. A peculiar blue-green coloration on the water surface of the East Fork Black River and Black River was evident downstream from the lower reservoir during the first year of the study. It is possible that this phenomenon was the result of 'rock flour' occurring when the upper reservoir embankment was breached, scouring the mountainside and producing extremely fine sediment particles, or from the alum-based flocculent used to reduce turbidity in the lower reservoir. It also was determined that no long-term effects of the reservoir embankment breach are expected as the turbidity and concentrations of trace metals such as total recoverable aluminum, dissolved aluminum, dissolved iron, and suspended-sediment concentration graphically decreased over time. Larger concentrations of these constituents during the beginning of the study also could be a direct result of the alum-based flocculent used in the lower reservoir. Suspended-sediment concentrations and turbidity measurements were largest at the site downstream from the lower reservoir. This is because of the large amounts of debris deposited in the lower reservoir from the breach, which in turn were redeposited into the East Fork Black River during releases. When these constituents were plotted over time, the concentrations decreased and were similar to the other two sites in the study. Trend analyses were studied at one site with historical data. No major trends were discovered for streamflow, turbidity, suspended-sediment concentrations, or suspended-sediment discharges before or after the event. Although long-term effects of the elevated turbidity, major trace metals, and suspended sediments in the study area as a result of the reservoir embankment breach are not expected, there could possibly be other effects not measured during this study that could potentially affect the surface-water quality, such as loss of riparian habitat, changes in biological ecosystems, and large-scale reworking of sediments.
Okogwu, Okechukwu I; Ugwumba, Alex O
2009-01-01
The physicochemical variables and cyanobacteria of Mid-Cross River, Nigeria, were studied in six stations between March 2005 and August 2006 to determine the relationship between water quality and cyanobacteria abundance. Canonical Correspondence Analysis (CCA) showed that biological oxygen demand (BOD), dissolved oxygen, pH, water velocity, width and depth were important environmental factors that influenced cyanobacteria abundance. Trace metals, phosphate and nitrate increased significantly from values of previous studies indicating increased eutrophication of the river but were weakly correlated with cyanobacteria abundance and could be scarcely regarded as regulating factors. A higher cyanobacteria abundance was recorded during the wet season in most of the sampled stations. The dominant cyanobacteria included Microcystis aeruginosa, Aphanizomenon flos-aquae, Oscillatoria limnetica and Anabaena spiroides. The toxins produced by these species could degrade water quality. The factors favouring cyanobacteria abundance were identified as increased pH, width and depth. Increase in cyanobacteria abundance was associated with reduction in dissolved oxygen and increase in BOD values.
NASA Astrophysics Data System (ADS)
Blake, J.; Brown, J. E.; Mast, A.
2017-12-01
Following the release of three million gallons of metals laden surface water from the Gold King Mine in August 2015, surface-water samples were collected in the New Mexico reach of the Animas and San Juan Rivers during 2016 snowmelt and in the Animas River during three 2016 monsoonal storms. These samples were evaluated for dissolved (<0.45 µm) and total (unfiltered) concentrations of trace elements including aluminum, arsenic, iron, lead, and manganese. Dissolved concentrations of aluminum, iron, and lead account for between 0.70 % and 14% of their total metal concentrations; the manganese and arsenic range of dissolved concentrations compared to total concentrations ranges from 1.2%-75%. Concentrations of total aluminum, arsenic, iron, lead, manganese increase during the rising limb of all hydrographs, suggesting a relationship with sediment concentrations, which also increase with increasing streamflow. Aluminum and iron have the highest total concentrations, 63,400 µg/L and 82,500 µg/L, respectively. Lead and arsenic total concentrations range from 0.67 to 65.5 µg/L and 0.6 to 17 µg/L, respectively. Metals such as lead and arsenic are known to adsorb to iron and aluminum particulates. During snowmelt, the relations of total aluminum and iron to total lead and arsenic are positive and linear, while during monsoonal events, the relations are polynomial. These relations may be due to the source of metals during the specific hydrologic event. Relations between discrete water quality data and continuously monitored field parameters such as turbidity and specific conductance can provide insight to changes in concentrations of the river on a finer time scale. Regression models developed for selected sites on the Animas and San Juan Rivers show that flow, turbidity and specific conductance may be useful in understanding the relationship between total metal concentrations and real-time parameters. Surrogates for suspended sediment such as hydroacoustic may also be useful, and potentially the best option in this system, for monitoring the concentration of metals in surface water. Further evaluation of the chemistry of the watershed soils and bedrock, the streambed sediments, and suspended sediments will improve understanding of the geochemical processes in the Animas and San Juan Rivers.
NASA Astrophysics Data System (ADS)
Moore, Eli K.; Hao, Jihua; Prabhu, Anirudh; Zhong, Hao; Jelen, Ben I.; Meyer, Mike; Hazen, Robert M.; Falkowski, Paul G.
2018-03-01
The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, S. Jr.; Livermore, D.; Seitz, M.G.
Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empiricallymore » determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.« less
Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...
Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J.
2016-01-01
The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean–sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer–tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035258
2017-01-01
As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H2O2) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca2+ and Mg2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements. PMID:29240414
Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L
2018-01-02
As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.
Brabets, Timothy P.
2004-01-01
Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.
DeHay, Kelli L.; Andrews, William J.; Sughru, Michael P.
2004-01-01
The Picher mining district of northeastern Ottawa County, Oklahoma, was a major site of mining for lead and zinc ores in the first half of the 20th century. The primary source of lead and zinc were sulfide minerals disseminated in the cherty limestones and dolomites of the Boone Formation of Mississippian age, which comprises the Boone aquifer. Ground water in the aquifer and seeping to surface water in the district has been contaminated by sulfate, iron, lead, zinc, and several other metals. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, investigated hydrology and ground-water quality in the mine workings in the mining district, as part of the process to aid water managers and planners in designing remediation measures that may restore the environmental quality of the district to pre-mining conditions. Most ground-water levels underlying the mining district had similar altitudes, indicating a large degree of hydraulic connection in the mine workings and overlying aquifer materials. Recharge-age dates derived from concentrations of chlorofluorocarbons and other dissolved gases indicated that water in the Boone aquifer may flow slowly from the northeast and southeast portions of the mining district. However, recharge-age dates may have been affected by the types of sites sampled, with more recent recharge-age dates being associated with mine-shafts, which are more prone to atmospheric interactions and surface runoff than the sampled airshafts. Water levels in streams upstream from the confluence of Tar and Lytle Creeks were several feet higher than those in adjacent portions of the Boone aquifer, perhaps due to low-permeability streambed sediments and indicating the streams may be losing water to the aquifer in this area. From just upstream to downstream from the confluence of Tar and Lytle Creeks, surface-water elevations in these streams were less than those in the surrounding Boone aquifer, indicating that seepage from the aquifer to downstream portions of Tar Creek was much more likely. Water properties and major-ion concentrations indicate that water in the mining area was very hard, with large concentrations of dissolved solids that increased from areas of presumed recharge toward areas with older ground water. Most of the ground-water samples, particularly those from the airshafts, had dissolved-oxygen concentrations less than 1.0 milligram per liter. Small concentrations of dissolved oxygen may have been introduced during the sampling process. The small dissolved-oxygen concentrations were associated with samples containing large iron concentrations that indicates possible anoxic conditions in much of the aquifer. Ground water in the mining district was dominated by calcium, magnesium, and sulfate. Sodium concentrations tended to increase relative to calcium and magnesium concentrations. Ground-water samples collected in 2002-03 had large concentrations of many trace elements. Larger concentrations of metals and sulfate occurred in ground water with smaller pHs and dissolved-oxygen concentrations. Iron was the metal with the largest concentrations in the ground-water samples, occurring at concentrations up to 115,000 micrograms per liter. Cadmium, lead, manganese, zinc, and the other analyzed metals occurred in smaller concentrations in ground water than iron. However, larger cadmium concentrations appeared to be associated with sites that have small iron concentrations and more oxygenated waters. This is noteworthy because the small sulfate and iron concentrations in these waters could lead to conclusions that the waters are less contaminated than waters with large sulfate and iron concentrations. Ground-water quality in the mining district was compared with subsets of samples collected in 1983-85 and in 2002. Concentrations of most mine-water indicators such as specific conductance, acidity, magnesium, sulfate, and trace elements concentrations dec
NASA Astrophysics Data System (ADS)
Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.
2017-12-01
Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.
TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS
Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...
The deposition and fate of trace metals in our environment.
Elon S. Verry; Stephen J. Vermette
1992-01-01
This proceedings contains 14 invited papers from Canada and the United States on trace metal emissions, trace metal measurement in precipitation and dry fall, regional deposition, and the fate of trace metals in soils, plants, waters, and fish. A summary paper integrates the major findings of each paper.
NASA Astrophysics Data System (ADS)
Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.
2017-07-01
Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.
Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M
2014-05-01
The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.
2007-01-01
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Parnow, C.C.; Goldfarb, Richard J.; Kelley, Karen D.; York, Geoffrey S.
1999-01-01
The northwestern Seward Peninsula was targeted for detailed geochemical study after evaluation of data collected during the NURE reconnaissance-level program indicated anomalously high arsenic (60-635 ppm) concentrations in stream sediments. The arsenic is associated with tin skarn, greisen, and replacement deposits in the western Seward Peninsula. Surficial sampling of waters and sediments indicate that arsenic is being transported detritally but that solution transport is insignificant. Our new data indicate that sediments downstream from these tin occurrences are characterized by anomalous values of As (85- 530 ppm) and Sn (14-36 ppm), as well as consistent anomalies of Ag, Be, Cu, Sb, and W. Stream sediments collected from drainages underlain by slate, but distal to the exposed tin occurrences, are characterized by background levels of As ( 10-60 ppm), Li (16-80 ppm), Sn (5-14 ppm), and W (5-10 ppm). These background levels for As and Sn are much higher than concentrations in typical slates and suggest a broad, weak hydrothermal alteration during mineral-deposit formation in much of the study area. A consistent pattern of Ca>>Mg>Na>K and generally alkaline pH (7 .2-8.2) characterize waters throughout the study area. Dissolved sulfate concentrations range from 10 to 40 ppm for waters draining slates and from 3 to 20 ppm for water draining carbonates. The waters collected in areas of known tin occurrences in the Potato Mountain area are characterized by increased dissolved sulfate (43-75 ppm) and are generally acidic (pH 4.7-6.5), but most trace metals are at or below detection limits. Dissolved arsenic concentrations in the areas of known tin occurrences are at or below 2 ppb. Our data suggest that detrital arsenic and tin from mineral occurrences may be naturally entering the nearshore marine environment.
The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...
The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...
Fitzpatrick, D.J.; Westerfield, P.W.
1990-01-01
An abandoned barite mine in Hot Spring County, Arkansas, has been selected as the location for a proposed gamma-ray and neutrino detector site. As part of the hydrologic evaluation of the site, the U.S. Geological Survey in cooperation with the Arkansas Geological Commission collected hydrologic data at selected locations in the vicinity of the abandoned barite mine. Data collected as part of the project included water quality, pond-evaluation, and precipitation data within the abandoned barite mine and flow and water quality data at selected sites in the vicinity of the mine. Water quality samples from within the abandoned mine were collected at three locations in the pond at selected depths. These data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, major ions, and trace metals. Major ion and trace-metal samples were collected at six stream sites, one lake site, and two wastewater pond sites. Pond elevation and precipitation data from within the abandoned barite mine were measured during the period between July 1, 1988 and June 30, 1989. Twevle discharge measurements during the period between June 21, 1988, and June 26, 1989, were collected at six sites in the vicinity of the abandoned barite mine. (USGS)
NASA Astrophysics Data System (ADS)
Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.
2017-08-01
Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (<0.22 μm) Al and Fe concentration was observed in the boreal stream. A number of low-soluble TE linked to Fe-rich organo-mineral colloids followed the behavior of Fe during bog water exposure to sunlight: Al, P, Ti, V, Cr, As, Y, Zr, REEs, Hf, Th, Pb and U. The second group of elements (Li, B, Mg, Ca, Sr, Ba, Na, K, Rb, Si, Mn, Ni, Cu, Co, Cd, Sb) was indifferent to photodegradation of DOM and exhibited a non-systematic variation (±10-15% from the control) of <0.22 μm fraction in the course of sunlight exposure. The bog water insolation yielded a factor of 3 ± 1 increase of low molecular weight (LMW < 1 kDa) fraction of organic carbon, Al, Fe, U, Mg, Ca, Mn, Co, Ni, Sr, Cd and Ba after 200 h of sunlight exposure compared to the dark control. The LMW< 1 kDa fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.
Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei
2007-03-21
A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.
Parker, Stephen R.; Poulson, Simon R.; Gammons, Christopher H.; DeGrandpre, Michael D.
2005-01-01
Rivers with high biological productivity typically show substantial increases in pH and dissolved oxygen (DO) concentration during the day and decreases at night, in response to changes in the relative rates of aquatic photosynthesis and respiration. These changes, coupled with temperature variations, may impart diel (24-h) fluctuations in the concentration of trace metals, nutrients, and other chemical species. A better understanding of diel processes in rivers is needed and will lead to improved methods of data collection for both monitoring and research purposes. Previous studies have used stable isotopes of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) as tracers of geochemical and biological processes in streams, lakes, and marine systems. Although seasonal variation in δ18O of DO in rivers and lakes has been documented, no study has investigated diel changes in this parameter. Here, we demonstrate large (up to 13‰) cycles in δ18O-DO for two late summer sampling periods in the Big Hole River of southwest Montana and illustrate that these changes are correlated to variations in the DO concentration, the C-isotopic composition of DIC, and the primary productivity of the system. The magnitude of the diel cycle in δ18O-DO was greater in August versus September because of the longer photoperiod and warmer water temperatures. This study provides another biogeochemical tool for investigating the O2 and C budgets in rivers and may also be applicable to lake and groundwater systems.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-04-01
The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that there are large differences between different species. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions. Following the laboratory experiment results, elevated trace metal conditions in the past oceans could have caused at least part of the observed morphological changes detected during some Mesozoic OAEs.
Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.
Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.
2001-01-01
Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi
METHOD OF DISSOLVING URANIUM METAL
Slotin, L.A.
1958-02-18
This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.
Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.
NASA Astrophysics Data System (ADS)
Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.
2012-04-01
Recent years have seen a growing awareness of the wider environmental significance of the sediment loads transported by rivers and streams. This includes the importance of suspended sediment in transporting heavy metals and the potential for these trace elements to be desorbed from the particles to the solution. That threaten the water quality and can cause severe impacts in downstream areas like wetlands and floodplains. Contemporary data on the sediment loads of rivers provide clear evidence of significant recent changes in the sediment fluxes and of several rivers in response to human activities. For instance, Trace elements (including heavy metals) that are currently considered to be undisturbed by human activities and used as tracers of continental crust derived material have become more and more involved in industrial processes. Mathematical models validated by in situ experimentations are the only available tool to predict the consequences of natural as well as man-induced environmental changes and impacts on sediment dynamics. They are approximate representations of complex natural systems and the evaluation of a model with respect to its ability to reproduce multiple criteria and behaviour of a real system is still problematic. Interactions between modellers and experimentalists improve significantly the interpretation of the modelling output and led to formulate more realistic assumptions on the behaviour of natural systems. The geochemical information, which appeared to be non-correlated with the hydrological standard parameters, provides new information and contributes to give an "orthogonal view" on the hydrologic system behaviour. Regarding the recent development in geochemical tracer applications in models, the multi-tracer approach (natural vs anthropogenic; elemental concentration-isotopic signature-radionuclide activity) may be a necessity to decrease significantly the uncertainties in sediment transport modelling. The objective of this study is to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.
Pham, Anh Le-Tuan; Johnson, Carol; Manley, Devon; Hsu-Kim, Heileen
2015-11-03
Diffusive gradient in thin-film (DGT) passive samplers are frequently used to monitor the concentrations of metals such as mercury and zinc in sediments and other aquatic environments. The application of these samplers generally presumes that they quantify only the dissolved fraction and not particle-bound metal species that are too large to migrate into the sampler. However, metals associated with very small nanoparticles (smaller than the pore size of DGT samplers) can be abundant in certain environments, yet the implications of these nanoparticles for DGT measurements are unclear. The objective of this study was to determine how the performance of the DGT sampler is affected by the presence of nanoparticulate species of Hg and Zn. DGT samplers were exposed to solutions containing known amounts of dissolved Hg(II) and nanoparticulate HgS (or dissolved Zn(II) and nanoparticulate ZnS). The amounts of Hg and Zn accumulated onto the DGT samplers were quantified over hours to days, and the rates of diffusion of the dissolved metal (i.e., the effective diffusion coefficient D) into the sampler's diffusion layer were calculated and compared for solutions containing varying concentrations of nanoparticles. The results suggested that the nanoparticles deposited on the surface of the samplers might have acted as sorbents, slowing the migration of the dissolved species into the samplers. The consequence was that the DGT sampler data underestimated the dissolved metal concentration in the solution. In addition, X-ray absorption spectroscopy was employed to determine the speciation of the Hg accumulated on the sampler binding layer, and the results indicated that HgS nanoparticles did not appear to directly contribute to the DGT measurement. Overall, our findings suggest that the deployment of DGT samplers in settings where nanoparticles are relevant (e.g., sediments) may result in DGT data that incorrectly estimated the dissolved metal concentrations. Models for metal uptake into the sampler may need to be reconsidered.
Influence of organic matter on trace metal flux in coastal sediments. [Sequim Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, R.L.; Gibson, C.I.
1978-05-15
These studies indicate that organic matter in coastal sediment constitutes a primary sink for trace metals, both at natural and amended levels. Organic substances are also involved in controlling the mobility and flux of trace metals from sediments. Further, organically-bound trace metals in sediments appear to be an important source to deposit-feeding organisms.
Kuwabara, James S.; Topping, Brent R.; Parcheso, Francis; Engelstad, Anita C.; Greene, Valerie E.
2009-01-01
Two sets of sampling trips were coordinated in late summer 2008 (weeks of July 8 and August 6) to sample the interstitial and overlying bottom waters at 10 shallow locations (9 sites <3 meters in depth) within the northern component of the San Francisco Bay/Delta (herein referred to as North Bay). The work was performed to better understand sources of biologically reactive solutes (namely, dissolved macronutrients and trace metals) that may affect the base of the food web in this part of the estuary. A nonmetallic pore-water profiler was used to obtain the first centimeter-scale estimates of the vertical solute-concentration gradients for diffusive-flux determinations. This study, performed in collaboration with scientists from San Francisco State University?s Romberg Tiburon Center for Environmental Studies, provides information to assist in developing and refining management strategies for the Bay/Delta system and supports efforts to monitor changes in food-web structure associated with regional habitat modifications directed by the California Bay-Delta Authority. On July 7, 2008, and August 5, 2008, pore-water profilers were successfully deployed at six North Bay sites per trip to measure the concentration gradient of dissolved macronutrients and trace metals near the sediment-water interface. Only two of the sites (433 and SSB009 within Honker Bay) were sampled in both series of profiler deployments. At each sampling site, profilers were deployed in triplicate, while discrete samples and dataloggers were used to collect ancillary data from both the water column and benthos to help interpret diffusive-flux measurements. Benthic flux of dissolved (0.2-micron filtered) inorganic phosphate (that is, soluble reactive phosphorus (SRP)) ranged from negligible levels (-0.003?0.005 millimole per square meter per day (mmole m-2d-1) at Site 4.1 outside Honker Bay) to 0.060?0.006 mmole m-2d-1 near the northern coast of Brown?s Island. Except for the elevated flux at Browns Island, the benthic flux of soluble reactive phosphorus (SRP) was consistently: (1) lower than previously reported for South Bay sites, (2) an order of magnitude lower than oligotrophic Coeur d?Alene Lake, (3) two orders of magnitude lower than determined for eutrophic Upper Klamath Lake, and (4) an order of magnitude or more lower than the estimated summer riverine inputs for SRP (900 to 1,300 kilograms of phosphorous per day (kg-P d-1)). In contrast to fluxes reported for the South Bay, nitrate fluxes were consistently negative (that is, drawn from the water column into the sediment), except for one site with statistically insignificant nitrate fluxes (Site 409 within Suisun Bay). The most negative nitrate flux (-7.3?0.1 mmole m-2d-1) was observed within Grizzly Bay (Site 416). Observed nitrate fluxes bracketed the estimated summer fluvial flux of nitrate (3,500 to 5,000 kg-N d-1). With the exception of the two Grizzly Bay sites (416 and 417), the consistently positive benthic flux of ammonia generally counteracted the negative flux of nitrate to yield a net balance of dissolved inorganic nitrogen. Ammonia benthic fluxes extrapolated for Suisun Bay ranged from 320 kg-N d-1 (Site SSB009 near the entrance to Honker Bay) to 1,900 kg-N d-1 (Montezuma Island). These values represent a significant ammonia source to the water column relative to summer riverine inputs (approximately 400 to 600 kg-N d-1). Dissolved silica also displayed a consistently positive benthic flux, except for Site 409 within Suisun Bay, which showed insignificant fluxes (also insignificant for nitrate and SRP). As with the nitrate fluxes, Grizzly Bay and Browns Island sites yielded the highest dissolved silica fluxes (1.3?1.2 to 2.5?0.6 mmole m-2d-1, respectively). These initial diffusive-flux estimates are greater than those measured in the South Bay using core-incubation experiments, which include bioturbation and bioirrigation effects, but they are nevertheless probably one to t
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, M.; Jaffar, M.
