Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite... dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced] Pollutant or... ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp facilities where...
40 CFR 430.00 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subcategorization scheme Types of products covered in the subpart A Dissolving Kraft Dissolving pulp at kraft mills... unbleached kraft chemical recovery system (Va). D Dissolving Sulfite Pulp at dissolving sulfite mills for the...
40 CFR 430.00 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subcategorization scheme Types of products covered in the subpart A Dissolving Kraft Dissolving pulp at kraft mills... unbleached kraft chemical recovery system (Va). D Dissolving Sulfite Pulp at dissolving sulfite mills for the...
40 CFR 430.00 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subcategorization scheme Types of products covered in the subpart A Dissolving Kraft Dissolving pulp at kraft mills... unbleached kraft chemical recovery system (Va). D Dissolving Sulfite Pulp at dissolving sulfite mills for the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Dissolving Sulfite Subcategory § 430.44 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced... discharged in kgal per ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp...
Dissolving pulp industry : market trends
Irene Durbak
1993-01-01
This report presents a worldwide overview of the dissolving pulp industry and highlights of this industry in Alaska. It describes trends in world markets and major end-use markets, with special emphasis on the manufacture and use of textile fibers in the United States. Figures and tables present data on production, consumption, and trade of dissolving pulp and the...
Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao
2016-07-01
Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.
A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol.
Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella; Beatson, Rodger; Mark Martinez, D
2017-01-01
Bamboo is a highly abundant source of biomass which is underutilized despite having a chemical composition and fiber structure similar as wood. The main challenge for the industrial processing of bamboo is the high level of silica, which forms water-insoluble precipitates negetively affecting the process systems. A cost-competitive and eco-friendly scheme for the production of high-purity dissolving grade pulp from bamboo not only requires a process for silica removal, but also needs to fully utilize all of the materials dissolved in the process which includes lignin, and cellulosic and hemicellulosic sugars as well as the silica. Many investigations have been carried out to resolve the silica issue, but none of them has led to a commercial process. In this work, alkaline pretreatment of bamboo was conducted to extract silica prior to pulping process. The silica-free substrate was used to produce high-grade dissolving pulp. The dissolved silica, lignin, hemicellulosic sugars, and degraded cellulose in the spent liquors obtained from alkaline pretreatment and pulping process were recovered for providing high-value bio-based chemicals and fuel. An integrated process which combines dissolving pulp production with the recovery of excellent sustainable biofuel and biochemical feedstocks is presented in this work. Pretreatment at 95 °C with 12% NaOH charge for 150 min extracted all the silica and about 30% of the hemicellulose from bamboo. After kraft pulping, xylanase treatment and cold caustic extraction, pulp with hemicellulose content of about 3.5% was obtained. This pulp, after bleaching, provided a cellulose acetate grade dissolving pulp with α-cellulose content higher than 97% and hemicellulose content less than 2%. The amount of silica and lignin that could be recovered from the process corresponded to 95 and 77.86% of the two components in the original chips, respectively. Enzymatic hydrolysis and fermentation of the concentrated and detoxified sugar mixture liquor showed that an ethanol recovery of 0.46 g/g sugar was achieved with 93.2% of hydrolyzed sugars being consumed. A mass balance of the overall process showed that 76.59 g of solids was recovered from 100 g (o.d.) of green bamboo. The present work proposes an integrated biorefinery process that contains alkaline pre-extraction, kraft pulping, enzyme treatment and cold caustic extraction for the production of high-grade dissolving pulp and recovery of silica, lignin, and hemicellulose from bamboo. This process could alleviate the silica-associated challenges and provide feedstocks for bio-based products, thereby allowing the improvement and expansion of bamboo utilization in industrial processes.
Shi, Haiqiang; Fatehi, Pedram; Xiao, Huining; Ni, Yonghao
2011-04-01
The presence of lignin impairs the utilization of the hemicelluloses dissolved in the pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process. In this paper, a novel process was developed by combining the acidification and poly ethylene oxide (PEO) flocculation concepts to improve the lignin removal. The results showed that the lignin removal was improved by the addition of PEO to the acidified PHL, particularly at a low pH of 1.5. The main mechanisms involved are the lignin/PEO complex formation and the bridging of the formed complexes. This hypothesis was supported by the turbidity, FTIR and particle size measurements. Interestingly, the hemicelluloses removal from the acidification/PEO flocculation was marginal, which would be beneficial for the down-stream ethanol production from the PHL. Additionally, a process flow diagram was proposed that incorporates this new concept into the existing configuration of kraft-based dissolving pulp production process. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zuopan
2003-10-01
The primary goals of the study were to develop manufactured cellulosic fibers and microfibers from wood pulps as well as from lignocellulosic agricultural by-products and to investigate alternative cellulosic sources as raw materials for lyocell solutions. A protocol was developed for the lyocell preparation from different cellulose sources. The cellulose sources included commercial dissolving pulps, commercial bleached hardwood, unbleached hardwood, bleached softwood, unbleached softwood, bleached thermomechanical pulp, unbleached thermomechanical pulp, bleached recycled newsprint, unbleached recycled newsprint, bagasse and kudzu. The rheological behavior of solutions was characterized. Complex viscosities and effective elongational viscosities were measured and the influences of parameters such as cellulose source, concentration, bleaching, and temperature were studied. One-way ANOVA post hoc tests were carried out to identify which cellulose sources have the potential to produce lyocell solutions having similar complex viscosities to those from commercial dissolving pulps. Lyocell solutions from both bleached and unbleached softwood and hardwood were classified as one homogenous subset that had the lowest complex viscosity. Kudzu solutions had the highest complex viscosity. The results showed the potential to substitute DP 1457 dissolving pulp with unbleached recycled newsprint pulps, to substitute DP 1195 dissolving pulp with bleached and unbleached thermomechanical pulps, to substitute DP 932 dissolving pulp with bleached thermomechanical pulps or bleached recycled newsprint pulps, to substitute DP 670 dissolving pulp with bagasse. Lyocell fibers were produced from selected solutions and were treated to produce microfibers. Water, sulfuric acid solutions and sodium hydroxide solutions were used. The treatment of lyocell fibers in 17.5% NaOH solutions for five minutes at 20°C successfully broke the fibers into fibrils along fiber axis. The diameters of the fibrils were generally in the range of 2 to 6 mum, and there were also finer fibrils with diameters less than 1 mum.
Wang, Ning; Chen, Hong-Zhang
2013-07-01
In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.34% and 1.10% respectively. The α-cellulose content of cornstalk dissolving pulps was up to 93.10-97.10%, the viscosity was 14.37-23.96 mPas, and the yields of cornstalk dissolving pulps were from 10.11% to 12.44%. In addition, the fractionated short fiber was to be hydrolyzed by enzyme to build sugar platform. The constructed method of steam explosion coupling mechanical carding achieved the fractionation of cornstalk into long fiber and short fiber cleanly and effectively, and provided a new way for cornstalk integrated refinery. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills. ...
40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills. ...
40 CFR 430.40 - Applicability; description of the dissolving sulfite subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dissolving sulfite subcategory. 430.40 Section 430.40 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.40 Applicability; description of the dissolving... production of pulp at dissolving sulfite mills. ...
40 CFR 430.10 - Applicability; description of the dissolving kraft subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dissolving kraft subcategory. 430.10 Section 430.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dissolving Kraft Subcategory § 430.10 Applicability; description of the dissolving kraft subcategory. The provisions of this subpart apply to discharges resulting from the production of dissolving pulp at kraft...
40 CFR 430.10 - Applicability; description of the dissolving kraft subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dissolving kraft subcategory. 430.10 Section 430.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dissolving Kraft Subcategory § 430.10 Applicability; description of the dissolving kraft subcategory. The provisions of this subpart apply to discharges resulting from the production of dissolving pulp at kraft...
40 CFR 430.45 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory... dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or pollutant property Kg... dissolving sulfite pulp facilities where viscose grade pulp is produced] Pollutant or pollutant property Kg...
40 CFR 430.45 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite... biocides: Subpart D [NSPS for dissolving sulfite pulp facilities where nitration grade pulp is produced... all times. Subpart D [NSPS for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...
Liu, Xin; Fatehi, Pedram; Ni, Yonghao
2012-07-01
A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electron treatment of wood pulp for the viscose process
NASA Astrophysics Data System (ADS)
Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.
2000-03-01
Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.
Pulp tissue dissolution capacity of QMix 2in1 irrigation solution.
Arslan, Dilara; Guneser, Mehmet Burak; Kustarci, Alper; Er, Kursat; Siso, Seyda Herguner
2015-01-01
The aim of this study was to evaluate the tissue dissolution efficacy of four root canal irrigation solutions (sodium hypochlorite [NaOCl], chlorhexidine gluconate [CHX], Octenidine [OCT], and QMix 2in1) on bovine pulp tissue. Fifty bovine pulp tissue samples, each weighing 6.55 mg, were prepared and randomly divided into four experimental groups and one control group (n = 10) according to the dissolution irrigants used: (1) 5.25% NaOCl group; (2) 2% CHX group; (3) OCT group; (4) QMix 2in1 group; and (5) control group (saline solution). These samples were then placed into special bovine dentin reservoir models and immersed for 1 h with each test solution (0.1 mL of each) at room temperature. The pulp samples were then blotted dry and weighed again. The percentage of weight loss was calculated. Statistically analyzed with one-way analysis of variance and post-hoc Tukey tests (P = 0.05). Saline solution did not dissolve the bovine pulp tissue. All groups, except OCT, dissolved pulp samples more effectively than the control group (P < 0.05). The highest tissue dissolution was observed in 5.25% NaOCl group (P < 0.05). No statistically significant difference was found between the tissue-dissolving effect between QMix 2in1 and those of 2% CHX. Within the limitations of this in vitro study, NaOCl exhibited the best tissue-dissolving effect out of all solutions tested. CHX and QMix 2in1 were able to dissolve pulp tissue but less than NaOCl. OCT and saline solutions could not exhibit significantly tissue-dissolving effectiveness. This study shown that QMix 2in1 has little capacity to dissolve pulp tissue therefore used alone is not sufficient for this purpose.
Pulp tissue dissolution capacity of QMix 2in1 irrigation solution
Arslan, Dilara; Guneser, Mehmet Burak; Kustarci, Alper; Er, Kursat; Siso, Seyda Herguner
2015-01-01
Objective: The aim of this study was to evaluate the tissue dissolution efficacy of four root canal irrigation solutions (sodium hypochlorite [NaOCl], chlorhexidine gluconate [CHX], Octenidine [OCT], and QMix 2in1) on bovine pulp tissue. Materials and Methods: Fifty bovine pulp tissue samples, each weighing 6.55 mg, were prepared and randomly divided into four experimental groups and one control group (n = 10) according to the dissolution irrigants used: (1) 5.25% NaOCl group; (2) 2% CHX group; (3) OCT group; (4) QMix 2in1 group; and (5) control group (saline solution). These samples were then placed into special bovine dentin reservoir models and immersed for 1 h with each test solution (0.1 mL of each) at room temperature. The pulp samples were then blotted dry and weighed again. The percentage of weight loss was calculated. Statistically analyzed with one-way analysis of variance and post-hoc Tukey tests (P = 0.05). Results: Saline solution did not dissolve the bovine pulp tissue. All groups, except OCT, dissolved pulp samples more effectively than the control group (P < 0.05). The highest tissue dissolution was observed in 5.25% NaOCl group (P < 0.05). No statistically significant difference was found between the tissue-dissolving effect between QMix 2in1 and those of 2% CHX. Conclusions: Within the limitations of this in vitro study, NaOCl exhibited the best tissue-dissolving effect out of all solutions tested. CHX and QMix 2in1 were able to dissolve pulp tissue but less than NaOCl. OCT and saline solutions could not exhibit significantly tissue-dissolving effectiveness. This study shown that QMix 2in1 has little capacity to dissolve pulp tissue therefore used alone is not sufficient for this purpose. PMID:26430374
Strategies for characterizing compositions of industrial pulp and paper sludge
NASA Astrophysics Data System (ADS)
Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.
2018-01-01
The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.
Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.
Baptista, C; Robert, D; Duarte, A P
2008-05-01
This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.
Production of ethanol from xylose by Candida shehatae grown under continuous or fed-batch conditions
T. W. Jeffries; M. A. Alexander
1990-01-01
Xylose is a major component of angiosperm lignocellulosic residues. It is available from a number of different sources in the forest products industry, including fiberboard manufacture, sulfite waste liquors, production of dissolving pulp, and the hydrolysis of hardwood residues. Hydrolysis of wood for the production of liquid fuels, particularly ethanol, has been...
Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.
Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W
2008-05-01
A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are juxtaposed with market penetration and saturation.
Okino, L A; Siqueira, E L; Santos, M; Bombana, A C; Figueiredo, J A P
2004-01-01
To evaluate the activity of various root canal irrigants on bovine pulp tissue. The irrigants tested were: 0.5, 1.0 and 2.5% sodium hypochlorite; 2% aqueous solution of chlorhexidine digluconate; 2% chlorhexidine digluconate gel (Natrosol); and distilled water as control. Bovine pulp fragments were weighed and placed in contact with 20 mL of each tested substance in a centrifuge at 150 r.p.m. until total dissolution. Dissolution speed was calculated by dividing pulp weight by dissolution time. Statistical analysis was performed using the Kruskal-Wallis test. Distilled water and both solutions of chlorhexidine did not dissolve the pulp tissue within 6 h. Mean dissolution speeds for 0.5, 1.0 and 2.5% sodium hypochlorite solutions were 0.31, 0.43 and 0.55 mg min(-1), respectively. The solvent ability of chlorhexidine solutions was similar to that of distilled water. The results for sodium hypochlorite solutions, chlorhexidine solutions and distilled water were statistically different (P>0.01). Both chlorhexidine preparations and distilled water were not able to dissolve pulp tissue. All sodium hypochlorite solutions were efficient in dissolving pulp tissue; the dissolution speed varied with the concentration of the solution.
Zhao, Huifang; Li, Jing; Zhang, Xuejin
2018-06-01
In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.
Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje
2017-07-01
The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.
Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts
T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries
2013-01-01
Although the term âintegrateed biorefineryâ is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...
NASA Astrophysics Data System (ADS)
Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan
2015-06-01
The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.
Rita C.L.B. Rodrigues; Chenfeng Lu; Bernice Liu; Thomas W. Jeffries
2008-01-01
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3[delta]) to convert these sugars into useful products. FPL-YS30 produces a...
Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp.
Duan, Chao; Wang, Xinqi; Zhang, YanLing; Xu, Yongjian; Ni, Yonghao
2017-01-01
The aim of this study was to investigate a combined process involving pulp fractionation and cellulase treatment of each fraction for improving the molecular weight distribution (MWD) and reactivity of a kraft-based dissolving pulp. Three pulp fractions, namely long-fiber, mid-fiber and short-fiber fractions (LF, MF and SF, respectively), were used as the substrates. The results showed that the SF had the highest accessibility, lowest viscosity, and highest cellulase adsorption capacity, while the opposite was true for the LF. At a given viscosity, the combined process led to a lower polydispersity index (3.71 vs 4.98) and a higher Fock reactivity (85.6% vs 76.3%), in comparison to the conventional single-stage cellulase treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Palme, Anna; Theliander, Hans; Brelid, Harald
2016-01-20
The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
40 CFR 63.860 - Applicability and designation of affected source.
Code of Federal Regulations, 2010 CFR
2010-07-01
... soda pulp mill. (2) Each new nondirect contact evaporator (NDCE) recovery furnace and associated smelt dissolving tank(s) located at a kraft or soda pulp mill. (3) Each new direct contact evaporator (DCE...
40 CFR 63.860 - Applicability and designation of affected source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... soda pulp mill. (2) Each new nondirect contact evaporator (NDCE) recovery furnace and associated smelt dissolving tank(s) located at a kraft or soda pulp mill. (3) Each new direct contact evaporator (DCE...
40 CFR 63.860 - Applicability and designation of affected source.
Code of Federal Regulations, 2011 CFR
2011-07-01
... soda pulp mill. (2) Each new nondirect contact evaporator (NDCE) recovery furnace and associated smelt dissolving tank(s) located at a kraft or soda pulp mill. (3) Each new direct contact evaporator (DCE...
40 CFR 63.860 - Applicability and designation of affected source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... soda pulp mill. (2) Each new nondirect contact evaporator (NDCE) recovery furnace and associated smelt dissolving tank(s) located at a kraft or soda pulp mill. (3) Each new direct contact evaporator (DCE...
40 CFR 63.860 - Applicability and designation of affected source.
Code of Federal Regulations, 2012 CFR
2012-07-01
... soda pulp mill. (2) Each new nondirect contact evaporator (NDCE) recovery furnace and associated smelt dissolving tank(s) located at a kraft or soda pulp mill. (3) Each new direct contact evaporator (DCE...
Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao
2015-05-01
Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fatehi, Pedram; Gao, Weijiue; Sun, Yonghui; Dashtban, Mehdi
2016-10-01
Acidification has been commercialized for producing kraft lignin from black liquor of kraft pulping process. This work intended to evaluate the effectiveness of acidification in extracting lignocelluloses from the spent liquor of neutral sulfite semichemical pulping (NSSC) process and from prehydrolysis liquor (PHL) of kraft-based dissolving pulp production process. The results showed that the NSSC and PHL spent liquors had some lignin-carbohydrate complexes (LCC), and that the square weighted counts of particles with a chord length of 50-150μm in the spent liquors were significantly increased as pH dropped to 1.5. Interestingly, the acidification reduced the lignosulfonate/lignin content of NSSC and PHL by 13% or 20%, while dropped their oligosugars content by 75% and 38%, respectively. On a dry basis, the precipitates had more carbon, hydrogen and a high heating value of 18-22MJ/kg, but less oxygen, than spent liquors. The precipitates of PHL could be used as fuel. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope
Chen, Liheng; Dou, Jinze; Ma, Qianli; Li, Ning; Wu, Ruchun; Bian, Huiyang; Yelle, Daniel J.; Vuorinen, Tapani; Fu, Shiyu; Pan, Xuejun; Zhu, Junyong (J.Y.)
2017-01-01
We report the discovery of the hydrotropic properties of a recyclable aromatic acid, p-toluenesulfonic acid (p-TsOH), for potentially low-cost and efficient fractionation of wood through rapid and near-complete dissolution of lignin. Approximately 90% of poplar wood (NE222) lignin can be dissolved at 80°C in 20 min. Equivalent delignification using known hydrotropes, such as aromatic salts, can be achieved only at 150°C or higher for more than 10 hours or at 150°C for 2 hours with alkaline pulping. p-TsOH fractionated wood into two fractions: (i) a primarily cellulose-rich water-insoluble solid fraction that can be used for the production of high-value building blocks, such as dissolving pulp fibers, lignocellulosic nanomaterials, and/or sugars through subsequent enzymatic hydrolysis; and (ii) a spent acid liquor stream containing mainly dissolved lignin that can be easily precipitated as lignin nanoparticles by diluting the spent acid liquor to below the minimal hydrotrope concentration. Our nuclear magnetic resonance analyses of the dissolved lignin revealed that p-TsOH can depolymerize lignin via ether bond cleavage and can separate carbohydrate-free lignin from the wood. p-TsOH has a relatively low water solubility, which can facilitate efficient recovery using commercially proven crystallization technology by cooling the concentrated spent acid solution to ambient temperatures to achieve environmental sustainability through recycling of p-TsOH. PMID:28929139
Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system
NASA Astrophysics Data System (ADS)
Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping
2016-07-01
Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.
Quintana, Elisabet; Valls, Cristina; Barneto, Agustín G; Vidal, Teresa; Ariza, José; Roncero, M Blanca
2015-03-30
An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Construction materials as a waste management solution for cellulose sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.
2011-02-15
Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less
Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption.
Dashtban, Mehdi; Gilbert, Allan; Fatehi, Pedram
2014-04-01
Hemicelluloses and lignin present in the spent liquor (SL) of neutral sulfite semichemical (NSSC) pulping process can potentially be converted into value-added products such as furfural, hydroxymethylfurfural, levulinic acid, phenols and adhesives. However, the direct conversion of hemicelluloses and lignin of SL into value-added products is uneconomical due to the dilute nature of the SL. To have a feasible downstream process for utilizing lignocelluloses of SL, the lignocelluloses should initially be separated from the SL. In this study, an adsorption process (via applying activated carbon) was considered for isolating the dissolved lignin and hemicelluloses from the SL of an NSSC pulping process. Under the optimal conditions of pH, SL/AC weight ratio, time and temperature of 5.7, 30, 360 min and 30 °C, the maximum lignin and hemicellulose adsorptions were 0.33 and 0.25 g/g on AC. The chemical oxygen demand (COD) and turbidity of the SL were decreased by 11% and 39%, respectively, as a result of lignocellulose adsorption on AC. Also, the incineration behavior of the SL-treated AC was studied with a thermo-gravimetric analysis (TGA). Copyright © 2014 Elsevier Ltd. All rights reserved.
High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.
Paananen, Markus; Sixta, Herbert
2015-10-01
High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Irala, Luis Eduardo Duarte; Grazziotin-Soares, Renata; Salles, Alexandre Azevedo; Munari, Aline Zen; Pereira, Joseani Santos
2010-01-01
This in vitro study evaluated (1) the dissolution of bovine pulp tissue in solutions consisting of varying NaOCl concentrations and combined with EDTA; and (2) the pH of these solutions before and after the experiment. The independent variables were the concentration and the volume of the solution. Thirty bovine pulps were divided in equal fragments, resulting in 90 fragments of pulp tissue. Each fragment was immersed in one of the following solutions: 1% NaOCl (4 ml), 2.5% NaOCl (4 ml), 1% NaOCl + 17% EDTA (2 ml : 2 ml), 1% NaOCl + 17% EDTA (1 ml : 3 ml), 2.5% NaOCl + 17% EDTA (2 ml : 2 ml), and 2.5% NaOCl + 17% EDTA (1 ml : 3 ml). The test solutions were dichotomized as either able or not able to dissolve the tissue, the latter being attributed when the dissolution of the pulp tissue was not complete within 48 hours. When the samples were able to dissolve the tissue, the time required for complete tissue dissolution was submitted to statistical analysis. The pH of the solutions was measured before and after the experiment. The pH variable was dichotomized as either changed or unchanged. The results demonstrated that the NaOCl solutions combined with 17% EDTA were not able to dissolve the tissue. The t-test revealed that the 2.5% NaOCl solution presented a lower mean dissolution time than the 1% NaOCl solution (p < 0.001). The pH of the solutions with equal volumes of NaOCl and EDTA decreased in 48 hours.
Northern Rivers Ecosystem Initiative: nutrients and dissolved oxygen - issues and impacts.
Chambers, Patricia A; Culp, Joseph M; Glozier, Nancy E; Cash, Kevin J; Wrona, Fred J; Noton, Leigh
2006-02-01
Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by < or = 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L(-1) in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L(-1), DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.
Chao Jia; Liheng Chen; Ziqiang Shao; Umesh P. Agarwal; Liangbing Hu; J. Y. Zhu
2017-01-01
We fabricated cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP) and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation (for CNFs). The process was green as acid can easily be recovered,...
Spectroscopic determination of anthraquinone in kraft pulping liquors using a membrane interface
X.S. Chai; X.T. Yang; Q.X. Hou; J.Y. Zhu; L.-G. Danielsson
2003-01-01
A spectroscopic technique for determining AQ in pulping liquor was developed to effectively separate AQ from dissolved lignin. This technique is based on a flow analysis system with a Nafion membrane interface. The AQ passed through the membrane is converted into its reduced form, AHQ, using sodium hydrosulfite. AHQ has distinguished absorption characteristics in the...
Emission, fate and effects of soluble silicates (waterglass) in the aquatic environment.
van Dokkum, Henno P; Hulskotte, Ian H J; Kramer, Kees J M; Wilmot, Joël
2004-01-15
Soluble silicates, commercially known as waterglass, are among the largest volume synthetic chemicals in the world. Silicon from waterglass is rapidly transformed to the biologically active orthosilicic acid (referred to as dissolved silicate). This paper aims to assess the impact of waterglass on the aquatic environment in Western Europe. The emission to surface waters from the four most relevant application areas, household detergents, pulp and paper production, water and wastewater treatment, and soil stabilization, is estimated to be ca. 88-121 kton of SiO2 per year. This is a small fraction (<2%) of the estimated total amount of dissolved silicate transported by rivers to the oceans. Locally, increases in dissolved silicate concentration will decrease the ratios of N:Si and P:Si, which could influence phytoplankton species composition and favor the growth of diatoms over other groups of algae. Significant adverse effects in aquatic ecosystems are not expected.
Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang
2018-02-01
A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Jing; Li, Meng; Luo, Xiaolin; Chen, Lihui; Huang, Liulian
2015-04-01
The effectiveness of a biorefinery based on an HWE-Kraft-ECF bleaching process and the end use of pulp was systematically evaluated. Using a P-factor of 198, nearly 30% of xylan-based sugars were recovered. The resulting pulp and paper properties were found to be comparable with the control. A maximum xylan-based sugar recovery of nearly 50% was achieved at a P-factor of 738. Although the strength of this P-factor induced handsheet was lower than that of the control by about 20%, the corresponding pulp was sufficient for dissolving pulp application. However, once the P-factor rose above 1189, hemicellulose sugars were significantly degraded into furans; pulp and paper properties were also deteriorated due to cellulose degradation, lignin deposition and condensation. Thus, considering the different end use of pulps, the performance of an HWE-based biorefinery could be balanced by its HWE severity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mäkelä, Valtteri; Wahlström, Ronny; Holopainen-Mantila, Ulla; Kilpeläinen, Ilkka; King, Alistair W T
2018-05-14
Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in ImageJ to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, 50, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre-hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.
High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp.
Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao
2015-01-01
For enzymatic treatment of dissolving pulp, there is a need to improve the process to facilitate its commercialization. For this purpose, the high consistency cellulase treatment was conducted based on the hypothesis that a high cellulose concentration would favor the interactions of cellulase and cellulose, thus improves the cellulase efficiency while decreasing the water usage. The results showed that compared with a low consistency of 3%, the high consistency of 20% led to 24% increases of cellulase adsorption ratio. As a result, the viscosity decrease and Fock reactivity increase at consistency of 20% were enhanced from 510 mL/g and 70.3% to 471 mL/g and 77.6%, respectively, compared with low consistency of 3% at 24h. The results on other properties such as alpha cellulose, alkali solubility and molecular weight distribution also supported the conclusion that a high consistency of cellulase treatment was more effective than a low pulp consistency process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of hot-water extraction on alkaline pulping of bagasse.
Lei, Yichao; Liu, Shijie; Li, Jiang; Sun, Runcang
2010-01-01
The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 degrees C for 30min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 degrees C and 155 degrees C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied. Copyright 2010 Elsevier Inc. All rights reserved.
Petersen, Abdul M; Haigh, Kate; Görgens, Johann F
2014-01-01
Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
Taneja, Sonali; Mishra, Neha; Malik, Shubhra
2014-01-01
Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141
Guneser, Mehmet Burak; Arslan, Dilara; Usumez, Aslihan
2015-05-01
The aim of this study was to evaluate the effect of the photon-initiated photoacoustic streaming (PIPS) technique on the pulp tissue-dissolving capacity of sodium hypochlorite (NaOCl) and compare it with the EndoActivator System (Dentsply Tulsa Dental Specialties, Tulsa, OK) and the Er:YAG laser with an endodontic fiber tip. Bovine pulp tissue samples (45 ± 15 mg) and dentin powder (10 mg) were placed in 1.5-mL Eppendorf tubes with 1 mL 5.25% NaOCl (Wizard; Rehber Kimya, Istanbul, Turkey) or distilled water (control) for 5 minutes with activation by the EndoActivator System, the Er:YAG laser with an endodontic fiber tip, and the PIPS technique. Nonactivated NaOCl served as the positive control. All testing procedures were performed at room temperature. The tissue samples were weighed before and after treatment, and the percentage of weight loss was calculated. The differences were statistically analyzed. The highest rate of tissue dissolution was observed in the NaOCl + Er:YAG group (P < .05). The NaOCl + PIPS group dissolved more bovine pulp tissue than the nonactivated NaOCl group (P < .05). There was no statistically significant difference between the rates of tissue dissolution of the NaOCl + EA and the nonactivated NaOCl groups (P > .05). NaOCl activation with the Er:YAG laser with an endodontic fiber tip was the most effective in bovine pulp tissue dissolution. The PIPS technique also promoted superior tissue-dissolving effects when compared with no activation. However, the EndoActivator System had no direct effect on tissue dissolution. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Fluctuations in world sugar prices retard economic development in sugar-producing countries like Cuba, and so there is a pressing need to find alternative uses for sugar cane through the industrialization of its by-products, such as bagasse. In 1971 the United Nations Development Program began a cooperative venture with the Cuban Research Institute for Sugar Cane Derivatives to develop methods of making newsprint from bagasse. An experimental plant - Cuba 9, located 35 kilometers south of Havana, was inaugurated in May 1981. It is semi-commercial in character and has a daily capacity of 34 tonnes of newsprint and five tonnes ofmore » dissolving pulp. Pilot plants for the production of furfural and for the production of reconstituted panelboard are in operation.« less
Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.
Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L
2014-01-15
This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (P<0.05) bioactive content than their respective fruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. Published by Elsevier Ltd.
Sodium hypochlorite with reduced surface tension does not improve in situ pulp tissue dissolution.
De-Deus, Gustavo; de Berredo Pinho, Marco André; Reis, Claudia; Fidel, Sandra; Souza, Erick; Zehnder, Matthias
2013-08-01
Sodium hypochlorite (NaOCl) solutions with added wetting agents are advertised to dissolve necrotic tissue in root canals faster than their counterparts without a lowered surface tension. This was tested in the current study, and the null hypothesis formulated was that there was no difference between a commercially available NaOCl solution with a lowered surface tension (Chlor-XTRA; Vista Dental Products, Racine, WI) and a counterpart containing the same amount of available chlorine without added wetting agents regarding the soft tissue that remains in oval-shaped canals after mechanical preparation and irrigation. Formerly vital extracted teeth (N = 44, 22 pairs) with similar anatomy were radiographically paired and chemomechanically prepared. In 1 tooth from each pair, a 5.25% NaOCl solution with reduced surface tension was used; in the other, a pure, technical-grade NaOCl solution of 5.25% was used. The percentage of remaining pulp tissue (PRPT) was histologically assessed in root cross-sections. The non-Gaussian raw data were subjected to Kruskal-Wallis and Mann-Whitney U tests to verify the respective effect of the cross-section level and solution on the PRPT. The relationship between the cross-section level and the PRPT was estimated by the Spearman correlation test. The alpha-type error was set at 5%. The cross-section level significantly influenced the PRPT (P < .05), whereas the PRPT was not influenced by the solution used (P > .05). A significant inverse correlation was found between the cross-section level and the PRPT (P < .05, r = -0.330). The lower the distance to the apex, the higher the PRPT regardless of the solution used. Contrary to the advertised statement, the dental solution with a reduced surface tension did not dissolve vital pulp tissue in oval root canals any better than a conventional NaOCl solution of similar strength. Closer to the apex, pulp tissue dissolution is less efficient irrespective of the solution. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
40 CFR 425.80 - Applicability; description of the pigskin subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Pigskin... into finished leather by chemically dissolving or pulping the hair and tanning with chrome, then retan...
Motaghed, M; Mousavi, S M; Rastegar, S O; Shojaosadati, S A
2014-11-01
The present study evaluated the potential of Bacillus megaterium as a cyanogenic bacterium to produce cyanide for solubilization of platinum and rhenium from a spent refinery catalyst. Response surface methodology was applied to study the effects and interaction between two main effective parameters including initial glycine concentration and pulp density. Maximum Pt and Re recovery was obtained 15.7% and 98%, respectively, under optimum conditions of 12.8 g/l initial glycine concentration and 4% (w/v) pulp density after 7 days. Increasing the free cyanide concentration to 3.6 mg/l, varying the pH from 6.7 to 9, and increasing the dissolved oxygen from 2 to 5mg/l demonstrated the growth characteristics of B. megaterium during bioleaching process. The modified shrinking core model was used to determine the rate limiting step of the process. It was found that diffusion through the product layer is the rate controlling step. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recovering gold from thiosulfate leach pulps via ion exchange
NASA Astrophysics Data System (ADS)
Nicol, Michael J.; O'Malley, Glen
2002-10-01
Increasing environmental and occupational safety concerns about the use of cyanide in gold processing has increased interest in more acceptable alternative lixiviants, the most promising of which is thiosulfate. However, the thiosulfate process lacks a proven inpulp method of recovering the dissolved gold because activated carbon is not effective for the absorption of the gold-thiosulfate complex. This paper describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, S.K.; Hames, B.R.; Myers, M.D.
1998-03-24
A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.
1998-01-01
A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Bahaloo-Horeh, Nazanin; Mousavi, Seyyed Mohammad
2017-02-01
In the present study, spent medium bioleaching method was performed using organic acids produced by Aspergillus niger to dissolve Ni, Co, Mn, Li, Cu and Al from spent lithium-ion batteries (LIBs). Response surface methodology was used to investigate the effects and interactions between the effective factors of sucrose concentration, initial pH, and inoculum size to optimize organic acid production. Maximum citric acid, malic acid, and gluconic acid concentrations of 26,478, 1832.53 and 8433.76ppm, respectively, and a minimum oxalic acid concentration of 305.558ppm were obtained under optimal conditions of 116.90 (gl -1 ) sucrose concentration, 3.45% (vv -1 ) inoculum size, and a pH value of 5.44. Biogenically-produced organic acids are used for leaching of spent LIBs at different pulp densities. The highest metal recovery of 100% Cu, 100% Li, 77% Mn, and 75% Al occurred at 2% (wv -1 ) pulp density; 64% Co and 54% Ni recovery occurred at 1% (wv -1 ) pulp density. The bioleaching of metals from spent LIBs can decrease the environmental impact of this waste. The results of this study suggest that the process can be used for large scale industrial purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mechanical Pulp Subcategory § 430.73 Effluent limitations guidelines representing the degree of effluent...) The following applies to: mechanical pulp facilities where the integrated production of pulp and coarse paper, molded pulp products, and newsprint at groundwood mills occurs; and mechanical pulp...
Effect of plantation density on kraft pulp production from red pine (Pinus resinosa Ait.)
J.Y. Zhu; G.C. Myers
2006-01-01
Red pine (Pinus resinosa Ait.) butt logs from 38 year old research plots were used to study the effect of plantation stand density on kraft pulp production. Results indicate that plantation stand density can affect pulp yield, unrefined pulp mean fibre length, and the response of pulp fibre length to pulp refining. However, the effect of plantation stand density on...
Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei; Won, Wangyun; Hosseinaei, Omid; Tao, Jingming; Garcia-Negron, Valerie; Motagamwala, Ali Hussain; Mellmer, Max A.; Huang, Kefeng; Houtman, Carl J.; Labbé, Nicole; Harper, David P.; Maravelias, Christos T.; Runge, Troy; Dumesic, James A.
2017-01-01
The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels. PMID:28560350
Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei
The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical);more » and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.« less
Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei; ...
2017-05-19
The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical);more » and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Qinghua; Fu Yingjuan; Gao Yang
2009-05-15
Performance and efficiency of old newspaper (ONP) deinking by combining cellulase/hemicellulase with laccase-violuric acid system (LVS) were investigated in this study. Brightness, effective residual ink concentration (ERIC) and physical properties were evaluated for the deinked pulp. Fiber length, coarseness, specific surface area and specific volume were also tested. The changes of dissolved lignin during the deinking processes were measured with UV spectroscopy. The fiber morphology was observed with environmental scanning electronic microscopy (ESEM). Experimental results showed that, compared to the pulp deinked with each individual enzyme, ERIC was lower for the cellulase/hemicellulase-LVS-deinked pulp. This indicated that a synergy existed inmore » ONP deinking using a combination of enzymes. After being bleached by H{sub 2}O{sub 2}, enzyme-combining deinked pulp gave higher brightness and better strength properties. Compared with individual enzyme deinked pulp, average fiber length and coarseness decreased a little for the enzyme-combining deinked pulps. A higher specific surface area and specific volume of the pulp fibers were achieved. UV analysis proved that more lignin was released during the enzyme-combining deinking process. ESEM images showed that more fibrillation was observed on the fiber surface due to synergistic treatment.« less
40 CFR 430.41 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite...
40 CFR 430.11 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Specialized definitions. 430.11 Section 430.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft...
40 CFR 430.11 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Specialized definitions. 430.11 Section 430.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft...
40 CFR 430.11 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Specialized definitions. 430.11 Section 430.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft...
40 CFR 430.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory...
40 CFR 430.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory...
40 CFR 430.41 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite...
40 CFR 430.41 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Specialized definitions. 430.41 Section 430.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite...
Clarkson, R M; Smith, T K; Kidd, B A; Evans, G E; Moule, A J
2013-12-01
In previous studies, surfactant-containing Hypochlor brands of sodium hypochlorite showed better tissue solubilizing abilities than Milton; differences not explained by original active chlorine content or presence of surfactant. It was postulated that exhaustion of active chlorine content could explain differences. This study aimed to assess whether Milton's poorer performance was due to exhaustion of active chlorine. Parallel experiments assessed the influence of titration methods, and the presence of chlorates, on active chlorine measurements. Time required to dissolve one or groups of 10 samples of porcine incisor pulp samples in Milton was determined. Residual active chlorine was assessed by thermometric titration. Iodometric and thermometric titration was carried out on samples of Milton. Chlorate content was also measured. Dissolution of single and 10 pulp samples caused a mean loss of 1% and 3% respectively of active chlorine, not being proportional to tissue dissolved. Thermometric ammonium ion titration resulted in 10% lower values than iodometric titration. Chlorate accounted for much of this difference. Depletion of active chlorine is not the reason for differences in tissue dissolving capabilities of Milton. Thermometric ammonium ion titration gives more accurate measurement of active chlorine content than iodometric titration. © 2013 Australian Dental Association.
40 CFR 430.11 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Specialized definitions. 430.11 Section 430.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430...
40 CFR 430.11 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 430.11 Section 430.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430...
Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.
Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong
2014-11-01
This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simultaneous production of bio-ethanol and bleached pulp from red algae.
Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum
2012-12-01
The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 430.76 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...
Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco
2016-12-15
Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.
27 CFR 24.243 - Filtering aids.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert... records need be maintained concerning their use. However, if the inert material is dissolved in water...
27 CFR 24.243 - Filtering aids.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert... records need be maintained concerning their use. However, if the inert material is dissolved in water...
27 CFR 24.243 - Filtering aids.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert... records need be maintained concerning their use. However, if the inert material is dissolved in water...
40 CFR 430.46 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as...
40 CFR 430.46 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as...
Amato, Massimo; Pantaleo, Giuseppe; Abtellatif, Dina; Blasi, Andrea; Gagliani, Massimo; Iandolo, Alfredo
2018-01-01
The aim of this study is to evaluate in vitro , using artificial lateral canals, the rate of dissolution of the pulp tissue through different protocols of canal irrigation. One hundred artificial canals provided with lateral canals have been used. Each lateral canal was filled with pulp tissue and calibrated to 0.002 mg. All canals were irrigated using five different protocols. Five groups have been used for the experiment: Group A, distilled water (control); Group B, preheated NaOCl; Group C, NaOCl heated inside the canal; Group D, NaOCl ultrasonically activated; and Group E, NaOCl heated inside the canal with ultrasonic activation. All samples were weighed through professional microbalance in three different phases: before insertion of the pulp tissue into the lateral canal, after insertion of the pulp tissue and, finally, after different protocols of irrigation. A statistical analysis with Kruskal-Wallis test and Mann-Whitney test was performed. The partial dissolution of the pulp tissue inside the artificial lateral canal occurs only using the protocol with NaOCl heated inside the canal with ultrasonic activation. Other irrigation protocols are not able to dissolve the pulp tissue. The main objective of endodontic therapy is the removal of damaged tissues and bacteria. Modern literature highlights that it is impossible to remove all the pulp tissues and bacteria from the whole endodontic space. Hence, to achieve excellence and get positive results in the short and long term, it is necessary to use techniques and technologies that may increase the degree of root canal detersion.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...
Strategies for decolorization and detoxification of pulp and paper mill effluent.
Garg, Satyendra K; Tripathi, Manikant
2011-01-01
The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various physicochemical remediation treatments in the pulp-paper industry are now used, or have been suggested, but often are not implemented, because of the high cost involved. More recently, the paper and pulp industry has been investigating the use of biological remediation steps to replace or augment current treatment strategies. Certain biological treatments offer opportunities to reduce cost (both capital and operating), reduce energy consumption, and minimize environmental impact. Two primary approaches may be effective to curtail release of toxic effluents: first, development of pulping and bleaching processes that emphasize improved oxygen delignification or biopulping, plus partial or complete replacement of chlorine treatment with hydrogen peroxide or with biobleaching; second, implementation of biological processing that involves sequential two-step anaerobic-aerobic or three-step aerobic-anaerobic treatment technologies at end of pipe. The selection of the specific process will depend upon the type of pollutants/toxicants/mutagens present in the effluent. The use of environmental-friendly technologies in the pulp and paper industry is becoming more popular, partly because of increasing regulation, and partly because of the availability of new techniques that can be used to economically deal with pollutants in the effluents. Moreover, biotechnology research methods are offering promise for even greater improvements in the future. The obvious ultimate goal of the industry and the regulators should be zero emission through recycling of industrial wastewater, or discharge of the bare minimum amount of toxicants or color.
40 CFR 430.75 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.75 New source performance standards (NSPS). (a) The following applies to mechanical pulp...-mechanical process; mechanical pulp facilities where the integrated production of pulp and coarse paper...
Production of colony-stimulating factor in human dental pulp fibroblasts.
Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S
2003-02-01
Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.
Extracting lignins from mill wastes
NASA Technical Reports Server (NTRS)
Humphrey, M. F.
1977-01-01
Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.
40 CFR 430.16 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.16 Pretreatment standards for existing sources (PSES). Except as provided...
Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.
Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K
2009-01-01
Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.
40 CFR 430.70 - Applicability; description of the mechanical pulp subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanical pulp subcategory. 430.70 Section 430.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mechanical Pulp Subcategory § 430.70 Applicability; description of the mechanical pulp subcategory. The... groundwood chemi-mechanical mills; the production of pulp and paper at groundwood mills through the...
Obtaining value prior to pulping with diethyl oxalate and oxalic acid
W.R. Kenealy; E. Horn; C.J. Houtman; J. Laplaza; T.W. Jeffries
2007-01-01
Pulp and paper are converted to paper products with yields of paper dependent on the wood and the process used. Even with high yield pulps there are conversion losses and with chemical pulps the yields approach 50%. The portions of the wood that do not provide product are either combusted to generate power and steam or incur a cost in waste water treatment. Value prior...
Chemical modification of nanocellulose with canola oil fatty acid methyl ester
Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark
2017-01-01
Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...
40 CFR 430.16 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.16 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7...
40 CFR 430.47 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.47 Pretreatment standards for new sources (PSNS). Except as provided in...
40 CFR 430.17 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.17 Pretreatment standards for new sources (PSNS). Except as provided in 40...
40 CFR 430.16 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.16 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7...
40 CFR 430.46 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7...
40 CFR 430.47 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.47 Pretreatment standards for new sources (PSNS). Except as provided in...
40 CFR 430.46 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.46 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7...
Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.
Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J
2016-04-01
Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. Copyright © 2015 Elsevier B.V. All rights reserved.
Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed
Cawley, Kaelin M.; Butler, Kenna D.; Aiken, George R.; Larsen, Laurel G.; Huntington, Thomas G.; McKnight, Diane M.
2012-01-01
Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.
Characterization and Degradation of Pectic Polysaccharides in Cocoa Pulp.
Meersman, Esther; Struyf, Nore; Kyomugasho, Clare; Jamsazzadeh Kermani, Zahra; Santiago, Jihan Santanina; Baert, Eline; Hemdane, Sami; Vrancken, Gino; Verstrepen, Kevin J; Courtin, Christophe M; Hendrickx, Marc; Steensels, Jan
2017-11-08
Microbial fermentation of the viscous pulp surrounding cocoa beans is a crucial step in chocolate production. During this process, the pulp is degraded, after which the beans are dried and shipped to factories for further processing. Despite its central role in chocolate production, pulp degradation, which is assumed to be a result of pectin breakdown, has not been thoroughly investigated. Therefore, this study provides a comprehensive physicochemical analysis of cocoa pulp, focusing on pectic polysaccharides, and the factors influencing its degradation. Detailed analysis reveals that pectin in cocoa pulp largely consists of weakly bound substances, and that both temperature and enzyme activity play a role in its degradation. Furthermore, this study shows that pulp degradation by an indigenous yeast fully relies on the presence of a single gene (PGU1), encoding for an endopolygalacturonase. Apart from their basic scientific value, these new insights could propel the selection of microbial starter cultures for more efficient pulp degradation.
Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.
Smith, J G; Smith, A J; Shelton, R M; Cooper, P R
2012-11-01
The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.
Application of thermophilic enzymes and water jet system to cassava pulp.
Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko
2012-12-01
Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wheat Bread with Pumpkin (Cucurbita maxima L.) Pulp as a Functional Food Product.
Różyło, Renata; Gawlik-Dziki, Urszula; Dziki, Dariusz; Jakubczyk, Anna; Karaś, Monika; Różyło, Krzysztof
2014-12-01
In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20% (converted to dry matter) caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory characteristics of the bread showed that a partial replacement of wheat flour with up to 10% of pumpkin pulp gave satisfactory results. The taste, aroma and overall acceptability of control bread and bread containing 5 or 10% of pulp had the highest degree of liking. The addition of higher levels of pumpkin pulp caused an unpleasant aroma and taste. Pumpkin pulp is a good material to complement the bread with potentially bioaccessible phenolics (including flavonoids) and, especially, with peptides. The highest antioxidant activity was observed, in most cases, of the samples with added 10 and 15% of pumpkin pulp. The addition of the pulp significantly enriched the bread with potentially bioaccessible angiotensin-converting enzyme (ACE) inhibitors. The highest activity was determined in the bread with 15 and 20% pumpkin pulp. ACE inhibitors from the tested bread were highly bioaccessible in vitro . Pumpkin pulp seems to be a valuable source of active compounds to complement the wheat bread. Adding the pulp directly to the wheat flour gives satisfactory baking results and reduces the cost of production. Additionally, pumpkin pulp is sometimes treated as waste material after the acquisition of seeds, thus using it as bread supplement also has environmental and economic benefits. Key words : pumpkin, bread, texture, antioxidants, bioaccessibility in vitro, angiotensin-converting enzyme (ACE) inhibition.
Novel bleaching of thermomechanical pulp for improved paper properties
Marguerite S. Sykes; John H. Klungness; Freya Tan
2002-01-01
Production of mechanical pulp is expected to increase significantly to meet the growing global demand for paper. Mechanical pulping uses wood resources more efficiently with less negative impact on the environment than does chemical pulping. However, several problems related to mechanical pulping need to be resolved: high energy consumption, low paper strength...
40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not limited...
40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not limited...
Li, Ming-Fei; Sun, Shao-Ni; Xu, Feng; Sun, Run-Cang
2012-02-22
Fractionation of lignocellulosic material into its constitutive components is of vital importance for the production of biofuels as well as other value-added chemicals. The conventional acetosolv processes are mainly focused on the production of pulp from woody lignocelluloses. In this study, a mild acetosolv process was developed to fractionate bamboo under atmospheric pressure to obtain cellulosic pulp, water-soluble fraction, and acetic acid lignin. The structural features of the lignins obtained under various conditions were characterized with elemental analysis, sugar analysis, alkaline nitrobenzene oxidation, gel permeation chromatography (GPC), (1)H nuclear magnetic resonance ((1)H NMR), and heteronuclear single-quantum coherence (HSQC) spectroscopy. As compared to milled wood lignin (MWL) of bamboo, acetic acid lignins had low impurities (carbohydrates 2.48-4.56%) mainly due to the cleavage of linkages between lignin and carbohydrates. In addition, acetic acid lignins showed a low proportion of syringyl (S) units. Due to the cleavage of linkages between lignin units, acetic acid lignins had weight-average molecular weights ranging from 4870 to 5210 g/mol, less than half that of MWL (13000 g/mol). In addition, acetic acid lignins showed stronger antioxidant activity mainly due to the significant increase of free phenolic hydroxyls. The lignins obtained with such low impurities, high free phenolic hydroxyls, and medium molecular weights are promising feedstocks to replace petroleum chemicals.
Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari
2014-11-01
Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. Antioxidant potential of tomato puree (10 %; T-1), tomato pulp (12.5 %; T-2), lyophilized tomato peel (6 %; T-3), and pink guava pulp (10 %; T-4) was evaluated in raw pork emulsion during refrigerated storage for 9 days under aerobic packaging. The lycopene and β-carotene content varied in pork emulsion as T-3 > T-1 > T-2 > T-4 and decreased (P < 0.05) during storage. The surface redness (a* value) increased (P < 0.05) with the incorporation of tomato products and pink guava pulp. Furthermore, metmyoglobin formation and lipid oxidation were lower (P < 0.05) in tomato- and guava-treated emulsions than in control. Overall, incorporation of tomato products and pink guava pulp improved the visual colour and odour scores of raw pork emulsion. These results indicated that tomato products and guava pulp can be utilized as sources of natural antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.
40 CFR 430.17 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.17 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any...
40 CFR 430.47 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.47 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any...
40 CFR 430.17 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Kraft Subcategory § 430.17 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any...
40 CFR 430.47 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory § 430.47 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any...
Purification of pulp and paper mill effluent using Eichornia crassipes.
Yedla, S; Mitra, A; Bandyopadhyay, M
2002-04-01
Konark Pulp and Paper Industries Private Limited is a medium size industry producing 1600 m3 of wastewater a day. The existing water treatment system of the industry was found to be ineffective both in performance and economy. In the present study, a new system of treatment has been developed using water hyacinth Eichornia crassipes, coagulation by lime and alum, followed by rapid sand filtration. The performance efficiency of each unit viz. Eichornia treatment; coagulation with lime, with alum, and with lime:alum combinations, and filtration was studied. Water quality parameters considered were Biological Oxygen Demand, Chemical Oxygen Demand, Dissolve Oxygen, Total Dissolved Solids, turbidity, percentage transmission, and water colour. Based on the individual performance of each unit, a continuous system has been designed and was tested. The new system of treatment could treat the wastewater to the discharge standards and also was found economically feasible. Testing culture of fish (tilapia) proved that the treated water could be safely discharged into natural waters. All fish tested, survived and remained healthy throughout the period of testing. Culture of fish further improved the water quality.
Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao
2014-03-01
This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Method for recovering and using lignin in adhesive resins by extracting demethylated lignin
Schroeder, Herbert A.
1991-01-01
Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.
Method for recovering and using lignin in adhesive resins
Schroeder, Herbert A.
1993-01-01
Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.
The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries
NASA Astrophysics Data System (ADS)
Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof
Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.
The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries.
Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J; Nilvebrant, Nils-Olof
2007-04-01
Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.
40 CFR 430.77 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp Subcategory § 430.77 Pretreatment standards for new sources (PSNS). (a) The following applies to mechanical... thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and coarse...
Pollution prevention in the pulp and paper industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, P.G.
1995-09-01
Probably no other industry has made as much progress as the kraft pulp and paper industry in reclaiming waste products. About half of the wood used in making pulp is cellulose; the reclamation of the other ingredients in the wood constitutes a continuing evolution of pollution prevention and economic success. The by-products of chemical pulping include turpentine used in the paint industry, lignosulfonates used as surfactants and dispersants, ``tall oil`` used in chemical manufacturing, yeast, vanillin, acetic acid, activated carbon, and alcohol. Sulfamic turpentine recovered in the kraft process is used to manufacture pine oil, dimethyl sulfoxide (DMSO), and othermore » useful chemical products. In addition, the noncellulose portion of the wood is used to provide energy for the pulping process through the combustion of concentrated black liquor. Over 75% of the pulp produced in the US is manufactured using the kraft process. Because of the predominance of the kraft process, the remainder of this section will address pollution prevention methods for kraft pulp and paper mills. Some of these techniques may be applicable or adaptable to other pulping processes, especially sulfite mills. The major steps in the kraft process are described, followed by a discussion of major wastestreams, and proven pollution prevention methods for each of these steps.« less
Wheat Bread with Pumpkin (Cucurbita maxima L.) Pulp as a Functional Food Product
Gawlik-Dziki, Urszula; Dziki, Dariusz; Jakubczyk, Anna; Karaś, Monika; Różyło, Krzysztof
2014-01-01
Summary In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20% (converted to dry matter) caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory characteristics of the bread showed that a partial replacement of wheat flour with up to 10% of pumpkin pulp gave satisfactory results. The taste, aroma and overall acceptability of control bread and bread containing 5 or 10% of pulp had the highest degree of liking. The addition of higher levels of pumpkin pulp caused an unpleasant aroma and taste. Pumpkin pulp is a good material to complement the bread with potentially bioaccessible phenolics (including flavonoids) and, especially, with peptides. The highest antioxidant activity was observed, in most cases, of the samples with added 10 and 15% of pumpkin pulp. The addition of the pulp significantly enriched the bread with potentially bioaccessible angiotensin-converting enzyme (ACE) inhibitors. The highest activity was determined in the bread with 15 and 20% pumpkin pulp. ACE inhibitors from the tested bread were highly bioaccessible in vitro. Pumpkin pulp seems to be a valuable source of active compounds to complement the wheat bread. Adding the pulp directly to the wheat flour gives satisfactory baking results and reduces the cost of production. Additionally, pumpkin pulp is sometimes treated as waste material after the acquisition of seeds, thus using it as bread supplement also has environmental and economic benefits. Key words: pumpkin, bread, texture, antioxidants, bioaccessibility in vitro, angiotensin-converting enzyme (ACE) inhibition PMID:27904316
Ducret, Maxime; Fabre, Hugo; Degoul, Olivier; Atzeni, Gianluigi; McGuckin, Colin; Forraz, Nico; Alliot-Licht, Brigitte; Mallein-Gerin, Frédéric; Perrier-Groult, Emeline; Farges, Jean-Christophe
2015-01-01
In recent years, mesenchymal cell-based products have been developed to improve surgical therapies aimed at repairing human tissues. In this context, the tooth has recently emerged as a valuable source of stem/progenitor cells for regenerating orofacial tissues, with easy access to pulp tissue and high differentiation potential of dental pulp mesenchymal cells. International guidelines now recommend the use of standardized procedures for cell isolation, storage and expansion in culture to ensure optimal reproducibility, efficacy and safety when cells are used for clinical application. However, most dental pulp cell-based medicinal products manufacturing procedures may not be fully satisfactory since they could alter the cells biological properties and the quality of derived products. Cell isolation, enrichment and cryopreservation procedures combined to long-term expansion in culture media containing xeno- and allogeneic components are known to affect cell phenotype, viability, proliferation and differentiation capacities. This article focuses on current manufacturing strategies of dental pulp cell-based medicinal products and proposes a new protocol to improve efficiency, reproducibility and safety of these strategies. PMID:26300779
Pan, Xuejun; Saddler, Jack N
2013-01-28
Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs.
Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun
2013-11-01
The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Lin, Po-Shuen; Chang, Hsiao-Hua; Yeh, Chien-Yang; Chang, Mei-Chi; Chan, Chiu-Po; Kuo, Han-Yueh; Liu, Hsin-Cheng; Liao, Wan-Chuen; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei
2017-05-01
In order to clarify the role of transforming growth factor beta 1 (TGF-β1) in pulp repair/regeneration responses, we investigated the differential signaling pathways responsible for the effects of TGF-β1 on collagen turnover, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human dental pulp cells. Pulp cells were exposed to TGF-β1 with/without pretreatment and coincubation by 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenyl mercapto)butadiene (U0126; a mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] inhibitor) and 4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H- imidazol-2-yl)-benzamide hydrate (SB431542; an activin receptor-like kinase-5/Smad signaling inhibitor). Sircol collagen assay was used to measure cellular collagen content. Culture medium procollagen I, TIMP-1, and MMP-3 levels were determined by enzyme-linked immunosorbent assay. TGF-β1 increased the collagen content, procollagen I, and TIMP-1 production, but slightly decreased MMP-3 production of pulp cells. SB431542 and U0126 prevented the TGF-β1-induced increase of collagen content and TIMP-1 production of dental pulp cells. These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling. Copyright © 2016. Published by Elsevier B.V.
Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J.; Goldschmidt, Eliezer E.; Friedman, Haya
2010-01-01
Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO2 peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the increase in ethylene production similarly to LeMADS-RIN. PMID:20200120
Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya
2010-03-01
Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the increase in ethylene production similarly to LeMADS-RIN.
Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi
2016-08-01
Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.
Testing of the cytotoxic effects of sulfate pulp mill waste waters.
Cernáková, M; Golis, E
1994-01-01
The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp.
New technology in pulping and bleaching
R. H. Atalla; R. S. Reiner; C. J. Houtman; E. L. Springer
2004-01-01
Innovation in advancing technoogies for production of pulp and paper has been driven, by and large, by the needs to reduce the environmental impact of pulp mills or to enhance the yield in processes of conversion of wood to fibers. "Fiberization" of wood chips is carred out in two categores of processes. One, chemical pulping relies on removing the lignin...
Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation
Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre
2012-01-01
Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323
Nemesia root hair response to paper pulp substrate for micropropagation.
Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre
2012-01-01
Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.
The hardwood chip market in 2004 : up in the North/Down in the South : so what's up?
Peter J. Ince
2005-01-01
The hardwood chip market gained some stability in the first half of 2004 with a modest upturn in hardwood pulp production and as timber supply emerged from the dampening clouds of unusually wet weather that prevailed throughout the Eastern United States in 2003. Although U.S. pulp production and exports increased in 2004, the hardwood pulp market began to show signs of...
Process for purification of waste water produced by a Kraft process pulp and paper mill
NASA Technical Reports Server (NTRS)
Humphrey, M. F. (Inventor)
1979-01-01
The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.
Use of different extracts of coffee pulp for the production of bioethanol.
Menezes, Evandro Galvão Tavares; do Carmo, Juliana Ribeiro; Menezes, Aline Galvão Tavares; Alves, José Guilherme Lembi Ferreira; Pimenta, Carlos José; Queiroz, Fabiana
2013-01-01
Coffee is one of the most important agricultural products in Brazil. More than 50 % of the coffee fruit is not used for the production of commercial green coffee and is therefore discarded, usually ending up in the environment. The goal of this work was to select an efficient process for obtaining coffee pulp extract and to evaluate the use of this extract in bioethanol production. The effects of heat treatment and trituration on the yield and composition of the extract were investigated by measuring the amounts of reducing sugars, starch, pectin, and phenolic compounds. The extraction process was most efficient at room temperature using grinding followed by pressing. Five different fermentation media were tested: sugarcane juice or molasses diluted with water or with coffee pulp extract and a medium with only coffee pulp extract. Batch fermentations were carried out at 30 °C for 24 h, and samples were taken to obtain measurements of the total reducing sugars, cell count, and ethanol concentration. The addition of coffee pulp extract did not influence the fermentation or yeast viability, and it can thus be mixed with sugarcane juice or molasses for the production of bioethanol, with a yield of approximately 70 g/L.
Modeling and minimization of barium sulfate scale
Alan W. Rudie; Peter W. Hart
2006-01-01
The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...
Slade, A H; Anderson, S M; Evans, B G
2003-01-01
N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of the study as suspended solids discharge improved. Nitrogen fixation was demonstrated throughout the study using an acetylene reduction assay. Based on nitrogen balances around the plant, there was a 55, 354 and 98% increase in nitrogen during Phases 1, 2 and 3 respectively. There was a significant decrease in phosphorus between Phases 1 and 2, and Phase 3 of the study, as well as a significant increase in nitrogen between Phases 2 and 3 which masked the effect of changing the dissolved oxygen. Operation at low dissolved oxygen appeared to confer a competitive advantage to the nitrogen-fixing bacteria.
Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage.
Heeger, Andrea; Kosińska-Cagnazzo, Agnieszka; Cantergiani, Ennio; Andlauer, Wilfried
2017-04-15
Coffee cherry pulp is a by-product obtained during coffee production. Coffee cherry pulp contains considerable amounts of phenolic compounds and caffeine. An attempt to produce Cascara, a refreshing beverage, has been made. Six dried coffee pulp samples and a beverage called Cascara produced in Switzerland out of one of those samples were investigated. Aqueous extraction of coffee pulps revealed a content of total polyphenols between 4.9 and 9.2mg gallic acid equivalents (GAE)/gDM. The antioxidant capacity was between 51 and 92μmol Trolox equivalents (TE)/gDM as measured by the assay with ABTS radical. Bourbon variety from Congo and maragogype variety showed highest caffeine contents with 6.5 and 6.8mg/gDM. In all samples chlorogenic acid, protocatechuic acid, gallic acid and rutin were present. The beverage Cascara contained 226mg/L of caffeine and 283mgGAE/L of total polyphenols whereas antioxidant capacity amounted to 8.9mmol TE/L. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fate of Residual Lignin during Delignification of Kraft Pulp by Trametes versicolor
Reid, Ian D.
1998-01-01
The fungus Trametes versicolor can delignify and brighten kraft pulps. To better understand the mechanism of this biological bleaching and the by-products formed, I traced the transformation of pulp lignin during treatment with the fungus. Hardwood and softwood kraft pulps containing 14C-labelled residual lignin were prepared by laboratory pulping of lignin-labelled aspen and spruce wood and then incubated with T. versicolor. After initially polymerizing the lignin, the fungus depolymerized it to alkali-extractable forms and then to soluble forms. Most of the labelled carbon accumulated in the water-soluble pool. The extractable and soluble products were oligomeric; single-ring aromatic products were not detected. The mineralization of the lignin carbon to CO2 varied between experiments, up to 22% in the most vigorous cultures. The activities of the known enzymes laccase and manganese peroxidase did not account for all of the lignin degradation that took place in the T. versicolor cultures. This fungus may produce additional enzymes that could be useful in enzyme bleaching systems. PMID:9603823
Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka
2011-04-01
In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.
Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay
2013-08-01
Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P < .001). Dentin has a detrimental effect on the ability of NaOCl and Ca(OH)2 to dissolve pulp tissue. The dentin model appears to be an efficient tool for the study of interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Results Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. Conclusions It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs. PMID:23356502
Reducing sugar production of sweet sorghum bagasse kraft pulp
NASA Astrophysics Data System (ADS)
Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis
2017-01-01
Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.
Chang, Mei-Chi; Lin, Li-Deh; Wu, Min-Tsz; Chan, Chiu-Po; Chang, Hsiao-Hua; Lee, Ming-Shu; Sun, Tzu-Ying; Jeng, Po-Yuan; Yeung, Sin-Yuet; Lin, Hsueh-Jen; Jeng, Jiiang-Huei
2015-01-01
Camphorquinone (CQ) is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS), ATM/Chk2/p53 and hemeoxygenase-1 (HO-1) and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM) decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2) were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD), but can be promoted by Zinc protoporphyin (ZnPP). CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2) production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling. PMID:26658076
Universal industrial sectors integrated solutions module for the pulp and paper industry.
Bhander, Gurbakhash; Jozewicz, Wojciech
2017-09-01
The U.S. is the world's second-leading producer of pulp and paper products after China. Boilers, recovery furnaces, and lime kilns are the dominant sources of emissions from pulp and paper mills, collectively accounting for more than 99 % of the SO 2 , almost 96 % of the NO X , and more than 85 % of the particulate matter (PM) emitted to the air from this sector in the U.S. The process of developing industrial strategies for managing emissions can be made efficient, and the resulting strategies more cost-effective, through the application of modeling that accounts for relevant technical, environmental and economic factors. Accordingly, the United States Environmental Protection Agency is developing the Universal Industrial Sectors Integrated Solutions module for the Pulp and Paper Industry (UISIS-PNP). It can be applied to evaluate emissions and economic performance of pulp and paper mills separately under user-defined pollution control strategies. In this paper, we discuss the UISIS-PNP module, the pulp and paper market and associated air emissions from the pulp and paper sector. After illustrating the sector-based multi-product modeling structure, a hypothetical example is presented to show the engineering and economic considerations involved in the emission-reduction modeling of the pulp and paper sector in the U.S.
SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira
2013-01-01
Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua
2015-09-25
Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formationmore » and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)« less
Universal industrial sectors integrated solutions modulefor the pulp and paper industry
The U.S. is the world’s second-leading producer of pulp and paper products after China. While the pulp and paper industry has reduced its environmental impacts, concerns remain regarding the emissions of oxides of nitrogen (NOX) and sulfur dioxide (SO2) from the sector. Boilers, ...
40 CFR 63.446 - Standards for kraft pulping process condensates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pulp products, owners and operators may meet a prorated mass standard that is calculated by prorating the applicable mass standards (kilograms of total HAP per megagram of ODP) for bleached and unbleached... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards for kraft pulping process...
40 CFR 63.446 - Standards for kraft pulping process condensates.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pulp products, owners and operators may meet a prorated mass standard that is calculated by prorating the applicable mass standards (kilograms of total HAP per megagram of ODP) for bleached and unbleached... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards for kraft pulping process...
Costa, Marion P; Monteiro, Maria Lucia G; Frasao, Beatriz S; Silva, Vitor L M; Rodrigues, Bruna L; Chiappini, Claudete C J; Conte-Junior, Carlos A
2017-01-01
Although the demand for goat milk products has been growing, they have lower consumer acceptability than products derived from cow milk. However, the addition of cupuassu pulp can be used to improve the formulation of these products. For this reason, the aim of this study was to investigate the influence of new goat milk yogurt manufactured with cupuassu pulp on physicochemical properties, consumers' perceptions, and overall consumer acceptance. In addition, the effect of antioxidant health information on consumer acceptance and purchase intention of cupuassu goat milk yogurts was evaluated. The results demonstrated a positive expectation regarding linking and familiarity to goat milk products and products with cupuassu pulp. The pH, total phenolic content, lightness, redness, yellowness, and apparent viscosity were potentially affected by the addition of cupuassu, with the highest concentration of cupuassu (10%) exhibiting the greatest changes in parameters. Based on principal component analysis, partial least squares regression, and just-about-right and penalty analysis, the addition of cupuassu pulp improved some sensory attributes of goat milk yogurt, such as cupuassu aroma, cupuassu flavor, yellow color, consistency, and viscosity, which positively influenced product acceptance. In addition, antioxidant health information increased the acceptance and purchase intention of cupuassu goat milk yogurts. Taking into account the parameters investigated in this study, the best scoring formulation was goat milk yogurt with 10% cupuassu pulp. Our results suggest that cupuassu pulp can be considered a potential ingredient to improve the sensory and texture properties of goat milk yogurt. Furthermore, the antioxidant health information could be a sensory strategy to increase the acceptance of cupuassu goat milk yogurts. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase.
Adachi, Osao; Ano, Yoshitaka; Akakabe, Yoshihiko; Shinagawa, Emiko; Matsushita, Kazunobu
2008-11-01
Chlorogenate hydrolase (EC 3.1.1.42, CHase) was highly induced in mycelia of Aspergillus sojae AKU 3312 grown in Czapek medium containing either instant coffee powder or coffee pulp as inducer. No CHase formation was observed in the mycelia when cultivated without the inducer. CHase was purified readily from CHase-induced mycelia to high homogeneity, and the purified CHase revealed the molecular weight of 180,000 consisting of two identical subunits of 88 kDa. Equimolar quinate (QA) and caffeate (CA) were confirmed on hydrolysis of chlorogenate (CGA). The purified CHase was only useful for a laboratory scale hydrolysis of CGA. For practical QA and CA production using scaled up hydrolysis of vegetable extracts of natural CGA resources, the enzyme activity of purified CHase decreased and denatured irreversibly. Preparation of coffee pulp koji and its application to QA and CA production were proposed instead of purified CHase. When coffee pulp koji was heated at 60 degrees C for 30 min, CHase survived without any appreciable loss of enzyme activity while vegetative mycelial growth and spore germination were terminated. The heated coffee pulp koji thus prepared was effective itself as stable immobilized catalyst of CHase for QA and CA production from vegetable CGA resources such as coffee powders, coffee pulp, and others.
Kaur, Daljeet; Bhardwaj, Nishi K; Lohchab, Rajesh Kumar
2017-10-01
Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD 3 , COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources. Graphical abstract ᅟ.
Southern pulpwood production, 1973
Thomas R. Bellamy
1973-01-01
Southern pulpwood production in 1973 increased 6 percent to over 47.1 million cords--over 66 percent of the Nation's total. Plant byproducts used for pulping made the largest volume gain in history and now account for 27 percent of the total pulpwood production Southern pulpwood was processed at 126 mills, of which 111 are in the South. Pulping capacity in the 12...
Credit availability: a possible barrier to growth for the Alaska forest products industry?
Geoffrey Donovan; Hayley Hesseln; John Garth
2005-01-01
Historically, the Alaska forest products industry has been driven by pulp production and the export of logs and cants primarily to Japan. Economic stagnation in Japan, the closure of Alaska's two pulp mills, harvest restrictions, and increased competition have severely impacted the industry. To survive, the industry must make significant investments in capital...
Jacobo-Velázquez, D A; Ramos-Parra, P A; Hernández-Brenes, C
2010-08-01
High hydrostatic pressure (HHP) pasteurized and refrigerated avocado and mango pulps contain lower microbial counts and thus are safer and acceptable for human consumption for a longer period of time, when compared to fresh unprocessed pulps. However, during their commercial shelf life, changes in their sensory characteristics take place and eventually produce the rejection of these products by consumers. Therefore, in the present study, the use of sensory evaluation was proposed for the shelf-life determinations of HHP-processed avocado and mango pulps. The study focused on evaluating the feasibility of applying survival analysis methodology to the data generated by consumers in order to determine the sensory shelf lives of both HHP-treated pulps of avocado and mango. Survival analysis proved to be an effective methodology for the estimation of the sensory shelf life of avocado and mango pulps processed with HHP, with potential application for other pressurized products. Practical Application: At present, HHP processing is one of the most effective alternatives for the commercial nonthermal pasteurization of fresh tropical fruits. HHP processing improves the microbial stability of the fruit pulps significantly; however, the products continue to deteriorate during their refrigerated storage mainly due to the action of residual detrimental enzymes. This article proposes the application of survival analysis methodology for the determination of the sensory shelf life of HHP-treated avocado and mango pulps. Results demonstrated that the procedure appears to be simple and practical for the sensory shelf-life determination of HHP-treated foods when their main mode of failure is not caused by increases in microbiological counts that can affect human health.
Geraldi, Marina V; Tulini, Fabricio L; Souza, Vanessa M; De Martinis, Elaine C P
2018-03-01
Yoghurts are dairy products consumed worldwide and can be supplemented with substances that provide extra health benefits as well as probiotic strains. In this context, the present study aimed to prepare a yoghurt added of juçara (Euterpe edulis M.) pulp and the commercial probiotic strain Lactobacillus acidophilus La5. Moreover, the probiotic survival during storage and after in vitro exposure to simulated gastric and enteric conditions was evaluated. Four formulations of yoghurt were prepared: (a) natural yoghurt, (b) yoghurt added of probiotic, (c) yoghurt added of juçara pulp, and (d) yoghurt added of probiotic culture and juçara pulp. The preparations were evaluated for survival of probiotic strain during storage and its tolerance to gastric and enteric conditions in vitro. The probiotic population in yoghurt remained unchanged during 28 days of storage. In addition, juçara pulp increased the probiotic resistance to simulated gastric and enteric conditions in the first day of storage. These data indicate that juçara pulp is a potential ingredient for the production of probiotic yoghurts.
Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S
2013-01-01
Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.
40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft...
40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft...
Modeling integrated biomass gasification business concepts
Peter J. Ince; Ted Bilek; Mark A. Dietenberger
2011-01-01
Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...
Water requirements of the pulp and paper industry
Mussey, Orville D.
1955-01-01
Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills are manufacturing sulfate pulp; because of the antipollution laws, many sulfite-pulp mills are being converted to sulfate-pulp mills. The waste from the manufacture of a ton of sulfate pulp is much more readily disposed of than that from a ton of sulfite pulp. Pulp mills are located near the source of raw material, which means that they are located in the eastern half of the United States and in the Pacific Northwest. It is advantageous for paper mills to be located close to a market and therefore a large number of paper mills are in the northeastern section of the United States from Minnesota to Maine. However, much of the coarser paper, which will ship well, is produced close to the pulp mills. The entire process of making paper from pulpwood, with special reference to water use is briefly described to provide an understanding of how the water is used and reused.
Review on Bamboo Utilization as Biocomposites, Pulp and Bioenergy
NASA Astrophysics Data System (ADS)
Yusuf, Sulaeman; Syamani, F. A.; Fatriasari, W.; Subyakto
2018-03-01
One of potential non wood bioresources utilized in industrial application is bamboos. Bamboos are include in graminae family which have high biomass productivity, easy and rapid production, wide avability and high holocellulose content. Indonesia has a huge potential of bamboos, more than 162 bamboo species are found however only some of them are planted that have a high economic value. Bamboos have some advantages such as can be harvested at 3 years, straight culm, high strength, easy to be processed, and relatively cheap. Research Center for Biomaterials has developed utilization of bamboo culm for ply bamboo product as alternative of plywood since 1995, using gombong bamboo, tali bamboo, sembilang bamboo, andong bamboo with PF resin as adhesive. Other biocomposite products from bamboos include particle board, cement board and polymer-bamboo fiber composites. In term of processing technique and final product quality, bamboo composites from ply bamboo are the most prospectable material to be utilized in industrial application. Yellow bamboo and betung bamboo have also been developed as pulp and paper. Biopulping using soda and kraft pulping after biological pretreatment using white rot fungi to remove lignin was used as pulping method in this conversion. Biokraft pulping with Trametes versicolor for 45 days with inoculum loading of 10% resulted better pulp quality compared to the other fungi. Betung bamboo had good morphological characteristics and chemical component content to be converted into bioenergy such as bioethanol. Several pretreatment methods have been developed in order to result high sugar yield. Microwave assisted acid hydrolysis was preferedin producing higher yield from the pretreated bamboo compared to enzymatic hydrolysis. By using this method, the bamboo pretreated by biological-microwave pretreatment results higher improvement to increase sugar yield.
Cao, Ming-yue; Wang, Peng-tao; Wang, Shi; Yue, Ying-rong; Yuan, Wen-duo; Qiao, Wei-chuan; Wang, Fei
2017-01-01
ABSTRACT Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter−1 of xylose as the substrate, a maximum xylose utilization rate (URxyl) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H2 mol of xylose−1, respectively, were obtained. Biohydrogen kinetics and electron equivalent (e− equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes. IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such as lignin, whose reclamation is considered economically crucial and environmentally friendly. Furthermore, azo dyes are usually added in order to fabricate anticounterfeiting paper, which further increases the complexity of the pulp and paper wastewater. This work may offer a better understanding of biohydrogen production from xylose in the presence of azo dyes and provide a promising energy-recycling method for treating pulp and paper wastewater, especially for those containing azo dyes. PMID:28283518
Llaneza Coalla, H; Blanco Fernández, J M; Morís Morán, M A; López Bobo, M R
2009-09-01
In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit. The anaerobic digestion of apple pulp was investigated for biogas production. This paper presents the results where apple pulp was co-digested with slaughterhouse waste (pig intestine and bovine stomach content) in a biogas laboratory unit (10 l CSTR reactor). The production of biogas has reached very satisfactory values during the whole test (0.8m(3)kg(-1)OTS), verifying that the process is kept in stable conditions of pH (near 8.0), and the volatile fatty acids was always underneath 3000 mg/l, when the pulp amount was lower than 100g in mesophilic conditions. The fat concentration into the digester remained always below the value that causes inhibition of the methanogenic bacteria, 500 mg/l. Finally, methane concentration (77-80%) and H(2)S concentration (400 ppm) in the biogas, they were similar to those obtained when the test was run out in the absence of apple pulp. The process efficiency with respect to COD removal was high, near 80% of the total COD. Finally, inhibitory effects of methanogenic bacteria were observed when pulp concentration was around 10% in the input material.
Wood and Paper Manufacturing Sectors
Find EPA regulatory information for the wood product and paper manufacturing sectors, including paper, pulp and lumber. Information includes NESHAPs and effluent guidelines for pulp and paper rulemaking, and compliance guidelines
Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto
2017-09-01
Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.
Liu, Haitang; Hu, Huiren; Jahan, M Sarwar; Ni, Yonghao
2013-03-01
This study aimed to produce furfural from the PHL. Results showed best furfural yield of 32.8% and the furfural selectivity of 37.7% in the monophase system (170 °C, 100 min), while they were 60.1% and 69.8%, respectively in the biphase system. The lower furfural selectivity in the monophase system was explained by more side reactions, such as fragmentation, condensation reactions, resinification and others. Model compounds such as: xylose, furfural, syringaldehyde, were used to confirm/identify these side reactions. The addition of dilute sulfuric acid/acetic acid in the system under the same conditions decreased the recovery of furfural. The addition of syringaldehyde into the PHL also led to a decrease in the furfural yield, supporting the conclusion that lignin structures in the PHL may also be involved in the side reactions, thus decreasing the furfural yield. Copyright © 2012 Elsevier Ltd. All rights reserved.
Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi
2017-06-01
The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C
2014-02-01
Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gasparotto, Juciano; Somensi, Nauana; Bortolin, Rafael Calixto; Moresco, Karla Suzana; Girardi, Carolina Saibro; Klafke, Karina; Rabelo, Thallita Kelly; Morrone, Maurilio Da Silva; Vizzotto, Márcia; Raseira, Maria do Carmo Bassols; Moreira, José Claudio Fonseca; Gelain, Daniel Pens
2014-01-01
Antioxidant, anti-glycation and anti-inflammatory activities of fresh and conserved peach fruits (Prunus persica L. Batsch) were compared. Fresh peach pulps, peels, preserve peach pulps and the preserve syrup were prepared at equal concentrations. Rat liver, kidney and brain cortex tissue slices were pre-incubated with peach samples, subjected to oxidative stress with FeSO4 and hydrogen peroxide. Fresh peach pulps and peel conferred higher protection against cytotoxicity and oxidative stress than preserve peach pulps in most tissues. Release of tumor necrosis factor-α and interleukin-1β was also significantly decreased by Fresh peach pulps and peel, followed by preserve peach pulps. Total phenolic determination and HPLC analysis of carotenoids showed that the content of secondary metabolites in Fresh peach pulps and peel is significantly higher than in preserve peach pulps, while the syrup had only small or trace amounts of these compounds. Fresh peach pulps and Peel demonstrated high antioxidant and anti-inflammatory effects preventing against induced damage. PMID:25320458
Hama, Shinji; Mizuno, Shino; Kihara, Maki; Tanaka, Tsutomu; Ogino, Chiaki; Noda, Hideo; Kondo, Akihiko
2015-01-01
This study focused on the process development for the d-lactic acid production from cellulosic feedstocks using the Lactobacillus plantarum mutant, genetically modified to produce optically pure d-lactic acid from both glucose and xylose. The simultaneous saccharification and fermentation (SSF) using delignified hardwood pulp (5-15% loads) resulted in the lactic acid titers of 55.2-84.6g/L after 72h and increased productivities of 1.77-2.61g/L/h. To facilitate the enzymatic saccharification of high-load pulp at a fermentation temperature, short-term (⩽10min) pulverization of pulp was conducted, leading to a significantly improved saccharification with the suppressed formation of formic acid by-product. The short-term milling followed by SSF resulted in a lactic acid titer of 102.3g/L, an optical purity of 99.2%, and a yield of 0.879g/g-sugars without fed-batch process control. Therefore, the process presented here shows promise for the production of high-titer d-lactic acid using the L. plantarum mutant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Haifeng Zhou; Dongjie Yang; Junyong Zhu
2016-01-01
The molecular structure and properties of four sodium lignosulfates (LSs) derived from pulping or bioethanol production were evaluated and compared. SXP and SAL were produced by sulfite pulping and sulfonation reaction of lignin from alkali pulping of poplar, respectively. LS-180 and LS-150 were from sulfite pretreatment to overcome recalcitrance of lignocelluloses (...
Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli
2017-07-01
Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.
Integrated Forest Products Refinery (IFPR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Heiningen, Adriaan R. P.
2010-05-29
Pre-extraction–kraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called “near neutral” pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 °C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwoodmore » chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the “near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the “near-neutral” green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid from the extract. When operating the facility will produce 1.5 million gallons per year of butanol and create 16 new “green collar” jobs. Previously, a spare pulp digester was converted to a new extractor, and in 2009 it was demonstrated that a good hemicellulose extract could be produced, while simultaneously producing market pulp. Since then more than 250 hours of operational experience has been acquired by the mill generating a hemicellulose extract while simultaneously producing market pulp at a scale of 1000 tonnes (OD)/day of mixed northern hardwood chips.« less
Oliveira, Gonçalo; Calisto, Vânia; Santos, Sérgio M; Otero, Marta; Esteves, Valdemar I
2018-08-01
In this work, two pulps, bleached (BP) and raw pulp (RP), derived from the paper production process, were used as precursors of non-activated and activated carbons (ACs). In the case of non-ACs, the production involved either pyrolysis or pyrolysis followed by acid washing. For ACs production, the pulps were impregnated with K 2 CO 3 or H 3 PO 4 , and then pyrolysed and acid washed. After production, the materials were physically and chemically characterized. Then, batch adsorption tests on the removal of two pharmaceuticals (the anti-epileptic carbamazepine (CBZ) and the antibiotic sulfamethoxazole (SMX)) from ultra-pure water and from Waste Water Treatment Plant (WWTP) effluents were performed. In ultra-pure water, non-ACs were not able to adsorb CBZ or SMX while ACs showed good adsorption capacities. In WWTP effluents, although ACs satisfactorily adsorbed CBZ and SMX, they showed lower adsorption capacities for the latter. Tests with WWTP effluents revealed that the best adsorption capacities were achieved by carbons produced from BP and activated with H 3 PO 4 : 92±19mgg -1 for CBZ and 13.0±0.6mgg -1 for SMX. These results indicate the potential of paper pulps as precursors for ACs that can be applied in wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Kumar, Kuttanpillai Santhosh; Manimaran, Ayyachamy; Permaul, Kugen; Singh, Suren
2009-05-01
The production of hemicellulases by Thermomyces lanuginosus SK using oatspelts xylan was examined during submerged cultivation. A high level of extracellular xylanase (346+/-10 U ml(-1)) production was observed on the fifth day; however, accessory enzyme levels were low. T. lanuginosus SK was further subjected to UV and N-methyl-N-nitro-N-nitrosoguanidine mutagenesis. The T. lanuginosus MC 134 mutant showed a 1.5 fold increase in xylanase production on oatspelts xylan, compared to the wild type strain. Xylanase production was further enhanced to 3299+/-95 U ml(-1) by using corn cobs under optimized growth conditions. A reduction in xylanase production was observed in a 5 L fermenter. Also, the biobleaching efficiency of crude xylanase was evaluated on bagasse pulp, and a brightness of 46.07+/-0.05% was observed with the use of 50 U of crude xylanase per gram of pulp. This brightness was 3.6 points higher than that of the untreated samples. Reducing sugars (25.78+/-0.14 mg g(-1)) and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. T. lanuginosus MC 134 has a potential application in the pulp and paper industries.
Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations
Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino
2015-01-01
Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. PMID:26150457
Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations.
Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino; Verstrepen, Kevin J
2015-09-01
Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Nakajima, Y; Inagaki, Y; Kido, J; Nagata, T
2015-04-01
Advanced glycation end products (AGE) are involved in the progression of diabetic complications. Although our previous reports show that AGE increased dental pulp calcification, AGE accumulation is also associated with inflammation. This study examined AGE effect on the expression of inflammation factors using rat dental pulp tissues and cell cultures. Receptor for AGE (RAGE), S100A8, S100A9, and interleukin (IL)-1β were selected as inflammation parameters. Rat dental pulp cells were cultured and treated with AGE, and the effects were determined by real-time PCR. An anti-RAGE antibody or MAPK pathway inhibitors (PD98059, SB203580, and SP60012) were used to investigate AGE signaling pathway. The mRNA levels of RAGE, S100A8, S100A9, and IL-1β were higher in diabetic pulp tissues. AGE increased mRNA expressions of S100A8, S100A9, and IL-1β in cultured dental pulp cells. In the presence of anti-RAGE antibody, AGE did not increase in S100A8 or S100A9 expressions. The AGE-induced increases in S100A8 and S100A9 were inhibited by PD98059 and SB203580, respectively. Advanced glycation end products increased mRNA expression of S100A8, S100A9, and IL-1β under diabetic pulp conditions, and AGE-induced increases in S100A8 and S100A9 expressions may be associated with the RAGE-MAPK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LCA Study for Pilot Scale Production of Cellulose Nano Crystals (CNC) from Wood Pulp
Hongmei Gu; Richard Reiner; Richard Bergman; Alan Rudie
2015-01-01
Interest in cellulose nanocrystals (CNC)/cellulose nanofibrils (CNF) made from woody biomass has been growing rapidly with close attention from pulp and paper industry, governments, universities, and research institutes. Many new products development with CNCs have been studied intensively. However, little life-cycle analysis (LCA) has been conducted for the...
Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration
Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter
2015-01-01
Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180
Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.
Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter
2015-12-31
Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.
Electron-processing technology: A promising application for the viscose industry
NASA Astrophysics Data System (ADS)
Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.
1998-06-01
In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus
2003-09-18
This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residualmore » solids.« less
Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites
Immonen, Kirsi; Lahtinen, Panu; Pere, Jaakko
2017-01-01
Thermoplastic composite materials containing wood fibers are gaining increasing interest in the manufacturing industry. One approach is to use nano- or micro-size cellulosic fibrils as additives and to improve the mechanical properties obtainable with only small fibril loadings by exploiting the high aspect ratio and surface area of nanocellulose. In this study, we used four different wood cellulose-based materials in a thermoplastic polylactide (PLA) matrix: cellulose nanofibrils produced from softwood kraft pulp (CNF) and dissolving pulp (CNFSD), enzymatically prepared high-consistency nanocellulose (HefCel) and microcellulose (MC) together with long alkyl chain dispersion-improving agents. We observed increased impact strength with HefCel and MC addition of 5% and increased tensile strength with CNF addition of 3%. The addition of a reactive dispersion agent, epoxy-modified linseed oil, was found to be favorable in combination with HefCel and MC. PMID:29149057
Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries
NASA Astrophysics Data System (ADS)
De Michelis, I.; Ferella, F.; Karakaya, E.; Beolchini, F.; Vegliò, F.
This paper concerns the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. The metals were dissolved by a reductive-acid leaching with sulphuric acid in the presence of oxalic acid as reductant. Leaching tests were realised according to a full factorial design, then simple regression equations for Mn, Zn and Fe extraction were determined from the experimental data as a function of pulp density, sulphuric acid concentration, temperature and oxalic acid concentration. The main effects and interactions were investigated by the analysis of variance (ANOVA). This analysis evidenced the best operating conditions of the reductive acid leaching: 70% of manganese and 100% of zinc were extracted after 5 h, at 80 °C with 20% of pulp density, 1.8 M sulphuric acid concentration and 59.4 g L -1 of oxalic acid. Both manganese and zinc extraction yields higher than 96% were obtained by using two sequential leaching steps.
Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun
2011-03-01
As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.
Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C
2005-12-01
To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P < 0.05). From the results of casein zymography and ELISA, SB203580 and U0126 significantly reduced the P. endodontalis stimulated t-PA production respectively (P < 0.05). However, LY294002 lacked the ability to change the P. endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.
What is the current state of forest product markets and how will they develop in the future?
Ragnar Jonsson; Elias Hurmekoski; Lauri Hetemaki; Jeffrey Prestemon
2017-01-01
Forest-based industries â pulp and paper, solid wood products, and a number of downstream value-added wood-based manufacturers â have received limited attention in the pursuit of a successful implementation of EU and national bioeconomy strategies. According to Eurostat, the pulp and paper and solid wood products industries accounted for about 4.4% (â¬277 billion) of...
Zhang, Xu; Li, Haobang; Jiang, Guitao; Wang, Xiangrong; Huang, Xuan; Li, Chuang; Wu, Duanqin; Dai, Qiuzhong
2018-04-11
The objective of this study was to evaluate the effects of enzyme supplementation on the nutrient, amino acid, and energy utilization efficiency of citrus pulp and hawthorn pulp as unusual feedstuffs in Linwu ducks. Forty ducks were assigned to each treatment group and fed diets with or without complex enzyme supplementation. All birds received the same quantity of raw material (60 g) via the force-feeding procedure. With the exception of leucine and phenylalanine, amino acid concentrations in hawthorn pulp were twice those in citrus pulp. Enzyme supplementation significantly increased apparent dry matter digestibility (ADM) of citrus pulp (P < 0.05), but had no significant effects (P > 0.05) on the apparent and true utilization rates of other nutrients, apparent metabolizable energy (AME), or true metabolizable energy (TME), from citrus pulp and hawthorn pulp by Linwu ducks. However, enzyme supplementation significantly increased (P < 0.05) apparent gross energy, true gross energy, AME, and TME of hawthorn pulp for Linwu ducks. There were no differences in the apparent and true utilization rates of amino acids from citrus pulp (P > 0.56) between the groups, with the exception of arginine (P < 0.05). There was an increasing trend in the apparent and true utilization rates of alanine (P = 0.06) and tyrosine (P = 0.074) from citrus pulp with enzyme supplementation. The apparent and true utilization rates of threonine in hawthorn pulp were increased significantly (P < 0.05) following enzyme supplementation. The addition of exogenous enzymes improved the forage quality of citrus pulp and hawthorn pulp, which represent potential feed resources for husbandry production.
Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornetti, Micheal; Freeman, Douglas
2012-10-31
The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve tomore » validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could produce transportation fuels and produce pulp at the same time. This has the added advantage of reducing or eliminating the need for a recovery boiler. The recovery boiler is an extremely expensive unit operation in the Kraft process and is key to the chemical recovery system that makes the Kraft process successful. Going to a gasification process with potentially higher energy efficiency, improve the pulping process and be more efficient with the use of wood. At the same time a renewable fuel product can be made. Cellulosic Based Black Liquor Gasification and Fuels Plant progressed with the design of the mill as Chemrec continued to work on their pilot plant data gathering. The design information helped to guide the pilot plant and vice versa. In the end, the design details showed that the process was technically feasible. However, at the relatively small size of this plant the specific capital cost was very high and could only be considered if the pulp operation needed to replace the recovery boiler. Some of the reasons for the costs being high are attributed to the many constraints that needed to be addressed in the pulping process. Additionally, the Methanol product did not have a vehicle fuel supply chain to enter into. A different product selection could have eliminated this issue. However, with the selected design, the installation at Escanaba Paper Mill was not economically feasible and the project was not pursued further.« less
J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards
2007-01-01
High-value, large-volume utilization of forest thinning materials from U.S. National Forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...
J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards
2007-01-01
High-value, large-volume utilization of forest thinning materials from U.S. national forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...
Huiyang Bian; Liheng Chen; Ruibin Wang; Junyong Zhu
2016-01-01
Here we demonstrate potentially low cost and green productions of high thermally stable and carboxylated cellulose nanocrystals (CNCs) and nanofibrils (CNF) from bleached eucalyptus pulp (BEP) and unbleached mixed hardwood kraft pulp (UMHP) fibers using highly recyclable dicarboxylic solid acids. Typical operating conditions were acid concentrations of 50 - 70 wt% at...
Global cycle changes the rules for U.S. pulp and paper
Peter J. Ince
1999-01-01
As in other industries, the fortunes of the U.S. pulp and paper industry are now closely tied to the global economy. The U.S. pulp and paper sector exhibits fairly steady production and growth trends, but its economic fortunes have become intertwined with the bglobal cyclec of supply and demand. Exposure to the global cycle has increased for the U.S. in recent decades...
NASA Astrophysics Data System (ADS)
Ananthkumar, M.; Sathyan, Dhanya; Prabha, B.
2018-02-01
The cost of construction materials is increasing day by day because of high demand, scarcity of raw materials and high price of energy. From the view point of energy saving and over consumption of resources, the use of alternative constituents in construction materials is now a global concern. From this, the extensive research and development works towards exploring new ingredients are required for producing sustainable and environment friendly construction materials. Bagasse pulp liquor is one such material that can be used as a chemical admixture which is obtained as a by-product of paper manufacturing process. Around 5 million tons of bagasse pulp is obtained throughout the world each year. since the material is a waste product from paper industry, this can be changed as a admixture by its effective use in concrete. In the present investigation black pulp liquor is added to fresh concrete in different dosages, the concrete is then tested for workability, compressive strength, flexural, split tensile strength and setting time. From results it is shown that 1% replacement of water with black pulp liquor increases the fresh properties of the concrete, 2% replacement of water with black pulp liquor increases the mechanical properties of the concrete and acts as a set retarder.
NASA Astrophysics Data System (ADS)
Erminawati; Sidik, W.; Listanti, R.; Zulfakar, H.
2018-01-01
Coconut-pulp flour is coconut flour made from by-product of coconut-milk based food products. The flour contains no gluten and high fibre, which can be considered as functional potential food. Bread made from composite-flour of coconut-pulp flour and wheat flour was studied for its physic-chemical and sensory characteristics. Addition of hydrocolloid, like xanthan-gum, was aimed to provide viscoelasticity for the dough which is essential for baked product. Composite-flour proportion used in this study was; 10CPF/90WF, 15CPF/85WF and 20CPF/80WF; and xanthan gum to total flour of 0,1% and 0,4%. Variable observed were; crumb-texture, crumb-colour, taste of coconut, preference and flavour; moisture, ash, fiber and soluble-protein contents. The research showed that addition of coconut-pulp flour in the composite-flour decreased specific volume value and increased the bread texture produced. It also increased the bread moisture-content, ash-content, fibre-content and soluble protein-content. Moreover, the xanthan-gum addition resulted in decreased specific-volume value and increased texture and fiber-content of the bread produced. Overall, the sensory characteristic of crumb colour, flavour and panellist preference revealed better than control bread made from wheat flour, however its crumb texture harder compare to control bread made from wheat flour. This study showed that coconut-pulp flour potential to be developed for production of functional food.
Boshoff, Sonja; Gottumukkala, Lalitha Devi; van Rensburg, Eugéne; Görgens, Johann
2016-03-01
Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2g/L at 66.9% and 45.5 g/L at 78.2%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang
2012-12-28
Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp.more » variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.« less
Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.
2012-01-01
Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks. PMID:23300786
De Couto Pita, A; Passafaro, D; Ganzinelli, S; Borda, E; Sterin-Borda, L
2009-06-01
The aim of the study was to investigate the role of muscarinic acetylcholine receptor (mAChR) activity in the regulation of endothelial (e), neuronal (n) and inducible (i) nitric oxide synthase (NOS) activity and expression in experimentally induced inflammation of rat dental pulp tissue. Inflammation was induced by application of bacterial lipopolysaccharide (LPS) to the pulp. Extirpated pulp-tissue samples were incubated in saline solution until the various experiments were performed. Saline-treated pulp and healthy pulp tissues were used as controls. NOS activity was measured by the production of [U-(14)C]-citrulline from [U-(14)C]-arginine. Nitrite/nitrate assay was evaluated by the conversion of nitrate to nitrite in the presence of nicotinamide adenine dinucleotide phosphate. i-nos, e-nos and n-nos mRNA levels were measured using reverse-transcriptase polymerase chain reaction by co-amplification of target cDNA with a single set of primers. Application of LPS to the pulp increased NOS activity and nitrate production (P < 0.001), generated by iNOS over-activity and expression. Pilocarpine acting on mAChRs triggered a biphasic action on NOS activity and NO accumulation. At low concentrations, pilocarpine induced a negative effect associated with a decrease in i-nos mRNA level, whilst at high concentration, it produced a positive effect associated with increased e-nos and n-nos mRNA levels. In control pulp tissue, only the positive effect of pilocarpine was observed. Irreversible pulpitis changes mAChR conformation increasing its efficiency of coupling to transducing molecules that in turn induce activate iNOS. The capacity of pilocarpine to prevent NO accumulation and iNOS activity, by acting on mAChR mutation induced by pulpitis, might be useful therapeutically as a local treatment.
Peter J. Ince
2006-01-01
\\tPulp and paper markets in the UNECE region were influenced by higher energy prices and demand growth in Asia in 2005 and 2006. Important developments in Europe included the launching of the EU Emissions Trading Scheme, which was followed by substantial increases in electrical energy prices. High global energy prices pushed up costs of production and prices for pulp...
Recycling agroindustrial waste by lactic fermentations: coffee pulp silage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrizales, V.; Ferrer, J.
1985-04-03
This UNIDO publication on lactic acid fermentation of coffee pulp for feed production covers (1) a process which can be adapted to existing coffee processing plants for drying the product once harvesting time has finished (2) unit operations involved: pressing (optional), silaging, liming and drying (3) experiments, results and discussion, bibliography, process statistics, and diagrams. Additional references: storage, biotechnology, lime, agricultural wastes, recycling, waste utilization.
Noh, Hyun Suk; Ingale, Santosh Laxman; Lee, Su Hyup; Kim, Kwang Hyun; Kwon, Ill Kyong; Kim, Young Hwa; Chae, Byung Jo
2014-01-01
An experiment was conducted to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass on the growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora of weanling pigs. A total of 180 weaned piglets (Landrace × Yorkshire × Duroc) were randomly allotted to three treatments on the basis of body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods, whereas significant linear effects on ATTD of dry matter (DM), gross energy (GE), and ash were only observed in phase I. Piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass showed greater (p < 0.05) G:F (phase I, phase II, and overall) as well as ATTD of DM, GE, and ash (phase I) than pigs fed control diet. Dietary treatments also had significant linear effects on total anaerobic bacteria populations by d 14 and 28. In addition, piglets fed diet supplemented with 5.0% citrus pulp, fish by-product and B. subtilis fermentation biomass showed greater (p < 0.05) fecal total anaerobic bacteria populations (d 14 and 28) than pigs fed control diet. Dietary treatments had no significant effects (linear or quadratic) on average daily gain (ADG), average dial feed intake (ADFI; phase I, phase II, and overall), or fecal populations of Bifidobacterium spp., Clostridium spp., and coliforms (d 14 and 28). These results indicate that dietary supplementation with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass has the potential to improve the feed efficiency, nutrient digestibility, and fecal microflora of weanling pigs.
Diabetes induces metabolic alterations in dental pulp.
Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José
2008-10-01
Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p
NASA Astrophysics Data System (ADS)
Natsir, A.; Mujnisa, A.; Mide, M. Z.; Purnomo, N.; Saade, M. F.
2018-05-01
Cocoa pulp is a by-product from cocoa industry which is produced in large quantity, but very limited study has been carried out in utilizing it as energy source in animal feed. The purpose of this study was to assess the in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD) of complete feed containing different levels of cocoa pulp. The experiment was carried out according to completely randomised design consisting of four treatments and three replications. The treatments were P0 = Complete feed containing 0% cocoa pulp, P1 = Complete feed containing 5% cocoa pulp, P2 = Complete feed containing 10% cocoa pulp, and P3 = Complete feed containing 15% cocoa pulp on dry matter basis. The results of the study indicated that the average IVDMD was 567, 538, 566, and 526 g kg-1 DM, while the average IVOMD was 522, 491, 502, and 461 g/kg DM, respectively for treatment P0, P1, P2, and P3. Statistical analysis indicated that increasing levels of coca pulp in the feed significantly affected (P<0.05) the IVDMD and IVOMD of the feed. In conclusion, cocoa pulp is potential to be used up to 10% in complete feed with corn cobs as the fibre source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paice, M.G.; Reid, I.D.; Bourbonnais, R.
1993-01-01
The white rot fungus Trametes (Coriolus) versicolor delignifies and bleaches kraft pulp. However, the process is slow compared with chemical bleaching and the cellulose is also attacked. This study attempts to determine the enzymology of fungal delignification and then applies the relevant enzymes directly to the pulp. Lignin peroxidase and manganese peroxidase (MnP) have both been implicated in lignin biodegradations. However, the researchers show that MnP is the critical enzyme. It is produced by bleaching cultures of T. versicolor; its peak production occurs at the same time as the maximum rate of fungal culture bleaching, and the manganese-and peroxide-dependent demethylationmore » and delignification of kraft pulp occurs in vitro. 50 refs., 4 figs., 7 tabs.« less
[Application of enzymes in pulp and paper industry].
Lin, Ying
2014-01-01
The application of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental burden. Specific enzymes contribute to reduce the amount of chemicals, water and energy in various processes. This review is aimed at presenting the latest progresses of applying enzymes in bio-pulping, bio-bleaching, bio-deinking, enzymatic control of pitch and enzymatic modification of fibers.
Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola
2018-01-01
The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296
Tepe, Ozlem; Dursun, Arzu Y
2014-01-01
In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.
Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom
2012-03-01
Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.
Berłowska, Joanna; Pielech-Przybylska, Katarzyna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr; Kręgiel, Dorota
2016-01-01
Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015-0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red ( S. cerevisiae ) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.
Peter J. Ince; Eduard L. Akim; Bernard Lombard; Tomas Parik
2009-01-01
Pulp and paper production and consumption in both Europe and North America declined in 2008 and 2009 as the global economic crisis took hold. In early 2009, leading trade associations were reporting year-over-year declines of 17% in total paper and paperboard production in both Europe and the United States, considerably more than the 2008 drop. Capacity-utilization...
PRODUCTION OF METALS AND THEIR COMPOUNDS
Arden, T.V.; Burstall, F.H.; Davies, G.R.; Linstead, R.P.; Wells, R.A.
1958-11-18
Zirconium nitrate can be separated from hafnium nitrate by mixing the nitrates with ethyl cellulose pulp, eluting the mass with diethyl ether containing nitric acid, and passing the eluent through a column of cellulose pulp the outflow of which is substantially free of hafnium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, H.L.; Johnson, D.K.; Black, S.
1988-01-01
Aspen (Populus tremuloides) and black cottonwood (Populus trichocarpa) organosolv pulps produced in a wide range of solvent composition (between 30 and 70% by volume of methanol) and catalysts (H/sub 2/SO/sub 4/ and H/sub 3/PO/sub 4/) such that the cooking liquor pH less than or equal to 3 are easily digested by enzymes. The total yields of hydrolysis residues (pulps) are in the 40-60% range; the acid-catalyzed delignification followed by enzyme hydrolysis can generate 70-88% of the original six-carbon sugars contained in the wood. Glucomannan and arabinogalactan are dissolved in to the pulping liquor in the pH range of 2-4.5. Lowermore » pH (less than or equal to 3) leads to additional solubilization of six-carbon sugars. These sugars may be fermented directly. From the insoluble hydrolysis residues, 36-41% conversions of wood into fermentable sugars were obtained after enzyme hydrolysis; the starting feedstocks contain 50.8 and 46.6% hexosans, respectively, for aspen and black cottonwood. The kinetics of enzymatic hydrolysis of cellulose can be formally treated as two simultaneous pseudo-first-order reactions in which fast and slow hydrolysis of cellulose occur. Correlations between the glucan digestibility and the effect of the pretreatment have been made. The higher residual xylan content reduces the amount of the rapidly hydrolyzable glucan fraction and lowers the glucan digestibility. The proposed simple kinetic treatment is very helpful in assessing the effect of the pretreatment on pulp enzyme hydrolyzability.« less
Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory R. Mockos; William A. Smith; Frank J. Loge
Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensatemore » system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.« less
Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams
NASA Astrophysics Data System (ADS)
Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.
Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.
Torres, Jeremy Martin O; Dela Cruz, Thomas Edison E
2013-04-01
Mangrove fungi are vastly unexplored for enzymes with industrial application. This study aimed to assess the biocatalytic activity of mangrove fungal xylanases on recycled paper pulp. Forty-four mangrove fungal (MF) isolates were initially screened for xylanolytic activity in minimal medium with corn cob xylan as the sole carbon source. Eight MF were further cultivated under submerged fermentation for the production of crude xylanases. These crude enzymes were then characterized and tested for the pretreatment of recycled paper pulps. Results showed that 93 % of the tested MF isolates exhibited xylanolytic activity in solid medium. In submerged fermentation, salinity improved the growth of the fungal isolates but did not influence xylanase production. The crude xylanases were mostly optimally active at 50 °C and pH 7. Changes in pH had a greater effect on xylanase stability than temperature. More than half of the activity was lost at pH 9 for majority of the crude enzymes. However, two thermophilic xylanases from Fusarium sp. KAWIT-A and Aureobasidium sp. 2LIPA-M and one alkaliphilic xylanase from Phomopsis sp. MACA-J were also produced. All crude enzymes exhibited cellulase activities ranging from 4 to 21 U/ml. Enzymatic pretreatment of recycled paper pulps with 5 % consistency produced 70-650 mg of reducing sugars per gram of pulp at 50 °C after 60 min. The release of high amounts of reducing sugars showed the potential of mangrove fungal crude xylanases in the local paper and pulp industry. The diverse properties shown by the tested crude enzymes also indicate its potential applications to other enzyme-requiring industries.
40 CFR 430.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...
40 CFR 430.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...
40 CFR 430.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...
40 CFR 430.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...
40 CFR 430.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The following standards apply to all new sources in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant... apply to non-continuous dischargers: Subpart E [Supplemental NSPS] Pollutant or pollutant property...
Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid.
Kimura, Yuki; Mori, Daisuke; Imada, Toshihiro; Izuta, Yusuke; Shibuya, Michiko; Sakaguchi, Hisayo; Oonishi, Erina; Okada, Naoko; Matsumoto, Kenji; Tsubota, Kazuo
2017-04-05
Sea buckthorn ( Hippophae rhamnoides ) -derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil) restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1), a fatty acid present in sea buckthorn pulp oil, preserved tear secretion and suppressed inflammatory cytokines in the lacrimal gland to the same extent as that by pulp oil. These results suggest that an oral intake of sea buckthorn pulp oil has a potency to preserve tear secretion capacity in the dry eye state and palmitoleate, its main constituent fatty acid, is an active component of the oil. This effect may enable a potent diet-based treatment for the prevention of dry eye.
Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid
Nakamura, Shigeru; Kimura, Yuki; Mori, Daisuke; Imada, Toshihiro; Izuta, Yusuke; Shibuya, Michiko; Sakaguchi, Hisayo; Oonishi, Erina; Okada, Naoko; Matsumoto, Kenji; Tsubota, Kazuo
2017-01-01
Sea buckthorn (Hippophae rhamnoides)–derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil) restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1), a fatty acid present in sea buckthorn pulp oil, preserved tear secretion and suppressed inflammatory cytokines in the lacrimal gland to the same extent as that by pulp oil. These results suggest that an oral intake of sea buckthorn pulp oil has a potency to preserve tear secretion capacity in the dry eye state and palmitoleate, its main constituent fatty acid, is an active component of the oil. This effect may enable a potent diet-based treatment for the prevention of dry eye. PMID:28379171
NASA Astrophysics Data System (ADS)
Juliastuti, Sri Rachmania; Widjaja, Tri; Altway, Ali; Iswanto, Toto
2017-05-01
Coffee is an excellent commodity in Indonesia that has big problem in utilizing its wastes. As the solution, the abundant coffee pulp waste from processing of coffee bean industry has been used as a substrate of biogas production. Coffee pulp waste (CPW) was approximately 48% of total weight, consisting 42% of the coffee pulp and 6% of the seed coat. CPW holds good composition as biogas substrate that is consist of cellulose (63%), hemicellulose (2.3%) and protein (11.5%). Methane production from coffee pulp waste still has much problems because of toxic chemicals content such as caffeine, tannin, and total phenol which can inhibit the biogas production. In this case, CPW was pretreated by ethanol/water (50/50, v/v) at room temperature to remove those inhibitors. This study was to compare the methane production by microbial consortium of cow dung and rumen fluid mixture coffee pulp waste as a substrate with and without pretreatment. The pretreated CPW was fermented with mixture of Cow Dung (CD) and Rumen Fluid (RF) in anaerobic co-digestion for 30 days at mesophilic temperature (30-40°C) and the pH was maintained from 6.8 to 7.2 on a reactor with working volume of 3.6 liters. There were two reactors with each containing the mixture of CPW without pretreatment, cow dung and rumen fluid (CD+RF+CPW) and then compared with the CPW with pretreatment (CD+RF+PCPW) reactor. The measured parameters included the decreasing of inhibitor compound concentration, Volatile Fatty Acids (VFAs), Chemical Oxygen Demand (COD), Total Solid (TS), Volatile Solid (VS), Methane and the Calorific value of gas (heating value) were studied as well. The result showed a decrease in inhibitor component concentration due to methanol pretreatment was 90% of caffeine; 78% of polyphenols (total phenol) and 66% of tannins. The highest methane content in biogas was produced in CD+RF+PCPW digester with concentration amounted of 44.56% with heating value of 27,770 BTU/gal.
Laothanachareon, Thanaporn; Khonzue, Parichart; Rattanaphan, Nakul; Tinnasulanon, Phungjai; Apawasin, Saowanee; Paemanee, Atchara; Ruanglek, Vasimon; Tanapongpipat, Sutipa; Champreda, Verawat; Eurwilaichitr, Lily
2011-01-01
Enzymatic modification of pulp is receiving increasing interest for energy reduction at the refining step of the paper-making process. In this study, the production of a multi-fiber modifying enzyme from Mamillisphaeria sp. BCC8893 was optimized in submerged fermentation using a response-surface methodology. Maximal production was obtained in a complex medium comprising wheat bran, soybean, and rice bran supplemented with yeast extract at pH 6.0 and a harvest time of 7 d, resulting in 9.2 IU/mL of carboxymethyl cellulase (CMCase), 14.9 IU/mL of filter paper activity (FPase), and 242.7 IU/mL of xylanase. Treatment of old corrugated container pulp at 0.2-0.3 IU of CMCase/g of pulp led to reductions in refining energy of 8.5-14.8%. The major physical properties were retained, including tensile and compression strength. Proteomic analysis showed that the enzyme was a complex composite of endo-glucanases, cellobiohydrolases, beta-1,4-xylanases, and beta-glucanases belonging to various glycosyl hydrolase families, suggestive of cooperative enzyme action in fiber modification, providing the basis for refining efficiency.
32. EXTERIOR VIEW LOOKING INTO THE SEVENTH TAILRACE (COUNTING FROM ...
32. EXTERIOR VIEW LOOKING INTO THE SEVENTH TAILRACE (COUNTING FROM THE DOWNSTREAM END TO THE UPSTREAM END - SOUTHEAST TO NORTHWEST). THIS AREA IS THE PORTION OF THE PULP MILL THAT WAS NEVER REBUILT AFTER A DEVASTATING FIRE IN 1925 AND SUBSEQUENT END TO PULP PRODUCTION AT THIS SITE. NOTE THE DRIVE SHAFT AND OTHER REMNANTS FROM THE PULP MILLING OPERATION. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV
Collection and dissemination of TES system information for the paper and pulp industry
NASA Technical Reports Server (NTRS)
Dietrich, M. W.; Edde, H.
1980-01-01
A survey of U.S. and international paper and pulp mills using thermal energy storage (TES) systems as a part of their production processes was conducted to obtain sufficient operating data to conduct a benefits analysis encompassing: (1) an energy conservation assessment, (2) an economic benefits analysis, and (3) an environmental impact assessment. An information dissemination plan was then proposed to effectively present the benefits of TES to the U.S. paper and pulp industry.
Pacheco, Anália Lúcia Vieira; Pagliarini, Mateus Francisco; de Freitas, Gilberto Bernardo; Santos, Ricardo Henrique Silva; Serrão, José Eduardo; Zanuncio, José Cola
2017-02-15
The use of organic foods has been increased in the world. Organic fertilizers, like cattle manure, have emerged as an important component of the organic system production. The production, mass, size, and mineral composition of passion fruit pulp were evaluated when treated with a mineral fertilizer (control) (MIN) or cattle manure at a single dose equivalent to potassium fertilizer (ORG) or double dose (2×ORG). The production and the numbers of fruits of plants treated with MIN and 2×ORG was higher than with ORG. The level of nitrogen (N), phosphorus (P), zinc (Zn), iron (Fe), and copper (Cu) in the fruit pulp was similar with all three fertilizers, but the calcium (Ca) and magnesium (Mg) was higher with ORG and 2×ORG. The number and weight of the fruits of passion fruit treated with 2×ORG were similar to those with MIN fertilizer, but they contained more Ca and Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eduard Akim; Peter J. Ince; Bernard Lombard; Tomas Parik
2007-01-01
Overall in the UNECE region in 2006, paper and paperboard consumption, production and trade continued growing, with gains in Europe and the CIS, but a downturn in North America. North American pulp and paper production and consumption decreased slightly in 2006 and early 2007, in part due to the slowdown in United States housing construction and its subsequent economic...