1988-07-01
The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron,more » copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.« less
Vukosav, Petra; Mlakar, Marina; Cukrov, Neven; Kwokal, Zeljko; Pižeta, Ivanka; Pavlus, Natalija; Spoljarić, Ivanka; Vurnek, Maja; Brozinčević, Andrijana; Omanović, Dario
2014-03-01
An evaluation of the quality status of the pristine karst, tufa depositing aquatic environment of the Plitvice Lakes National Park based on the analysis of heavy (ecotoxic) metals was examined for the first time. Analyses of trace metals in water, sediment and fish (Salmo trutta, Oncorhynchus mykiss, Squalius cephalus) samples were conducted either by stripping voltammetry (Zn, Cd, Pb and Cu) or cold vapour atomic absorption spectrometry (Hg). The concentration of dissolved trace metals in water was very low revealing a pristine aquatic environment (averages were, in ng/L: 258 (Zn), 10.9 (Cd), 11.7 (Pb), 115 (Cu) and 1.22 (Hg)). Slightly enhanced concentrations of Cd (up to 50 ng/L) and Zn (up to 900 ng/L) were found in two main water springs and are considered as of natural origin. Observed downstream decrease in concentration of Cd, Zn and Cu in both water and sediments is a consequence of the self-purification process governed by the formation and settling of authigenic calcite. Anthropogenic pressure was spotted only in the Kozjak Lake: Hg concentrations in sediments were found to be up to four times higher than the baseline value, while at two locations, Pb concentrations exceeded even a probable effect concentration. The increase of Hg and Pb was not reflected on their levels in the fish tissues; however, significant correlations were found between Cd level in fish tissues (liver and muscle) and in the water/sediment compartments, while only partial correlations were estimated for Zn and Cu. A high discrepancy between values of potentially bioavailable metal fraction estimated by different modelling programs/models raised the question about the usefulness of these data as a parameter in understanding/relating the metal uptake and their levels in aquatic organism. The aquatic environment of the Plitvice Lakes National Park is characterized, in general, as a clean ecosystem.
Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea
NASA Astrophysics Data System (ADS)
Fowler, S. W.; Huynh-Ngoc, L.; Fukai, R.
Concentrations of chemical species of selected heavy metals (Cu, Zn, Cd, Hg and Pb) were determined in surface waters from a series of coastal sites in Bahrain, United Arab Emirates (UAE) and the Sultanate of Oman. Analyses were carried out on bulk sea water samples as well as on suspended particulates by anodic stripping voltammetry. Heavy metal concentrations were relatively low with the exception of some "hot spots" which occurred in the vicinity of industrial and port activities. Average copper levels along the coast of UAE were generally higher than those measured in sea water from either Bahrain of Oman. Waters from the more populated and industrialised northwest coast of Oman were found to contain approximately 3 to 4-fold higher Cd and Zn (pH 4-4.5) concentrations than those from the southern coast, an undeveloped region adjacent to the more open waters of the Arabian Sea. Possible reasons for the observed regional variations in trace metal concentrations in Oman are discussed in terms of natural and anthropogenic input sources. Average concentrations in the Gulf (inside the Strait of Hormuz) were 510 ng 1 -1 (Cu), 340 ng 1 -1 (Zn), 20 ng 1 -1 (Cd), 16 ng 1 -1 (Hg) and 76 ng 1 -1 (Pb); in the western Arabian Sea along the coast of Oman concentrations averaged 290 ng 1 -1 (Cu), 180 ng 1 -1 (Zn), 37 ng 1 -1 (Cd), 11 ng 1 -1 (Hg) and 80 ng 1 -1 (Pb). Ranges of concentrations for these metals in Gulf and western Arabian Sea waters approach those which have been reported for open surface waters of the Atlantic, Pacific, Indian Oceans and the Mediterranean Sea indicating that, in general, the coastal waters of this region are not impacted by metal pollution and that the existing natural levels can be used as a point of reference for future pollutant studies.
Magnesium transport extraction of transuranium elements from LWR fuel
Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.
Reclaiming metallic material from an article comprising a non-metallic friable substrate
Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle
2000-01-01
A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.
Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T
2013-10-01
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.
Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.
Garmo, Oyvind A; Davison, William; Zhang, Hao
2008-08-01
Equilibrium partitioning of trace metals between bulk solution and hydrogels/filter was studied. Under some conditions, trace metal concentrations were higher in the hydrogels or filter membranes compared to bulk solution (enrichment). In synthetic soft water, enrichment of cationic trace metals in polyacrylamide hydrogels decreased with increasing trace metal concentration. Enrichment was little affected by Ca and Mg in the concentration range typically encountered in natural freshwaters, indicating high affinity but low capacity binding of trace metals to solid structure in polyacrylamide gels. The apparent binding strength decreased in the sequence: Cu > Pb > Ni approximately to Cd approximately to Co and a low concentration of cationic Cu eliminated enrichment of weakly binding trace metal cations. The polyacrylamide gels also had an affinity for fulvic acid and/or its trace metal complexes. Enrichment of cationic Cd in agarose gel and hydrophilic polyethersulfone filter was independent of concentration (10 nM to 5 microM) but decreased with increasing Ca/ Mg concentration and ionic strength, suggesting that it is mainly due to electrostatic interactions. However, Cu and Pb were enriched even after equilibration in seawater, indicating that these metals additionally bind to sites within the agarose gel and filter. Compared to the polyacrylamide gels, agarose gel had a lower affinity for metal-fulvic complexes. Potential biases in measurements made with the diffusive equilibration in thin-films (DET) technique, identified by this work, are discussed.
Geochemical study of stream waters affected by mining activities in the SE Spain
NASA Astrophysics Data System (ADS)
Garcia-Lorenzo, Maria Luz; Perez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Bech, Jaime
2015-04-01
Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. According to transport process, three types of pollution could be established: a) Primary contamination, formed by residues placed close to the contamination sources; b) Secondary contamination, produced as a result of transport out of its production areas; c) Tertiary contamination. The aim of this work was to study trace element in water samples affected by mining activities and to apply the MINTEQ model for calculating aqueous geochemical equilibria. The studied area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. As a result, a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues are present. For this study, 36 surficial water samples were collected after a rain episode in 4 different areas. In these samples, the trace element content was determined by by flame atomic absorption spectrometry (Fe and Zn), electrothermal atomization atomic absorption spectrometry (Pb and Cd), atomic fluorescence spectrometry (As) and ICP-MS for Al. MINTEQA2 is a geochemical equilibrium speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting and was applied to collected waters. Zone A: A5 is strongly influenced by tailing dumps and showed high trace element content. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH. The MINTEQ model application suggested that Zn and Cd could precipitate as carbonate (hidrocincite, smithsonite and otavite). A9 also showed acid pH and high trace element content; is influenced by tailing dumps and also by waters from gully watercourses, transporting materials from Sierra Minera. The MINTEQ simulation showed that Pb and Ca could precipitate as sulphates (anglesite and gypsum). Waters affected by secondary contamination have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The MINTEQ model results showed that in A10 and A14, Al could precipitate as diaspore but also carbonates could be formed, particularly dolomite. These model in A12 sample showed that soluble Zn could precipitate as carbonate and Al as oxyhydroxide, similarly than in A13. A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. The speciation model showed that in A2, Cd and Zn could precipitate as carbonates while Al as oxihydroxide. In A6, the model suggested that soluble Pb could precipitate as carbonate (hidrocerusite and cerusite) or as hydroxide; Al as diaspore, Ca as calcite and Fe as hematite. Zone B: All waters are strongly affected by mining activities and showed acid pH, high trace element content and high content of soluble sulphates. The MINTEQ results showed that in B8, Fe could precipitate as hydroxychloride and in B12 could form alunite. In B9, B10, B13 y B14, the model estimates the precipitation of anglesite, gypsum and Fe hydroxichloride (B9 and B10), diaspore in B13 and B14, and gypsum and Fe hydroxychloride in B13. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As, Zn and Cd. In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. In all samples, except C2, the MINTEQ model showed that a lot of efflorescences could be formed, mainly sulphates. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. MINTEQ model results showed that elements could precipitate as jarosite but also anglesite in D8 and gypsum in D9, D11 and D12. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements. The MINTEQ model suggested that Al could precipitate as diaspore, gibbsite and alunite. The applied model is an appropriate tool for the analysis of waters affected by mining activities. The obtained simulations confirm natural attenuation processes.
Fate of Trace Metals in Anaerobic Digestion.
Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L
2015-01-01
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
Temporal changes of 210Po in temperate coastal waters.
Wildgust, M A; McDonald, P; White, K N
1998-06-18
The temporal variation of Polonium-210 (210Po) was examined in coastal sea water, the mussel Mytilus edulis, the winkle Littorina littorea and green alga Ulva lactuca in order to investigate the entry of 210Po into the marine food chain. More than 99% of 210Po in the water column occurred in the particulate phase. Dissolved 210Po concentrations peaked during the spring phytoplankton bloom and it is suggested this is related to preferential scavenging of 210Po by the increased numbers of bacteria, viruses and small dissolved particulates. Changes in L. littorea 210Po specific activity are thought not to be related to food, but to a drop in body weight following spawning. Much of the 210Po accumulated by M. edulis was located in the digestive gland. The specific activity of 210Po in the digestive gland of M. edulis was shown to be strongly correlated with changes in sea water suspended particulate specific activity. Examination of other trace metal (Ag, Al, As, Ca, Cd, Cr, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Sb, Se, Sn and Zn) variations in the digestive gland revealed that class B and borderline metals had a strong positive correlation with 210Po. On-going work is investigating whether the accumulation and loss of 210Po is affected by the presence of metallothioneins.
Lind, Carol J.; Hem, J.D.
1993-01-01
The Pinal creek drainage basin in Arizona is a good example of the principal non-coal source of mining-related acid drainage in the U.S.A., namely copper mining. Infiltration of drainage waters from mining and ore refining has created an acid groundwater plume that has reacted with calcite during passage through the alluvium, thereby becoming less acid. Where O2 is present and the water is partially neutralized, iron oxides have precipitated and, farther downstream where the pH of the stream water is near neutral, high-Mn crusts have developed. Trace metal composition of several phases in the Pinal Creek drainage basin illustrates the changes caused by mining activities and the significant control Mn-crusts and iron oxide deposits exert on the distribution and concentration of trace metals. The phases and locales considered are the dissolved phase of Webster Lake, a former acid waste disposal pond; selected sections of cores drilled in the alluvium within the intermittent reach of Pinal Creek; and the dissolved phase, suspended sediments, and streambed deposits at specified locales along the perennial reach of Pinal creek. In the perennial reach of Pinal Creek, manganese oxides precipitate from the streamflow as non-cemented particulates and coatings of streambed material and as cemented black crusts. Chemical and X-ray diffraction analyses indicate that the non-cemented manganese oxides precipitate in the reaction sequence observed in previous laboratory experiments using simpler solution composition, Mn3O4 to MnOOH to an oxide of higher oxidation number usually <4.0, i.e. Na-birnessite, and that the black cemented crusts contain (Ca,Mn,Mg)CO3 and a 7-A?? phyllomanganate mixture of rancieite ((Ca,Mn)Mn4O9 ?? (3H2O)) and takanelite ((Mn,Ca)Mn4O9 ?? (3H2O)). In the laboratory, aerating and increasing the pH of Pinal Creek water to 9.00 precipitated (Ca,Mn,Mg)CO3 from an anoxic groundwater that contained CO2 HCO3, and precipitated Mn3O4 and subsequently MnOOH from an oxic surface water from which most of the dissolved CO2 had been removed. It is suggested that the black cemented crusts form by precipitation of Fe on the Mn-enriched carbonates, creating a site for the MnFe oxidation cycle and thus encouraging the conversion of the carbonates to 7-A?? physllomanganates. The non-magnetic <63-??m size-fractions of the black cemented crusts consisted mostly of the manganese-calcium oxides but also contained about 20% (Ca,Mn,Mg)CO3, 5% Fe (calculated as FeOOH), 2-4% exchangeable cations, and trace amounts of several silicates. ?? 1992.
NASA Astrophysics Data System (ADS)
Swarzenski, P.; Orem, B.; McPherson, B.; Baskaran, M.; Wan, Y.
2005-05-01
The distributions of dissolved organic carbon (DOC), silica, select trace elements (Mn, Fe, Ba, Sr, Co, V,) and a suite of naturally-occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra, 238U) were studied during high and low discharge conditions in the Loxahatchee River estuary, Florida. The zero-salinity endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface-water discharge. During low discharge conditions, with the notable exception of Co, trace metals indicate nearly conservative mixing from a salinity of ~12 through the estuary (This statement contracdicts with what is said in p. 7). In contrast, of the trace metals studied, only Sr, Fe, U and V exhibited conservative estuarine mixing during high discharge. Dissolved organic carbon and Si concentrations were highest at zero salinities, and generally decreased with an increase in salinity during both discharge regimes, indicating removal of land-derived dissolved organic matter and silica in the estuary. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L-1) close of zero salinity, and increased several-fold (~18 mg L-1; low discharge) towards the seaward endmember and this attributed dynamic resuspension the estuary. Surface water-column 222Rn activities were most elevated (> 28 dpm L-1) at the freshwater endmember of the estuary, and appear to identify regions of the river most influenced by active submarine groundwater discharge (where is the data that show this?). Activities of four naturally-occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells indicate mean estuarine water mass residence times of less than 1 day; values in close agreement to those calculated by tidal prism and tidal period. A radium-based model for estimating submarine groundwater discharge to the Loxahatchee River estuary yielded an average of 1.03 V 3.84 x 105 m3 day-1, depending on river discharge stage as well as slight variations in the particular Ra models used. Such calculated flux estimates are in close agreement with results obtained from a 2-day electromagnetic seepage meter (0.9 x 105 m3 d-1) deployment during high discharge at the confluence of Kitching Creek and the Loxahatchee River, as well as with surficial aquifer recharge estimates. Calculated submarine ground-water discharge rates yield NH4+ and PO4-3 flux estimates to the Loxahatchee River estuary that range from 63 - 1060 ?Ymol m-2 d-1 and 69 - 379 ?Ymol m-2 d-1, respectively.
NASA Astrophysics Data System (ADS)
Trenouth, William R.; Gharabaghi, Bahram
2015-10-01
Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).
Extraction of trace metals from fly ash
Blander, M.; Wai, C.M.; Nagy, Z.
1983-08-15
A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Extraction of trace metals from fly ash
Blander, Milton; Wai, Chien M.; Nagy, Zoltan
1984-01-01
A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean.
Krachler, Regina; Krachler, Rudolf F; von der Kammer, Frank; Süphandag, Altan; Jirsa, Franz; Ayromlou, Shahram; Hofmann, Thilo; Keppler, Bernhard K
2010-05-01
Peat bogs have the ability to produce strong chelate ligands (humic and fulvic acids) which enhance the weathering rates of iron-silicate minerals and greatly increase the solubility of the essential trace metal iron in river water. Fluvial networks link peat bogs with the ocean, and thus terrestrial-derived fulvic-iron complexes fuel the ocean's biological productivity and biological carbon pump, but understanding this role is constrained by inconsistent observations regarding the behaviour of riverine iron in the estuarine mixing zone, where precipitation reactions remove iron from the water column. We applied a characterization of the colloidal iron carriers in peatland-draining rivers in North Scotland, using field-flow fractionation (FFF), in combination with end-member mixing experiments of river water sampled near the river mouth and coastal seawater using a (59)Fe radiotracer method. According to our results, the investigated river contributed "truly dissolved" Fe concentrations of about 3300nmolL(-1) to the ocean which is nearly two orders of magnitude higher than the dissolved iron contribution of the "average world" river ( approximately 40nmolL(-1)). Thus we conclude that peatland-draining rivers are important sources of dissolved iron to the ocean margins. We propose highly electrostatic and sterical stabilized iron-organic matter complexes in the size range of <2kDa to be responsible for iron transport across the estuarine mixing zone. Copyright 2010 Elsevier B.V. All rights reserved.
Zhu, Zongmin; Xue, Junhui; Deng, Yuzhen; Chen, Lin; Liu, Jiangfeng
2016-04-15
Based on geochemical and magnetic approaches, the distribution, sources, and health risk of trace metals in surface sediments from a seashore tourist city were investigated. A significant correlation was found between magnetic susceptibility (χ) and trace metals, which suggested that levels of trace metals in the sediments can be effectively depicted by the magnetic approach. The spatial distribution of χ and trace metals matched well with the city layout with relatively higher values being found in the port and busy tourist areas. This result, together with enrichment factors (EFs) and Tomlinson pollution load index (PLI) of metals, suggested that the influence of human activities on the coastal environment was noticeable. Principal component analysis (PCA) indicated that trace metals in the sediments were derived from both anthropogenic and natural sources. Noncarcinogenic risk assessment showed that there was no potential health risk of exposure to metals by means of ingestion or inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of geochemical stressors on shallow groundwater quality
An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.
2005-01-01
Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.
Methods of deoxygenating metals having oxygen dissolved therein in a solid solution
Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang
2017-06-06
A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.
Al-Wabel, Mohammad I; Sallam, Abd El-Azeem S; Usman, Adel R A; Ahmad, Mahtab; El-Naggar, Ahmed Hamdy; El-Saeid, Mohammed Hamza; Al-Faraj, Abdulelah; El-Enazi, Khaled; Al-Romian, Fahad A
2017-06-01
The present study was conducted in one of the most densely cultivated area of Al-Qassim region in Kingdom of Saudi Arabia to (i) monitor trace metal (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contents in surface and subsurface soils, (ii) assess the pollution and potential ecological risk levels of trace metals, and (iii) identify trace metal sources using enrichment factor (EF), correlation matrix, and principal component analysis (PCA). The pollution levels of the analyzed trace metals calculated by the geoaccumulation index (I geo ) and contamination factor (C f ) suggested that the soils were highly contaminated with Cd and moderately contaminated with Pb. Based on the average values of EF, soil samples were found to present extremely high enrichment for Cd, significant enrichment for Pb, moderate enrichment for Zn, and deficient to minimal enrichment for other trace metals. Among the analyzed trace metals, a very high ecological risk was observed only in the case of Cd at some sampling sites. Meanwhile, other investigated trace metals had a low ecological risk. The results of PCA combined with correlation matrix suggested that Fe, Mn, Zn, Cu, Cr Ni, Cu, and Co represent natural abundance in soil, but Cd, Pb, and Cu are of anthropogenic inputs, mainly due to agrochemical and fertilizer applications. It could be generally concluded that the obtained results can be useful for assessing and conducting a future program for trace metal monitoring in agricultural areas of Saudi Arabia.
Verstraeten, Ingrid M.; Ellis, M.J.
1995-01-01
A reconnaissance of ground-water quality was conducted in the Papio-Missouri River Natural Resources District of eastern Nebraska. Sixty-one irrigation, municipal, domestic, and industrial wells completed in the principal aquifers--the unconfined Elkhorn, Missouri, and Platte River Valley alluvial aquifers, the upland area alluvial aquifers, and the Dakota aquifer--were selected for water-quality sampling during July, August, and September 1992. Analyses of water samples from the wells included determination of dissolved nitrate as nitrogen and triazine and acetanilide herbicides. Waterquality analyses of a subset of 42 water samples included dissolved solids, major ions, metals, trace elements, and radionuclides. Concentrations of dissolved nitrate as nitrogen in water samples from 2 of 13 wells completed in the upland area alluvial aquifers exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Thirty-nine percent of the dissolved nitrate-as-nitrogen concentrations were less than the detection level of 0.05 milligram per liter. The largest median dissolved nitrate-as-nitrogen concentrations were in water from the upland area alluvial aquifers and the Dakota aquifer. Water from all principal aquifers, except the Dakota aquifer, had detectable concentrations of herbicides. Herbicides detected included alachlor (1 detection), atrazine (13 detections), cyanazine (5 detections), deisopropylatrazine (6 detections), deethylatrazine (9 detections), metolachlor (6 detections), metribuzin (1 detection), prometon (6 detections), and simazine (2 detections). Herbicide concentrations did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water. In areas where the hydraulic gradient favors loss of surface water to ground water, the detection of herbicides in water from wells along the banks of the Platte River indicates that the river could act as a line source of herbicides. Water from the alluvial and bedrock aquifers generally was a calcium bicarbonate type and was hard. Two of nine water samples collected from the Dakota aquifer contained calcium sulfate type water. Results of analyses of 42 groundwater samples for major ions, metals, trace elements, and radionuclide constituents indicated that statistically at least one principal aquifer had significant differences in its water chemistry. In general, the water chemistry of the Dakota aquifer was similar to the water chemistry of the upland area alluvial aquifers in areas where there was a hydraulic connection. The water from the Dakota aquifer had large dissolved-solids, calcium, sulfate, chloride, iron, lithium, manganese, and strontium concentrations in areas where the aquifer is thought not to be in hydraulic connection with the Missouri River Valley and upland area alluvial aquifers. Ground-water quality in the Papio-MissouriRiver Natural Resources District is generally suitable for most uses. However, the numerous occurrences of herbicides in water of the Elkhorn and Platte River Valley alluvial aquifers, especially near the Platte River, are of concern because U.S. Environmental Protection Agency Maximum Contaminant Levels could be exceeded. Concentrations in three of nine water samples collected from wells completed in the Dakota aquifer exceeded the U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for gross alpha activity, radon-222 activity, dissolved solids, sulfate, or iron. Also of concern are the exceedances of the U.S Environmental Protection Agency proposed Maximum Contaminant Level for radon-222 activity.
NASA Astrophysics Data System (ADS)
Lipka, Marko; Schneider, Jonas; Schmiedinger, Iris; Westphal, Julia; Escher, Peter; Sültenfuß, Jürgen; Dellwig, Olaf; Winde, Vera; Böttcher, Michael E.
2017-04-01
Submarine ground water discharge (SGD) into coastal ecosystems is perceived as an important source of fresh water and solutes (nutrients, metabolites, trace elements) in marine biogeochemical cycles. Less is known about its significance for the German coastal zone. We present here the results of hydrogeochemical and stable isotope geochemical studies in an area that is affected by SGD into the southern Baltic Sea. Anoxic groundwaters emerging as springs at the shore zone of the southern Baltic Sea are windows into the composition of subterrestrial ground water composition. They were investigated on a seasonal base for about five years. Water samples were analyzed for the concentrations of major and trace elements, pH, and the stable isotope ratios of water, DIC and sulfate. Newly formed precipitates in the stream bed were characterized via SEM-EDX and the stable isotope composition, as well as chemically extracted for the determination of the solid composition. The springs emerge in small pits yielding discharges of about 10 l/min each. Surrounding sediments are sandy with gravels found at depth and corresponding high permeabilities. The positions of different springs on the shore zone were geostationary during the investigation period while their shape varied due to wind- and wave action. The 2H and 18O contents of the spring waters indicate the ground water to originate from relatively young mixed meteoric waters. Dating by means of tritium and noble gases (3H, 3He, 4He, Ne) yields an age of the spring waters of about 25-32 years, with different mixing proportions of tritium-free waters. The springs are hydrogeochemically characterized by dissolved Ca, Mg, Na, bicarbonate, and sulfate, mainly reflecting the water-rock interaction with aquifer material in the recharge area. The isotope signature of DIC indicates the uptake of biogenic CO2 in the soil zone followed by the dissolution of carbonate minerals in the soil/ aquifer system. The oxygen-free ground water is rich in dissolved iron (Fe) and phosphorous (P). Iron(oxyhydr)oxide precipitates in the stream beds acting as a sink for dissolved PO4 and minor Ca. The investigation reveals that the surface precipitation on the beach leads to the formation of submarine groundwater discharge essentially free of dissolved Fe and PO4. The formation of Fe-phases in the subterranean estuary is supposed at depth influencing the release of nutrients and metals into the coastal ecosystem. Before the water passes to underground drainage into a subterranean mixing zone with brackish Baltic Sea waters, the above ground draining streams degas carbon dioxide and take up oxygen in contact with the atmosphere. Iron(oxyhydr)oxide precipitates in the stream beds acting as a sink for dissolved phosphate. Residues of Fe- oxidizing bacteria were found in the stream bed rust indicating an involvement of microbes to catalyze the dissolved Fe removal. The investigation reveals that the surface precipitation on the beach leads to the formation of submarine groundwater discharge essentially free of dissolved iron and phosphate. The formation of Fe-phases in the subterranean estuary is also supposed to take place at depth thereby influencing the release of nutrients and metals into the Baltic Sea coastal ecosystem. This work was supported by the BONUS+ project AMBER, the Leibniz IOW and the Graduiertenkolleg BALTIC TRANSCOAST.
Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength
NASA Astrophysics Data System (ADS)
Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.
2015-05-01
Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation that ferromanganese sediments are enriched in heavier isotopes of Zn relative to deep seawater. This represents a step towards building a robust mass balance model for Zn isotopes in the oceans and potentially using Zn isotopes to trace biogeochemical cycling of this important element in the modern and ancient oceans.
Zhang, Wanli; Zhang, Lei; Li, Aimin
2015-11-01
This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...
Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea
NASA Astrophysics Data System (ADS)
Chen, Ying; Paytan, Adina; Chase, Zanna; Measures, Christopher; Beck, Aaron J.; SañUdo-Wilhelmy, Sergio A.; Post, Anton F.
2008-03-01
We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m-3) are about 2-3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5-37 years while Cd and V residence times are longer.
Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.
1994-01-01
A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.
Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin
2016-12-01
The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Stolpe, Björn; Guo, Laodong; Shiller, Alan M.; Aiken, George R.
2013-03-01
Water samples were collected from six small rivers in the Yukon River basin in central Alaska to examine the role of colloids and organic matter in the transport of trace elements in Northern high latitude watersheds influenced by permafrost. Concentrations of dissolved organic carbon (DOC), selected elements (Al, Si, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Ba, Pb, U), and UV-absorbance spectra were measured in 0.45 μm filtered samples. 'Nanocolloidal size distributions' (0.5-40 nm, hydrodynamic diameter) of humic-type and chromophoric dissolved organic matter (CDOM), Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS. Total dissolved and nanocolloidal concentrations of the elements varied considerably between the rivers and between spring flood and late summer base flow. Data on specific UV-absorbance (SUVA), spectral slopes, and the nanocolloidal fraction of the UV-absorbance indicated a decrease in aromaticity and size of CDOM from spring flood to late summer. The nanocolloidal size distributions indicated the presence of different 'components' of nanocolloids. 'Fulvic-rich nanocolloids' had a hydrodynamic diameter of 0.5-3 nm throughout the sampling season; 'organic/iron-rich nanocolloids' occurred in the <8 nm size range during the spring flood; whereas 'iron-rich nanocolloids' formed a discrete 4-40 nm components during summer base flow. Mn, Co, Ni, Cu and Zn were distributed between the nanocolloid components depending on the stability constant of the metal (+II)-organic complexes, while stronger association of Cr to the iron-rich nanocolloids was attributed to the higher oxidation states of Cr (+III or +IV). Changes in total dissolved element concentrations, size and composition of CDOM, and occurrence and size of organic/iron and iron-rich nanocolloids were related to variations in their sources from either the upper organic-rich soil or the deeper mineral layer, depending on seasonal variations in hydrological flow patterns and permafrost dynamics.
Low temperature dissolution flowsheet for plutonium metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Almond, P. M.; Rudisill, T. S.
2016-05-01
The H-Canyon flowsheet used to dissolve Pu metal for PuO 2 production utilizes boiling HNO 3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H 2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.
Selenium, Vanadium, and Chromium as Micronutrients to Improve Metabolic Syndrome.
Panchal, Sunil K; Wanyonyi, Stephen; Brown, Lindsay
2017-03-01
Trace metals play an important role in the proper functioning of carbohydrate and lipid metabolism. Some of the trace metals are thus essential for maintaining homeostasis, while deficiency of these trace metals can cause disorders with metabolic and physiological imbalances. This article concentrates on three trace metals (selenium, vanadium, and chromium) that may play crucial roles in controlling blood glucose concentrations possibly through their insulin-mimetic effects. For these trace metals, the level of evidence available for their health effects as supplements is weak. Thus, their potential is not fully exploited for the target of metabolic syndrome, a constellation that increases the risk for cardiovascular disease and type 2 diabetes. Given that the prevalence of metabolic syndrome is increasing throughout the world, a simpler option of interventions with food supplemented with well-studied trace metals could serve as an answer to this problem. The oxidation state and coordination chemistry play crucial roles in defining the responses to these trace metals, so further research is warranted to understand fully their metabolic and cardiovascular effects in human metabolic syndrome.
Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B
2017-04-18
Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.
Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007
Verplanck, Philip L.; Manning, Andrew H.; Mast, M. Alisa; Wanty, Richard B.; McCleskey, R. Blaine; Todorov, Todor I.; Adams, Monique
2007-01-01
Mine drainage and underground water samples were collected for analysis of inorganic solutes as part of a 1-year, hydrogeologic investigation of the Standard Mine and vicinity. The U.S. Environmental Protection Agency has listed the Standard Mine in the Elk Creek drainage near Crested Butte, Colorado, as a Superfund Site because discharge from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to Coal Creek, which is the primary drinking-water supply for the town of Crested Butte. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 3 and 5 of the Standard Mine, mine effluent from an adit located on the Elk Lode, and two spring samples that emerged from waste-rock material below Level 5 of the Standard Mine and the adit located on the Elk Lode. Reported analyses include field parameters (pH, specific conductance, water temperature, dissolved oxygen, and redox potential) and major constituents and trace elements.
Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011
McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.
2012-01-01
In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.
Dissolved organic carbon in the carbon cycle of the Indian Ocean
NASA Astrophysics Data System (ADS)
Hansell, Dennis A.
Dissolved organic carbon (DOC) is one of the least quantified and least understood bioreactive pools of carbon in the Indian Ocean. Data gaps are large, with much of the central Indian Ocean not yet sampled. Here model results depict the surface distribution of DOC, which is interpreted in terms of anticipated net DOC production (13-26 Tmol C a-1), advective transport, and export to the subsurface with overturning circulation. These interpretations are tested against DOC measurements made on sections in the Arabian Sea, across the Agulhas Current, in the central Indian Ocean, and into the Bay of Bengal. The seasonality of net DOC production and consumption is evaluated in the Arabian Sea, where data density is relatively rich. DOC stocks in the upper 150 m of the western Arabian Sea increased by >1.5 mol C m-2 during the NE monsoon and disappeared rapidly during the SW monsoon. Rapid DOC removal may result in part from aggregation of dust and biogenic particles along with stripping of trace metals and DOC, perhaps as transparent exopolymer particles, from the surrounding waters.
Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009
Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.
2009-01-01
In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent suggesting that water-rock interaction between Levels 3 and 1 can account for the elevated concentration of metals and other constituents in Level 1 portal effluent. Ore minerals (sphalerite, argentiferous galena, and chalcopyrite) are the likely sources of zinc, cadmium, lead, and copper and are present within the mine in unmined portions of the vein system, within plugged ore chutes, and in muck piles.
Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant
Horwitz, Earl P.; Chiarizia, Renato
1996-01-01
A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.
Parliman, D.J.
2004-01-01
In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were not in the upper 10th percentile of data, but concentrations of 25 metals, ions, or nutrients were in the upper 10th percentile in a puddle sample near the heavy equipment maneuvering area, MPRC-H. The largest concentrations of tin, ammonia, and nitrite plus nitrate (as nitrogen) in water from the OTA were detected in a sample from this puddle. Petroleum hydrocarbons were the most common contaminant, detected in all soil and surface-water samples. An SVOC, bis (2-ethylhexyl) phthalate, a plasticizer, was detected at a site along the vehicle corridor. In Maneuver Areas within the OTA, many soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of cobalt, iron, mercury, titanium, sodium, ammonia, or total phosphorus were detected in 6 of 13 soil samples outside the Tadpole Lake area. The largest concentrations of aluminum, arsenic, beryllium, nickel, selenium, silver, strontium, thallium, vanadium, chloride, potassium, sulfate, and nitrite plus nitrate were detected in soil samples from the Tadpole Lake area. Water from Tadpole Lake contained the largest total concentrations of 19 trace metals, 4 major ions, and 1 nutrient. Petroleum hydrocarbons were detected in 5 soil samples and water from Tadpole Lake. SVOCs related to combustion of fuel or plasticizers were detected in 1 soil sample. Explosive compounds were detected in 1 precipitation sample.In the Impact Area within the OTA, most soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of barium, chromium, copper, manganese, lead, or orthophosphate were detected in 6 of the 18 soil samples. Petroleum hydrocarbons were detected in 4 soil samples, SVOCs in 6 samples, and explosive compounds in 4 samples. In the mobilization and training equipment site (MATES) compound adjacent to the OTA, all soil and water samples contained at lea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landrum, K.E.
1995-10-01
Prior to government regulation, little monitoring of metal discharges into the canals, bayous, and rivers that drain estuarine systems occured. Discharges of trace-metals by industries and municipalities into surface water bodies are presently regulated through the use of Federal and State mandated permit programs. Resource management of economically important estuarine systems has fostered increasing concern over the accumulation of trace-metal pollutants in water, sediments, and biota from these dynamic areas. The acid-leachable concentrations of fourteen trace-metals were determined for 125 bottom sediment samples and 50 core interval samples by plasma emission analysis. Bottom sediments of the St. Bernard estuarom complexmore » consist predominantly of silty clays and clayey silts derived from the erosion of the St. Bernard lobe of the Mississippi River delta and sediments associated with historic crevasses along the Mississippi River. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Trace-metal concentrations from sediments for the study area tend to have greater mean concentrations than Florida estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology. Rates varied from 0.12 to 0.21 cm/yr. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Natural trace-metal variability was examined through the use of an aluminum normalization model based on Florida and Louisiana estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology, and grain-size corrected data. Elevated concentrations of As, Ba, Cd, Pb, V and Zn were noted from sediments associated with oil and gas drilling and production, sandblasting and shipbuilding, dredging, and stormwater, municipal, and industrial discharges.« less
Nahar, Mst Shamsun; Zhang, Jing; Ueda, Akira; Yoshihisa, Fujishiro
2014-12-01
The present study evaluated water supply geochemistry in Dhaka City, Bangladesh, to provide detailed trace level (subppb) water quality data that include major ions, low dissolved oxygen (DO) and toxic trace metals for sustainable development. Dhaka Groundwater, which almost uniformly meets the World Health Organization guideline, has become the preferred source. Due to groundwater depletion and an ever-increasing need to meet water demands by city residents, Dhaka water supply and sewerage authority has initiated the treatment of river water, despite the fact that very little is known about the geochemical structure, and trace metal content in the Dhaka water supply. Major ion composition of water samples was determined, and the results used to generate Stiff diagrams. The diagrams served to visually compare water from different sources based on units of mass/volume. Hydrochemical facies analysis showed supply ground and surface waters are comprised predominately of Ca-Na-Mg-HCO3 and Ca-Na-Mg-HCO3-Cl types. Spatial distribution of ions, and Na/Cl and Na/SiO2 molar ratio indicated that silicate weathering is the dominant geochemical process. Chemical data revealed that toxic Cr metal mobilization is associated with chemical hazards from the leather industry. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Quantifying total arsenic (As) and As from interlocking geochemical cycles (Fe, Mn) may assist in interpreting As dynamics in Dhaka well water. The surface source water was hypoxic to anoxic low DO associated with very high concentrations of biological oxygen demands, and electrical conductivity compared to industrial and non-industrial urban processes and standard activity guidelines. The results of this study should be applied to future research focused on the potential to improve water quality in urban and surrounding areas.
NASA Astrophysics Data System (ADS)
Owens, Jeremy D.; Reinhard, Christopher T.; Rohrssen, Megan; Love, Gordon D.; Lyons, Timothy W.
2016-09-01
Understanding the global redox state of the oceans and its cause-and-effect relationship with periods of widespread organic-carbon deposition is vital to interpretations of Earth's climatic and biotic feedbacks during periods of expanded oceanic oxygen deficiency. Here, we present a compilation of new and published data from an organic-rich locality within the proto-North Atlantic Ocean during the Cenomanian-Turonian boundary event that shows a dramatic drawdown of redox-sensitive trace elements. Iron geochemistry independently suggests euxinic deposition (i.e., anoxic and sulfidic bottom waters) for the entire section, thus confirming its potential as an archive of global marine metal inventories. In particular, depleted molybdenum (Mo) and vanadium (V) concentrations effectively record the global expansion of euxinic and oxygen-deficient but non-sulfidic waters, respectively. The V drawdown precedes the OAE, fingerprinting an expansion of oxygen deficiency prior to an expansion of euxinia. Molybdenum drawdown, in contrast, is delayed with respect to V and coincides with the onset of OAE2. Parallel lipid biomarker analyses provide evidence for significant and progressive reorganization of marine microbial ecology during the OAE in this region of the proto-North Atlantic, with the smallest relative eukaryotic contributions to total primary production occurring during metal-depleted intervals. This relationship may be related to decreasing supplies of enzymatically important trace elements. Similarly, box modeling suggests that oceanic drawdown of Mo may have approached levels capable of affecting marine nitrogen fixation. Predictions of possible nitrogen stress on eukaryotic production, locally and globally, are consistent with the low observed levels of Mo and a rise in 2-methylhopane index values during the peak of the OAE. At the same time, the environmental challenge presented by low dissolved oxygen and euxinia coincides with increased turnover rates of radiolarian clades, calcareous nanofossils, and foraminifera, suggesting that the temporal patterns of anoxia/euxinia and associated nutrient limitation may have contributed to the fabric of OAE2-related turnover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayram, K.; Geraldine, P.