Ralph J. Alig; Darius M. Adams; Bruce A. McCarl; Peter J. Ince
2000-01-01
A model of the U.S. forestry and agricultural sectors is used to simulate the consequences of growing short-rotation woody crops on agricultural lands as a fiber source for pulp and paper production. Hybrid poplar, a short-rotation woody crop, annually produces 4 to 7 dry tons per acre of hardwood pulpwood over a 6- to 10-year rotation. When harvested, the material...
Peter J. Ince; Eduard Akim; Bernard Lombard; Tomas Parik
2005-01-01
Global pulp, paper and paperboard markets improved in 2004 and 2005, as indicated by generally higher prices for most pulp, paper and paperboard products in comparison with 2003. While growth in demand was quite robust in 2004, by the end of the first half of 2005, markets appeared more hesitant and prices appeared to waver or reach a plateau. Within the UNECE region,...
Ferreira, Jordana Alves; Ferreira, Joana Maria Santos; Talamini, Viviane; Facco, Janice de Fátima; Rizzetti, Tiele Medianeira; Prestes, Osmar Damian; Adaime, Martha Bohrer; Zanella, Renato; Bottoli, Carla Beatriz Grespan
2016-12-15
The use of pesticides is directly linked to improvements in productivity and to the preservation of coconut palms. However pesticide analysis is necessary to determine whether pesticide residues in the food products containing coconut are within the maximum residue limits (MRLs), ensuring the quality of these products. This work aimed to develop a method for multiresidue determination of ten pesticides in coconut water and pulp using QuEChERS and LC-MS/MS. The method was effective in terms of selectivity, linearity, matrix effect, accuracy and precision, providing LOD of 3μgkg(-1), LOQ of 10μgkg(-1) and recoveries between 70 and 120% with RSD lower than 20%. The developed method was applied to 36 samples in which residues of carbendazim, carbofuran, cyproconazole and thiabendazole were found below the LOQ in coconut water and pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Padzil, Farah Nadia Mohammad; Ng, Peivun
2015-01-22
The hydrothermal pretreatment on kenaf core pulp (KCP) was carried out using an autoclave heated in a oil bath at 140°C for 0.5/1/3/5h. The hydrothermal pretreated kenaf (HPK) was dissolved in a LiOH/urea aqueous solution and subsequently used to produce cellulose membrane and hydrogel. The effects of hydrothermal pretreatment time on solubility, viscosity, crystallinity and morphology of the cellulose membrane and hydrogel were investigated. The hydrothermal pretreatment leads to higher cellulose solubility and higher viscosity of the cellulose solution. The formation of cellulose II and crystallinity index of the cellulose membrane and hydrogel were examined by X-ray diffraction (XRD). The pore size of the cellulose membrane and hydrogel displayed an upward trend with respect to the hydrothermal pretreatment period observed under a field emission scanning electron microscope (FESEM). This finding provides an efficient procedure to improve the solubility, viscosity and properties of regenerated cellulose products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fiber Length Measurement In Pulp And Paper Industry
NASA Astrophysics Data System (ADS)
Piirainen, Raili A.
1986-10-01
For the pulp and paper maker, product quality and production costs are the major factors that determine profitability. Quality has to be high enough to satisfy the customer and costs low enough to maintain competitiveness. Accurate and readily available fiber length information is fast becoming one of the most important control factors to achieve these targets. Measurement of fiber length has been difficult and time consuming in the past --- appli-cation to production almost impossible due to the historical nature of the data. The Kajaani fiber length analyzer has revolutionized fiber length analysis. Even more accurate than the microscopic method and infinitely faster than mechanical classifiers, such as Bauer McNett or Clark classifiers, the Kajaani analyzer opens new horizons for the paper maker. The Kajaani method is an optical method and is based on the ability of fibers to change the direction of light polarization. With no critical sample preparation, the results are ready in a few minutes. During this time, the analyzer counts and measures over 3000 individual fibers. Results are printed out either in graphic or numerical form. Some of the typical applications of the Kajaani fiber length analyzer are to determine hardwood/softwood ratios in pulp and paper mills both in brownstock and stock preparation areas, to predict strength properties of mechanical pulp based on the fiber length information, to measure the coarseness of the fibers, to evaluate screening and refining processes and to check the quality of purchased pulp.
Allogenic banking of dental pulp stem cells for innovative therapeutics.
Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J
2015-08-26
Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.
Mango and acerola pulps as antioxidant additives in cassava starch bio-based film.
Souza, Carolina O; Silva, Luciana T; Silva, Jaff R; López, Jorge A; Veiga-Santos, Pricila; Druzian, Janice I
2011-03-23
The objective of this study was to investigate the feasibility of incorporating mango and acerola pulps into a biodegradable matrix as a source of polyphenols, carotenoids, and other antioxidant compounds. We also sought to evaluate the efficacy of mango and acerola pulps as antioxidants in film-forming dispersions using a response surface methodology design experiment. The bio-based films were used to pack palm oil (maintained for 45 days of storage) under accelerated oxidation conditions (63% relative humidity and 30 °C) to simulate a storage experiment. The total carotenoid, total polyphenol, and vitamin C contents of films were evaluated, while the total carotenoid, peroxide index, conjugated diene, and hexanal content of the packaged product (palm oil) were also monitored. The same analysis also evaluated palm oil packed in films without antioxidant additives (C1), palm oil packed in low-density polyethylene films (C2), and palm oil with no package (C3) as a control. Although the film-forming procedure affected the antioxidant compounds, the results indicated that antioxidants were effective additives for protecting the packaged product. A lower peroxide index (36.12%), which was significantly different from that of the control (p<0.05), was detected in products packed in film formulations containing high concentration of additives. However, it was found that the high content of vitamin C in acerola pulp acted as a prooxidant agent, which suggests that the use of rich vitamin C pulps should be avoided as additives for films.
Allogenic banking of dental pulp stem cells for innovative therapeutics
Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J
2015-01-01
Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017
Production and bioactivity of pectic oligosaccharides from fruit and vegetable biomass
USDA-ARS?s Scientific Manuscript database
Pectin is abundant in various agro-industrial bio-resources such as citrus peel, apple pomace, cranberry pulp and sugar beet pulp. These materials can therefore be considered as a source of potential bioactive pectic oligosaccharides. This chapter reviews the various extraction and purification meth...
Wood pulp characterization by a novel photoacoustic sensor
NASA Astrophysics Data System (ADS)
Niemi, Jan; Löfqvist, Torbjörn
2012-08-01
In this paper we introduce a novel photoacoustic sensing technique that captures a photoacoustic signal excited by a laser light pulse after the light has propagated through a turbid medium. Simultaneously, the ultrasonic sound wave is captured after it has propagated through the same turbid medium. By combining the two signals, more information on the investigated medium can be obtained. Applications can be found in the pulp and paper industry where monitoring wood pulp compositions is of interest. Depending on its origin, pulp suspension contains different compositions of fibres and fibre fragments (fines). Poor control of the pulp composition leads to an unstable process that compromises the production, quality and energy efficiency in the pulp mill. The result shows the feasibility of the photoacoustic sensor in monitoring the mass fractions of fibres and fines in a pulp suspension. The first received echo, corresponding to the light interaction with the sample, showed a stronger correlation to the fines mass fraction compared to fibre mass fraction. The second echo, corresponding to the sound wave interaction with the sample, showed a much stronger correlation to fibre mass fraction than to fines mass fraction. Hence, it is proposed that by combining these two echoes, more information about the pulp suspension could be extracted than from any other sensor built on a single sensing principle.
Optimization of process parameters for foam-mat drying of papaya pulp.
Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D
2014-10-01
Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.
Chang, Yu-Chao; Lai, Chung-Chih; Yang, Shun-Fa; Chan, You; Hsieh, Yih-Shou
2002-02-01
Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes capable of degrading most components of the extracellular matrix. Recently, evidence has shown that MMPs may play a role in tissue degradation in inflamed dental pulp. To date very little is known regarding the mechanism of extracellular matrix destruction at the site of bacterial infection. The purpose of this study was to determine the effects of the supernatants from Porphyromonas endodontalis and Porphyromonas gingivalis on the production and secretion of MMPs by primary human pulp and periodontal ligament (PDL) cell cultures in vitro. The results were evaluated by substrate gel zymography from long-term cultures. The main gelatinase secreted by human pulp and PDL cells migrated at 72 kDa and represented MMP-2. Minor gelatinolytic bands were also observed at 92 kDa regions that correspond to MMP-9. After an 8-day culture period, P. endodontalis and P. gingivalis were found to elevate MMP-2 production both in human pulp and PDL cell cultures. In addition, the stimulation was in a dose- and time-dependent manner. Both human pulp and PDL cells, however, treated with either P. endodontalis or P. gingivalis had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. These results indicate that black-pigmented Bacteroides species play an important role in tissue destruction and disintegration of extracellular matrix in pulpal and periapical diseases. Thus, activation of MMPs may be one of the distinct host degradative pathways in the pathogenesis of microbial-induced pulpal and periapical lesion. An understanding of the actions of these black-pigmented Bacteroides species on pulp and PDL cells may result in new therapies to augment current treatment of pulpal and periapical lesions.
Enzymatic hydrolysis of potato pulp.
Lesiecki, Mariusz; Białas, Wojciech; Lewandowicz, Grażyna
2012-01-01
Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol fermentation. Sterilised potato pulp was subjected to hydrolysis with commercial enzymatic preparations. The effectiveness of the preparations declared as active towards only one fraction of potato pulp (separate amylase, pectinase and cellulase activity) and mixtures of these preparations was analysed. The monomers content in hydrolysates was determined using HPLC method. The application of amylolytic enzymes for potato pulp hydrolysis resulted in the release of only 18% of raw material with glucose as the dominant (77%) constituent of the formed product. In addition, 16% galactose was also determined in it. The hydrolysis of the cellulose fraction yielded up to 35% raw material and the main constituents of the obtained hydrolysate were glucose (46%) and arabinose (40%). Simultaneous application of amylolytic, cellulolytic and pectinolytic enzymes turned out to be the most effective way of carrying out the process as its efficiency in this case reached 90%. The obtained hydrolysate contained 63% glucose, 25% arabinose and 12% other simple substances. The application of commercial enzymatic preparations made it possible to perform potato pulp hydrolysis with 90% effectiveness. This was achieved by the application of a complex of amylolytic, cellulolytic and pectinolytic enzymes and the hydrolysate obtained in this way contained, primarily, glucose making it a viable substrate for ethanol fermentation.
Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann
2015-01-01
Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.
Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B
1997-01-01
mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865
Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann
2015-01-01
Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector. PMID:25806516
Han, Hye Jung; Lee, Ji-Soo; Park, Sun-Ah; Ahn, Jun-Bae; Lee, Hyeon Gyu
2015-06-01
The aim of this study was to optimize extraction conditions for jujube pulp and seed in order to obtain maximum active ingredient yield and antioxidant activity, as well as to prepare chitosan nanoparticles loaded with jujube pulp and seed extracts for enhancing stability. The extraction conditions, i.e. temperature, time, and ethanol concentration, were optimized at the following respective values: 61.2 °C, 38 h, and 60.4% for pulp, and 58 °C, 34 h, and 59.2% for seed. The jujube nanoparticle size significantly increased with a higher chitosan/sodium tripolyphosphate ratio and extract concentration. Entrapment efficiency was greater than 80% regardless of preparation conditions. The stabilities of jujube pulp and seed extract in terms of total phenolic content and antioxidant activity were effectively enhanced by nanoencapsulation. In conclusion, jujube pulp and seed extracts prepared using optimal conditions could be useful as a natural functional food ingredient with antioxidant activity, and nanoencapsulation can be used to improve the stability of jujube extract. Therefore, these results could be used to promote the utilization of not only jujube pulp but also seed, by product. Copyright © 2015 Elsevier B.V. All rights reserved.
Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping
2014-08-01
Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.
Use of xylanase in the TCF bleaching of eucalyptus kraft pulp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roncero, B.; Vidal, T.; Torres, A.L.
1996-10-01
Environmental pressures are forcing the pulp and paper industry to develop new technologies that reduce or eliminate the presence of various contaminants in bleaching plant effluents. Oxygen delignification techniques, replacement of elemental chlorine with chlorine dioxide, ozone, hydrogen peroxide and new agents as well as the use of xylanase enzymes for biobleaching, reduce o eliminate the production of chlorinated organic substances. This paper compares the sequence XOZP with OZP in the bleaching of Eucalyptus globulus kraft pulps. It has been studied the influence of enzymatic treatment on the consumption of bleaching agents: ozone and hydrogen peroxide. Chemical, physical, optical andmore » refining properties of pulps, as well as COD and colour of effluent are also studied. The xylanase treatment is positive and it is possible to manufacture fully bleached pulps at high brightness and viscosity without using chlorine compounds at a low ozone and hydrogen peroxide consumption.« less
2012-01-01
Background Recent studies reported on the very complex morphology of the pulp system in equine cheek teeth. The continuous production of secondary dentine leads to distinct age-related changes of the endodontic cavity. Detailed anatomical knowledge of the dental cavities in all ages is required to explain the aetiopathology of typical equine endodontic diseases. Furthermore, data on mandibular and maxillary pulp systems is in high demand to provide a basis for the development of endodontic therapies. However, until now examination of the pulp cavity has been based on either sectioned teeth or clinical computed tomography. More precise results were expected by using micro-computed tomography with a resolution of about 0.1 mm and three-dimensional reconstructions based on previous greyscale analyses and histological verification. The aim of the present study was to describe the physiological configurations of the pulp system within a wide spectrum of tooth ages. Results Maxillary teeth: All morphological constituents of the endodontic cavity were present in teeth between 4 and 16 years: Triadan 06s displayed six pulp horns and five root canals, Triadan 07-10s five pulp horns and four root canals and Triadan 11s seven pulp horns and four to six root canals. A common pulp chamber was most frequent in teeth ≤5 years, but was found even in a tooth of 9 years. A large variety of pulp configurations was observed within 2.5 and 16 years post eruption, but most commonly a separation into mesial and distal pulp compartments was seen. Maxillary cheek teeth showed up to four separate pulp compartments but the frequency of two, three and four pulp compartments was not related to tooth age (P > 0.05). In Triadan 06s, pulp horn 6 was always connected to pulp horns 1 and 3 and root canal I. In Triadan 11s, pulp horns 7 and 8 were present in variable constitutions. Mandibular teeth: A common pulp chamber was present in teeth up to 15 years, but most commonly seen in teeth ≤5 years. A segmented pulp system was found in 72% of the investigated teeth. Segmentation into separate mesial and distal pulp compartments was most commonly present. Pulp horn 4 coalesced either with the mesial pulp horns 1 and 3 or with the distal pulp horns 2 and 5. Conclusions Details of the pulpar anatomy of equine cheek teeth are provided, supporting the continuous advancement in endodontic therapy. Numerous individual configurations of the pulp system were obtained in maxillary cheek teeth, but much less variability was seen in mandibular cheek teeth. PMID:23006500
Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.
Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka
2007-01-01
The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.
Development of Paper Products from Dried Sweetpotato Stems and Peanut Shells
NASA Technical Reports Server (NTRS)
McConnell, R.; Smith, R.; Jones, G.; Lu, J. Y.
1998-01-01
One of the goals of NASA's Advanced Life Support Program (ALS) for sustaining human life in space is to achieve a closed system in plant production and usage. That all inedible plant parts should be recycled or used in some way. A Tuskegee University team researching sweetpotato and peanut for ALS has developed paper products from dried sweet-potato stems and peanut shells. In this study, the sweet-potato stems and peanut shells were soaked separately in water for 48 hours. After 48 hours, researchers manually separated the pulp and the unusable parts. To form the paper, 160 g of pulp and water mixture was poured through a 15.1 cm (diameter) filtration funnel and the pulp was trapped on 15 cm (diameter) filter paper. The filter paper and pulp were dried in an air oven, and the filter paper was removed, An examination under a scanning electron microscope showed that the sweet-potato paper was composed of "fibers", whereas the peanut shell paper was composed of "blocks". Results of physical testing showed that the sweet-potato stem paper was stronger than the peanut shell paper. It is anticipated that there may be other uses of these products such as writing paper, bags and packaging material. Because of its biodegradability, it can be incorporated into the resource recycling system at the end of its use.
Meersman, Esther; Steensels, Jan; Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J
2013-01-01
The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.
Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J.
2013-01-01
The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a “core” and a “variable” part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations (“core” yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations (“variable” yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency. PMID:24358116
Berłowska, Joanna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr
2016-01-01
Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015–0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield. PMID:27722169
Development of hemicelluloses biorefineries for integration into kraft pulp mills
NASA Astrophysics Data System (ADS)
Ajao, Olumoye Abiodun
The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In the first part of this work, the feasibility of concentrating prehydrolysate solution with a reverse osmosis membrane was studied. The concentration step is required to reduce the energy demand of the subsequent conversion processes and the size of process equipments. Reconstituted prehydrolysate solutions containing different concentrations of glucose, xylose acetic acid, syringaldehyde and furfural was used to determine the feasibility of concentrating with a reverse osmosis membrane. The effect of the solution composition and operating conditions (cross flow velocity, temperature and pressure) on the selectivity of the membrane and the permeate flux were investigated. The results revealed that irrespective of the prehydrolysate composition, the feed pressure and temperature had the most dominant effect on the permeate flux. A permeate flux decline was observed in all experiments and the mechanisms responsible for the flux decline were elucidated. It was also confirmed that the membrane fouling is reversible and regeneration can be successfully carried out by cleaning with a sodium hydroxide solution. The second part of this work focussed on a chemical conversion pathway for furfural production. A prehydrolysate solution was generated by using a wood chips furnish that is similar to that of the reference mill and used to evaluate the membrane concentration requirements for furfural production. The retention and flux characteristics of six commercial organic membranes made from different polymers (polyamide, cellulose acetate and polypiperazine amide) and with molecular weight cut offs (MWCO) between 100 and 500 Da were evaluated. A membrane with total sugar retention of 99% and a MWCO of about 200 Da was shown to be the most suitable for a furfural process based on the criteria: low energy requirement for concentration, low degree of fouling potential and high retentions of the desired components (sugars, acetic acid and furfural). The maximum volumetric concentration factor was determined to be 4, exceeding this limit leads to increased fouling of the membrane. Cleaning of the membrane with sodium hydroxide returned the permeate flux back to 75%, relative to a virgin membrane. A response surface model was developed for minimizing the flux decline during concentration. The third part of this work covered a biochemical conversion pathway for the production of ethanol. The organic compounds in the prehydrolysate, that inhibit fermentation of the sugars into ethanol and cause the death of the fermentation microorganisms, must be removed. Suitable membranes that could be applied for the detoxification were identified during the membrane screening. The following inhibitor removal efficiencies were achieved: phenols (20%), furfural (80%), acetic acid (94%) and hydroxymethylfurfural (89%). Membrane filtration could be used for concentration and elimination of most of the inhibitors, it was however not efficient for the removal of phenolic compounds. The identification of a complementary detoxification step with a high specificity for phenols removal was necessary. Experiments to assess the use of activated charcoal adsorption and flocculation with ferric sulfate, alum or chitin showed that ferric sulfate significantly removes the phenolic compounds relative to sugar loss. To maximize the removal of phenolic compounds, the optimum ratio of iron to phenols ions [Fe]/[Phenols] was found to be 1g/g and the pH between 6.5 and 7.7. A detoxification strategy that can be used for prehydrolysate detoxification was developed by combining nanofiltration and flocculation with ferric sulfate as the coagulant. Simulation models for the production of furfural and ethanol from hemicelluloses prehydrolysate were developed with inputs from the experimental results. The furfural biorefinery was made up of 3 steps, prehydrolysate concentration, sugars transformation and product recovery. An optimized heat exchanger network and an absorption heat pump for implementation were designed to lower the energy consumption. The feasibility of the energy and material integration of the biorefinery was demonstrated and the utility demands can be met by the reference mill. A techno-economic evaluation of the developed process showed that it is economically feasible and a return on capital employed (ROCE) as high as 36 % can be obtained. The ethanol biorefinery process was shown to have a lower thermal energy requirement than the furfural process and can also be successfully integrated with the receptor mill. In the last phase of this research, the guideline for the implementation of hemicellulosic biorefineries in Canadian pulp and paper mills are proposed. It included analyses of the modifications required for different types of Kraft pulping processes prior to their conversion into a biorefinery, energy optimization approaches to address the increased energy demand after integration, factors that must be considered during bioproducts selection and types of collaboration that can be used to reduce risk and lower investment.
An environmentally friendly organosolv (ethanol-water) pulping of poplar wood.
Akgul, Mehmet; Kirci, Huseyin
2009-09-01
In this study pulp production from the fast growing plant, poplar; was examined for organosolv pulping with or without catalysts. In order to find the optimum cooking conditions, 18 different cooking experiments were carried out. The effect of ethanol ratio, cooking time as well as catalyst was studied. It was observed that even at lower temperature (90 degrees C), cooking without catalyst was able to cause sufficient defiberization. It was seen that the increasing proportion of catalyst and cooking temperature resulted in an increased delignification. However in the case of using 0.02% acid catalyst pulp yield and viscosity were lowered to an unacceptable level. The most important cooking factors were found to be the proportion of acid catalyst. Furthermore, the delignification performance was found to be depending on the pH of the black liquor. In a result, the optimum pulp properties were obtained by cooking at 180 degrees C for 90 min with 50% ethanol mixture without catalyst. The pulp yield was noted as 44.49%, viscosity was 892 cm2 g(-1) and the kappa number was 67.
Shanmugam, Saravanan; Gomes, Isla Alcântara; Denadai, Marina; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Narain, Narendra; Neta, Maria Terezinha Santos Leite; Serafini, Mairim Russo; Quintans-Júnior, Lucindo José; Thangaraj, Parimelazhagan
2018-06-01
The diabetic key enzymes inhibition, nutritional, antioxidant activity and bioactive compounds identification of Passiflora subpeltata fruit pulp were investigated. Fifteen polyphenolic compounds including protocatechuic acid, ferulic acid, vanillic acid, epicatechin, p-coumaric acid, cinnamic acid, eriodictyol and quercetin-3-glucoside were identified in the pulp of this species by using UHPLC-QqQ-MS/MS analysis. The total carbohydrates and crude protein contents in fruit pulp were 2.62 mg glucose equivalent/g sample fruit pulp and 8.80 mg BSA equivalent/g sample fruit pulp, respectively. The fresh fruit pulp of P. subpeltata contained high total phenolic (724.76 mg GAE/g sample) content and it revealed very high DPPH • (IC 50 of 5.667 μg/mL) and ABTS +• (6794.96 μM trolox equivalent/g sample) scavenging activities. In the key enzymes assays useful for diabetic inhibition the fresh fruit pulp characterized maximum inhibition of α-amylase and α-glucosidase IC 50 of 18.69 and 32.63 μg/mL, respectively. Thus, these results lead to conclude that this fruit specie could be very useful source in nutraceutical products preparations for Type 2 diabetic suffering humans. Copyright © 2018 Elsevier Ltd. All rights reserved.
High Triterpenic Acids Production in Callus Cultures from Fruit Pulp of Two Apple Varieties.
Verardo, Giancarlo; Gorassini, Andrea; Ricci, Donata; Fraternale, Daniele
2017-01-01
Very rarely fruit pulp has been used in in vitro culture to produce secondary metabolites useful in promoting health. The aims of this work were the study of the best conditions to obtain the callus cultures from the pulp of two varieties of apples, Golden Delicious (GD) and "Mela Rosa Marchigiana" (MRM), and the quali-quantitative analysis of secondary metabolites produced by the two in vitro callus cultures. Callus was induced on both Murashige and Skoog and Gamborg B5 media containing various combinations of supplements. To achieve the maximum recovery of secondary metabolites produced, preliminary extraction tests were carried out on GD apple culture using two different organic solvents (MeOH and EtOAc). The quali-quantitative analysis of the methanolic extract of both cultures was carried out by ESI-MS n and GC-MS techniques. The GC-MS analysis revealed the presence of triterpenic acids, in particular, oleanolic, ursolic, maslinic, pomolic, tormentic, corosolic and annurcoic acid along with a phytosterol, β-sitosterol. In addition, GD callus culture produced phloridzin, absent in the MRM culture. In this last culture, however, the total amount of secondary metabolites was markedly higher. The in vivo production of these bioactive compounds were also quantified in the GD and MRM apple pulps. Apple pulps produced higher amounts of triterpenic acids in vitro than in vivo. The present work can be considered a method to amplify the production of important secondary metabolites which exert beneficial effects on human health. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Q.Q. Wang; J.Y. Zhu; R. Gleisner; T.A. Kuster; U. Baxa; S.E. McNeil
2012-01-01
This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified (1) highly kinked, naturally...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitations apply to all dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant... [Supplemental BAT effluent limitations] Pollutant or pollutant property Maximum for any 1 day kg/kkg (or pounds...
40 CFR 430.56 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant property PSES Maximum for any... Pollutant or pollutant property Supplemental PSES Maximum for any 1 day kg/kkg (or pounds per 1,000 lb) of...
40 CFR 430.56 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant property PSES Maximum for any... Pollutant or pollutant property Supplemental PSES Maximum for any 1 day kg/kkg (or pounds per 1,000 lb) of...
40 CFR 430.56 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant property PSES Maximum for any... Pollutant or pollutant property Supplemental PSES Maximum for any 1 day kg/kkg (or pounds per 1,000 lb) of...
Analysis of Emission Reduction Strategies for Power Boilers in the US Pulp and Paper Industry.
The U.S. pulp and paper industry utilizes a variety of fuels to provide energy for process needs. Energy production results in air emissions of sulfur dioxide (SO2), nitrogen oxides (NOX), particulate matter (PM), and greenhouse gases such as carbon dioxide (CO2). Air emissions f...
Incorporating biopulping technology into wood yard operations
Gary M. Scott; Eric Horn; Masood Akhtar; Ross E. Swaney; Michael J. Lentz; David F. Shipley
1998-01-01
Biopulping is the treatment of wood chips and other lignocellulosic materials with lignin-degrading fungi prior to pulping. Ten years of industry-sponsored research has demonstrated the technical feasibility of the technology for mechanical pulping at a laboratory scale. Two 50-ton outdoor chip pile trials recently conducted at the USDA Forest Service, Forest Products...
USDA-ARS?s Scientific Manuscript database
Bio-based micro scale materials are increasingly used in functional food and pharmaceutical applications. The present study produced carbohydrate-based micro scale tubular materials from sugar beet (Beta vulgaris L.) pulp (SBP), a by-product of sugar beet processing. The isolated carbohydrates wer...
Ethanol production from lignocellulosic byproducts of olive oil extraction.
Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M
2001-01-01
The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.
Jaster, Henrique; Arend, Giordana Demaman; Rezzadori, Katia; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Petrus, José Carlos Cunha
2018-02-01
Strawberry juice was concentrated using block freeze concentration process. The concentrate was used to produce two yogurts with different concentrations of cryoconcentrated strawberry pulp (15% and 30%). Total lactic acid bacteria count, physicochemical and rheological properties was evaluated during storage (7days) for all yogurts. Also, the beverages produced were compared with two commercial trademarks. It was observed that the total lactic acid bacteria count remained higher than 10 8 CFU·mL -1 during the storage time for all beverages studied. The viscosity of the yogurts decreased when the ratio of strawberry cryoconcentrate was increased. The Power Law model was successfully applied to describe the flow of the yogurts, which had a thixotropic behaviour. The incorporation of the cryoconcentrated strawberry pulp in the yogurt resulted in a product with 3-fold more anthocyanins content and antioxidant activity. The enrichment of natural yogurt with strawberry cryoconcentrated pulp proved to be effective in the production of a beverage with higher nutritional characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute
2010-01-27
As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification withmore » a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also produced a comparable tensile and burst index pulps. Product gas composition determined using computer simulations The results demonstrate that RVS-1 can effectively remove > 99.8% of the H2S present in simulated synthesis gas generated from the gasification of black liquor. This level of sulfur removal was consistent over simulated synthesis gas mixtures that contained from 6 to 9.5 vol % H2S.A significant amount of the sulfur in the simulated syngas was recovered as SO2 during regeneration. The average recovery of sulfur as SO2 was about 75%. Because these are first cycle results, this sulfur recovery is expected to improve. Developed WINGems model of the process.The total decrease in variable operating costs for the BLG process compared to the HERB was in excess of $6,200,000 per year for a mill producing 350,000 tons of pulp per year. This represents a decrease in operating cost of about $17.7/ton of oven dry pulp produced. There will be additional savings in labor and maintenance cost that has not been taken into account. The capital cost for the MSSAQ based gasifier system was estimated at $164,000,000, which is comparable to a High Efficiency Recovery Boiler. The return on investment was estimated at 4%. A gasifier replacement cannot be justified on its own, however if the recovery boiler needs to be replaced the MSSAQ gasifier system shows significantly higher savings. Before black liquor based gasifer technology can be commercialized more work is necessary. The recovery of the absorbed sulfur in the absorbent as sulfur dioxide is only 75%. This needs to be greater than 90% for economical operation. It has been suggested that as the number of cycles is increased the sulfur dioxide recovery might improve. Further research is necessary. Even though a significant amount of work has been done on a pilot scale gasifiers using liquors containing sulfur, both at low and high temperatures the lack of a commercial unit is an impediment to the implementation of the MSSAQ technology. The implementation of a commercial unit needs to be facilated before the benefits of the MSSAQ technology with ZnO absorbtion will become acceptable to the paper industry.« less
Cocoa pulp in beer production: Applicability and fermentative process performance.