1996-02-01
Despite the low concentrations of heavy metals in the surrounding medium, aquatic organisms take them up and accumulate them in their soft tissues to concentrations several fold higher than those of ambient levels. Knowledge of accumulation patterns of a particular trace metal is a prerequisite for understanding the significance of an observed metal concentration in a particular animal, especially from the aspect of biomonitoring. Many marine invertebrates accumulate heavy metals without any regulation and the accumulation necessarily being associated with mechanisms to store the metals in a detoxified form. Two detoxification mechanisms have been described, both of which may occurmore » in one specimen. Heavy metals can either be bound up in insoluble metalliferous {open_quote}granules{close_quote}, or are bound to soluble metal-binding ligands, such as metallothioneins. Some marine decapod crustaceans have an innate ability to regulate the internal concentrations of essential but potentially toxic metals within a constant level, presumably to meet their metabolic demands. However, at present, there is no such information relating to freshwater decapod crustaceans, especially shrimps which occupy a totally different environment. Macrobrachium malcolmsonii, a potential aquaculture species for freshwater is found in abundance in one of the major Indian rivers, the Cauvery. In the present study, an attempt was made to determine whether the freshwater prawn, M. malcolmsonlii, is able to regulate the three essential elements, copper, chromium and zinc, over a wide range of dissolved concentrations. These three metals were chosen because the Cauvery River receives pollutants containing these metals.« less
Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa
NASA Astrophysics Data System (ADS)
Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri
2017-03-01
Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.
Moore, C.R.
1989-01-01
This report presents physical, chemical, and biological data collected at 50 sampling sites on selected streams in Chester County, Pennsylvania from 1969 to 1980. The physical data consist of air and water temperature, stream discharge, suspended sediment, pH, specific conductance, and dissolved oxygen. The chemical data consist of laboratory determinations of total nutrients, major ions, and trace metals. The biological data consist of total coliform, fecal coliform, and fecal streptococcus bacteriological analyses, and benthicmacroinvertebrate population analyses. Brillouin's diversity index, maximum diversity, minimum diversity, and evenness for each sample, and median and mean Brilloiuin's diversity index, standard deviation, and standard error of the mean were calculated for the benthic-macroinvertebrate data for each site.
Trace Metals and Nutrients at the Soil-Root Interface of Forest Soils
NASA Astrophysics Data System (ADS)
Courchesne, F.; Seguin, V.; Legrand, P.; Cloutier-Hurteau, B.
2004-05-01
The activity of roots creates a microenvironment, known as the rhizosphere, where soil properties, processes and feedback mechanisms differ substantially from those observed in the soil matrix. Due to its proximity to the site of elemental uptake by plants, the rhizosphere is viewed as a biogeochemical hotspot characterized by massive fluxes of matter and energy. In this context, the acquisition of new knowledge on the rhizosphere is crucial to increase our capacity to understand, manage and model soil-plants systems. Of particular interest to scientists is the response of the rhizosphere to perturbations of natural (e.g. climatic fluctuations) or anthropogenic (e.g. soil contamination) origin. Moreover, results from rhizosphere research help define new approaches designed either to restrict the entrance of potentially toxic elements in crops and, hence, in the food chain or, contrarily, to increase the uptake of trace elements by plants in contaminated environments to be bioremediated. Our recent studies in forested environments have clearly established that the rhizosphere (Abies, Acer, Betula, Picea, Pinus or Populus roots) is more acidic than the soil matrix and that it is enriched in organic substances (dissolved and solid), nutrient cations (Ca, Mg) and trace metals. Indeed, the rhizosphere systematically acts as a sink for Cd, Cu, Ni, Pb and Zn, notably under bioavailable (water-soluble and salt-extractable) forms. Yet, the relative activity of free metal ions is lower in the rhizosphere, as shown for Cu++, probably as a consequence of the higher DOC content. The corrosive environment forming in the rhizosphere, as controlled by the release of H+ ions and of organic acids, also impacts on mineral assemblages through an increase in the weathering of primary minerals (amphiboles, plagioclases) and the formation of secondary solid phases such as Fe and Al oxides. Some of the research avenues currently investigated by our research group include the quantification of functional links between organic carbon, microbial activity and metal speciation, the development of methodological and analytical approaches operating at the spatial scale of the rhizosphere and, the assessment of preferential hydrological fluxes along root networks.
Lopes, T.J.; Fossum, K.D.
1995-01-01
Statistical analyses indicated that urban stormwater could degrade the quality of streamflow because of oil and grease, pesticides, dissolved trace metals, and ammonia in stormwater. Ammonia, lead, cadmium, and zinc are released by urban activities and accumulate in bed material. Ammonia could be from fertilizers, fecal matter, and other sources. Lead is probably from vehicles that use leaded gasoline. Cadmium and zinc could be from particulate metal in oil, brake pads, and other sources. Samples of the initial runoff from urban drainage basins appeared to be more toxic than flow-weighted composite samples, and stormwater was more harmful to fathead minnows than to Ceriodaphnia dubia. Streamflow samples from the Salt River were not toxic to either species. The sensitivity of fathead minnows to urban stormwater from most urban drainage basins indicated that the toxicants were detrimental to fish and could be present in stormwater throughout Phoenix. Results of toxicity identification evaluations indicated the toxicity was mostly due to organic constituents. Mortality, however, did not correlate with organophosphate pesticide concentrations. Surfactants and (or) other constituents leached from asphalt could be toxic. The most toxic bed-material samples were collected from an undeveloped drainage basin. Within urban-drainage basins, bed-material samples collected where stormwater accumulates appeared to be more toxic than samples collected from areas unaffected by stormwater. Mortality rates correlated with recoverable concentrations of zinc, copper, and cadmium; however these rates correlated poorly with pesticide concentrations. The bioavailability of trace metals appeared to be controlled by the adsorption properties of bed material.
Trace metal concentrations in tropical mangrove sediments, NE Brazil.
Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza
2016-01-15
Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mora, Abrahan; Mac-Quhae, César; Calzadilla, Malvis; Sánchez, Luzmila
2009-02-01
To ascertain the water quality for human consumption, chemical parameters such as pH, conductivity and total dissolved calcium, magnesium, iron, aluminum, zinc, copper and manganese were measured during four sampling periods (November 2002; March, May and July 2003) in drinking water wells which supply several forest camps and rural populations located in the eastern Llanos of Venezuela. Copper levels in drinking water in November 2002 were found to be significantly higher (P<0.05) than the other assessed periods. Temporal variations of the other parameters considered were not statistically significant. Calcium and magnesium concentrations were found to be extremely low (mean concentration+/-S.D. of 0.27+/-0.25mg/l for Ca and 0.219+/-0.118 for Mg) during the four sampling periods, probably because of the carbonate bearing scarcity in the soils lithic component. The rest of the metals complied with the Venezuelan and International guidelines of quality criteria for drinking water.
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
Witt, Emitt C; Wronkiewicz, David J; Pavlowsky, Robert T; Shi, Honglan
2013-09-01
Fugitive dust from 18 unsurfaced roadways in Missouri were sampled using a novel cyclonic fugitive dust collector that was designed to obtain suspended bulk samples for analysis. The samples were analyzed for trace metals, Fe and Al, particle sizes, and mineralogy to characterize the similarities and differences between roadways. Thirteen roads were located in the Viburnum Trend (VT) mining district, where there has been a history of contaminant metal loading of local soils; while the remaining five roads were located southwest of the VT district in a similar rural setting, but without any mining or industrial process that might contribute to trace metal enrichment. Comparison of these two groups shows that trace metal concentration is higher for dusts collected in the VT district. Lead is the dominant trace metal found in VT district dusts representing on average 79% of the total trace metal concentration, and was found moderately to strongly enriched relative to unsurfaced roads in the non-VT area. Fugitive road dust concentrations calculated for the VT area substantially exceed the 2008 Federal ambient air standard of 0.15μgm(-3) for Pb. The pattern of trace metal contamination in fugitive dust from VT district roads is similar to trace metal concentrations patterns observed for soils measured more than 40years ago indicating that Pb contamination in the region is persistent as a long-term soil contaminant. Published by Elsevier Ltd.
Groundwater and surface water interaction in flow-through gravel pit lakes.
NASA Astrophysics Data System (ADS)
Nella Mollema, Pauline; Antonellini, Marco
2015-04-01
Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form when the gravel pits are below the water table and fill with groundwater. In certain areas there are more than 60 of these lakes close together and their presence changes the drainage patterns and water- and hydrochemical budgets of a watershed. In flow-through gravel pit lakes, groundwater mixes with surface water and interacts with the atmosphere; outflow occurs only via groundwater. The lifespan of gravel pit lakes may be up to thousands of years as their depth to surface ratio is typically large and sedimentation rates are low. We have studied two gravel pit lake systems, a fluvial freshwater system in the Netherlands and a coastal brackish lake system in Italy. One Dutch gravel pit lake studied in detail is in part artificially replenished with Meuse River water for drinking water production that occurs downstream of the lake by water pumps. The Italian gravel pit lakes are fed by brackish groundwater that is a mix of freshwater from precipitation, Apennine Rivers and brackish (Holocene) Adriatic Sea water. Here, the drainage system of the low lying land enhances groundwater flow into the lake. Surface water evaporation is larger in temperate and Mediterranean climates than the actual evapotranspiration of pre-existing grassland and forests. The lakes, therefore, cause a loss of freshwater. The creation of water surfaces allows algae and other flora and fauna to develop. In general, water becomes gradually enriched in certain chemical constituents on its way through the hydrological cycle, especially as groundwater due to water-rock interactions. When groundwater ex-filtrates into gravel pit lakes, the natural flow of solutes towards the sea is interrupted. Hydrochemical analysis of ground- and surface waters, as well as chemical analysis of lake bottom sediments and stable H and O isotope data, show that gravel pit lake water is characterized (among others) by a higher pH, O2 and alkalinity and lower dissolved metal and certain trace concentrations than natural lakes and groundwater. In both settings, groundwater rich in dissolved elements (e.g. Al, As, Fe, Mn, Ni and PO43) flows into the gravel pit lakes where the pH and DO are high, which enhances the (co)precipitation of Fe, Mn and Al oxides that include trace elements. Metal concentrations in the Dutch lake's bottom sediments have increased over a 10 year period. Redox reactions caused by water table lowering and farmland fertilization upstream from the lake explain the metals mobilization and subsequent transport with groundwater towards the lakes. The gravel pit lakes, especially if there are many close together, influence so the cycle of water metals, nutrients as well as other trace elements of a watershed by incorporating them into biomass and bottom sediments or creating an environment where they can remain in concentrated solution.
Hydrogen peroxide photocycling in the Gulf of Aqaba, Red Sea.
Shaked, Yeala; Harris, Raviv; Klein-Kedem, Nir
2010-05-01
The dynamics of hydrogen peroxide (H(2)O(2)) was investigated from December 2007 to October 2008 in the Gulf of Aqaba, which in the absence of H(2)O(2) contribution from biological production, rain and runoff, turned out to be a unique natural photochemical laboratory. A distinct seasonal pattern emerged, with highest midday surface H(2)O(2) concentrations in spring-summer (30-90 nM) as compared to winter (10-30 nM). Similarly, irradiation normalized net H(2)O(2) formation rates obtained in concurrent ship-board experiments were faster in spring-summer than in winter. These seasonal patterns were attributed to changes in water characteristics, namely elevated spring-summer chromophoric dissolved organic matter (CDOM). The role of trace elements in H(2)O(2) photoformation was studied by simultaneously measuring superoxide (O(2)(-)), Fe(II), and H(2)O(2) formation and loss in ambient seawater and in the presence of superoxide dismutase, iron and copper. O(2)(-) was found to decay fast in the Gulf water, with a half-life of 15-28 s, primarily due to catalytic reactions with trace metals (predominantly copper). Hence, H(2)O(2) formation in the Gulf involves metal-catalyzed O(2)(-) disproptionation. Added iron moderately lowered net H(2)O(2) photoformation, probably due to its participation in Fe(II) oxidation, a process that may also modify H(2)O(2) formation in situ.
The Nitrogen Cycle During the Transition to Euxinia
NASA Astrophysics Data System (ADS)
Meyer, K. M.; Kump, L. R.; Ridgwell, A.
2008-12-01
Nitrogen and phosphorous are essential to life, and their biological availability is hypothesized to regulate marine productivity on short and geologic timescales. The nature of primary production during recurrent intervals of Phanerozoic anoxia is of particular interest because of the redox control of nutrient and trace metal availability. Dissolved phosphate likely increased during transitions from oxic to euxinic marine conditions, while nitrogen availability may have decreased due to extensive denitrification as low-oxygen waters spread. Because nitrogen fixation is both metabolically and trace-metal intensive, a key question in the transition to euxinia is whether nitrogen fixation can "keep pace" with denitrification. If denitrification exceeds nitrogen fixation, diminished export production and oxygen demand in an N-limited ocean would pose a negative feedback that may prevent euxinia altogether or initiate the shift back to oxic conditions. Here we use the GENIE-1 Earth system model to address the biogeochemistry of the oxic-euxinic transition characteristic of some Phanerozoic oceanic anoxic events. As previously demonstrated with box models, phosphate accumulation stimulates both nitrogen fixation and denitrification. While there is an initial transient loss of total fixed nitrogen from the ocean, nitrogen inputs eventually exceed losses, and the marine nitrogen reservoir grows with that of phosphate to significantly exceed its modern value. Nitrogen buildup also corresponds with a shift in ecology of the surface ocean and the unexpected initiation of non-Redfieldian stoichiometry in the chemistry of the deep ocean.
Preliminary water quality assessment of Spunky Bottoms restored wetland.
Jin, Guang; Eilts, Kristen; Kelley, Timothy R; Webb, James W
2009-02-15
The approximately 1200-acre "Spunky Bottoms" wetland in Southern Illinois has been undergoing restoration to conditions prior to levying of the Illinois River and draining of adjacent floodplain for intensive agriculture (circa 1900). As part of a long-term water quality impact assessment of this restoration project, baseline water quality monitoring was conducted soon after restoration began. During this baseline/preliminary assessment, water samples were taken every 2-4 weeks from 10 sampling wells and seven surface water sites throughout the wetlands area for a period of 18 months. Measured parameters include nutrients (nitrate (NO3-) and phosphate (PO4(3-)), cations and anions (SO4(2-), Cl-, Na+, K+, Mg2+, Ca2+) commonly found in surface and well water, trace metals (Al, Cd, Cu, Fe, Mn, Ni, Pb, Se, Zn), total dissolved solids (TDS), pH, and trace organics (triazine herbicides and their metabolites). In general, highest concentrations of ions were found in the southwest and northeast perimeter of the wetland area for both surface and ground water samples. Primarily low concentrations of heavy metals and organic compounds were found throughout the wetland sampling area. Distribution of NO3--N suggests that this restored wetland, even at its infant age, may still contribute to biogeochemical (particularly N) element cycling. Continued monitoring and further research is necessary to determine long-term specific contribution of restored wetland to biogeochemical cycles.
TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION
The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...
NASA Astrophysics Data System (ADS)
Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David
2014-03-01
We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise description. This study seeks to make the first quantitative connection between the organic and inorganic compositions of speleothems and thus determine the potential for speleothems to encode fluctuations in colloid-facilitated trace metal transport in karst aquifers. Recent findings of direct relevance to the present studyThe conjugate dripwater (PE1) to the stalagmite studied here (PC-08-1) was characterised in June 2009 using an array of complementary techniques, in which the size, speciation and lability of NOM-metal complexes was characterised (Hartland et al., 2011), where lability is defined as the capacity for complexes to dissociate in the context of the on-going interfacial process at the stalagmite surface. In PE1 dripwater, the most stable aqueous complexes were formed between Co and the finest, low molecular weight component of the NOM spectrum (Hartland et al., 2011). Speciation experiments demonstrated that Co was essentially non-exchangeable (free metal (fm) = <0.05), being retained in aqueous complexes, whilst Cu, Ni and V were all predominantly bound by NOM (fm = 0.2-0.3).In contrast, Sr and Ba were freely exchangeable between the solution and solid phase (Hartland et al., 2011) and Mg was absent, presumably due to the poor solubility of Mg(OH)2 at hyperalkaline pH (Ksp = 1.5 × 10-11): Mg2+(aq)+2OH-(aq)↔Mg( On the other hand, the transition metals were not lost as insoluble hydroxides (Hartland et al., 2012), despite having lower solubility than Mg (e.g. Cu(OH)2Ksp = 2.2 × 10-20); and this is consistent with the dominant role of NOM in solubilising and transporting the transition metals in this system (Hartland et al., 2011).The transport of metals by complexes with NOM in PE1 dripwater through the hydrological year was studied by Hartland et al. (2012). This study had two findings of direct relevance to the study of trace metal variations in the conjugate PC-08-1 stalagmite: Complexes between metals and the smallest, low-molecular weight fraction of NOM showed an attenuated delivery in dripwaters consistent with the non-conservative behaviour of analogous tracers in fractured-rock studies due to diffusion into micro-fractures. This mode of transport was termed ‘low-flux’ and was the dominant mode of transport for Co and V. Complexes between metals and coarse colloids (>100 nm) and particulates (>1000 nm) showed a rapid responsiveness to infiltration events. This was termed the ‘high-flux’ mode of NOM-metal transport and was interpreted as being dominantly fracture-fed. This mode of transport was dominated by Cu, Zn and Ni. The ‘high-flux’ vs ‘low-flux’ interplay of trace metal transport is summarised in Fig. 1.The PC-08-1 stalagmite studied here was deposited following the removal of stalagmite PC-97-1 studied by Baker et al. (1999b) and which grew under the PE1 drip point between 1927 and 1997. Both the PC-97-1 stalagmite and its regrowth (PC-08-1) are characterised by annual lamina couplets consisting of a porous pale layer and a dense fluorescent layer. Fluorescence in the PC-97-1 stalagmite displayed a marked sinusoidal pattern with 10% of laminae exhibiting a double band structure (Baker et al., 1999b).
Operational Range Assessment Program (ORAP) Phase II Overview for Active Installations
2011-05-01
Dissolved Metals by EPA 1638M • Isotopic Uranium by EML A-01-R Mod Sediment Analysis • None Benthic Macroinvertebrates • Diversity Indices...Metals by EPA 200.8 • Dissolved Metals by EPA 200.8 (if turbid) • Isotopic Uranium by EML A-01- R Mod (if total U is > action limit) Groundwater
Varol, Memet
2013-10-01
Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
Source and Cycling of Trace Metals and Nutrients in a Microbial Coalbed Methane System
NASA Astrophysics Data System (ADS)
Earll, M. M.; Barnhart, E. P.; Ritter, D.; Vinson, D. S.; Orem, W. H.; Vengosh, A.; McIntosh, J. C.
2015-12-01
The source and cycling of trace metals and nutrients in coalbed methane (CBM) systems are controlled by both geochemical processes, such as dissolution or precipitation, and biological mediation by microbial communities. CBM production by the microbes is influenced by trace metals and macronutrients such as nitrogen (N) and phosphate (P). Previous studies have shown the importance of these nutrients to both enhance and inhibit methane production; however, it's not clear whether they are sourced from coal via in-situ biodegradation of organic matter or transported into the seams with groundwater recharge. To address this knowledge gap, trace metal and nutrient geochemistry and the organic content of solid coal and associated groundwater will be investigated across a hydrologic gradient in CBM wells in the Powder River Basin, MT. Sequential dissolution experiments (chemical extraction of organic and inorganic constituents) using 8 core samples of coal and sandstone will provide insight into the presence of trace metals and nutrients in coalbeds, the associated minerals present, and their mobilization. If significant concentrations of N, P, and trace metals are present in core samples, in-situ sourcing of nutrients by microbes is highly probable. The biogeochemical evolution of groundwater, as it relates to trace metal and nutrient cycling by microbial consortia, will be investigated by targeting core-associated coal seams from shallow wells in recharge areas to depths of at least 165 m and across a 28 m vertical profile that include overburden, coal, and underburden. If microbial-limiting trace metals and nutrients are transported into coal seams with groundwater recharge, we would expect to see higher concentrations of trace metals and nutrients in recharge areas compared to deeper coalbeds. The results of this study will provide novel understanding of where trace metals and nutrients are sourced and how they are cycled in CBM systems.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-07-01
The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
Trace element release from estuarine sediments of South Mosquito Lagoon near Kennedy Space Center
NASA Technical Reports Server (NTRS)
Menon, M. P.; Ghuman, G. S.; Emeh, C. O.
1979-01-01
Analytical partitioning of four trace metals in estuarine sediments collected from eight sites in South Mosquito Lagoon near Kennedy Space Center, in terms of four different categories was accomplished using four different extraction techniques. The concentrations of the four trace metals, Zn, Mn, Cd, and Cu, released in interstitial water extract, 1 N ammonium acetate extract, conc. HCl extract and fusion extract of sediments as well as their concentrations in water samples collected from the same location were determined using flame atomic absorption technique. From the analytical results the percentages of total amount of each metal distributed among four different categories, interstitial water phase, acetate extractable, acid extractable and detrital crystalline material, were determined. Our results suggest that analytical partitioning of trace metals in estuarine sediments may be used to study the mechanism of incorporation of trace metals with sediments from natural waters. A correlation between the seasonal variation in the concentration of acetate extractable trace metals in the sediment and similar variation in their concentration in water was observed. A mechanism for the release of trace metals from estuarine sediments to natural water is also suggested.
Horsfall, M; Spiff, A I
2002-09-01
The distribution of trace metals in sediments of the lower reaches of the New Calabar River, Nigeria was evaluated together with the partitioning of their chemical species between five geochemical phases. Samplings were made in five zones at the lower reaches of the New Calaber River. All the trace metals were determined by AAS after selective chemical extractions and concentrations given in microg gm(-1) (dry weight basis). The average total concentrations found for trace metals in the sediment were ( mean +/- rsd.) Pb: 41.6 +/- 0.29, Zn: 31.60 +/- 0.42, Cd: 12.80 +/- 0.92, Co: 92 +/- 0.25, Cu: 25.5 +/- 0.65 and Ni: 3.2 +/- 0.25. Maxima and minima concentrations are inconsistent with previous studies in other rivers of this region. Spatial distribution revealed that the sources of trace metals into the river appeared to be of non-point. Five contamination indices were applied in studying the partitioning of the trace metals in the sediment. These indices provided bases for ascertaining the potential environmental risk of trace metals in the river system. The results denote high partition levels in the more mobile and more dangerous phases.
Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa
2016-10-01
In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.
NASA Technical Reports Server (NTRS)
Freund, Friedemann
1991-01-01
Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.
Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition
NASA Astrophysics Data System (ADS)
Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty
2004-07-01
Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are derived from leaching of dust particles entrained in rain or fog droplets either in the atmosphere or during wet atmospheric deposition. The high trace metal enrichment factors require that most of the dust was physically removed before or during varnish formation. The remaining aqueous counterpart would be depleted in HFSEs and Th relative to the REEs, Co, Ni and Pb because the former are more insoluble and hence largely retained in the removed dust fraction. The high Ce/La ratios suggest that precipitation of trace metals may have been governed by equilibrium partitioning in an excess of wet atmospheric deposition. If varnishes are indeed derived from wet atmospheric deposition, they may provide a record of the aqueous component of atmospheric dust inputs to various environments.
TOXIC TRACE METALS IN MAMMALIAN HAIR AND NAILS
Data have been compiled from the available world literature on the accumulation and bioconcentration of selected toxic trace metals in human hair and nails and other mammalian hair, fur, nails, claws, and hoofs. The toxic trace metals and metalloids include antimony, arsenic, bor...
Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.
1998-01-01
The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.
Determination of trace metals in drinking water in Irbid City-Northern Jordan.
Alomary, Ahmed
2013-02-01
Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.
Use of ionic liquids as coordination ligands for organometallic catalysts
Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA
2009-11-10
Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.
Salt transport extraction of transuranium elements from LWR fuel
Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.
1992-11-03
A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.
Salt transport extraction of transuranium elements from lwr fuel
Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.
BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds
NASA Technical Reports Server (NTRS)
Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.
NASA Astrophysics Data System (ADS)
Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.
2014-12-01
The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.
Ability of rabbit alveolar macrophages to dissolve metals.
Lundborg, M; Lind, B; Camner, P
1984-01-01
Manganese dioxide particles, 0.1-0.5 micron, were added to samples of 2-3 X 10(6) rabbit alveolar macrophages. The amount of manganese added and dissolved from the particles, over periods of 0, 1, 3, and 5 days, was determined by flame atomic absorption spectrophotometry. Macrophages from six rabbits received about 10 micrograms of Mn, macrophages from two rabbits about 30 micrograms, and macrophages from another two rabbits about 100 micrograms. Over periods of 1, 3, and 5 days the macrophages in all three dose groups dissolved two to three times more Mn than was dissolved in control experiments. In control experiments solubility was studied in the medium without macrophages. Macrophages cultivated 3 days before the addition of MnO2 dissolved the particles within another 2 days to an extent similar to that in the control experiments. The ability of the macrophages to dissolve MnO2 particles might be related to the low pH values in the phagosomes. Studies of the ability of macrophages from various species to dissolve metal particles as well as of pH values in their phagosomes might lead to a better understanding of alveolar clearance of metal particles.
The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA
Bern, Carleton R.; Stogner, Sr., Robert W.
2017-01-01
Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.
NASA Astrophysics Data System (ADS)
Zhang, Yaoling; Yang, Keli; Du, Jinzhou; Zhang, Fenfen; Dong, Yaping; Li, Wu
2018-03-01
Marine dissolved organic matter (DOM) is one of the largest dynamic pools of organic carbon in the global carbon cycle, yet DOM is still chemically poorly characterized. To better understand the origin, composition, and cycling of DOM in the China marginal sea, dissolved humic substances (DHS) were isolated from seawaters in two locations in the Southern Yellow Sea. The DHS were subdivided into fulvic acids (FAs), humic acids (HAs) and the XAD-4 fractions. Complementary analytical approaches were used to characterize the isolated DHS samples including stable carbon isotopic composition, Fourier transform infrared spectroscopy (FTIR), 13C cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The results demonstrated that both DHS samples encountered the influences from marine source, indicating that algal and microbial-derived materials are the predominant precursors for the studied samples. The three fractions of DHS showed different properties. FAs presented more aromatic features, whereas HAs contained more aliphatic lipids and proteinaceous materials. The XAD-4 fractions were enriched in 13C and contained more carbohydrates but less aromatic compounds. The lower molecular weight and higher heteroatom content and number of carboxyl groups for the XAD-4 fractions may give them considerable geochemical significance for aspects of trace metal species, bioavailability of pollutants, mineral weathering and water acidification in marine environments.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata
2009-07-30
Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.
D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E
1999-09-01
Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.
Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry
1996-01-01
A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.
Stillings, L.L.; Foster, A.L.; Koski, R.A.; Munk, L.; Shanks, Wayne C.
2008-01-01
Several abandoned Cu mines are located along the shore of Prince William Sound, AK, where the effect of mining-related discharge upon shoreline ecosystems is unknown. To determine the magnitude of this effect at the former Beatson mine, the largest Cu mine in the region and a Besshi-type massive sulfide ore deposit, trace metal concentration and flux were measured in surface run-off from remnant, mineralized workings and waste. Samples were collected from seepage waters; a remnant glory hole which is now a pit lake; a braided stream draining an area of mineralized rock, underground mine workings, and waste piles; and a background location upstream of the mine workings and mineralized rock. In the background stream pH averaged ???7.3, specific conductivity (SC) was ???40 ??S/cm, and the aqueous components indicative of sulfide mineral weathering, SO4 and trace metals, were at detection limits or lower. In the braided stream below the mine workings and waste piles, pH usually varied from 6.7 to 7.1, SC varied from 40 to 120 ??S/cm, SO4 had maximum concentrations of 32 mg/L, and the trace metals Cu, Ni, Pb, and Zn showed maximum total acid extractable concentrations of 186, 5.9, 6.2 and 343 ??g/L, respectively. With an annual rainfall of ???340 cm (estimated from the 2006 water year) it was expected that rain water would have a large effect on the chemistry of the braided stream draining the mine site. A linear mixing model with two end members, seepage water from mineralized rock and background water, estimated that the braided stream contained 10-35% mine drainage. After rain events the braided stream showed a decrease in pH, SC, Ca + Mg, SO4, and alkalinity, due to dilution. The trace metals Ni and Zn followed this same pattern. Sodium + K and Cl did not vary between the background and braided stream, nor did they vary with rainfall. At approximately 2 and 3 mg/L, respectively, these concentrations are similar to concentrations found in rainfall on the coasts of North America. High concentrations of total acid extractable Al and Fe were found at near-neutral pH in most of the waters collected at the site. Equilibrium solubility simulations, performed with PHREEQC, show that the stream waters are saturated with respect to Al, Fe and SiO2 solid phases. Because the "dissolved" sample fractions (acid preserved and filtered to 0.45 ??m) show significant concentrations of Al and Fe it is presumed that these are present as colloids. The relationship between concentrations of Al and Fe, and rainfall was the opposite of that observed for the major ions Ca + Mg, SO4, and alkalinity, in that Al and Fe concentrations increased with increasing rainfall. Concentrations of Cu and Pb followed the same pattern. Adsorption calculations were performed with Visual MINTEQ, using the diffuse double layer electrostatic model and surface complexation constants for the ferrihydrite surface. These results suggest that 30-93% of Cu and 58-97% of Pb was adsorbed to ferrihydrite precipitates in the stream waters. Ni and Zn showed little adsorption in this pH range. Flux calculations show that the total mass of trace metals transported from the mine site, during the 60 day study period, was ranked as Zn (196 kg) > Cu (87 kg) > Pb(1.9 kg) ??? Ni(1.9 kg). Nickel and Zn were transported mostly as dissolved species while Cu and Pb were transported mostly as adsorbed species. pH control on adsorption was evident when Cu and Pb isotherms were normalized by ferrihydrite flux. Decreased stream water pH due to periods of frequent and high volume rain events would cause desorption of Cu and Pb from the ferrihydrite surface, thus changing not only their speciation in solution but also their mechanism of transport. ?? 2007 Elsevier Ltd. All rights reserved.
Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R
2001-12-01
Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations.
Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY
NASA Astrophysics Data System (ADS)
Zerkle, A. L.; House, C.; Kump, L.
2002-12-01
Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these dominant microorganisms to influence trace metal cycling and bioavailability in the FGL water column.
Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment.
Yang, Meng; Wang, Cheng; Yang, Zhao-Ping; Yan, Nan; Li, Feng-Ying; Diao, Yi-Wei; Chen, Min-Dong; Li, Hui-Ming; Wang, Jin-Hua; Qian, Xin
2018-05-30
Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as 'hotspots', and high-risk areas were delineated from risk maps. These 'hotspots' and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening 'hotspots' and priority areas of concern for cost-efficient health risk management. Copyright © 2018 Elsevier Inc. All rights reserved.
Al Husseini, Amelène El-Mufleh; Béchet, Béatrice; Gaudin, Anne; Ruban, Véronique
2013-01-01
The management of stormwater sediment is a key issue for local authorities due to the pollution load and significant tonnages. In view of reuse, for example for civil engineering, the environmental evaluation of these highly aggregated sediments requires the study of the fractionation and mobility of trace metals. The distribution of trace metals (Cd, Cr, Cu, Ni, Pb, Zn) and their level of lability in three French stormwater sediments was determined using sequential and kinetic extractions (EDTA reagent) associated with mineralogical analysis and scanning electron microscopy observations. Using microanalysis, new data were acquired on the evolution of aggregate state during extractions, and on its significant role in the retention of trace metals. Trace metals were, in particular, observed to be very stable in small aggregates (10-50 microm). Comparison of the two extraction methods revealed that EDTA extraction was not convenient for evaluating the stable fraction of Cr, Ni and Zn. Moreover, the results were relevant for basins presenting similar sources of trace metals, whatever the physicochemical conditions in basins. The results suggest that the management of stormwater sediments could be improved by a better knowledge of metal mobility, as chemical extractions could highlight the localization of the mobile fraction of trace metals. Treatment could be therefore avoided, or specific treatment could be applied to a reduced volume of sediments.
Tanner, D.Q.
1995-01-01
The distribution of trace elements in dissolved and suspended phases, streambed sediment, and fish samples is described for principal streams in the lower Kansas River Basin, Kansas and Nebraska, from May 1987 through April 1990. Large median concentrations of dissolved lithium and strontium in the Kansas River were related to saline ground-water discharge, and large median concentrations of dissolved strontium in Mill Creek near Paxico, Kansas were related to Permian limestone and shale. Large concentrations of arsenic, chromium, and lead in water were identified downstream from three reservoirs, which may be attributed to resuspension of bed sediment in turbulent flow near the dams or release of water from near the bottom of the reservoirs. Trace elements in streambed sediments greater than background concentrations were identified downstream from the Aurora, Nebraska, wastewater-treatment plant, from industrial or urban areas near Kansas City, Kansas, and from the dam at Perry Lake, Kansas. Median and 90th-percentile concentrations of mercury in fish-tissue samples approximately doubled from 1979-86 to 1987-90. However, concentrations in samples collected during the latter period were less than the National Academy of Sciences and National Academy of Engineering 1972 criterion of 500 micrograms per kilogram for mercury in fish tissue.
Analytical Methods for Trace Metals. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This training manual presents material on the theoretical concepts involved in the methods listed in the Federal Register as approved for determination of trace metals. Emphasis is on laboratory operations. This course is intended for chemists and technicians with little or no experience in analytical methods for trace metals. Students should have…
Rodgher, Suzelei; Espíndola, Evaldo Luiz Gaeta; Lombardi, Ana Teresa
2010-08-01
The acute toxicity of metals to Daphnia similis was determined and compared to other daphnid species to evaluate the suitability of this organism in ecotoxicology bioassays. To verify the performance D. similis in toxicity tests, we also investigated the effect of Pseudokirchneriella subcapitata at 1 x 10(5) and 1 x 10(6) cells ml(-1) on Cd and Cr acute toxicity to the cladoceran. Daphnid neonates were exposed to a range of chromium and cadmium concentrations in the absence and presence of the algal cells. Metal speciation calculations using MINEQL(+) showed that total dissolved metal concentrations in zooplankton culture corresponded to 96.2% free Cd and 100% free Cr concentrations. Initial total dissolved metal concentrations were used for 48 h-LC(50) determination. LC(50) for D. similis was 5.15 x 10(-7) mol l(-1) dissolved Cd without algal cells, whereas with 1 x 10(5) cells ml(-1), it was significantly higher (7.15 x 10(-7) mol l(-1) dissolved Cd). For Cr, the 48 h-LC(50) value of 9.17 x 10(-7) mol l(-1) obtained for the cladoceran in tests with 1 x 10(6) cells ml(-1) of P. subcapitata was also significantly higher than that obtained in tests without algal cells (5.28 x 10(-7) mol l(-1) dissolved Cr). The presence of algal cells reduced the toxicity of metals to D. similis, as observed in other studies that investigated the effects of food on metal toxicity to standard cladocerans. Comparing our results to those of literature, we observed that D. similis is as sensitive to metals as other standardized Daphnia species and may serve as a potential test species in ecotoxicological evaluations.
Microprocessor controlled anodic stripping voltameter for trace metals analysis in tap water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, R.G.; Park, F.W.; Kirsten, F.A.
1981-04-01
The construction and use of a portable, microprocessor controlled anodic stripping voltameter for on-site simultaneous metal analysis of copper, lead and cadmium in tap water is discussed. The instrumental system is comprised of a programmable controller which permits keying in analytical parameters such as sparge time and plating time; a rotating cell for efficient oxygen removal and amalgam formation; and, a magnetic tape which can be used for data storage. Analysis time can be as short as 10 to 15 minutes. The stripping analysis is based on a pre-measurement step during which the metals from a water sample are concentratedmore » into a thin mercury film by deposition from an acetate solution of pH 4.5. The concentrated metals are then electrochemically dissolved from the film by application of a linearly increasing anodic potential. Typical peak-shaped curves are obtained. The heights of these curves are related to the concentration of metals in the water by calibration data. Results of tap water analysis showed 3 +- 1 ..mu..g/L lead, 22 +- 0.3 ..mu..g/L copper, and less than 0.2 ..mu..g/L cadmium for a Berkeley, California tap water, and 1 to 1000 ..mu..g/L Cu, 1 to 2 ..mu..g/L Pb for ten samples of Seattle, Washington tap water. Recommendations are given for a next generation instrument system.« less
Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize
NASA Astrophysics Data System (ADS)
Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.
2016-12-01
Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. We also compared our XRF results with coral biology, environmental and climate information (regional and global). Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.
O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William
2012-04-01
Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.
FILTRATION OF GROUND WATER SAMPLES FOR METALS ANALYSIS
The filtration of a ground water samples with 0.45 um filters for determination of 'dissolved' metals is not only inaccurate for distinguishing between dissolved and particulate phases, but if used for estimates of mobile contaminant loading in a given aquifer, may result in sign...
Friedman, J.D.; Huth, P.C.; Smiley, D.
1990-01-01
Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors
METHOD OF COATING GRAPHITE WITH STABLE METAL CARBIDES AND NITRIDES
Gurinsky, D.H.
1959-10-27
A method is presented for forming protective stable nitride and carbide compounds on the surface of graphite. This is accomplished by contacting the graphite surface with a fused heavy liquid metal such as bismuth or leadbismuth containing zirconium, titanium, and hafnium dissolved or finely dispersed therein to form a carbide and nitride of at least one of the dissolved metals on the graphite surface.
NASA Astrophysics Data System (ADS)
Samanta, Saumik; Dalai, Tarun K.
2018-05-01
The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.
Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.
Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K
2014-11-01
Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.
Trace metals in bulk precipitation and throughfall in a suburban area of Japan
NASA Astrophysics Data System (ADS)
Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.
Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled <0.23%. Average concentrations of rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).
Banks, Joanne L; Ross, D Jeff; Keough, Michael J; Eyre, Bradley D; Macleod, Catriona K
2012-03-15
Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O(2) levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O(2) depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.
Heavy Metals and Related Trace Elements.
ERIC Educational Resources Information Center
Leland, Harry V.; And Others
1978-01-01
Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)
NASA Astrophysics Data System (ADS)
Aiuppa, Alessandro; Allard, Patrick; D'Alessandro, Walter; Michel, Agnes; Parello, Francesco; Treuil, Michel; Valenza, Mariano
2000-06-01
The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO 2 and the contribution of aqueous transport to the overall metal discharge of the volcano. We show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO 2-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paternò) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows to evaluate the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. The facts that rock-forming minerals and groundmass dissolve at different rates and secondary minerals are formed are taken into account. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu). The fluxes of metals discharged by the volcanic aquifer of Etna range from 7.0 × 10 -3 t/a (Th) to 7.3 × 10 4 t/a (Na). They are comparable in magnitude to the summit crater plume emissions for a series of elements (Na, K, Ca, Mg, U, V, Li) with lithophile affinity, but are minor for volatile elements. Basalt weathering at Mt Etna also consumes about 2.1 × 10 5 t/a of magma-derived carbon dioxide, equivalent to ca. 7% of contemporaneous crater plume emissions. The considerable transport of some metals in Etna's aquifer reflects a particularly high chemical erosion rate, evaluated at 2.3∗10 5 t/a, enhanced by the initial acidity of magmatic CO 2-rich groundwater.
Li, Feng; Lin, Ze-Feng; Wen, Jia-Sheng; Wei, Yan-Sha; Gan, Hua-Yang; He, Hai-Jun; Lin, Jin-Qin; Xia, Zhen; Chen, Bi-Shuang; Guo, Wen-Jie; Tan, Cha-Sheng; Cai, Hua-Yang
2017-12-15
Hainan Island is the second largest island and one of the most famous tourist destinations in China, but sediment contamination by trace metals in coastal areas is a major issue. However, full-scale risk assessments of trace metal-polluted coastal sediments are lacking. In this study, coastal surface sediments from 474 geographical locations covering almost the entire island were collected to identify risk-related variables. Controlling factors and possible sources of trace metals were identified, and the toxicity effects were carefully evaluated. Our results suggest that trace-metal pollution in coastal sediments, which was mainly caused by Pb, Zn and Cu emissions, has primarily resulted from industrial sewage and shipping activities and has threatened the offshore ecosystem of Hainan Island and warrants extensive consideration. This is the first study that has systematically investigated trace metal-polluted coastal sediments throughout the entirety of Hainan Island and provides solid evidence for sustainable marine management in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes
Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.