Nunes, Cassiane da Silva Oliveira; de Carvalho, Giovani Brandão Mafra; da Silva, Marília Lordêlo Cardoso; da Silva, Gervásio Paulo; Machado, Bruna Aparecida Souza; Uetanabaro, Ana Paula Trovatti
2017-01-01
This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.
Cocoa pulp in beer production: Applicability and fermentative process performance
de Carvalho, Giovani Brandão Mafra; da Silva, Gervásio Paulo
2017-01-01
This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis. PMID:28419110
Tinoi, Jidapha; Rakariyatham, Nuansri
2016-08-01
The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.
Joshi, Gyanesh; Naithani, Sanjay; Varshney, V K; Bisht, Surendra S; Rana, Vikas; Gupta, P K
2015-04-01
In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH2COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH2COONa respectively for 3h reaction time. The rheological characteristics of 1-3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huiliñir, César; Montalvo, Silvio; Guerrero, Lorna
2015-01-01
The effect of fly ash on biodegradability and methane production from secondary paper and pulp sludge, including its modeling, was evaluated. Three tests with fly ash concentrations of 0, 10 and 20 mg/L were evaluated at 32 °C. Methane production was modeled using the modified Gompertz equation. The results show that the doses used produce a statistically significant increase of accumulated methane, giving values greater than 225 mL of CH4 per gram of volatile solids (VS) added, and 135% greater than that obtained in the control assay. Biodegradability of VS increased 143% with respect to the control assays, giving values around 43%. The modified Gompertz model can describe well methane generation from residual sludge of the paper industry water treatment, with parameter values between those reported in the literature. Thus, the addition of fly ash to the process causes a significant increase of accumulated methane and VS removal, improving the biodegradability of paper and pulp sludge.
Iñiguez-Covarrubias, G; Díaz-Teres, R; Sanjuan-Dueñas, R; Anzaldo-Hernández, J; Rowell, R M
2001-04-01
The leaves of the agave plant are left in the field after harvesting the heads for tequila production. Different types of agave leaves were isolated, classified, and their content in the total plant determined. The usable fractions were collected and their properties determined. Of the total wet weight of the agave plant, 54% corresponds to the agave head, 32% corresponds to materials which could be usable for sugar and fiber production which leaves 14% of the wet plant without apparent utility. The fractions with higher total reducing sugars (TRS) content were the fresh fraction of partially dry leaves stuck to the head and the leaf bases with a TRS content of 16.1% and 13.1%, respectively. The highest TRS concentration (16-28%) is in the agave head which is used for tequila production. The leaves are 90-120 cm long and 8-12 cm wide and contain fiber bundles that are 23-52 cm long and 0.6-13 mm wide. The ultimate fiber length is approximately 1.6 mm with an average width of 25 microns. There are several types of leaf fibers that can be utilized depending on what part of the plant they come from and what product is desired. Agave leaf fibers were pulped using a soda pulping process and the pulp was hand formed into test sheets. Test sheets made from pulped agave leaf fibers had a breaking length comparable to paper made from both pine and eucalyptus fibers, but the tear index and burst index were lower than the other two papers.
Shi, Suan; Kang, Li; Lee, Y Y
2015-03-01
Paper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making process. The carbohydrate portion of the sludges from Kraft/Recycle paper mill has chemical and physical characteristics similar to those of commercial wood pulp. Because of its high carbohydrate content and well-dispersed structure, the sludge can be biologically converted to value-added products without pretreatment. In bioconversion of solid feedstock such as paper mill sludge, a certain amount of water must be present to attain fluidity. In this study, hemicellulose pre-hydrolysate, in place of water, was added to the sludge to increase the concentration of the final product. Pre-hydrolysate was obtained by hot-water treatment of pine wood in which the total sugar concentration reached 4 wt.%. The mixture was processed by simultaneous saccharification and fermentation (SSF) using enzymes (cellulase and pectinase) and Lactobacillus rhamnosus (ATCC-10863). Pectinase was added to hydrolyze mannose oligomers in the pre-hydrolysate to monomers. During the SSF of the mixture, calcium carbonate in the paper sludge acted as a buffer, yielding calcium lactate as the final product. External pH control was unnecessary due to the buffer action of calcium carbonate that maintained the pH near optimum for the SSF. The lactic acid yield in the range of 80-90 % of the theoretical maximum was obtained. Use of the mixed feed of pre-hydrolysate and pulp mill sludges in the SSF raised the product concentration to 60 g of lactate/L.
Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury
Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing
2015-01-01
Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that supplementation with melatonin may have a protective effect on AP by modulating TLR4/NF-ĸB signaling in the pulp and in pulp cells. PMID:25755829
Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005.
Pinkerton, John E
2007-08-01
Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.
Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor
Addleman, Katherine; Archibald, Frederick
1993-01-01
The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching. Images PMID:16348851
Elegir, G; Bussini, D; Antonsson, S; Lindström, M E; Zoia, L
2007-12-01
In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C
2004-09-01
To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.
Production and Characterization of Trametes versicolor Mutants Unable To Bleach Hardwood Kraft Pulp
Addleman, K.; Dumonceaux, T.; Paice, M. G.; Bourbonnais, R.; Archibald, F. S.
1995-01-01
Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases. PMID:16535150
Tancharoen, Salunya; Tengrungsun, Tassanee; Suddhasthira, Theeralaksna; Kikuchi, Kiyoshi; Vechvongvan, Nuttavun; Maruyama, Ikuro
2014-01-01
High mobility group box 1 (HMGB1), a nonhistone DNA-binding protein, is released into the extracellular space and promotes inflammation. HMGB1 binds to related cell signaling transduction receptors, including receptor for advanced glycation end products (RAGE), which actively participate in vascular and inflammatory diseases. The aim of this study was to examine whether RAGE and HMGB1 are involved in the pathogenesis of pulpitis and investigate the effect of Prevotella intermedia (P. intermedia) lipopolysaccharide (LPS) on RAGE and HMGB1 expression in odontoblast-like cells (OLC-1). RAGE and HMGB1 expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Upregulated expression of RAGE was observed in odontoblasts, stromal pulp fibroblasts-like cells, and endothelial-like cell lining human pulpitis tissue. Strong cytoplasmic HMGB1 immunoreactivity was noted in odontoblasts, whereas nuclear HMGB1 immunoreactivity was seen in stromal pulp fibroblasts-like cells in human pulpitis tissue. LPS stimulated OLC-1 cells produced HMGB1 in a dose-dependent manner through RAGE. HMGB1 translocation towards the cytoplasm and secretion from OLC-1 in response to LPS was inhibited by TPCA-1, an inhibitor of NF-κB activation. These findings suggest that RAGE and HMGB1 play an important role in the pulpal immune response to oral bacterial infection. PMID:25114379
India's pulp and paper industry: Productivity and energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja
1999-07-01
Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector hasmore » been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.« less
John F. Hunt
1998-01-01
The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.
In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota.
Guergoletto, Karla Bigetti; Costabile, Adele; Flores, Gema; Garcia, Sandra; Gibson, Glenn R
2016-04-01
This study was carried out to investigate the potential fermentation properties of juçara pulp, using pH-controlled anaerobic batch cultures reflective of the distal region of the human large intestine. Effects upon major groups of the microbiota were monitored over 24h incubations by fluorescence in situ hybridisation (FISH). Short-chain fatty acids (SCFA) were measured by HPLC. Phenolic compounds, during an in vitro simulated digestion and fermentation, were also analysed. Juçara pulp can modulate the intestinal microbiota in vitro, promoting changes in the relevant microbial populations and shifts in the production of SCFA. Fermentation of juçara pulp resulted in a significant increase in numbers of bifidobacteria after a 24h fermentation compared to a negative control. After in vitro digestion, 46% of total phenolic content still remained. This is the first study reporting the potential prebiotic effect of juçara pulp; however, human studies are necessary to prove its efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Accessibility of cellulose: Structural changes and their reversibility in aqueous media.
Pönni, Raili; Kontturi, Eero; Vuorinen, Tapani
2013-04-02
During various processing treatments, the accessibility of cellulose in cellulosic fibers reduces, which is often interpreted as cellulose microfibril aggregation. This affects the reactivity of cellulose in further processing to novel cellulosic products such as nanocellulose. In this study, the effect of aqueous treatments at elevated temperatures and various pH on accessibility of an oxygen delignified eucalyptus kraft pulp was evaluated by using deuteration combined with Fourier-transform infrared (FT-IR) spectroscopy and water retention value (WRV) test. Acidic treatments reduced WRV and caused irreversible deuteration of the pulp. However, alkaline treatments increased WRV and caused reversible deuteration of the pulp. Both deuteration and reprotonation of the deuterated pulp followed the same slow, first-order dynamics. This led us to propose that incubation of alkaline cellulosic pulp suspensions at elevated temperatures does not only lead to reduction in accessibility but also to a dynamic interconversion between accessible and inaccessible regions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dietary citrus pulp reduces lipid oxidation in lamb meat.
Inserra, L; Priolo, A; Biondi, L; Lanza, M; Bognanno, M; Gravador, R; Luciano, G
2014-04-01
This study investigated the effect of replacing cereal concentrates with high levels of dried citrus pulp in the diet on lamb meat oxidative stability. Over 56 days, lambs were fed a barley-based concentrate (Control) or concentrates in which 24% and 35% dried citrus pulp were included to partially replace barley (Citrus 24% and Citrus 35%, respectively). Meat was aged under vacuum for 4 days and subsequently stored aerobically at 4 °C. The Control diet increased the redness, yellowness and saturation of meat after blooming (P<0.01). Regardless of the level of supplementation, dietary dried citrus pulp strongly reduced meat lipid oxidation over 6 days of aerobic storage (P<0.001), while colour parameters did not change noticeably over storage and their variation rate was not affected by the diet. In conclusion, replacing cereals with dried citrus pulp in concentrate-based diets might represent a feasible strategy to naturally improve meat oxidative stability and to promote the exploitation of this by-product. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compere, A L; Marcoccia, B S; Elliott, J
2012-08-31
Work with industrial partners to perform the studies needed to commercialize U.S. patent 7,699,958 for separation of carbohydrates from wood pulping liquors and wood or biomass hydrolysis liquors. These include: 1) selection of the best pulp mill liquor withdrawal sites, 2) additional purification or enzyme hydrolysis required to obtain acceptable sugar feedstocks, 3) and work with partners to optimize the stream and purification methods to provide acceptable feedstocks for algal fuels and industrial chemicals production, and 4) preparation of samples large enough for testing by downstream partners.
Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A
2016-11-01
The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Singh, Shail; Chandra, R; Patel, D K; Reddy, M M K; Rai, Vibhuti
2008-09-01
Mixed culture of two bacterial strains Bacillus sp. and Serratia marcescens showed potential pentachlorophenol (PCP) degradation and decolorisation of pulp paper mill effluent. The physico-chemical quality of pulp paper mill effluent has been analyzed after 168 h incubation period degraded by mixed culture. The study revealed that it has decreased high load of BOD, COD, TS, TDS, TSS, sulphate, phosphate, total nitrogen, total phenols, metals and different salts (i.e. chloride, sodium, nitrate, potassium) at 168 h incubation period. PCP degradation in pulp paper mill effluent was confirmed by HPLC analysis. Mixed culture was found to degrade PCP up to (94%) present in pulp paper mill effluent with 1% glucose and 0.5% peptone (w/v) at 30+/-1 degrees C, pH 8.0+/-0.2 at 120 rpm in 168 h incubation period. The simultaneous release of chloride ion up to 1,200 mg/l at 168 h emphasized the bacterial dechlorination in the medium. The pulp paper mill effluent degradation was also supported by decline in pH, AOX (absorbable organic halides), color, D.O., BOD, COD and PCP. The analysis of pulp paper mill effluent degradation products by GC-MS analysis revealed the formation of low molecular weight compound like 2-chlorophenol (RT=3.8 min) and tetrachlorohydroquinone (RT=11.86 min) from PCP extracted degraded sample. Further, mixed culture may be used for bioremediation of PCP containing pulp paper mill waste in the environment.
Pulp Inflammation Diagnosis from Clinical to Inflammatory Mediators: A Systematic Review.
Zanini, Marjorie; Meyer, Elisabeth; Simon, Stéphane
2017-07-01
Similar to other tissues, the dental pulp mounts an inflammatory reaction as a way to eliminate pathogens and stimulate repair. Pulp inflammation is prerequisite for dentin pulp complex repair and regeneration; otherwise, chronic disease or pulp necrosis occurs. Evaluation of pulp inflammation severity is necessary to predict the clinical success of maintaining pulp vitality. Clinical limitations to evaluating in situ inflammatory status are well-described. A molecular approach that aids clinical distinction between reversible and irreversible pulpitis could improve the success rate of vital pulp therapy. The aim of this article is to review inflammatory mediator expression in the context of clinical diagnosis. We searched PubMed and Cochrane databases for articles published between 1970 and December 2016. Only published studies of inflammatory mediator expression related to clinical diagnosis were eligible for inclusion and analysis. Thirty-two articles were analyzed. Two molecular approaches were described by study methods, protein expression analysis and gene expression analysis. Our review indicates that interleukin-8, matrix metalloproteinase 9, tumor necrosis factor-α, and receptor for advanced glycation end products expression increase at both the gene and protein levels during inflammation. Clinical irreversible pulpitis is related to specific levels of inflammatory mediator expression. The difference in expression between reversible and irreversible disease is both quantitative and qualitative. On the basis of our analysis, in situ quantification of inflammatory mediators may aid in the clinical distinction between reversible and irreversible pulpitis. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Guzmán-Maldonado, Salvador H; Morales-Montelongo, Ana L; Mondragón-Jacobo, Candelario; Herrera-Hernández, Guadalupe; Guevara-Lara, Fidel; Reynoso-Camacho, Rosalia
2010-08-01
Xoconostle cv. Cuaresmeño (Opuntia matudae) has attracted domestic and international industry attention; however, variations of composition from xoconostle structures have not been evaluated. Industries discard the pulp (endocarp) and peel (pericarp) as wastes and utilize the skin (mesocarp), which is the edible portion. The physicochemical, nutritional, and functional characterization of structures from xoconostle pear from 3 major sites of production in Mexico were assessed. Skin yield ranged from 58% to 64% and was higher to that of peel (22% to 24%) and pulp (12% to 18%) yields. pH, degrees Brix, and acidity were similar among xoconostle structures. Total fiber showed by peel (18.23% to 20.37%) was 2-fold higher than that of skin. Protein and ether extract were higher in xoconostle pulp compared to that showed by peel and skin. Iron content of xoconostle peel (6 to 9.6 mg/100 g, DWB) was higher to that of skin and pulp and prickly pear pulp. Soluble phenols of peel (840 to 863 mg GAE/100 g, DWB) were almost similar to that of skin (919 to 986 mg GAE/100 g, dry weigh basis); meanwhile, ascorbic acid concentration of skin was 2-fold higher compared to that of peel. The phenolic fraction of xoconostle structures consisted of gallic, vanillic, and 4-hydroxybenzoic acids; catechin, epicatechin, and vanillin were also identified by high-performance liquid chromatography-didoe array detection (HPLC-DAD). Xoconostle peel showed higher antioxidant activity (TEAC) compared to that of skin (2-fold) and pulp (6-fold) of commonly consumed fruits and vegetables. The potential of xoconostle peel and pulp for the production of feed or food is promissory. Practical Application: Outstanding nutritional and functional properties of xoconostle cv. Cuaresmeño fruits are demonstrated. Increased consumption could contribute positively to improve the diet of rural and urban consumers. The high fiber, mineral, and antioxidant components of xoconostle peel and pulp suggest that these fruit structures, which are currently discarded as waste, have promissory use as feed or food by industry.
Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry.
Ahlawat, Sonia; Mandhan, R P; Dhiman, Saurabh Sudha; Kumar, Rakesh; Sharma, Jitender
2008-06-01
Pectinase production from Bacillus subtilis SS was optimized under solid-state fermentation (5,943 U/g of dry bacterial bran). The pectinase produced was stable in neutral to alkaline pH range at 70 degrees C; therefore, the suitability of this pectinase in pulp and paper industry was investigated. The enzyme pretreatment process was optimized, and a pectinase dose of 5 IU/g of oven-dried pulp (10% consistency) at pH 9.5 temperature 70 degrees C after 150 min of treatment gave the best pretreatment to the pulp. An increase of 4.3% in brightness along with an increase of 14.8 and 65.3% in whiteness and fluorescence, respectively, whereas a 15% decrease in the yellowness of the pretreated pulp were observed. There was a 5.85% reduction in kappa number and 6.1% reduction in permanganate number along with a reduction in the chemical oxygen demand value. Significant characteristics showed by pectinase open new possibilities of application of this cellulase-free enzyme in the pulp and paper industry by reducing the negative environmental impact of chemicals apart from improving the properties of paper.
Sugarbeet as a renewable resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edye, L.A.; Clarke, M.A.
1995-12-01
Sugarbeet (Beta vulgaris) is produced annually on the order of 400 million tonnes, in temperate climates. The primary product is sugar (sucrose); other products include feeds (molasses and beet pulp), and raffinose, pectin and arabinan. Recently, production of paper from sugarbeet pulp has begun. A wide range of non-food products is available through microbial and chemical reactions on sugarbeet juices, molasses and sugars. Products of microbial processes (chemical transformations are discussed in the companion presentation on sugarcane) include polymers to use as biodegradable plastics (pullulans, polyhydroxyalkanoates, polylactide) and others for food and non food use (levan, dextran). Basic chemicals, includingmore » citric acid and lactic acid, and amino acids, notably lysine, are produced from sugarbeet sources. The production of ethanol, as fuel or as beverage, is well known. Products and processes are outlined, and recent developments are emphasized.« less
Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review.
Veluchamy, C; Kalamdhad, Ajay S
2017-12-01
Pulp and paper industry is one of the most polluting, energy and water intensive industries in the world. Produced pulp and paper mill sludge (PPMS) faces a major problem for handling and its management. An anaerobic digestion has become an alternative source. This review provides a detailed summary of anaerobic digestion of PPMS - An overview of the developments and improvement opportunities. This paper explores the different pretreatment methods to enhance biogas production from the PPMS. First, the paper gives an overview of PPMS production, and then it reviews PPMS as a substrate for anaerobic digestion with or without pretreatment. Finally, it discuss the optimal condition and concentration of organic and inorganic compounds required for the anaerobic metabolic activity. Future research should focus on the combination of different pretreatment technologies, relationship between sludge composition, reactor design and its operation, and microbial community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
C. Tim Scott
2002-01-01
Pulp extrusion at ultra-high consistencies (20% to 40% solids) is a new process developed at USDA Forest Service, Forest Products Laboratory (FPL) to convert recovered papers, wastepaper, and papermill residuals into solid sheets or profiles for compression molding. This process requires adding a water-soluble polymer (WSP) to alter the rheological properties of the...
Troy Runge; Carl Houtman; Alberto Negri; Jackie Heinricher
2013-01-01
Fast-growing biomass, such as bamboo, has the potential to serve an important future role in the pulp and paper industry with potential to both lower resource costs and improve a productâs sustainability. Moso bamboo is particularly interesting due to its fast growth and size, which allows it to be handled and chipped similarly to wood resources. In this study, we will...
H.J. Andrews; R.W. Cowlin; F.L. Moravets; W.H. Meyer
1935-01-01
Increasing attention is being given to the possibility of making the United States permanently self sufficient in its paper, pulp, and pulpwood requirements. A steady increase in consumption of paper and other wood-cellulose products, accompanied by a corresponding increase in imports of paper, pulp, and pulpwood, has aroused considerable interest in the quantity of...
Pilot trials of hemicelluloses extraction prior to thermomechanical pulp production: Part 1
Carl Houtman; Eric Horn
2011-01-01
Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no...
Antimicrobial activities of pomelo (Citrus maxima) seed and pulp ethanolic extract
NASA Astrophysics Data System (ADS)
Sahlan, Muhamad; Damayanti, Vina; Tristantini, Dewi; Hermansyah, Heri; Wijanarko, Anondho; Olivia, Yuko
2018-02-01
Grapefruit (Citrus paradisi) seed extract is generally used as naturopathic medications, supplements, antiseptic and disinfecting agents and also as preservatives in food and cosmetics products. In vitro studies have demonstrated that grapefruit seed extract has anti bacterial properties against a range of gram-positive and gram-negative organisms. Indonesian grapefruit, known as pomelo (C. maxima), has similar characteristics, contents and is under the same genus (Citrus) as grapefruit; however it has not been completely utilized as a preservative. In this work we analyze the antimicrobial activities of ethanolic extract of Indonesian pomelo (C. maxima) seeds and pulp compared to the grapefruit (C. paradisi) seeds and pulp ethanolic extract. Ethanolic extracts of pomelo and grapefruit seeds and pulp are investigated for activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans. The level of antimicrobial effects is established using agar diffusion method. Both of the ethanolic do not show any antimicrobial activities against C. albicans. The ethanolic extract of pomelo seeds and pulp used in this research give positive results with growth inhibition effect on B. subtilis, S. aureus and E. coli. The zones of inhibition ranges from 22 - 30 mm in diameter, which is higher to grapefruit seeds and pulp ethanolic extract (17 - 25 mm). Ethanolic extract of pomelo seeds and pulp has an antimicrobial effect, which makes it a natural preparation for use as an alternative preservative for food and cosmetic.
Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.
Hagelqvist, Alina; Granström, Karin
2016-08-01
There is an increasing worldwide demand for biogas. Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. This study evaluates how methane production is affected by the co-digestion of pig and dairy manure with grass silage and pulp and paper mill sludge and assesses whether methane production is affected by factors other than nutrient deficiency, low buffering capacity, inadequate dilution, and an insufficient activity and amount of microorganism culture. Anaerobic digestion was performed in batch reactors under mesophilic conditions for 20 days. The season of grass silage and manure collection proved to be an important factor affecting methane production. Spring grass silage produced a maximum of 250 mL/VSadded and spring manure 150 mL/VSadded, whereas autumn grass silage produced at most 140 ml/VSadded and autumn manure 45 mL/VSadded. The pulp mill sludge used is comprised of both primary and secondary sludge and produced at most 50 mL/VSadded regardless of season; this substrate benefitted most from co-digestion.
Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria
2015-11-01
To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p < 0.05). A total of 2.5% NaOCl with or without agitation showed the higher tissue dissolution (between 64.5 and 67% of mass reduction) (p < 0.005). By comparing the PA solutions, the concentrations of 1 and 2% with or without agitation and the concentration of 0.5% with agitation showed similar dissolution activity (between 35.4 and 44% of mass reduction). The use of the ultrasonic agitation promoted an increase of the dissolution ability only for 0.5% PA. Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.
Fracassetti, Daniela; Costa, Carlos; Moulay, Leila; Tomás-Barberán, Francisco A
2013-08-15
The aims of this study were the evaluation of polyphenols and vitamin C content, and antioxidant capacity of dehydrated pulp powder and the dried flour obtained from the skin and seeds residue remaining after pulp preparation from camu-camu (Myrciaria dudia). Fifty-three different phenolics were characterised by HPLC-DAD-ESI-MS-MS and UPLC-HR-QTOF-MS-MS. The phenolic content of camu-camu flour was higher than that of the pulp powder (4007.95 mg/100 g vs. 48.54 mg/100 g). In both products the flavonol myricetin and conjugates, ellagic acid and conjugates and ellagitannins were detected. Cyanidin 3-glucoside, and quercetin and its glycosides were only found in the pulp powder, while proanthocyanidins were only present in the flour (3.5 g/100 g, mean degree of polymerisation 3). The vitamin C content was lower in pulp powder (3.5%) than in the flour (9.1%). The radical-scavenging capacity of both powders was determined by the DPPH, ABTS and ORAC assays, and was higher for camu-camu flour as could be expected for its higher phenolics and vitamin C content. Comparative analyses with fresh camu-camu berries indicate that some transformations occur during processing. Analysis of fresh berries showed that ellagic acid derivatives and ellagitannins were mainly present in the seeds, while proanthocyanidins were present both in the seeds and skin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kerr, K R; Morris, C L; Burke, S L; Swanson, K S
2013-05-01
Little nutritional or metabolic information has been collected from captive exotic cats fed raw diets. In particular, fiber types and concentrations for use in raw meat-based diets for captive exotic felids have not been well studied. Our objective was to evaluate the effects of fiber type and concentration on apparent total tract energy and macronutrient digestibility, fecal characteristics, and fecal fermentative end-products in captive exotic felids. Four animals of each captive exotic species (jaguar (Panthera onca), cheetah (Acinonyz jubatus), Malayan tiger (Panthera tigris corbetti), and Siberian tiger (Panthera tigris altaica) were randomized in four 4 × 4 Latin square designs (1 Latin square per species) to 1 of the 4 raw beef-based dietary treatments (94.7 to 96.7% beef trimmings): 2 or 4% cellulose or 2 or 4% beet pulp. Felid species, fiber type, and fiber concentration all impacted digestibility and fecal fermentative end-products. Inclusion of beet pulp increased (P ≤ 0.05) fecal short-chain fatty acids and fecal output in all cats. Inclusion of 2 and 4% cellulose, and 4% beet pulp increased (P ≤ 0.05) fecal bulk and diluted fecal branched-chain fatty acid concentrations compared with 2% beet pulp. Apparent total tract DM, OM, fat, and GE digestibility coefficients decreased (P ≤ 0.05) linearly with BW of cats. Additionally, fecal moisture, fecal score, and concentrations of fermentative end-products increased (P ≤ 0.05) with BW. Although the response of many outcomes was dependent on cat size, in general, beet pulp increased wet fecal weight, fecal scores, and fecal metabolites, and reduced fecal pH. Cellulose generally reduced DM and OM digestibility, but increased dry fecal weight and fecal percent DM. Although beet pulp and cellulose fibers were tested individually in this study, these data indicate that the optimum fiber type and concentration for inclusion in captive exotic felid diets is likely a combination of fermentable and nonfermentable fibers, with the optimal fiber blend being dependent on species. Smaller cats, such as cheetahs and jaguars, tolerated fermentable fibers, whereas larger cats, such as Malayan and Siberian tigers, appeared to require more insoluble fibers that limit fermentation and provide fecal bulk. Further research is required to test whether these trends hold true when fed in combination.
Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert
2016-11-23
A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex -1 (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lindstrom, Erik Vilhelm Mathias
Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit operations, utilizing high sulfidity green liquor pretreatment, PSAQ with auto-causticization, or converting the process to mini-sulfide sulfite-AQ.
Corona, Andrea; Ambye-Jensen, Morten; Vega, Giovanna Croxatto; Hauschild, Michael Zwicky; Birkved, Morten
2018-09-01
The Green biorefinery (GBR) is a biorefinery concept that converts fresh biomass into value-added products. The present study combines a Process Flowsheet Simulation (PFS) and Life Cycle Assessment (LCA) to evaluate the technical and environmental performance of different GBR configurations and the cascading utilization of the GBR output. The GBR configurations considered in this study, test alternatives in the three main steps of green-biorefining: fractionation, precipitation, and protein separation. The different cascade utilization alternatives analyse different options for press-pulp utilization, and the LCA results show that the environmental profile of the GBR is highly affected by the utilization of the press-pulp and thus by the choice of conventional product replaced by the press-pulp. Furthermore, scenario analysis of different GBR configurations shows that higher benefits can be achieved by increasing product yields rather than lowering energy consumption. Green biorefining is shown to be an interesting biorefining concept, especially in a Danish context. Biorefining of green biomass is technically feasible and can bring environmental savings, when compared to conventional production methods. However, the savings will be determined by the processing involved in each conversion stage and on the cascade utilization of the different platform products. Copyright © 2018 Elsevier B.V. All rights reserved.
Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation
NASA Astrophysics Data System (ADS)
Zaki, M.; Said, S. D.
2018-04-01
The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.
Pulpwood production and use in southern forest survey territory, 1946
William S. Stover
1946-01-01
The great expansion of the wood pulp and paper industry in the South is one of the major developments in the United States forest scene in recent years. Since 1936, when the current expansion started, wood-pulping capacity in the 12 southern States from Virginia to Texas has nearly quadrupled--the result of new mill construction and expansion of existing mills. About...
Southern pulpwood production and the timber supply
James W. Cruikshank
1948-01-01
The southern pulp and paper industry is again on the march. Practically as soon as the war was over several plants started expansion programs, and construction was started on a number of mills. Investigations and surveys now under way also indicate that additional new pulp and paper mills can be expected to locate in the South in the near Future. This is not news to...
Review on recent developments on pulp and paper mill wastewater treatment.
Kamali, Mohammadreza; Khodaparast, Zahra
2015-04-01
Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling. Copyright © 2014 Elsevier Inc. All rights reserved.
Kraft pulp bleaching and delignification by dikaryons and monokaryons of trametes versicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, K.; Archibald, F.
1993-01-01
To reduce the levels of chlorinated lignin residues in effluents from the pulp and paper industry, interest has focused on the white rot basidiomycete fungi. The kraft process, the most common commercial delignification method, produces a dark pulp which is bleached by use of chlorine, chlorine dioxide, and caustic extraction. A dikaryon of Trametes (Coriolus) versicolor has been shown to bleach and delignify kraft pulp, offering a possible alternative to chlorine. A monokaryon strain, if comparable to the effect of the dikaryon, would be a much simpler system for study of mechanisms and genetic munipulation. The researchers compared strains ofmore » both and conclude that the following characteristics justify replacing the parent dikaryon with monokaryon 52J in future work on biobleaching and biological delignification: (1) reduced biomass and slower growth rate; (2)no dark pigment production; (3) superior biological bleaching ability; (4) a simpler system for genetic manipulation and biochemical analysis. The involvement of MnP, but not LP, in pulp bleaching, delignification is strongly suggested. 40 refs., 3 figs., 4 tabs.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
..., paper, or pulp products; and (4) Any commercial production of: (i) Aquacultural species (including...) Turfgrass sod; (vi) Industrial crops; (vii) Seed crops, including propagation stock such as non-ornamental...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., paper, or pulp products; and (4) Any commercial production of: (i) Aquacultural species (including...) Turfgrass sod; (vi) Industrial crops; (vii) Seed crops, including propagation stock such as non-ornamental...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., paper, or pulp products; and (4) Any commercial production of: (i) Aquacultural species (including...) Turfgrass sod; (vi) Industrial crops; (vii) Seed crops, including propagation stock such as non-ornamental...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., paper, or pulp products; and (4) Any commercial production of: (i) Aquacultural species (including...) Turfgrass sod; (vi) Industrial crops; (vii) Seed crops, including propagation stock such as non-ornamental...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., paper, or pulp products; and (4) Any commercial production of: (i) Aquacultural species (including...) Turfgrass sod; (vi) Industrial crops; (vii) Seed crops, including propagation stock such as non-ornamental...
Andreu, Glòria; Vidal, Teresa
2013-03-01
In this work, kenaf pulp was delignified by using laccase in combination with various redox mediators and the efficiency of the different laccase–mediator systems assessed in terms of the changes in pulp properties after bleaching. The oxidative ability of the individual mediators used (acetosyringone, syringaldehyde, p-coumaric acid, vanillin and actovanillone) and the laccase–mediator systems was determined by monitoring the oxidation–reduction potential (ORP) during process. The results confirmed the production of phenoxy radicals of variable reactivity and stressed the significant role of lignin structure in the enzymatic process. Although changes in ORP were correlated with the oxidative ability of the mediators, pulp properties as determined after the bleaching stage were also influenced by condensation and grafting reactions. As shown here, ORP measurements provide a first estimation of the delignification efficiency of a laccase–mediator system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Immunocytochemical investigation of immune cells within human primary and permanent tooth pulp.
Rodd, H D; Boissonade, F M
2006-01-01
The aim of this study was to determine whether there are any differences in the number and distribution of immune cells within human primary and permanent tooth pulp, both in health and disease. The research took the form of a quantitative immunocytochemical study. One hundred and twenty-four mandibular first permanent molars and second primary molars were obtained from children requiring dental extractions under general anaesthesia. Following exodontia, 10-microm-thick frozen pulp sections were processed for indirect immunofluorescence. Triple-labelling regimes were employed using combinations of the following: (1) protein gene product 9.5, a general neuronal marker; (2) leucocyte common antigen (LCA); and (3) Ulex europaeus I lectin, a marker of vascular endothelium. Image analysis was then used to determine the percentage area of immunostaining for LCA. Leucocytes were significantly more abundant in the pulp horn and mid-coronal region of intact and carious primary teeth, as compared to permanent teeth (P < 0.05, anova). Both dentitions demonstrated the presence of well-localized inflammatory cell infiltrates and marked aborization of pulpal nerves in areas of dense leucocyte accumulation. Primary and permanent tooth pulps appear to have a similar potential to mount inflammatory responses to gross caries The management of the compromised primary tooth pulp needs to be reappraised in the light of these findings.
Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi
2015-06-01
As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.
El Achkar, Jean H; Lendormi, Thomas; Hobaika, Zeina; Salameh, Dominique; Louka, Nicolas; Maroun, Richard G; Lanoisellé, Jean-Louis
2016-04-01
In this study, we have estimated the biogas and methane production from grape pomace (variety Cabernet Franc). The physical and chemical characteristics of the raw material were determined, and the structural polysaccharides were identified and analyzed by the Van Soest method. Batch anaerobic digestions were carried out to assess the methane production of the grape pomace, pulp and seeds. The obtained cumulative methane productions are 0.125, 0.165 and 0.052 Nm(3) kg COD(-1) for grape pomace, pulps and seeds, respectively. The effect of grinding on the methane potential of the substrates, as a mechanical pretreatment, was evaluated. We found that it increased the anaerobic biodegradability for grape pomace, pulp and seeds by 13.1%, 4.8% and 22.2%, respectively. On the other hand, the methane potential of the grape pomace was determined in a laboratory pilot plant (12L) continuously mixed with an organic loading rate of 2.5 kg COD m(3) d(-1) and a hydraulic retention time of 30 days. The corresponding biogas production was 6.43 × 10(-3) Nm(3) d(-1), with a methane content of 62.3%. Thus, the pilot plant's efficiency compared to that achieved in the batch process was 81.2%. Finally, a significant correlation was found between the biochemical content and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mena-Serrano, A P; Parreiras, S O; do Nascimento, E M S; Borges, C P F; Berger, S B; Loguercio, A D; Reis, A
2015-01-01
In tooth whitening, the hydrogen peroxide (HP) diffuses in the enamel and dentin, reaching the pulp. This in vitro study aimed to quantify the penetration of HP in the pulp chamber in teeth submitted to bleaching agents of different concentrations of HP without calcium (HP 20% [20CF], HP 35% [35CF]) and with calcium (HP 20% [20CC], HP 35% [35CC]). Fifty human premolars were sectioned 3 mm from the cemento-enamel junction and the pulp tissue was removed. The teeth were divided into five groups according to treatment and with a control group (n=10). An acetate buffer solution was placed in the pulp chamber of all teeth. The control group was exposed only to distilled water, while the other groups were treated with a bleaching procedure, according to the manufacturer's recommendations. After treatment, the acetate buffer solution was transferred to a glass tube in which leuco-crystal violet and peroxidase solutions were added, resulting in a blue solution. The optical density of this blue solution was determined spectrophotometrically and converted into micrograms equivalent to the HP. Data were analyzed using analysis of variance and Tukey tests (α=0.05). The HP concentration did not affect the HP inside the pulp chamber, but the presence of calcium significantly reduced it (p<0.0001). The amount of HP that reaches the pulp chamber depends on the bleaching protocol and the product employed, and it seems to be less affected by HP concentration.
Kirkpatrick, Neil; Reid, Ian D.; Ziomek, Edmund; Ho, Christopher; Paice, Michael G.
1989-01-01
The white-rot fungus Coriolus versicolor increased the brightness of hardwood kraft pulp by two mechanisms depending on the concentration of available nitrogen. In low-nitrogen conditions, the brightening process was a chemical effect mediated by the fungus, associated with the removal of residual lignin in the pulp; kappa number was used as an indicator of lignin concentration. A five-day treatment in low-nitrogen conditions increased the brightness of hardwood kraft pulp from 36.2 to 54.5%, with a corresponding decrease in kappa number from 12.0 to 8.5, equivalent to a reduction in the lignin concentration from ca. 2.0% (wt/wt) to ca. 1.4% (wt/wt). Under these conditions, we concluded that the brightening of the pulp was a secondary metabolic event initiated after the depletion of available nitrogen. This method of brightening has been described as bleaching or biobleaching. By contrast, in high-nitrogen conditions, the brightening was a physical effect associated with the dilution of the dark pulp fibers by the relatively high levels of brighter fungal mycelium produced. Since this method of brightening was not evidently associated with lignin removal, it cannot be described as bleaching. In pulp samples brightened in high-nitrogen conditions, as brightness increased, there was a corresponding increase in kappa number. This observation was explained by the consumption of potassium permanganate by the fungal mycelium, which interfered with kappa number determinations at high fungal biomass levels. PMID:16347907
United States paper, paperboard, and market pulp capacity trends by process and location, 1970-2000
Peter J. Ince; Xiaolei Li; Mo Zhou; Joseph Buongiorno; Mary Reuter
This report presents a relational database with estimates of annual production capacity for all mill locations in the United States where paper, paperboard, or market pulp were produced from 1970 to 2000. Data for more than 500 separate mill locations are included in the database, with annual capacity data for each year from 1970 to 2000 (more than 17, 000 individual...
Timber resources of New England and New York with reference to pulpwood supplies
V. L. Harper
1947-01-01
Pulp and paper is the most important of the wood-using industries of the Northeast. In value of product, value added by manufacture, and number of persons employed, it exceeds any other, but like all the others it is having increasing difficulties in procurement of timber supplies. Many of the pulp and paper mills have reached the stage where they are running out of...
Ramirez, Javier E; Zambrano, Ricardo; Sepúlveda, Beatriz; Simirgiotis, Mario J
2013-12-31
Antioxidant capacities and polyphenolic contents of two mango cultivars from northern Chile, one of them endemic of an oasis in the Atacama Desert, were compared for the first time. Twenty one phenolic compounds were detected in peel and pulp of mango fruits varieties Pica and Tommy Atkins by HPLC-PDA-MS and tentatively characterized. Eighteen compounds were present in Pica pulp (ppu), 13 in Pica peel (ppe) 11 in Tommy Atkins pulp (tpu) and 12 in Tommy Atkins peel (tpe). Three procyanidin dimers (peaks 6, 9 and 10), seven acid derivatives (peaks 1-4, 11, 20 and 21) and four xanthones were identified, mainly mangiferin (peak 12) and mangiferin gallate, (peak 7), which were present in both peel and pulp of the two studied species from northern Chile. Homomangiferin (peak 13) was also present in both fruit pulps and dimethylmangiferin (peak 14) was present only in Tommy pulp. Pica fruits showed better antioxidant capacities and higher polyphenolic content (73.76/32.23 µg/mL in the DPPH assay and 32.49/72.01 mg GAE/100 g fresh material in the TPC assay, for edible pulp and peel, respectively) than Tommy Atkins fruits (127.22/46.39 µg/mL in the DPPH assay and 25.03/72.01 mg GAE/100 g fresh material in the TPC assay for pulp and peel, respectively). The peel of Pica mangoes showed also the highest content of phenolics (66.02 mg/100 g FW) measured by HPLC-PDA. The HPLC generated fingerprint can be used to authenticate Pica mango fruits and Pica mango food products.
Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M
2016-06-01
Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
von Breymann, Juliana; Chaves, Carolina; Arias, María Laura
2013-03-01
The objective of this work was to determine some of the indicators associated to shelf life, hygiene, process and storage conditions for some of custard apple, mango and passion fruit pulps distributed by the main supermarket chains of the Metropolitan Area of San José, Costa Rica, as well as to examine the potential presence of Listeria monocytogenes in them. Sixty fruit pulp samples were analyzed. Tests included pH determination, total aerobic plate count, yeasts and mold count, lactic bacteria count, total and fecal most probable number and the presence/absence of Listeria monocytogenes in 25 g of the product. Fruit pulp's pH ranged between 3,1 and 3,9, and the microbiological counts obtained were relatively low except for one industry. None of the samples analyzed presented total or fecal coliforms. The presence of Listeria monocytogenes was confirmed in three samples, all of them coming from industry C. Low microbiological counts obtained may be due to the addition of preserving substances and to the pasteurization of some of the products; lack of these two elements may allow the presence of dangerous bacteria such as Listeria monocytogenes.
Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp.
Bayr, S; Ojanperä, M; Kaparaju, P; Rintala, J
2014-10-01
In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55°C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m(3)d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm(3)/kg VS(fed). On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500-680 dm(3)/kg VS(fed)). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela
2012-09-01
Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.
"A finer and fairer future": commodifying wage earners in American pulp science fiction.
Drown, Eric
2006-09-01
Long-neglected by scholars, the pulp science fiction (SF) magazines of the Gernsback era (1926-1937) are due for re-examination. Presumed to be sub-literary stories for boys or, paradoxically, escapist leisure reading for practicing scientists and technicians, the SF from this period is actually neither. It is a powerful resource for understanding the ways ordinary people engaged with the promise and peril of industrial modernity. Published by a passionate entrepreneur seeking fame and fortune, composed by writers paid piecework rates and read by young science and technology enthusiasts aspiring to authentic remunerative work, the earliest pulp SF necessarily provoked inter-class discussions about labor, management, production and consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Billerud signed a contract recently with the Societe d'Etudes de la Celulose du Congo (SECC) to conduct a feasibility study for a projected eucalyptus-based pulp plant for the production of bleached marketing pulp in The People's Republic of The Congo. SECC is a consortium of financial institutions, the Congolese government and Billerud. The Congolese government has been planning for the construction of a eucalyptus-based pulp plant for a long time, and in 1978, full-scale eucalyptus plantations were started. These plantations are based on fast growing hybrid species of eucalyptus developed by the Centre Technique Forestier Tropical in the Congo andmore » are ready for harvesting after only about seven years growing time.« less
A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric D. Larson; Stefano Consonni; Ryan E. Katofsky
Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Programmore » of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the cases examined in the study, the IRR lies between 14% and 18%, assuming a 25-year levelized world oil price of $50/bbl--the US Department of Energy's 2006 reference oil price projection. The IRRs would rise to as high as 35% if positive incremental environmental benefits associated with biorefinery products are monetized (e.g., if an excise tax credit for the liquid fuel is available comparable to the one that exists for ethanol in the United States today). Moreover, if future crude oil prices are higher ($78/bbl levelized price, the US Department of Energy's 2006 high oil price scenario projection, representing an extrapolation of mid-2006 price levels), the calculated IRR exceeds 45% in some cases when environmental attributes are also monetized. In addition to the economic benefits to kraft pulp/paper producers, biorefineries widely implemented at pulp mills in the U.S. would result in nationally-significant liquid fuel production levels, petroleum savings, greenhouse gas emissions reductions, and criteria-pollutant reductions. These are quantified in this study. A fully-developed pulpmill biorefinery industry could be double or more the size of the current corn-ethanol industry in the United States in terms of annual liquid fuel production. Forest biomass resources are sufficient in the United States to sustainably support such a scale of forest biorefining in addition to the projected growth in pulp and paper production.« less
Maenthaisong, Ratree; Viyoch, Jarupa; Chaiyakunapruk, Nathorn; Warnnissorn, Prateep
2007-09-01
Cleansing lotion containing extract of tamarind fruit pulp was developed to provide skin a lighter effect. Skin irritation may occur due to keratolytic effect of alpha-hydroxyl acids (AHA) in the tamarind fruit pulp extract. To assess the cumulative irritation effect of cleansing lotion containing tamarind fruit extract with 2% (w/w) tartaric acid on human skin compared with placebo product and de-ionized water. The study design was a single-blinded, randomized side of arm, and controlled study. Three samples, including test product, placebo product, and de-ionized water, were repeatedly applied on the inner forearm of 15 healthy females (aged 28.3 +/- 3.1 years) for 30 min daily for 5 days under semi-occlusive patch. Skin irritation was measured by using visual scoring and instruments such as Tewameter and Mexameter. All measurements were done before application of samples every day from day 1 until day 5. Final measurements were done after the last application for 3 days (day 8). The results obtained from the visual scoring scale indicated no irritation signs and symptoms of test product. Mean differences of transepidermal water loss and erythema values between test product and de-ionized water and between test and placebo products were not statistically significant (P > 0.05). These findings indicate a preliminary safety evidence of our developed cleansing lotion containing the natural AHAs and can be used as cumulative evidence for supporting the future home use study of this product in human.
Durability of pulp fiber-cement composites
NASA Astrophysics Data System (ADS)
Mohr, Benjamin J.
Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness losses) during wet/dry cycling. SCMs have been found to be effective in mitigating composite degradation through several processes, including a reduction in the calcium hydroxide content, stabilization of monosulfate by maintaining pore solution pH, and a decrease in ettringite reprecipitation accomplished by increased binding of aluminum in calcium aluminate phases and calcium in the calcium silicate hydrate (C-S-H) phase.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (9) Methane reforming furnaces. (10) Pulping liquor recovery furnaces. (11) Combustion devices used... production of acid from halogenated hazardous waste generated by chemical production facilities where the furnace is located on the site of a chemical production facility, the acid product has a halogen acid...
Hosoya, S; Matsushima, K
1997-01-01
IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.
Oxidation in Acidic Medium of Lignins from Agricultural Residues
NASA Astrophysics Data System (ADS)
Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto
Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.
Ferrer, Ana; Filpponen, Ilari; Rodríguez, Alejandro; Laine, Janne; Rojas, Orlando J
2012-12-01
Different cellulose pulps were produced from sulfur-free chemical treatments of Empty Palm Fruit Bunch Fibers (EPFBF), a by-product from palm oil processing. The pulps were microfluidized for deconstruction into nanofibrillated cellulose (NFC) and nanopaper was manufactured by using an overpressure device. The morphological and structural features of the obtained NFCs were characterized via atomic force and scanning electron microscopies. The physical properties as well as the interactions with water of sheets from three different pulps were compared with those of nanopaper obtained from the corresponding NFC. Distinctive chemical and morphological characteristics and ensuing nanopaper properties were generated by the EPFBF fibers. The NFC grades obtained compared favorably with associated materials typically produced from bleached wood fibers. Lower water absorption, higher tensile strengths (107-137 MPa) and elastic modulus (12-18 GPa) were measured, which opens the possibility for valorization of such widely available bioresource. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won
2014-01-01
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products. PMID:26150744
Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won
2015-07-01
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.
Production and characterization of chars from cherry pulp via pyrolysis.
Pehlivan, E; Özbay, N; Yargıç, A S; Şahin, R Z
2017-12-01
Pyrolysis is an eco-friendly process to achieve valuable products like bio-oil, char and gases. In the last decades, biochar production from pyrolysis of a wide variety of industrial and agricultural wastes become popular, which can be utilized as adsorbent instead of the expensive activated carbons. In this study, cherry pulp was pyrolyzed in a fixed bed tubular reactor at five different temperatures (400, 500,550, 600 and 700 °C) and three different heating rates (10, 100 and 200 °C/min) to obtain biochar. Proximate, ultimate, nitrogen adsorption/desorption isotherms, scanning electron microscopy, thermogravimetric analysis, x-ray fluorescence, x-ray diffraction, and Fourier transform infrared spectroscopy were performed on cherry pulp and its chars to examine the chemical alterations after the pyrolysis process. Biochar yields were decreased with increasing pyrolysis temperature and heating rate, based on experimental results. Porous biochars are carbon rich and includes high potassium content. The aromaticity of biochars increased and O/C mass ratio reduced with an increase in the pyrolysis temperature as a result of the development of compact aromatic structure in char. Pyrolysis provides a promising conversion procedure for the production of high energy density char which has promising applications in existing coal-fired boilers without any upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.
System and method for altering characteristics of materials using an electrohydraulic discharge
Banerjee, Sujit
2003-06-03
System and method for oxidizing contaminants to alter specific properties, such as tack, of contaminants. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater. An electrical discharge in the liquid medium oxidizes materials, which may be dissolved or suspended therein, such as stickies, pitch, sulfide, ink, toner, and other substances, thereby reducing tack, odor, and/or zeta potential, as well as producing other desirable effect.
Methods And Apparatus For Acoustic Fiber Fractionation
Brodeur, Pierre
1999-11-09
Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.
Southern pulpwood production, 1993
Michael Howell; Andrew J. Hartsell
1993-01-01
In 1993, Southern pulpwood production declined 2 percent to 66.3 million cords. Roundwood production decreased 2 percent to 46.3 million cords, and wood residue production fell 4 percent to 19.9 million cords. Pulping capacity of the 102 Southern pulpmills was 132,327 tons per day.
Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping
NASA Astrophysics Data System (ADS)
Yang, Ling
Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism could be employed to predict the pulping behavior under a variety of conditions with good accuracy.
Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo
2016-01-01
To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple (‘Golden Delicious’) pulp discs prepared from pre-climacteric fruit were treated with 50 mg L-1 CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence. PMID:26756813
Fermentation and chemical treatment of pulp and paper mill sludge
Lee, Yoon Y; Wang, Wei; Kang, Li
2014-12-02
A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.
31. EXTERIOR VIEW LOOKING INTO THE SIXTH TAILRACE (COUNTING FROM ...
31. EXTERIOR VIEW LOOKING INTO THE SIXTH TAILRACE (COUNTING FROM THE DOWNSTREAM END TO THE UPSTREAM END SOUTHEAST TO NORTHWEST). THIS AREA IS THE PORTION OF THE PULP MILL THAT WAS NEVER REBUILT AFTER A DEVASTATING FIRE IN 1925 AND SUBSEQUENT END TO PULP PRODUCTION AT THIS SITE. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV
33. EXTERIOR VIEW LOOKING INTO THE FIFTH TAILRACE (COUNTING FROM ...
33. EXTERIOR VIEW LOOKING INTO THE FIFTH TAILRACE (COUNTING FROM THE DOWNSTREAM END TO THE UPSTREAM END SOUTHEAST TO NORTHWEST). THIS AREA IS THE PORTION OF THE PULP MILL THAT WAS NEVER REBUILT AFTER A DEVASTATING FIRE IN 1925 AND SUBSEQUENT END TO PULP PRODUCTION AT THIS SITE. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV
Selected Translations on East European Foreign Trade, No. 5.
1961-08-31
eggs, cereals, oil -yielding seeds , and pulped fruit represented 2/3 of all exports. At the same time, unprocessed agricultural products [sic...prefer these raw materials, mainly grain, livestock for meat, and scarce oil - seeds , but show very little interest in, for instance, fruit pulps, which in...mineral materials, and metals. This is because the quantities of oil derivatives and cast iron are increased, and coal and iron ore from the Donets
Efficacy of pink guava pulp as an antioxidant in raw pork emulsion.
Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari
2014-08-01
Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. The antioxidant potential of pink guava pulp (PGP) was evaluated at different levels (0%; C, 5.0%; T-1, 7.5%; T-2 and 10.0%; T-3) in the raw pork emulsion during refrigerated storage of 9 days under aerobic packaging. Lycopene and β-carotene contents increased (P < 0.05) with PGP levels. The redness (a*) increased (P < 0.05), whereas L*decreased (P < 0.05) with the incorporation of PGP. The visual colour and odour scores were greater (P < 0.05) in PGP-treated products than control. Percent metmyoglobin formation was greater (P < 0.05) in the control than PGP-treated products, and increased (P < 0.05) during storage in all the treatments. Overall, peroxide value, thiobarbituric acid reactive substances and free fatty acid values were lower (P < 0.05) in PGP-treated raw emulsion than control throughout storage period. Our results indicated that pink guava pulp can be utilized as antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.
Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim
2016-10-01
In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Decomposition and carbon storage of selected paper products in laboratory-scale landfills.
Wang, Xiaoming; De la Cruz, Florentino B; Ximenes, Fabiano; Barlaz, Morton A
2015-11-01
The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi
Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.
Quorum Quenching and Microbial Control through Phenolic Extract of Eugenia Uniflora Fruits.
Rodrigues, Adeline Conceição; Zola, Flávia Guimarães; Ávila Oliveira, Brígida D'; Sacramento, Nayara Thais Barbosa; da Silva, Elis Regina; Bertoldi, Michele Corrêa; Taylor, Jason Guy; Pinto, Uelinton Manoel
2016-10-01
We describe the characterization of the centesimal composition, mineral and phenolic content of Eugenia uniflora fruit and the determination of the antioxidant, antimicrobial and quorum quenching activities of the pulp phenolic extract. Centesimal composition was determined according to standard methods; trace elements were measured by total reflection X-ray fluorescence spectroscopy. The phenolic compounds were extracted by solid-phase chromatography and quantified by spectrophotometry. Antioxidant activity was determined by using 3 different methods. Antimicrobial activity was evaluated against a panel of foodborne microorganisms and antiquorum sensing activity in Chromobacterium violaceum was performed by measuring inhibition of quorum sensing dependent violacein production. The centesimal composition (per 100 g of pulp) was as follows: protein 3.68 ± 0.21 g, lipids 0.02 ± 0.03 g, carbohydrates 10.31 g and fiber 2.06 g. Trace elements (mg/g of pulp) were determined as: K 0.90, Ca 3.36, Fe 0.60, Zn 0.17, Cl 0.56, Cr 0.06, Ni 0.04, and Cu 0.07. The pulp is a source of phenolic compounds and presents antioxidant activity similar to other berries. The fruit phenolic extract inhibited all tested bacteria. We also found that the fruit phenolic extract at low subinhibitory concentrations inhibited up to 96% of violacein production in C. violaceum, likely due to the fruit's phenolic content. This study shows the contribution of E. uniflora phenolic compounds to the antioxidant, antimicrobial and the newly discovered quorum quenching activity, all of which could be used by the food and pharmaceutical industries to develop new functional products. © 2016 Institute of Food Technologists®.
Chinn, Mari S; Nokes, Sue E; Strobel, Herbert J
2006-01-01
Interest in solid substrate cultivation (SSC) techniques is gaining for biochemical production from renewable resources; however, heat and mass transfer problems may limit application of this technique. The use of anaerobic thermophiles in SSC offers a unique solution to overcoming these challenges. The production potential of nine thermophilic anaerobic bacteria was examined on corn stover, sugar cane bagasse, paper pulp sludge, and wheat bran in submerged liquid cultivation (SmC) and SSC. Production of acetate, ethanol, and lactate was measured over a 10 day period, and total product concentrations were used to compare the performance of different organism-substrate combinations using the two cultivation methods. Overall microbial activity in SmC and SSC was dependent on the organism and growth substrate. Clostridium thermocellum strains JW20, LQRI, and 27405 performed significantly better in SSC when grown on sugar cane bagasse and paper pulp sludge, producing at least 70 and 170 mM of total products, respectively. Growth of C. thermocellum strains in SSC on paper pulp sludge proved to be most favorable, generating at least twice the concentration of total products produced in SmC (p-value < 0.05). Clostridium thermolacticum TC21 demonstrated growth on all substrates producing 30-80 and 60-116 mM of total product in SmC and SSC, respectively. Bacterial species with optimal growth temperatures of 70 degrees C grew best on wheat bran in SmC, producing total product concentrations of 45-75 mM. For some of the organism-substrate combinations total end product concentrations in SSC exceeded those in SmC, indicating that SSC may be a promising alternative for microbial activity and value-added biochemical production.
Southern pulpwood production, 1990
John S. Vissage; Patrick E. Miller
1992-01-01
In 1990, Southern pulpwood production exceeded 65 million cords, roundwood production increased 9 percent to 45.6 million cords, and wood residue production increased 2 percent to 19.4 million cords. The pulping capacity of the 103 Southern pulpmills was 129,290 tons per day. One pulpmill was under construction.