1989-01-01
Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to aromatic carbon and the absence of chemical structures indicative of the lignin of vascular plants. The dissolved organic carbon of the Mono Lake pore fluids is structurally related to humic acid and is also related to carbohydrate metabolism. The alkaline pore fluids, due to high pH, solubilize high molecular weight organic matter from the sediments. This hydrophilic material is a metal complexing agent. Despite very high algal productivities, organic carbon accumulation can be low in stratified lakes if the anoxic bottom waters are hypersaline with high concentrations of sulfate ion. Labile organic matter is recycled to the water column and the sedimentary organic matter is relatively nonsusceptible to bacterial metabolism. As a result, pore-fluid dissolved organic carbon and metal-organic complexation are low. ?? 1989.
C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christl,I.; Kretzschmar, R.
2007-01-01
The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon andmore » {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.« less
TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT
Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...
Assessment of metal retention in newly constructed highway embankments.
Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd
2016-12-01
Newly constructed embankments should provide both a specific bearing capacity to enable trafficability in emergency cases and a sufficient pollutant retention capacity to protect the groundwater. A number of lysimeters were installed along the A115 highway to determine total and dissolved metal concentrations in road runoff and in the soil solution of newly constructed embankments. Dissolved concentrations in soil solution of the embankments did not exceed the trigger values of the German legislation. Depending on the metal, total concentrations in soil solution were more than twice as high as dissolved concentrations. The high infiltration rates lead to increased groundwater recharge beneath the embankments (up to 4100 mm a -1 ). Although metal concentrations were not problematic from the legislators' point of view, the elevated infiltration rates beside the road facilitated the transfer of high metal loads into deeper soil layers and potentially into the groundwater as well.
A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.
Ghare, N Y; Wani, K S; Patil, V S
2013-04-01
Pickling is the process of removal of oxide layer and rust formed on metal surface. It also removes sand and corrosion products from the surface of metal. Acids such as sulfuric acid, hydrochloric acid are used for pickling. Hydrofluoric acid-Nitric acid mixture is used for stainless steel pickling. Pickling solutions are spent when acid concentration in pickling solutions decreases by 75-85%, which also has metal content up to 150-250 g/ dm3. Spent pickling liquor (SPL) should be dumped because the efficiency of pickling decreases with increasing content of dissolved metal in the bath. The SPL content depends on the plant of origin and the pickling method applied there. SPL from steel pickling in hot-dip galvanizing plants contains zinc(II), iron, traces of lead, chromium. and other heavy metals (max. 500 mg/dm3) and hydrochloric acid. Zinc(II) passes tothe spent solution after dissolution of this metal from zinc(II)-covered racks, chains and baskets used for transportation of galvanized elements. Unevenly covered zinc layers are usually removed in another pickling bath. Due to this, zinc(II) concentration increases even up to 110 g/dm3, while iron content may reach or exceed even 80 g/dm3 in the same solution. This review presents an overview on different aspects of generation and treatment of SPL with recourse to recovery of acid for recycling. Different processes are described in this review and higher weightage is given to membrane processes.
Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.S.
1999-08-11
Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less
Watershed and land use-based sources of trace metals in urban storm water.
Tiefenthaler, Liesl L; Stein, Eric D; Schiff, Kenneth C
2008-02-01
Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), flux, and mass loading associated with storm water runoff from representative land uses; to compare EMC, flux, and mass loading associated with storm water runoff from urban (developed) and nonurban (undeveloped) watersheds; and to investigate within-storm and within-season factors that affect trace metal concentration and flux. To achieve these goals, trace metal concentrations were measured in 315 samples over 11 storm events in five southern California, USA, watersheds representing eight different land use types during the 2000 through 2005 storm seasons. In addition, 377 runoff samples were collected from 12 mass emission sites (end of watershed) during 15 different storm events. Mean flux at land use sites ranged from 24 to 1,238, 0.1 to 1,272, and 6 to 33,189 g/km(2) for total copper, total lead, and total zinc, respectively. Storm water runoff from industrial land use sites contained higher EMCs and generated greater flux of trace metals than other land use types. For all storms sampled, the highest metal concentrations occurred during the early phases of storm water runoff, with peak concentrations usually preceding peak flow. Early season storms produced significantly higher metal flux compared with late season storms at both mass emission and land use sites.
Bioaccumulation of trace metals in octocorals depends on age and tissue compartmentalization
Hwang, Jiang-Shiou; Huang, Ke Li; Huang, Mu-Yeh; Liu, Xue-Jun; Khim, Jong Seong; Wong, Chong Kim
2018-01-01
Trace metal dynamics have not been studied with respect to growth increments in octocorals. It is particularly unknown whether ontogenetic compartmentalization of trace metal accumulation is species-specific. We studied here for the first time the intracolonial distribution and concentrations of 18 trace metals in the octocorals Subergorgia suberosa, Echinogorgia complexa and E. reticulata that were retrieved from the northern coast of Taiwan. Levels of trace metals were considerably elevated in corals collected at these particular coral habitats as a result of diverse anthropogenic inputs. There was a significant difference in the concentration of metals among octocorals except for Sn. Both species of Echinogorgia contained significantly higher concentrations of Cu, Zn and Al than Subergorgia suberosa. We used for the first time exponential growth curves that describe an age-specific relationship of octocoral trace metal concentrations of Cu, Zn, Cd, Cr and Pb where the distance from the grip point was reflecting younger age as linear regressions. The larger colony (C7) had a lower accumulation rate constant than the smaller one (C6) for Cu, Zn, Cd, Cr and Pb, while other trace metals showed an opposite trend. The Cu concentration declined exponentially from the grip point, whereas the concentrations of Zn, Cd, Cr and Pb increased exponentially. In S. suberosa and E. reticulata, Zn occurred primarily in coenosarc tissues and Zn concentrations increased with distance from the grip point in both skeletal and coenosarc tissues. Metals which appeared at high concentrations (e.g. Ca, Zn and Fe) generally tended to accumulate in the outer coenosarc tissues, while metals with low concentrations (e.g. V) tended to accumulate in the soft tissues of the inner skeleton. PMID:29684058
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.
2005-01-01
Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.
Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.
2012-01-01
Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.
Antarctic snow: metals bound to high molecular weight dissolved organic matter.
Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo
2017-05-01
In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nasirian, Hassan; Vazirianzadeh, Babak; Taghi Sadeghi, Sayyed Mohammad; Nazmara, Shahrokh
2014-01-01
Abstract The quantity of some trace metals of mosquito larvae in Shadegan International Wetland from Iran was evaluated. Water, waterbed sediment, and mosquito larvae samplings were carried out from an urban site in the east of the wetland, using standard methods in December 2011. The identified Culiseta subochrea (Edwards) and Aedes caspius s.l. (Pallas) larvae, water, and waterbed sediment samples were analyzed for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, and Zn trace metals using standard preparation and isolation procedure. Result showed that the waterbed sediment and Cu. subochrea larvae are polluted with all trace metals investigated except As and Hg. The trace metals bioaccumulated in the Cu. subochrea larvae range from 31.78 at the lowest level for Cr to 3822.7 at the highest level for Cd. In a conclusion, this is the first report confirmed that Cu. subochrea likely used as a bioindicator to trace metal pollution in marine ecosystems in the world, especially wetlands. PMID:25550357
NASA Astrophysics Data System (ADS)
Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian
2016-09-01
The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.
Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda
2013-06-01
The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.
Arsenic removal in conjunction with lime softening
Khandaker, Nadim R.; Brady, Patrick V.; Teter, David M.; Krumhansl, James L.
2004-10-12
A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.
NASA Astrophysics Data System (ADS)
Li, Dongmei; Medlin, J. W.; Bastasz, R.
2006-06-01
The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized.
Ayyamperumal, T; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Ram-Mohan, V
2006-09-01
An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.
Water-quality trend analysis and sampling design for streams in North Dakota, 1971-2000
Vecchia, Aldo V.
2003-01-01
This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historical water-quality trends in selected dissolved major ions, nutrients, and dissolved trace metals for 10 streams in southwestern and eastern North Dakota and to develop an efficient sampling design to monitor future water-quality trends. A time-series model for daily streamflow and constituent concentration was used to identify significant concentration trends, separate natural hydroclimatic variability in concentration from variability that could have resulted from anthropogenic causes, and evaluate various sampling designs to monitor future water-quality trends. The interannual variability in concentration as a result of variability in streamflow, referred to as the annual concentration anomaly, generally was high for all constituents and streams used in the trend analysis and was particularly sensitive to the severe drought that occurred in the late 1980's and the very wet period that began in 1993 and has persisted to the present (2002). Although climatic conditions were similar across North Dakota during the trend-analysis period (1971-2000), significant differences occurred in the annual concentration anomalies from constituent to constituent and location to location, especially during the drought and the wet period. Numerous trends were detected in the historical constituent concentrations after the annual concentration anomalies were removed. The trends within each of the constituent groups (major ions, nutrients, and trace metals) showed general agreement among the streams. For most locations, the largest dissolved major-ion concentrations occurred during the late 1970's and concentrations in the mid- to late 1990's were smaller than concentrations during the late 1970's. However, the largest concentrations for three of the Missouri River tributaries and one of the Red River of the North tributaries occurred during the mid- to late 1990's. Concentration trends for total ammonia plus organic nitrogen showed close agreement among the streams for which that constituent was evaluated. The largest concentrations occurred during the early 1980's, and the smallest concentrations occurred during the early 1990's. Nutrient data were not available for the early 1970's or late 1990's. Although a detailed analysis of the causes of the trends was beyond the scope of this report, a preliminary analysis of cropland, livestock-inventory, and oil-production data for 1971-2000 indicated the concentration trends may be related to the livestock-inventory and oil-production activities in the basins. Dissolved iron and manganese concentrations for the southwestern North Dakota streams generally remained stable during 1971-2000. However, many of the recorded concentrations for those streams were less than the detection limit, and trends that were masked by censoring may have occurred. Several significant trends were detected in dissolved iron and manganese concentrations for the eastern North Dakota streams. Concentrations for those streams either remained stable or increased during most of the 1970's and then decreased rapidly for about 2 years beginning in the late 1970's. The concentrations were relatively stable from the early 1980's to 2000 except at two locations where dissolved iron concentrations increased during the early 1990's. The most efficient overall sampling designs for the detection of annual trends (that is, trends that occur uniformly during the entire year) consisted of balanced designs in which the sampling dates and the number of samples collected remained fixed from year to year and in which the samples were collected throughout the year rather than in a short timespan. The best overall design for the detection of annual trends consisted of three samples per year, with samples collected near the beginning of December, April, and August. That design had acceptable sensitivity for the detection of trends in most constituents at all locations. Little improvement in sensitivity was achieved by collecting more than three samples per year.The sampling designs that were first evaluated for annual trends also were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three seasons--April through August, August through December, and December through April. Design results indicated that an average of one extra sample per station per year resulted in an efficient design for detecting seasonal trends. However, allocation of the extra samples varied depending on the station, month, and constituent group (major ions, nutrients, and trace metals).
Lambing, J.H.
1987-01-01
A sampling program was conducted at six stream sites. The purpose of the study was to collect baseline data on concentrations of suspended sediment and selected trace metals in streamflow. Included in this report are tables of daily data for mean streamflow, suspended sediment concentration, and suspended sediment discharge at two streamflow gaging stations on the Clark Fork; periodic data for instantaneous streamflow, onsite water quality, and trace metal and suspended sediment concentrations in the Clark Fork and tributaries; and summary statistics for all the water quality data. Also included are graphs for each site showing median concentrations of trace metals, relationship of concentrations of trace metals to suspended sediment, and median concentrations of trace metals in suspended sediments. Hydrographs for two sites on the main stem show daily mean streamflow, suspended sediment concentration, and suspended sediment discharge for the period of study. (Author 's abstract)
Consumer-producer relationships for trace metals in Chorthippus brunneus (Thunberg. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M.S.
1986-08-01
The behavior of trace metals in terrestrial food chains is a subject of ecological interest, particularly in polluted environments where the potential exists for bioconcentration of metals known to be essential in trace amounts for normal plant and animal metabolism, as well as those with no known metabolic function but recognized toxicological properties. Laboratory studies of food chain relationships afford a means by which direct comparisons can be made between trace metals as a basis for interpretation of data collected from wild plant and animal populations. This study compares the behavior of three trace elements, copper, zinc and cadmium, inmore » terms of their assimilation under experimental conditions by the herbivorous common field grasshopper, Chorthippus brunneus (Thunberg.). This voracious orthopteran is widely distributed in Britain and is particularly prominent in the restricted invertebrate community of some metal smelter-affected grasslands where it forms important seasonal prey for insectivorous small mammals.« less
Djane, N K; Armalis, S; Ndung'u, K; Johansson, G; Mathiasson, L
1998-02-01
A method for trace metal determinations in complex matrices is presented. The method combines supported liquid membrane (SLM) sample clean-up and enrichment with potentiometric stripping analysis (PSA) in a flow system using reticulated vitreous carbon (RVC) as the electrode material. The membrane contained 40% m/m di-2-ethylhexylphosphoric acid dissolved in kerosene. Lead was used as a model substance in high-purity water and urine samples. The samples were enriched after a simple pH adjustment. The SLM enrichment time was 10 min when the last 5 min electrodeposition on the RVC electrode at -1.0 V (versus Ag/AgCl) was performed simultaneously. The influence of various experimental parameters such as deposition time, deposition potential and flow rate on the lead signal was investigated. With a 10 min SLM enrichment including a 5 min deposition time, the detection limit for lead was 0.3 microgram l-1. The relative standard deviation for lead concentrations in the range 4-20 micrograms l-1 was 0.05%. The overall SLM-PSA system was found to be stable for at least 100 urine analyses. The method was validated by running a reference urine sample. The result obtained (five replicates) was 9.7 micrograms l-1 (standard deviation 1.8 micrograms l-1) which is within the recommended range of 9.2-10.8 micrograms l-1.
NASA Astrophysics Data System (ADS)
Lv, Lina; Yang, Yanling; Tian, Junguo; Li, Yaojian; Li, Jun; Yan, Shengjun
2018-02-01
In this study, a salinity wastewater was produced during the fly ash treatment in the waste incineration plant. Chemical precipitation method was applied for heavy metals removal in the salinity wastewater. The effect of salinity on the removal of dissolved heavy metal ions (Zn2+, Cu2+, Pb2+, Ni2+ and Cd2+) was studied, especially on the removal of Pb2+ and Cd2+. Because of the formation of [PbCl3]- and [PbCl4]2- complexes, the residual concentration of dissolved Pb2+ increased from 0.02 mg/L to 4.08 mg/L, as the NaCl concentration increased from 0 % to 10 %. And the residual concentration of dissolved Cd2+ increased from 0.02 mg/L to 1.39 mg/L, due to the formation of [CdCl3]-, [CdCl4]2- and [CdCl6]4- complexes.
NASA Astrophysics Data System (ADS)
Smith, J. P.; Muller, A. C.
2013-05-01
Predicting the fate and distribution of anthropogenic-sourced trace metals in riverine and estuarine systems is challenging due to multiple and varying source functions and dynamic physiochemical conditions. Between July 2011 and November 2012, sediment and water column samples were collected from over 20 sites in the tidal-fresh Potomac River estuary, Washington, DC near the outfall of the Blue Plains Advanced Wastewater Treatment Plant (BPWTP) for measurement of select trace metals. Field observations of water column parameters (conductivity, temperature, pH, turbidity) were also made at each sampling site. Trace metal concentrations were normalized to the "background" composition of the river determined from control sites in order to investigate the distribution BPWTP-sourced in local Potomac River receiving waters. Temporal differences in the observed distribution of trace metals were attributed to changes in the relative contribution of metals from different sources (wastewater, riverine, other) coupled with differences in the physiochemical conditions of the water column. Results show that normalizing near-source concentrations to the background composition of the water body and also to key environmental parameters can aid in predicting the fate and distribution of anthropogenic-sourced trace metals in dynamic riverine and estuarine systems like the tidal-fresh Potomac River.
Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA
NASA Astrophysics Data System (ADS)
Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.
2015-12-01
Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.
NASA Astrophysics Data System (ADS)
Helgoe, J. M.; Townsend, E.; John, S.
2014-12-01
A new method has been developed for the rapid analysis of metal concentrations and stable isotope ratios using a prepFAST automated sample processing robot. Although concentrations and isotopes are processed separately, similar methods are used for both. Initially all seawater is acidified to pH 2. Then Nobias resin with EDTA/IDA functional groups is added to either 10mL of sample for concentrations or ~1L samples for isotopes. Fe binds to the resin at low pH, and the pH is subsequently raised to allow Zn and Cd to bind. For concentration analyses, all subsequent chemistry is automated on the prepFAST including removal of seawater, rinsing of resin, and elution of resin into acid. For isotope samples these extraction techniques are performed manually, but the subsequent purification of Fe, Zn, and Cd by anion exchange chromatography is automated using the prepFAST. With these new methods, samples from the US GEOTRACES cruise GP16, in the eastern tropical South Pacific, are being analyzed. High concentrations of dissolved Fe are observed near the continental shelf and near submarine hydrothermal vents. Interestingly, isotope data show that dissolved Fe near the continental shelf generally has a δ56Fe close to 0 ‰. This δ56 Fe signature is suggestive of a non-reductive dissolution source for Fe, as Fe(II) released by reductive dissolution is typically closer to -2 ‰. Preliminary data show nutrient-type profiles for Zn and Cd, with Zn matching Si and Cd having a similar distribution to P. An increase in dissolved Zn near hydrothermal vents suggests a possible hydrothermal zinc source to the deep ocean. Continuing analysis of isotope data will reveal more about the source and biogeochemical cycling of these three chemically and biologically important trace metals throughout the eastern tropical Pacific Ocean.
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Sen, I. S.; Mishra, G.
2017-12-01
There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical budget of large river systems, and they must be better monitored to address future challenges in river basin management.
ANALYTICAL METHOD FOR THE ABSORPTIOMETRIC DETERMINATION OF BORON IN SODIUM METAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-01
Sodium metal is dissolved in water under an inert atmosphere of argon, and the resulting sodium hydroxide solution is evaporated to dryness. Rosocyanin is formed, separated from excess curcumin, and dissolved in ethanol for absorptiometric measurement. The method is applicable to sodium metal containing 0.1 to 1 ppm boron. The precision should be within plus or minus 20% (95% confidence limits) at the 0.5 ppm boron level. (auth)
Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.
2006-01-01
Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.
Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick
2007-01-01
In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median concentrations of dissolved nitrite plus nitrate ranged from 5.1 to 6.1 mg/L and were 4 to 7 times larger than concentrations at the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). The source of these larger dissolved nitrite plus nitrate concentrations has not been identified, but the fact that all measurements had elevated dissolved nitrite plus nitrate concentrations indicates a relatively constant source. Most stormflow concentrations of dissolved trace elements were smaller than concentrations from base-flow or normal-flow samples. However, median concentrations of total arsenic, copper, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during base flow or normal flow. Concentrations of dissolved and total copper, total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc ranged from 3 to 27 times larger at site 07103707 (FoCr_8th) than site 07103700 (FoCr_Manitou) during base flow, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek. The likely source area is Gold Hill Mesa, a former tailings pile for a gold refinery located just upstream from the confluence with Monument Creek, and upstream from site 07103707 (FoCr_8th). Farther downstream in Fountain Creek, stormflow samples for total copper, manganese, lead, nickel, and zinc were larger at the downstream site near the city of Security, site 07105800 (FoCr_Security), than at the upstream site near Janitell Road, site 07105530 (FoCr_Janitell), compared with other main-stem sites and indicated a relatively large source of these metals between the two sites. Nitrogen, phosphorus, and trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with normal flow. The Apr
Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.
2015-09-16
Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.
Heavy metal contamination of a Greenland Fjord system by mine wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, D.H.; Asmund, G.
Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two-fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable, Zn, Cd, and Pb contamination of the water and suspended particulate matter (SPM). Chemical partition of the SPM shows that most of the Pb, but relatively low proportions of Zn and Cd are weakly bound to the SPM. Such particulate metal characteristics allow the real timemore » effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow. Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd, depending on the metal and their location relative to the tailings outfall. They apparently responded almost instantly to the metal contamination as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites, and from experimental work, indicates that any discharge of Pb-particles into the marine environment, either directly as mine wastes or indirectly from natural runoff from current and former lead mining sites, results in immediate lead contamination of the in situ mussel population. 20 refs., 4 figs., 5 tab.« less
Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.
2015-01-01
In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.
Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.
2001-01-01
strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph iron spring yielded 39% of the discharge and 54%, 73%, and 87% of the SO4, Al, and Fe loads; but only 4% of the total Cu and 30% of the total Zn loads in Prospect Gulch. Base flow from the Prospect Gulch sub-basin contributes about 4.8 percent of the total discharge at the mouth of Cement Creek; compared with sampled instream loads of 1.8%, 8.8%, 15.9%, 28%, and 8.6% for SO4, Al, Fe, Cu and Zn, respectively. Water-shed scale remediation efforts targeted at reducing loads of SO4, Al, and Fe at inactive mine sites are likely to fail because the major sources of these constituents in Prospect Gulch are predominantly discharged from natural sources. Remediation goals aimed at reducing acidity and loads of Cu and other base metals, may succeed, however, because changes in pH and loads are disproportionately greater than increases in discharge over the same reach, and a substantial fraction of the metal loading is from mining-impacted reaches. Whether remediation of abandoned mines in Prospect Gulch can be successful depends on how goals are defined?that is, whether the objective is to reduce loads of SO4, Al, and Fe; or whether loads of Cu and other base metals and pH are targeted.
All-alkoxide synthesis of strontium-containing metal oxides
Boyle, Timothy J.
2001-01-01
A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.
NASA Astrophysics Data System (ADS)
Twining, B. S.; Jacquot, J. E.; Rauschenberg, S.; Enright, J.; Marchetti, A.; Cohen, N.; Brown, M.; Parker, C.; Bruland, K. W.
2016-02-01
Iron is a critical micronutrient that controls primary production in large swaths of the global ocean. Experiments with laboratory cultures indicate that phytoplankton differ in their ability to compete for and store Fe in response to varying ambient Fe concentrations. However there are very few measurements of the physiological responses of natural phytoplankton populations to gradients in Fe availability. Incubation experiments were conducted off the coast of California and Oregon at two sites characterized by a 10-fold difference in dissolved Fe (0.3 and 3 nM). In each experiment, incubation water was amended with either dissolved Fe (5-10 nM), the model siderophore desferrioxamine B (DFB; 200 nM), or left unamended. Iron contents of three abundant diatom groups (Chaetoceros sp. and large and small pennate diatoms) were monitored by synchrotron X-ray fluorescence, along with dissolved and bulk particulate trace metals and macronutrients over the course of 3 days. Transcriptomic samples were also collected at daily timepoints to assess molecular responses. Added dissolved Fe was drawn down in both experiments, while DFB appeared to solubilize a fraction of ambient particulate Fe in the high-Fe experiment. Iron quotas of unamended diatoms were nearly 10-fold higher under high-Fe conditions. Quotas increased in response to added Fe in both experiments, but the magnitude of changes varied between diatom taxa. DFB additions resulted in reduced Fe quotas in the low-Fe incubation, since cells were presumably forced to use internal Fe stores to support growth. These data demonstrate significant plasticity in the abilities of phytoplankton to take advantage of changing micronutrient inputs. Quota data will be compared to transcript abundance data to ascertain mechanisms of Fe quota maintenance.
Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida
NASA Astrophysics Data System (ADS)
Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.
2008-05-01
Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.
NASA Astrophysics Data System (ADS)
Horvath, A. S.; Baldisimo, J. G.; Moreau, J. W.
2010-12-01
Arsenic contamination of groundwater poses a serious environmental and human health problem in many regions around the world. Historical groundwater chemistry data for a Western-Central Victorian gold mine (Australia) revealed a strong inverse correlation between dissolved thiocyanate and iron(II), supporting the interpretation that oxidation of thiocyanate, a major groundwater contaminant by-product of cyanide-based gold leaching, was coupled to reductive dissolution of iron ox(yhydrox)ides in tailings dam sediments. Microbial growth was observed in this study in a selective medium using SCN- as the sole carbon and nitrogen source. The potential for use of SCN- as a tracer of mining contamination in groundwater was evaluated in the context of biological SCN- oxidation potential in the aquifer. Geochemical data also revealed a high positive correlation between dissolved arsenic and manganese, indicating that sorption on manganese-oxides most likely controls arsenic mobility at this site. Samples of groundwater and sediments along a roughly straight SW-NE traverse away from a large mine tailings storage facility, and parallel to the major groundwater flow direction, were analysed for major ions and trace metals. Groundwater from wells approaching the tailings along this traverse showed a nearly five-fold increase (roughly 25-125 ppb) in dissolved arsenic concentrations relative to aqueous Mn(II) concentrations. Thus, equivalent amounts of dissolved manganese released a five-fold difference in the amount of adsorbed arsenic. The interpretation that reductive dissolution of As-bearing MnO2 at the mine site has been mediated by groundwater (or aquifer) microorganisms is consistent with our recovery of synthetic birnessite-reducing enrichment cultures that were inoculated with As-contaminated groundwaters.
Electric current density imaging of tablet dissolution.
Mikac, Ursa; Demsar, Alojz; Sersa, Igor; Demsar, Franci
2002-01-01
The Electric current density imaging technique (CDI) was used to monitor the dissolution of and ion migration from tablets of different acids in agar-agar gel. Conventional MRI cannot monitor these processes, since it can only show changes in the size of the tablet during the dissolving process. CDI traces the dissolved ions thanks to changes in conductivity.
Inert Reassessment Document for Ethylenediaminetetracetric acid (EDTA)
EDTA is a chelating agent. Its ability to bind heavy metal ions can be used to sequester these trace metals. However, trace amounts of various metals are necessary for the proper functioning of the body.
Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.
2014-01-01
Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side. Differences in microbial sulfate reduction, organic matter supply, and/or groundwater residence time likely contributed to this pattern. The contrasting features of the east and west sub-marsh zones highlight the need for multiple techniques for characterization of submarine groundwater discharge sources and the impact of biogeochemical processes on the delivery of nutrients and carbon to coastal areas via submarine groundwater discharge.
The release of dissolved nutrients and metals from coastal sediments due to resuspension
Kalnejais, Linda H.; Martin, William R.; Bothner, Michael H.
2010-01-01
Coastal sediments in many regions are impacted by high levels of contaminants. Due to a combination of shallow water depths, waves, and currents, these sediments are subject to regular episodes of sediment resuspension. However, the influence of such disturbances on sediment chemistry and the release of solutes is poorly understood. The aim of this study is to quantify the release of dissolved metals (iron, manganese, silver, copper, and lead) and nutrients due to resuspension in Boston Harbor, Massachusetts, USA. Using a laboratory-based erosion chamber, a range of typical shear stresses was applied to fine-grained Harbor sediments and the solute concentration at each shear stress was measured. At low shear stress, below the erosion threshold, limited solutes were released. Beyond the erosion threshold, a release of all solutes, except lead, was observed and the concentrations increased with shear stress. The release was greater than could be accounted for by conservative mixing of porewaters into the overlying water, suggesting that sediment resuspension enhances the release of nutrients and metals to the dissolved phase. To address the long-term fate of resuspended particles, samples from the erosion chamber were maintained in suspension for 90. h. Over this time, 5-7% of the particulate copper and silver was released to the dissolved phase, while manganese was removed from solution. Thus resuspension releases solutes both during erosion events and over a longer timescale due to reactions of suspended particles in the water column. The magnitude of the annual solute release during erosion events was estimated by coupling the erosion chamber results with a record of bottom shear stresses simulated by a hydrodynamic model. The release of dissolved copper, lead, and phosphate due to resuspension is between 2% and 10% of the total (dissolved plus particulate phase) known inputs to Boston Harbor. Sediment resuspension is responsible for transferring a significant quantity of solid phase metals to the more bioavailable and mobile dissolved phase. The relative importance of sediment resuspension as a source of dissolved metals to Boston Harbor is expected to increase as continuing pollutant control decreases the inputs from other sources. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Voss, Britta M.; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy I.; Fiske, Gregory; Wang, Zhaohui Aleck; Hoering, Katherine A.; Montluçon, Daniel B.; LeCroy, Chase; Pal, Sharmila; Marsh, Steven; Gillies, Sharon L.; Janmaat, Alida; Bennett, Michelle; Downey, Bryce; Fanslau, Jenna; Fraser, Helena; Macklam-Harron, Garrett; Martinec, Michelle; Wiebe, Brayden
2014-01-01
The Fraser River basin in southwestern Canada bears unique geologic and climatic features which make it an ideal setting for investigating the origins, transformations and delivery to the coast of dissolved riverine loads under relatively pristine conditions. We present results from sampling campaigns over three years which demonstrate the lithologic and hydrologic controls on fluxes and isotope compositions of major dissolved inorganic runoff constituents (dissolved nutrients, major and trace elements, 87Sr/86Sr, δD). A time series record near the Fraser mouth allows us to generate new estimates of discharge-weighted concentrations and fluxes, and an overall chemical weathering rate of 32 t km-2 y-1. The seasonal variations in dissolved inorganic species are driven by changes in hydrology, which vary in timing across the basin. The time series record of dissolved 87Sr/86Sr is of particular interest, as a consistent shift between higher (“more radiogenic”) values during spring and summer and less radiogenic values in fall and winter demonstrates the seasonal variability in source contributions throughout the basin. This seasonal shift is also quite large (0.709-0.714), with a discharge-weighted annual average of 0.7120 (2 s.d. = 0.0003). We present a mixing model which predicts the seasonal evolution of dissolved 87Sr/86Sr based on tributary compositions and water discharge. This model highlights the importance of chemical weathering fluxes from the old sedimentary bedrock of headwater drainage regions, despite their relatively small contribution to the total water flux.
Undocumented water column sink for cadmium in open ocean oxygen-deficient zones
Janssen, David J.; Conway, Tim M.; John, Seth G.; Christian, James R.; Kramer, Dennis I.; Pedersen, Tom F.; Cullen, Jay T.
2014-01-01
Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals. PMID:24778239
Undocumented water column sink for cadmium in open ocean oxygen-deficient zones.
Janssen, David J; Conway, Tim M; John, Seth G; Christian, James R; Kramer, Dennis I; Pedersen, Tom F; Cullen, Jay T
2014-05-13
Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals.
Reconnaissance for trace metals in bed sediment, Wright Patman Lake, near Texarkana, Texas
McKee, Paul W.
2001-01-01
Many contaminants can be introduced into the environment by urban and industrial activities. The drainage area of Wright Patman Lake is influenced by these activities. Among the contaminants associated with urban and industrial activities are trace metals such as arsenic, lead, mercury, and zinc. These contaminants are relatively insoluble in water and commonly are found in stream, lake, and reservoir bottom sediment, especially the clays and silts within the sediment.Wright Patman Lake serves as the major potable water supply for the city of Texarkana and surrounding communities. Texarkana, located in the northeastern corner of Texas and the southwestern corner of Arkansas, had a population of about 56,000 in 1998, which reflects an increase of about 3.4 percent from the 1990 census (Ramos, 1999). Texarkana Water Utilities, which manages the water-treatment facilities for Texarkana, proposes to dredge the lake bed near the water intake in the Elliot Creek arm of Wright Patman Lake. It is possible that arsenic, lead, mercury, and other trace metals might be released into the water if the bed sediment is disturbed. Bed sediment in the Elliot Creek arm of the lake, in particular, could contain trace metals because of its proximity to Red River Army Depot and because industrial land use is prevalent in the headwaters of Elliot Creek.The U.S. Geological Survey (USGS), in cooperation with Reconnaissance for Trace Metals in Bed Sediment, Wright Patman Lake, Near Texarkana, Texas In cooperation with the Texarkana Water Utilities conducted a reconnaissance of Wright Patman Lake to collect bed-sediment samples for analysis of trace metals. This report presents trace metal concentrations in bed-sediment samples collected at six sites along the Elliot Creek arm of the lake, one site each in two adjacent arms, and one site near the dam on June 16, 1999 (fig. 1). One bed-sediment sample was collected at each of the nine sites, and one sediment core was collected at each of two of the sites. Trace metal concentrations are compared to sediment-quality guidelines for the protection of aquatic life and to screening levels based on historical trace metal concentrations in bed sediment of Texas reservoirs.
Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen
2017-01-01
The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.
Vijayaraghavan, K; Joshi, U M
2013-01-01
Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
NASA Astrophysics Data System (ADS)
Mullins, A.; Bain, D.
2017-12-01
Infiltration-based green infrastructure (GI) is being increasingly applied in urban areas, systems characterized by substantial legacy contamination and complicated hydrology. However, it is not clear how the application of green infrastructure changes the geochemistry of urban roadside environments. Most current research on GI focuses on small sets of chemical parameters (e.g. road salt, nitrogen and phosphorous species) over relatively short time periods, limiting comprehensive understanding of geochemical function. This work measures changes in groundwater infiltration rate and dissolved metal concentrations in two infiltration trenches in Pittsburgh, PA to evaluate function and measure dissolved metal transport from the system over time. Two distinct geochemical regimes seem to be driven by seasonality: road de-icer exchange and microbial driven summer reducing conditions. Interactions between these geochemical regimes and variability in infiltration rate control the flux of different metals, varying with metal chemistry. These findings suggest the adoption of infiltration based green infrastructure will likely create complicated patterns of legacy contamination transport to downstream receptors.
2012-01-01
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060
Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka
2014-02-01
The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong
2016-04-07
Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.
Trace elements in agroecosystems and impacts on the environment.
He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J
2005-01-01
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.
Li, Zhenjiang; Wang, Bin; Ge, Shufang; Yan, Lailai; Liu, Yingying; Li, Zhiwen; Ren, Aiguo
2016-12-01
Polycyclic aromatic hydrocarbons (PAHs), nicotine, cotinine, and metals in human hair have been used as important environmental exposure markers. We aimed to develop a simple method to simultaneously analyze these pollutants using a small quantity of hair. The digestion performances of tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH) for human hair were compared. Various solvents or their mixtures including n-hexane (HEX), dichloromethane (DCM) and trichloromethane (TCM), HEX:DCM32 (3/2) and HEX:TCM73 (7/3) were adopted to extract organics. The recoveries of metals were determined under an optimal operation of digestion and extraction. Our results showed that TMAH performed well in dissolving human hair and even better than NaOH. Overall, the recoveries for five solutions were acceptable for PAHs, nicotine in the range of 80%-110%. Except for HEX, other four extraction solutions had acceptable extraction efficiency for cotinine from HEX:TCM73 (88 ± 4.1%) to HEX:DCM32 (100 ± 2.8%). HEX:DCM32 was chosen as the optimal solvent in consideration of its extraction efficiency and lower density than water. The recoveries of 12 typical major or trace metals were mainly in the range of 90%-110% and some of them were close to 100%. In conclusion, the simultaneous analysis of PAHs, nicotine, cotinine, and metals was feasible. Our study provided a simple and low-cost technique for environmental epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huidobro-Toro, J Pablo; Lorca, Ramón A; Coddou, Claudio
2008-03-01
Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.
Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech
2016-09-01
Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T. S.; Pierce, R. A.
2012-07-02
The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu upmore » to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a “standard” 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 °C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of 10 M HNO{sub 3} containing 0.03-0.05 M KF, 0.5-1.0 g/L Gd, and 1.9 g/L Fe resulted in complete dissolution of the metal in 2.0-3.5 h. When B was used as the neutron poison, 10 M HNO{sub 3} solutions containing 0.05-0.1 M KF, 1.9 g/L Fe, and 1 g/L B resulted in complete dissolution of the metal in 0.75-2.0 h. Dissolution rates estimated using data from the flowsheet demonstrations agreed reasonably well with the measured rates; although, a discrepancy was observed in the Gd system. The presence of 1 g/L Gd or B in the dissolving solution had about the same effect on the dissolution rate. The predominant Pu valence in the dissolving solution was Pu(IV). The concentration of Pu(VI) was evaluated by UV-visible spectroscopy and was estimated to be significantly less than 1 wt %. The offgas generation rates and H{sub 2} concentrations measured in the offgas from experiments performed using 10 M HNO{sub 3} containing 0.05 M KF, 1.9 g/L Fe and either 1 g/L Gd or B were approximately the same. These data support the conclusion that the presence of either 1 g/L Gd or B had the same general effect on the dissolution rate. The calculated offgas generation during the dissolutions was 0.6 mol offgas/mol of Pu. The H{sub 2} concentration measured in the offgas from the dissolution using Gd as the neutron poison was approximately 0.5 vol %. In the B system, the H{sub 2} ranged from nominally 0.8 to 1 vol % which is about the same as measured in the Gd system within the uncertainty of the analysis. The offgas generation rate for the dissolution performed using 10 M HNO{sub 3} containing 0.03 M KF, 0.5 g/L Gd, and 1.9 g/L Fe was approximately a factor of two less than produced in the other dissolutions; however, the concentration of H{sub 2} measured in the offgas was higher. The adjusted concentration ranged from 2.7 to 8.8 vol % as the dissolution proceeded. Higher concentrations of H{sub 2} occur when the Pu dissolution proceeds by a metal/acid reaction rather than nitrate oxidation. The higher H{sub 2} concentration could be attributed to the reduced activity of the fluoride due to complexation with Pu as the dissolution progressed. Dissolution of Pu metal at 20 °C in 10 M HNO{sub 3} containing 0.05 M KF showed that the Pu metal dissolves slowly without any visible gas generation. As the Pu metal dissolves, it forms a more-dense Pu-bearing solution which sank to the bottom of the dissolution vessel. The dissolved Pu did not form a boundary layer around the sample and failed to distribute homogeneously due to minimal (thermally-induced) mixing. This indicates that in the H-Canyon dissolver insert, the Pu will diffuse out of the insert into the bulk dissolver solution where it will disperse. At 35 °C, the Pu metal dissolved without visible gas generation. However, due to thermal currents caused by maintaining the solution at 35 °C, the dissolved Pu distributed evenly throughout the dissolver solution. It did not form a boundary layer around the sample.« less
Kouvo, Petri
2003-04-01
This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80-100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.
2010-03-07
The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less
USDA-ARS?s Scientific Manuscript database
Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.
2004-06-15
Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface ureamore » hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.« less
Presley, Todd K.
2001-01-01
The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall and streamflow data were collected from July 1, 2000 to June 30, 2001. Few storms during the year met criteria for antecedent dry conditions or provided enough runoff to sample. The storm of June 5, 2001 was sufficiently large to cause runoff. On June 5, 2001, grab samples were collected at five sites along North Halawa and Halawa Streams. The five samples were later analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological and chemical oxygen demands, total suspended solids, and total dissolved solids.
B Vitamins as Regulators of Phytoplankton Dynamics
NASA Astrophysics Data System (ADS)
Panzeca, Caterina; Tovar-Sanchez, Antonio; Agustí, Susana; Reche, Isabel; Duarte, Carlos M.; Taylor, Gordon T.; Sañudo-Wilhelmy, Sergio A.
2006-12-01
Without an adequate supply of dissolved vitamins, many species of phytoplankton do not grow. Additions of inorganic nutrients like phosphorus and nitrogen, and trace metals like iron, are not alone adequate to sustain life-a practical lesson learned quickly by experimental biologists when they try to keep eukaryotic phytoplankton cultures alive in their labs. The reason is that coenzymes such as B vitamins are also required for many metabolic pathways. For example, vitamin B1 serves as a cofactor for a large number of enzymatic systems, including the pyruvate dehydrogenase complex required for the metabolism of carbohydrates (glycolysis) and amino acid synthesis [Vandamme, 1989]. Vitamin B12 is used primarily to assist two enzymes: methionine synthase, which is involved in DNA synthesis, and methylmalonyl CoA mutase, which is required for inorganic carbon assimilation [Lindemans and Abels, 1985].
Nieto, José Miguel; Sarmiento, Aguasanta M; Olías, Manuel; Canovas, Carlos R; Riba, Inmaculada; Kalman, Judit; Delvalls, T Angel
2007-05-01
The Tinto and Odiel rivers are seriously affected by acid mine drainage (AMD) from the long-term mining activities in Iberian Pyrite Belt (IPB). As a consequence, the Huelva estuary is heavily contaminated by metals and metalloids. This study presents an estimation of the seasonal variation, and the dissolved contaminant load transported by both rivers from February 2002 to September 2004. Besides, toxicity and bioaccumulation tests with the sediments of the estuary have been conducted in order to measure the mobility of the toxic metals. Results show that the Tinto and Odiel rivers transport enormous quantities of dissolved metals to the estuary: 7900 t yr(-1) of Iron (Fe), 5800 t yr(-1) Aluminium (Al), 3500 t yr(-1) Zinc (Zn), 1700 t yr(-1) Copper (Cu), 1600 t yr(-1) Manganese (Mn) and minor quantities of other metals and metalloids. These values represent 37% of the global gross flux of dissolved Zn transported by rivers in to the ocean, and 15% of the global gross flux of dissolved Cu. These metals and metalloids usually sink in the estuarine sediments due to pH and salinity changes. The increase of salinity in the estuary favours the adsorption and trapping of metals. For this reason, the mobility and bioavailability of metals such as Zn, Cd and Cu is higher in sediments located in the area of fresh water influence that in sediments located in the marine influenced area of the estuary, showing a higher percentage of fractionation and bioaccumulation of these metals in the station influenced by the fresh water environment.
Xu, Weihai; Yan, Wen; Zhang, Gan; Li, Jun; Miao, Li; Huang, Weixia
2014-01-01
Oceans play a significant role in the cycling of trace metals and persistent organic pollutants. In this study, aerosol samples covering the whole northern South China Sea (SCS) were collected in 2005 and 2007, respectively, for analysis of trace metals and major elements. The levels of trace metals detected ranged from 0.514 to 119 ng/m(3) in 2005 and from 0.130 to 24.2 ng/m(3) in 2007, respectively. Cu, Zn, and Pb were the three predominant metals with high enrichment factors (>10), indicating the strong anthropogenic inputs. The trace metals over SCS were comparable to the values in suburban and background sites of South China, but generally higher than those over other seas and oceans. Considering the fact that they were influenced by their proximity to source regions and air mass origins, the elevated metals in 2005 were probably attributed to the strong wind and long-range atmospheric transport driven by Asian monsoon.
NASA Astrophysics Data System (ADS)
Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.
2015-12-01
The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the Southwestern Pennsylvania region, as well as early industrial coal production/consumption on legacy trace metal contamination. This record suggests that some early industrial processes can rival more recent metal fluxes and should be carefully considered in modern assessments of legacy sediment metal contamination.
Trace metals accumulation in Bacopa monnieri and their bioaccessibility.
Srikanth Lavu, Rama Venkata; Prasad, Majeti Narasimha Vara; Pratti, Varalakshmi Lalithya; Meißner, Ralph; Rinklebe, Jörg; Van De Wiele, Tom; Tack, Filip; Du Laing, Gijs
2013-08-01
Bacopa monnieri is commonly known as "Brahmi" or "Water hyssop" and is a source of nootropic drugs. Aboveground parts of plant samples collected from peri-urban Indian areas were analysed for total trace metal concentrations. Subsequently, three samples with high concentrations of Cd and Pb were subjected to in vitro gastrointestinal digestion to assess the bioaccessibility of the trace metals in these plants. The total concentrations of trace metals on a dry weight basis were 1.3 to 6.7 mg·kg⁻¹ Cd, 1.5 to 22 mg·kg⁻¹ Pb, 36 to 237 mg·kg⁻¹ Cu, and 78 to 186 mg·kg⁻¹ Zn. The majority of Bacopa monnieri samples exceeded threshold limits of Cd, Pb, Cu, and Zn for use as raw medicinal plant material or direct consumption. Therefore, it is necessary to evaluate Bacopa monnieri collected in nature for their trace metal content prior to human consumption and preparation of herbal formulations. Georg Thieme Verlag KG Stuttgart · New York.
Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo
2012-06-01
Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wu, Hao; Liu, Jinling; Bi, Xiangyang; Lin, Guanghui; Feng, Christopher C; Li, Zhengjie; Qi, Fei; Zheng, Tianling; Xie, Liqi
2017-04-15
In this study, we measured the concentrations of trace metals (Cr, Cu, Zn, As, Cd, Pb and Hg) in typical cultured animals (crabs, clams, and shrimps) and sediments from aquaculture ponds nearby mangrove wetlands in Zhangjiang estuary, China. The contents of Cr, Cu, Cd, and Pb in mangrove sediments were significantly higher than those in pond sediments, while an inverse distribution was observed for Zn, As, and Hg. Significantly higher concentrations of trace metals were found in clams from the mangrove mudflats compared to those from the aquaculture ponds. The sources of trace metals in the clams were primarily from organic fertilizer, whereas those in the shrimp were from contaminated sediment. The results of geo-accumulation index and the ecological risk assessment indicated that the aquaculture ponds near the mangrove wetlands in this subtropical estuary posed a special risk of endogenous and exogenous trace metal pollution to nearby systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.
Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc
2015-06-01
Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern.
Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.
NASA Astrophysics Data System (ADS)
Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.
2017-12-01
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.
PRESERVATION OF TRACE METALS IN WATER SAMPLES
Questions about trace metal preservation are resurfacing because the health effect risks associated with certain metals continue to drive the required reporting limits lower. Inductively coupled plasma-mass spectrometry was used in this study to analyze preservation of samples co...
Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M
2013-09-15
Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in hypercapnia (1.52 and 3.01 kPa). Overall, our data reveal complex and metal-specific interactions between the cellular effects of trace metals and [Formula: see text] in clams and indicate that variations in environmental [Formula: see text] may modulate the biological effects of trace metals in marine organisms. Copyright © 2013 Elsevier B.V. All rights reserved.
Tolerance to cadmium in plants: the special case of hyperaccumulators.
Verbruggen, Nathalie; Juraniec, Michal; Baliardini, Cecilia; Meyer, Claire-Lise
2013-08-01
On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here.
Recovery of critical and value metals from mobile electronics enabled by electrochemical processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedd E. Lister; Peiming Wang; Andre Anderko
2014-10-01
Electrochemistry-based schemes were investigated as a means to recover critical and value metals from scrap mobile electronics. Mobile electronics offer a growing feedstock for replenishing value and critical metals and reducing need to exhaust primary sources. The electrorecycling process generates oxidizing agents at an anode to dissolve metals from the scrap matrix while reducing dissolved metals at the cathode. The process uses a single cell to maximize energy efficiency. E vs pH diagrams and metals dissolution experiments were used to assess effectiveness of various solution chemistries. Following this work, a flow chart was developed where two stages of electrorecycling weremore » proposed: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using a simulated metal mixture equivalent to 5 cell phones. Both Cu and Ag were recovered at ~ 97% using Fe+3 while leaving Au and Pd intact. Strategy for extraction of rare earth elements (REE) from dissolved streams is discussed as well as future directions in process development.« less
Diehl, S.F.; Smith, Kathleen S.; Desborough, G.A.; White, W.W.; Lapakko, K.A.; Goldhaber, Martin B.; Fey, David L.
2003-01-01
To assess the potential impact of metal and acid contamination from mine-waste piles, it is important to identify the mineralogic source of trace metals and their mode of occurrence. Microscopic analysis of mine-waste samples from both hard-rock and coalmine waste samples demonstrate a microstructural control, as well as mineralogic control, on the source and release of trace metals into local water systems. The samples discussed herein show multiple periods of sulfide mineralization with varying concentrations of trace metals. In the first case study, two proprietary hard-rock mine-waste samples exposed to a series of humidity cell tests (which simulate intense chemical weathering conditions) generated acid and released trace metals. Some trace elements of interest were: arsenic (45-120 ppm), copper (60-320 ppm), and zinc (30-2,500 ppm). Untested and humidity cell-exposed samples were studied by X-ray diffraction, scanning electron microscope with energy dispersive X-ray (SEM/EDX), and electron microprobe analysis. Studies of one sample set revealed arsenic-bearing pyrite in early iron- and magnesium-rich carbonate-filled microveins, and iron-, copper-, arsenic-, antimony-bearing sulfides in later crosscutting silica-filled microveins. Post humidity cell tests indicated that the carbonate minerals were removed by leaching in the humidity cells, exposing pyrite to oxidative conditions. However, sulfides in the silica-filled veins were more protected. Therefore, the trace metals contained in the sulfides within the silica-filled microveins may be released to the surface and (or) ground water system more slowly over a greater time period. In the second case study, trace metal-rich pyrite-bearing coals from the Warrior Basin, Alabama were analyzed. Arsenic-bearing pyrite was observed in a late-stage pyrite phase in microfaults and microveins that crosscut earlier arsenic.
Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai
2017-03-01
Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks. Copyright © 2016. Published by Elsevier Inc.
Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...
2016-03-15
We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.
Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...
Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.
Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H
2016-09-01
Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated.
Trace metal characterization of aerosol particles and cloud water during HCCT 2010
NASA Astrophysics Data System (ADS)
Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collett, J. L., Jr.; Herrmann, H.
2015-08-01
Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol-cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
Trace metal characterization of aerosol particles and cloud water during HCCT 2010
NASA Astrophysics Data System (ADS)
Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collet, J., Jr.; Herrmann, H.
2015-04-01
Trace metal characterization of bulk and size resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCE) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn and Ti were mainly found in coarse mode aerosols while Zn, Pb and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe, Mn, were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm while Mn was found mostly in larger drops greater than 22 μm. Fe (III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe (II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol cloud interaction did not lead to a mark increase in soluble trace metal concentrations, but led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
Laser-Induced Breakdown Spectroscopy of Trace Metals
NASA Technical Reports Server (NTRS)
Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.
2004-01-01
An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.
AFS-2 FLOWSHEET MODIFICATIONS TO ADDRESS THE INGROWTH OF PU(VI) DURING METAL DISSOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapse, K.; Rudisill, T.; O'Rourke, P.
2014-07-02
In support of the Alternate Feed Stock Two (AFS-2) PuO{sub 2} production campaign, Savannah River National Laboratory (SRNL) conducted a series of experiments concluding that dissolving Pu metal at 95°C using a 6–10 M HNO{sub 3} solution containing 0.05–0.2 M KF and 0–2 g/L B could reduce the oxidation of Pu(IV) to Pu(VI) as compared to dissolving Pu metal under the same conditions but at or near the boiling temperature. This flowsheet was demonstrated by conducting Pu metal dissolutions at 95°C to ensure that PuO{sub 2} solids were not formed during the dissolution. These dissolution parameters can be used formore » dissolving both Aqueous Polishing (AP) and MOX Process (MP) specification materials. Preceding the studies reported herein, two batches of Pu metal were dissolved in the H-Canyon 6.1D dissolver to prepare feed solution for the AFS-2 PuO{sub 2} production campaign. While in storage, UV-visible spectra obtained from an at-line spectrophotometer indicated the presence of Pu(VI). Analysis of the solutions also showed the presence of Fe, Ni, and Cr. Oxidation of Pu(IV) produced during metal dissolution to Pu(VI) is a concern for anion exchange purification. Anion exchange requires Pu in the +4 oxidation state for formation of the anionic plutonium(IV) hexanitrato complex which absorbs onto the resin. The presence of Pu(VI) in the anion feed solution would require a valence adjustment step to prevent losses. In addition, the presence of Cr(VI) would result in absorption of chromate ion onto the resin and could limit the purification of Pu from Cr which may challenge the purity specification of the final PuO{sub 2} product. Initial experiments were performed to quantify the rate of oxidation of Pu(IV) to Pu(VI) (presumed to be facilitated by Cr(VI)) as functions of the HNO{sub 3} concentration and temperature in simulated dissolution solutions containing Cr, Fe, and Ni. In these simulated Pu dissolutions studies, lowering the temperature from near boiling to 95 °C reduced the oxidation rate of Pu(IV) to Pu(VI). For 8.1 M HNO{sub 3} simulated dissolution solutions, at near boiling conditions >35% Pu(VI) was present in 50 h while at 95 °C <10% Pu(VI) was present at 50 h. At near boiling temperatures, eliminating the presence of Cr and varying the HNO{sub 3} concentration in the range of 7–8.5 M had little effect on the rate of conversion of Pu(IV) to Pu(VI). HNO{sub 3} oxidation of Pu(IV) to Pu(VI) in a pure solution has been reported previously. Based on simulated dissolution experiments, this study concluded that dissolving Pu metal at 95°C using a 6 to 10 M HNO{sub 3} solution 0.05–0.2 M KF and 0–2 g/L B could reduce the rate of oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. To demonstrate this flowsheet, two small-scale experiments were performed dissolving Pu metal up to 6.75 g/L. No Pu-containing residues were observed in the solutions after cooling. Using Pu metal dissolution rates measured during the experiments and a correlation developed by Holcomb, the time required to completely dissolve a batch of Pu metal in an H-Canyon dissolver using this flowsheet was estimated to require nearly 5 days (120 h). This value is reasonably consistent with an estimate based on the Batch 2 and 3 dissolution times in the 6.1D dissolver and Pu metal dissolution rates measured in this study and by Rudisill et al. Data from the present and previous studies show that the Pu metal dissolution rate decreases by a factor of approximately two when the temperature decreased from boiling (112 to 116°C) to 95°C. Therefore, the time required to dissolve a batch of Pu metal in an H-Canyon dissolver at 95°C would likely double (from 36 to 54 h) and require 72 to 108 h depending on the surface area of the Pu metal. Based on the experimental studies, a Pu metal dissolution flowsheet utilizing 6–10 M HNO{sub 3} containing 0.05–0.2 M KF (with 0–2 g/L B) at 95°C is recommended to reduce the oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. The time required to completely dissolve a batch of Pu metal will increase, however, by approximately a factor of two as compared to initial dissolutions at near boiling (assuming the KF concentration is maintained at nominally 0.1 M). By lowering the temperature to 95°C under otherwise the same operating parameters as previous dissolutions, the Pu(VI) concentration should not exceed 15% after a 120 h heating cycle. Increasing the HNO{sub 3} concentration and lowering Pu concentration are expected to further limit the amount of Pu(VI) formed.« less
Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal
Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick
2013-01-01
Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927
Han, Shuping; Naito, Wataru; Masunaga, Shigeki
To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.
Screenable contact structure and method for semiconductor devices
Ross, Bernd
1980-08-26
An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.
High capacity adsorption media and method of producing
Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.
2010-10-05
A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.
High capacity adsorption media and method of producing
Tranter, Troy J [Idaho Falls, ID; Herbst, R Scott [Idaho Falls, ID; Mann, Nicholas R [Blackfoot, ID; Todd, Terry A [Aberdeen, ID
2008-05-06
A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.
THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.
2010-07-16
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less
The weathering of a sulfide orebody: Speciation and fate of some potential contaminants
Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.
2009-01-01
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
NASA Astrophysics Data System (ADS)
Chen, Mengli; Boyle, Edward A.; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo
2016-11-01
Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
NASA Astrophysics Data System (ADS)
Heal, Mathew R.; Hibbs, Leon R.; Agius, Raymond M.; Beverland, Iain J.
Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM 10, PM 2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO 3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median ( n>349) daily water-soluble metal concentration in PM 2.5 ranged from 0.05 ng m -3 for Ti to 5.1 ng m -3 for Pb; and in PM 10 from 0.18 ng m -3 for Ti to 11.7 ng m -3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM 2.5 ranged from 0.3 ng m -3 for As to 27.6 ng m -3 for Fe; and in PM 10 from 0.37 ng m -3 for As to 183 ng m -3 for Fe. The PM 2.5:PM 10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM 10-2.5 fraction than of the PM 2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM 10-2.5, to >50% water-soluble V, Zn, As and Cd in PM 2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM 10 or PM 2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air.
Differences in dissolved cadmium and zinc uptake among stream insects: Mechanistic explanations
Buchwalter, D.B.; Luoma, S.N.
2005-01-01
This study examined the extent to which dissolved Cd and Zn uptake rates vary in several aquatic insect taxa commonly used as indicators of ecological health. We further attempted to explain the mechanisms underlying observed differences. By comparing dissolved Cd and Zn uptake rates in several aquatic insect species, we demonstrated that species vary widely in these processes. Dissolved uptake rates were not related to gross morphological features such as body size or gill size-features that influence water permeability and therefore have ionoregulatory importance. However, finer morphological features, specifically, the relative numbers of ionoregulatory cells (chloride cells), appeared to be related to dissolved metal uptake rates. This observation was supported by Michaelis-Menten type kinetics experiments, which showed that dissolved Cd uptake rates were driven by the numbers of Cd transporters and not by the affinities of those transporters to Cd. Calcium concentrations in exposure media similarly affected Cd and Zn uptake rates in the caddisfly Hydropsyche californica. Dissolved Cd and Zn uptake rates strongly co-varied among species, suggesting that these metals are transported by similar mechanisms.
Spatial distribution of chemical constituents in the Kuskokwim River, Alaska
Wang, Bronwen
1999-01-01
The effects of lithologic changes on the water quality of the Kuskokwim River, Alaska, were evaluated by the U.S. Geological Survey in June 1997. Water, suspended sediments, and bed sediments were sampled from the Kusko-kwim River and from three tributaries, the Holitna River, Red Devil Creek, and Crooked Creek. Dissolved boron, chromium, copper, manganese, zinc, aluminum, lithium, barium, iron, antimony, arsenic, mercury, and strontium were detected. Dissolved manganese and iron concentrations were three and four times higher in the Holitna River than in the Kusko-kwim River. Finely divided ferruginous materials found in the graywacke and shale units of the Kuskokwim Group are the probable source of the iron. The highest concentrations of dissolved strontium and barium were found at McGrath, and the limestone present in the upper basin was the most probable source of strontium. The total mercury concentrations on the Kuskokwim River decreased downstream from McGrath. Dissolved mercury was 24 to 32 percent of the total concentration. The highest concentrations of total mercury, and of dissolved antimony and arsenic were found in Red Devil Creek. The higher concentrations from Red Devil Creek did not affect the main stem mercury transport because the tributary was small relative to the Kuskokwim River. In Red Devil Creek, total mercury exceeded the concentration at which the U.S. Environmental Protection Agency (USEPA) indicates that aquatic life is affected and dissolved arsenic exceeded the USEPA's drinking-water standard. Background mercury and antimony concentrations in bed sediments ranged from 0.09 to 0.15 micrograms per gram for mercury and from 1.6 to 2.1 micrograms per gram for antimony. Background arsenic concentrations were greater than 27 micrograms per gram. Sites near the Red Devil mercury mine had mercury and antimony concentrations greater than background concentrations. These concentrations probably reflect the proximity to the ore body and past mining. Crooked Creek had mercury concentrations greater than the background concentration. The transport of suspended sediment-associated trace elements was lower for all elements in the lower river than in the upper river, indicating storage of sediments and their associated metals within the river system.