Mínguez, C; Calvo, A
2018-06-05
The objective of this research was to investigate the effect of the partial replacement of alfalfa (Medicago sativa) with fresh orange pulp (Citrus sinensis) in a diet fed to guinea pigs on their mortality, growth performance, slaughter traits and sensory characteristics during the fattening period. A total of 450 guinea pigs were housed in collective pens of ~10 animals. Animals were divided into three groups: Control group (CG), supplied with fresh alfalfa as forage and treatment groups (G15 and G30), in which 15 and 30% of alfalfa was replaced by orange pulp, respectively. No significant differences were found between CG and G15 for traits studied. However, G30 showed the lowest values for growth and carcass traits. No significant differences were found for sensory characteristics. In conclusion, a moderate inclusion of orange pulp could contribute to diminishing dependence of alfalfa on guinea pig meat production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Black liquor gasification integrated in pulp and paper mills: A critical review.
Naqvi, M; Yan, J; Dahlquist, E
2010-11-01
Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted. Copyright 2010 Elsevier Ltd. All rights reserved.
Ye, Maoyou; Li, Guojian; Yan, Pingfang; Ren, Jie; Zheng, Li; Han, Dajian; Sun, Shuiyu; Huang, Shaosong; Zhong, Yujian
2017-10-01
Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na 2 S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na 2 S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na 2 S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Value addition of wild apricot fruits grown in North-West Himalayan regions-a review.
Sharma, Rakesh; Gupta, Anil; Abrol, G S; Joshi, V K
2014-11-01
Wild apricot (Prunus armeniaca L.) commonly known as chulli is a potential fruit widely distributed in North-West Himalayan regions of the world. The fruits are good source of carbohydrates, vitamins, minerals besides having attractive colour and typical flavour. Unlike table purpose varieties of apricots like New Castle, the fruits of wild apricot are unsuitable for fresh consumption because of its high acid and low sugar content. However, the fruits are traditionally utilized for open sun drying, pulping to prepare different products such as jams, chutney and naturally fermented and distilled liquor. But, scientific literature on processing and value addition of wild apricot is scanty. Preparation of jam with 25 % wild apricot +75 % apple showed maximum score for organoleptic characteristics due to better taste and colour. Osmotic dehydration has been found as a suitable method for drying of wild type acidic apricots. A good quality sauce using wild apricot pulp and tomato pulp in the ratio of 1:1 has been prepared, while chutney of good acceptability prepared from wild apricot pulp (100 %) has also been documented. Preparation of apricot-soy protein enriched products like apricot-soya leather, toffee and fruit bars has been reported, which are reported to meet the protein requirements of adult and children as per the recommendations of ICMR. Besides these processed products, preparation of alcoholic beverages like wine, vermouth and brandy from wild apricot fruits has also been reported by various researchers. Further, after utilization of pulp for preparation of value added products, the stones left over have been successfully utilized for oil extraction which has medicinal and cosmetic value. The traditional method of oil extraction has been reported to be unhygienic and result in low oil yield with poor quality, whereas improved mechanical method of oil extraction has been found to produce good quality oil. The apricot kernel oil and press cake have successfully been utilized for preparation of various value added products such as facial cream, lip balm, essential oil and protein isolate with good quality attributes and consumer acceptability. However, no scientific information on utilization of shells remained after kernel separation is available, but the shells are traditionally utilized for burning purpose during winters by the farmers. Therefore, it seems that every part of wild apricot can be utilized for conversion into value-added products and commercial utilization of this fruit will certainly add value to this underutilized fruit and also increase the economy of farmers.
Duan, J; Huo, X; Du, W J; Liang, J D; Wang, D Q; Yang, S C
2016-01-01
An anaerobic kraft lignin (KL)-degrading bacterial strain was isolated from sludge of a pulp and paper mill. It was characterized as Acetoanaerobium sp. WJDL-Y2 by 16S rRNA gene sequencing. The maximum KL degradation capability of strain Y2 was determined to be 24·9% on a COD basis under an optimal condition with temperature of 31·5°C, initial pH of 6·8 and KL to nitrogen (as NH4 Cl) ratio of 6·5 by mass. Growth kinetic studies showed that the KL tolerance of strain Y2 was relatively high (Ki = 8120·45 mg l(-1) ). Analysing KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), including benzene-propanoic acid, syringic acid and ferulic acid. This indicates that strain Y2 can oxidize lignin structure's p-hydroxyphenyl (H) units, guaiacyl (G) units and syringyl (S). In addition, the inoculated sample also contained low-molecular acid compounds, such as hexanoic acid, adipic acid and 2-hydroxybutyric acid, further validating strain Y2's ability to degrade KL. Kraft lignin containing effluents discharged from pulp and paper industries causes serious environmental pollution in developing countries. Due to the immense environmental adaptability and biochemical versatility, bacterial ligninolytic potential deserve to be studied for application in effluent treatment of pulp and paper industry. In this study, an anaerobic lignin-degrading bacterium, Acetoanaerobium sp. WJDL-Y2 (accession no. KF176997),was isolated from the sludge of a pulp and paper mill. Strain Y2 can play an important role in treating pulp and paper wastewater, as well as breaking down materials for biofuel and chemical production. © 2015 The Society for Applied Microbiology.
Zhao, Yuan; Wang, Chen-Lin; Li, Rui-Min; Hui, Tian-Qian; Su, Ying-Ying; Yuan, Quan; Zhou, Xue-Dong; Ye, Ling
2014-01-01
Wnt5a has been found recently to be involved in inflammation regulation through a mechanism that remains unclear. Immunohistochemical staining of infected human dental pulp and tissue from experimental dental pulpitis in rats showed that Wnt5a levels were increased. In vitro, Wnt5a was increased 8-fold in human dental pulp cells (HDPCs) after TNF-α stimulation compared with control cells. We then investigated the role of Wnt5a in HDPCs. In the presence of TNF-α, Wnt5a further increased the production of cytokines/chemokines, whereas Wnt5a knockdown markedly reduced cytokine/chemokine production induced by TNF-α. In addition, in HDPCs, Wnt5a efficiently induced cytokine/chemokine expression and, in particular, expression of IL-8 (14.5-fold) and CCL2 (25.5-fold), as assessed by a Luminex assay. The cytokine subsets regulated by Wnt5a overlap partially with those induced by TNF-α. However, no TNF-α and IL-1β was detected after Wnt5a treatment. We then found that Wnt5a alone and the supernatants of Wnt5a-treated HDPCs significantly increased macrophage migration, which supports a role for Wnt5a in macrophage recruitment and as an inflammatory mediator in human dental pulp inflammation. Finally, Wnt5a participates in dental pulp inflammation in a MAPK-dependent (p38-, JNK-, and ERK-dependent) and NF-κB-dependent manner. Our data suggest that Wnt5a, as an inflammatory mediator that drives the integration of cytokines and chemokines, acts downstream of TNF-α. PMID:24891513
Poonsrisawat, Aphisit; Paemanee, Atchara; Wanlapatit, Sittichoke; Piyachomkwan, Kuakoon; Eurwilaichitr, Lily; Champreda, Verawat
2017-10-01
In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.
Short rotation forestry harvesting - systems and costs
Bruce R. Hartsough; Bryce J. Stokes
1997-01-01
Single stem short rotation plantations in the United States are largely dedicated to pulp production, with fuel as a secondary product. There are very limited plantings for fuel production, and others where the primary purpose is treatment of various wastewater's. All production harvesting of single stem plantations is conducted with conventional forestry...
Goraya, Rajpreet Kaur; Bajwa, Usha
2015-12-01
Amla (Indian gooseberry) and its processed products are rich source of vitamin C, phenols, dietary fibre and antioxidants. In contrast, ice cream is a poor source of these phytochemicals and antioxidants; therefore, the present investigation was undertaken to enhance the functional properties and nutritional quality of ice cream with the incorporation of processed amla. Ice cream was prepared using amla shreds, pulp, preserve and candy at 5 to 20 % and powder at 0.5 to 2.0 % levels in ice cream mix prior to freezing. Inclusion of amla products at augmented levels resulted in significant changes in physico-chemical properties and phytochemical content of ice cream. The total solids decreased on addition of shreds and pulp and increased with preserve, candy and powder in ice cream at increasing levels. The functional constituents i.e. fibre, total phenols, tannins, ascorbic acid and antioxidant activity increased with greater level of inclusion. Incorporation of processed amla raised the melting resistance of ice cream and decreased the overrun. The samples with 5 % shreds and pulp, 10 % preserve and candy and 0.5 % powder were found to have highest overall acceptability scores. Inclusion of amla in all the forms i.e. shreds, pulp, preserve, candy and powder enhanced the functional properties and nutritional value of ice cream.
Southern pulpwood production, 1994
Tony G. Johnson; Michael Howell
1996-01-01
The South's production of pulpwood increased 2 percent to 68.5 million cords. Roundwood production increased to 47.8 million cords and accounted for 70 percent of the total pulpwood production. The use of residue increased 3 percent to 20.7 million cords. Alabama leads the South in total production, number of mills, and pulping capacity. Currently 104 mills'...
Production of single cell protein from agro-waste using Rhodococcus opacus.
Mahan, Kristina M; Le, Rosemary K; Wells, Tyrone; Anderson, Seth; Yuan, Joshua S; Stoklosa, Ryan J; Bhalla, Aditya; Hodge, David B; Ragauskas, Arthur J
2018-06-18
Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.
Quality and utilization of food co-products and residues
NASA Astrophysics Data System (ADS)
Cooke, P.; Bao, G.; Broderick, C.; Fishman, M.; Liu, L.; Onwulata, C.
2010-06-01
Some agricultural industries generate large amounts of low value co-products/residues, including citrus peel, sugar beet pulp and whey protein from the production of orange juice, sugar and cheese commodities, respectively. National Program #306 of the USDA Agricultural Research Service aims to characterize and enhance quality and develop new processes and uses for value-added foods and bio-based products. In parallel projects, we applied scanning microscopies to examine the molecular organization of citrus pectin gels, covalent crosslinking to reduce debonding in sugar beet pulp-PLA composites and functional modification of whey protein through extrusion in order to evaluate new methods of processing and formulating new products. Also, qualitative attributes of fresh produce that could potentially guide germ line development and crop management were explored through fluorescence imaging: synthesis and accumulation of oleoresin in habanero peppers suggest a complicated mechanism of secretion that differs from the classical scheme. Integrated imaging appears to offer significant structural insights to help understand practical properties and features of important food co-products/residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous plastic products; stone, glass, clay, and concrete products; textile manufacturing; transportation..., water supply treatment plant, or air pollution control facility, exclusive of the treated effluent from...
Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M
2015-12-01
Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.
Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp
Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun
2014-01-01
The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
Membrane Technology for the Recovery of Lignin: A Review
Humpert, Daniel; Ebrahimi, Mehrdad; Czermak, Peter
2016-01-01
Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g∙L−1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry. PMID:27608047
Ahangari, Zohreh; Naseri, Mandana; Jalili, Maryam; Mansouri, Yasaman; Mashhadiabbas, Fatemeh; Torkaman, Anahita
2012-01-01
Objective: Evaluation of the effect of Propolis as a bioactive material on quality of dentin and presence of dental pulp stem cells. Materials and Methods: For conducting this experimental split-mouth study,a total of 48 maxillary and mandibular incisors of male guinea pigs were randomly divided into an experimental Propolis group and a control calcium hydroxide group. Cutting the crowns and using Propolis or calcium hydroxide to cap the pulp, all of the cavities were sealed. Sections of the teeth were obtained after sacrificing 4 guinea pigs from each group on the 10th, 15th and 30th day. After they had been stained by hematoxylin and eosin (H&E), specimens underwent a histological evaluation under a light microscope for identification of the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of the material used. The immunohistochemistry (IHC) method using CD29 and CD146 was performed to evaluate the presence of stem cells and the results were statistically evaluated by Kruskal-Wallis, Chi Square and Fisher tests. Results: In H&E stained specimens, there was no difference between the two groups in the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of used material(p>0.05). There was a significant difference between the quality of regenerative dentin on the 15th and 30th days (p<0.05): all of the Propolis cases presented tubular dentin while 14% of the calcium hydroxide cases produced porous dentin. There was no significant difference between Propolis and calcium hydroxide in stimulation of dental pulp stem cells (DPSCs). Conclusion: This study which is the first one that documented the stimulation of stem cells by Propolis, provides evidence that this material has advantages over calcium hydroxide as a capping agent in vital pulp therapy. In addition to producing no pulpal inflammation, infection or necrosis this material induces the production of high quality tubular dentin. PMID:23508294
Zhang, Lu; Tu, Zong-Cai; Xie, Xing; Wang, Hui; Wang, Hao; Wang, Zhen-Xing; Sha, Xiao-Mei; Lu, Yu
2017-11-01
Jackfruit (Artocarpus heterophyllus Lam.) peel is an underutilized by-product in both, the production and processing of jackfruit. This research compared the antioxidant and hypoglycemic potential of jackfruit peel with jackfruit pulp, flake and seed for the first time. The phytochemical profile of peel extract was characterized with HPLC-QTOF-MS/MS. Results revealed that peel extract exhibited the highest total phenolic and total flavonoid content, and the phenolics was 4.65, 4.12 and 4.95 times higher than that of pulp, flake and seed extract, respectively. The strongest DPPH and ABTS + scavenging ability, α-glucosidase inhibition were also found in peel extract, and the α-glucosidase inhibition was about 11.8-fold of that of acarbose. The HPLC-QTOF-MS/MS analysis led to the tentative identification of 53 compounds, prenylflavonoids, hydroxycinnamic acids and glycosides are the predominant bioactive compounds. Above results reveal promising potential of jackfruit peel as a new source of natural antioxidants and hypoglycemic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane
NASA Astrophysics Data System (ADS)
Chinga-Carrasco, Gary; Kuznetsova, Nina; Garaeva, Milyausha; Leirset, Ingebjørg; Galiullina, Guzaliya; Kostochko, Anatoly; Syverud, Kristin
2012-12-01
This study explores the production and surface modification of microfibrillated cellulose (MFC), based on unbleached and bleached Pinus radiata pulp fibres. Unbleached Pinus radiata pulp fibres tend to fibrillate easier by homogenisation without pre-treatment, compared to the corresponding bleached MFC. The resulting unbleached MFC films have higher barrier against oxygen, lower water wettability and higher tensile strength than the corresponding bleached MFC qualities. In addition, it is demonstrated that carboxymethylation can also be applied for production of highly fibrillated unbleached MFC. The nanofibril size distribution of the carboxymethylated MFC is narrow with diameters less than 20 nm, as quantified on high-resolution field-emission scanning electron microscopy images. The carboxymetylation had a larger fibrillation effect on the bleached pulp fibres than on the unbleached one. Importantly, the suitability of hexamethyldisilazane (HMDS) as a new alternative for rendering MFC films hydrophobic was demonstrated. The HMDS-modified films made of carboxymethylated MFC had oxygen permeability levels better than 0.06 mL mm m-2 day-1 atm-1, which is a good property for some packaging applications.
Industrial applications of new sulphur biotechnology.
Janssen, A J; Ruitenberg, R; Buisman, C J
2001-01-01
The emission of sulphur compounds into the environment is undesirable because of their acidifying characteristics. The processing of sulphidic ores, oil refining and sulphuric acid production are major sources of SO2 emissions. Hydrogen sulphide is emitted into the environment as dissolved sulphide in wastewater or as H2S in natural gas, biogas, syngas or refinery gases. Waste streams containing sulphate are generated by many industries, including mining, metallurgical, pulp and paper and petrochemical industries. Applying process technologies that rely on the biological sulphur cycle can prevent environmental pollution. In nature sulphur compounds may cycle through a series of oxidation states (-2, 0, +2, +4, +6). Bacteria of a wide range of genera gain metabolic energy from either oxidising or reducing sulphur compounds. Paques B.V. develops and constructs reactor systems to remove sulphur compounds from aqueous and gaseous streams by utilising naturally occurring bacteria from the sulphur cycle. Due to the presence of sulphide, heavy metal removal is also achieved with very high removal efficiencies. Ten years of extensive laboratory and pilot plant research has, to date, resulted in the construction of over 30 full-scale installations. This paper presents key processes from the sulphur cycle and discusses recent developments about their application in industry.
NASA Technical Reports Server (NTRS)
Carr, J. H.; Hurley, P. J.; Martin, P. J.
1978-01-01
Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.
Enzymatic approaches in paper industry for pulp refining and biofilm control.
Torres, C E; Negro, C; Fuente, E; Blanco, A
2012-10-01
The use of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental impact. Specific enzymes contribute to reduce the amount of chemicals and energy required for the modification of fibers and helps to prevent the formation or development of biofilms. This review is aimed at presenting the latest progresses made in the application of enzymes as refining aids and biofilm control agents.
Southern pulpwood production, 1977
Thomas R. Bellamy
1978-01-01
Southern pulpwood production increased 3 percent in 1977 to 48.9 million cords. Roundwood production increased slightly while use of plant byproducts rose 9 percent. The use of plant byproducts continues to increase and now contributes 34 percent of the total. Pulping capacity increased to 100,894 tons per day.
Southern pulpwood production, 1991
Michael Howell
1993-01-01
In 1991, Southern pulpwood production climbed 1 percent, to 65.08 million cords. Roundwood production increased 2 percent to 46.6 million cords, and wood residue production fell 5 percent to 18.4 million cords. One new pulpmill began operating in the region. Pulping capacity of the 104 southern pulpmill was 133.331 tons per day.
Southern pulpwood production, 1999
Tony G. Johnson; Carolyn D. Steppleton
2001-01-01
In 1999, the South's production of pulpwood declined 5 percent to 71.1 million cords. Roundwood production dropped to 49.2 million cords and accounted for 69 percent of the total pulpwood production. The use of wood residue remained stable at 21.9 million cords. Alabama continues to lead the South in total production, number of mills, and pulping capacity....
Southern pulpwood production, 1997
Tony G. Johnson; Carolyn D. Steppleton
1999-01-01
In 1997, the South's production of pulpwood increased 11 percent to 75.9 million cords. Roundwood production increased to 54.2 million cords and accounted for 71 percent of the total pulpwood production. The use of wood residue increased to 21.7 million cords. Alabama leads the South in total production, number of mills, and pulping capacity. Currently, 103 mills...
Southern pulpwood production, 1995
Tony G. Johnson; Carolyn D. Steppleton
1996-01-01
In 1995, the South's production of pulpwood increased 6 percent to 72.7 million cords. Roundwood production increased to 52.0 million cords and accounted for 72 percent of the total pulpwood production. The use of wood residue remained stable at 20.7 million cords. Alabama leads the South in total production, number of mills, and pulping capacity. Currently, 105...
Southern pulpwood production, 1998
Tony G. Johnson; Carolyn D. Steppleton
2000-01-01
In 1998, the South's production of pulpwood declined 2 percent to 74.7 million cords. Roundwood production dropped to 52.7 million cords and accounted for 71 percent of the total pulpwood production. The use of wood residue increased to 21.9 million cords. Alabama leads the South in total production, number of mills, and pulping capacity. Currently, 103 mills are...
Southern pulpwood production, 1996
Tony G. Johnson; Carolyn D. Steppleton
1997-01-01
In 1996, the South's production of pulpwood decreased 6 percent to 68.5 million cords. Roundwood production decreased to 49.6 million cords and accounted for 72 percent of the total pulpwood production. The use of wood residue declined to 19.0 million cords. Alabama leads the South in total production, number of mills, and pulping capacity. Currently, 105 mills...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collection and control systems are required under this subpart as a result of the nonmethane organic... generation; fertilizer/agricultural chemicals; food and related products/by-products; inorganic chemicals...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... generation; fertilizer/agricultural chemicals; food and related products/by-products; inorganic chemicals...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous... of this title. Lateral expansion means a horizontal expansion of the waste boundaries of an existing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... generation; fertilizer/agricultural chemicals; food and related products/by-products; inorganic chemicals...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous... of this title. Lateral expansion means a horizontal expansion of the waste boundaries of an existing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... generation; fertilizer/agricultural chemicals; food and related products/by-products; inorganic chemicals...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous... of this title. Lateral expansion means a horizontal expansion of the waste boundaries of an existing...
Land application of sugar beet by-products: effects on runoff and percolating water quality.
Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew
2009-01-01
Water quality concerns, including greater potential for nutrient transport to surface waters resulting in eutrophication and nutrient leaching to ground water, exist when agricultural or food processing industry wastes and by-products are land applied. Plot- and field-scale studies were conducted to evaluate the effects of sugar beet by-products on NO3-N and P losses and biochemical oxygen demand (BOD) in runoff and NO3-N concentrations in percolating waters. In the runoff plot study, treatments in the first year included two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year, no by-products were applied on the treated plots, the control treatment was fertilized with N fertilizer, and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet (Beta vulgaris L.) in the following year. In the percolation field study, the treatments were the control, pulp (224 Mg ha(-)(1)), and spoiled beets (224 Mg ha(-1)). Results from the runoff plot showed that both by-products caused immobilization of soil inorganic N and thus reduced NO3-N losses in runoff and soil waters during the first growing season. There was some risk of NO3-N exceeding the drinking water limit of 10 mg L(-1), especially between the period of wheat harvest and soil freezing in fall when pulp was applied at 448 Mg ha(-1). The field-scale study showed that by-product application at 224 Mg ha(-1) did not result in increased ground water NO3-N concentrations. Application of spoiled beets at both rates caused significantly higher BODs in runoff in the first year of application. The concentrations of total and soluble reactive P (SRP) were also higher from both rates of spoiled beet application and from the higher application rate of pulp during the 2-yr study period. These high BODs and total P and SRP concentrations in runoff waters from land application of sugar beet by-product suggest that application rates should not be higher than 224 Mg ha(-1). Best management practices that prevent runoff from entering surface waters directly from these fields are warranted.
Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.
Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R
2010-07-01
In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.
High-Intensity Sweeteners in Alternative Tobacco Products.
Miao, Shida; Beach, Evan S; Sommer, Toby J; Zimmerman, Julie B; Jordt, Sven-Eric
2016-11-01
Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco toxicants. This study is the first to quantify high intensity sweeteners in snus and dissolvable products. Snus and dissolvables contain the high intensity sweetener, sucralose, at levels higher than in confectionary products. The high sweetness of alternative tobacco products makes these products attractive to adolescents. Regulation of sweetener content in non-cigarette products is suggested as an efficient means to control product palatability and to reduce initiation in adolescents. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.
High-Intensity Sweeteners in Alternative Tobacco Products
Miao, Shida; Beach, Evan S.; Sommer, Toby J.; Zimmerman, Julie B.
2016-01-01
Introduction: Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Methods: Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization–mass spectrometry (LC-ESI-MS). Results: All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Discussion: Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Implications: Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco toxicants. This study is the first to quantify high intensity sweeteners in snus and dissolvable products. Snus and dissolvables contain the high intensity sweetener, sucralose, at levels higher than in confectionary products. The high sweetness of alternative tobacco products makes these products attractive to adolescents. Regulation of sweetener content in non-cigarette products is suggested as an efficient means to control product palatability and to reduce initiation in adolescents. PMID:27217475
Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, CC; Dong, J; Yang, ST
2013-09-01
Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gasmore » stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. (C) 2013 Elsevier Ltd. All rights reserved.« less
Lu, Congcong; Dong, Jie; Yang, Shang-Tian
2013-09-01
Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrated Watershed Assessment: The Northern River Basins Study
NASA Astrophysics Data System (ADS)
Wrona, F. J.; Gummer, W. D.
2001-05-01
Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in science program design and implementation for effective environmental decision-making.
Bacterial Metabolism of Chlorinated Dehydroabietic Acids Occurring in Pulp and Paper Mill Effluents
Mohn, W. W.; Stewart, G. R.
1997-01-01
Chlorinated dehydroabietic acids are formed during the chlorine bleaching of wood pulp and are very toxic to fish. Thus, destruction of these compounds is an important function of biological treatment systems for pulp and paper mill effluents. In this study, 12 strains of diverse, aerobic resin acid-degrading bacteria were screened for the ability to grow on chlorinated dehydroabietic acids as sole organic substrates. All seven strains of the class Proteobacteria able to use dehydroabietic acid were also able to use a mixture of 12- and 14-chlorodehydroabietic acid (Cl-DhA). None of the strains used 12,14-dichlorodehydroabietic acid. Sphingomonas sp. strain DhA-33 grew best on Cl-DhA and simultaneously removed both Cl-DhA isomers. Ralstonia sp. strain BKME-6 was typical of most of the strains tested, growing more slowly on Cl-DhA and leaving higher residual concentrations of Cl-DhA than DhA-33 did. Strains DhA-33 and BKME-6 mineralized (converted to CO(inf2) plus biomass) 32 and 43%, respectively, of carbon in Cl-DhA consumed. Strain DhA-33 produced a metabolite from Cl-DhA, tentatively identified as 3-oxo-14-chlorodehydroabietin, and both strains produced dissolved organic carbon which may include unidentified metabolites. Cl-DhA removal was inducible in both DhA-33 and BKME-6, and induced DhA-33 cells also removed 12,14-dichlorodehydroabietic acid. Based on activities of strains DhA-33 and BKME-6, chlorinated DhAs, and potentially toxic metabolite(s) of these compounds, are relatively persistent in biological treatment systems and in the environment. PMID:16535663
The effect of irradiation in the quality of the avocado frozen pulp
NASA Astrophysics Data System (ADS)
Valdivia, Ma. Ángeles; Bustos, Ma. Emilia; Ruiz, Javier; Ruiz, Luisa F.
2002-03-01
The quality of frozen avocado pulp irradiated with 60Co gamma rays at doses of: 0.5, 1.0, 1.5, and 2.5 kGy, was studied. These are possible doses for reducing the content of bacteria Listeria monocytogenes by 1-4 log cycles. The study principally consisted of weekly evaluations of damages caused in lipids and chlorophyll pigment over a period of one year. No significant differences were found in either hydrolysis rancidity or in the oxidative rancidity for any of the doses. The concentrations of fatty acids and peroxides were below those established by Codex Alimentarius. This means that the quality of the oil in the frozen avocado pulp remains acceptable. The kinetic model for the oxidative rancidity is of first order and the shelf life of the product is of about 120 weeks. The concentrations of the fatty acids and of malondialdehyde were not high enough to produce off-flavors. It was also determined that the radiation doses did not influence the chemistry of the chlorophyll. The results were confirmed by the panelists, who accepted irradiated frozen pulp at the highest radiation dose.
Beltramino, Facundo; Valls, Cristina; Vidal, Teresa; Roncero, M Blanca
2015-11-20
In this work, treatments with a xylanase (X) and carbohydrases mixture (Cx) were applied on a TCF bleached sisal pulp in order to obtain high-cellulose content fibers applicable on a wide range of uses. A limit of ≈12% w/w final content in hemicelluloses was found regardless of the enzymatic treatment assessed. An extraction with 4% and 9% w/v NaOH was performed for further hemicelluloses removal. We found that NaOH dose could be strongly reduced if combined with Cx or Cx+X treatments. Also, if necessary, a stronger reduction could be obtained with 9% w/v NaOH, which was found to be boosted in a 14% if performed after a treatment with Cx. An end-product with a low content in xylans (≈2.9% w/w) and in HexA (5.8μmol/odp) was obtained. Pulp Fock solubility was also increased (≈30%) by enzymatic treatments. HPLC analysis of effluents provided useful information of enzymatic catalytic mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
Influence of kraft pulping on carboxylate content of softwood kraft pulps
Zheng Dang; Thomas Elder; Arthur J. Ragauskas
2006-01-01
This study characterizes changes in fiber charge, which is the carboxylate content of fibers, for two sets of kraft pulps: (1) conventional laboratory cooked loblolly pine kraft pulps and (2) conventional pulping (CK) versus low solids pulping (LS) pulps. Laboratory kraft pulping of loblolly pine was carried out to study the influence of pulping conditions, including...
Improving the performance of enzymes in hydrolysis of high solids paper pulp derived from MSW.
Puri, Dhivya J; Heaven, Sonia; Banks, Charles J
2013-01-01
The research aimed to improve the overall conversion efficiency of the CTec® family of enzymes by identifying factors that lead to inhibition and seeking methods to overcome these through process modification and manipulation. The starting material was pulp derived from municipal solid waste and processed in an industrial-scale washing plant. Analysis of the pulp by acid hydrolysis showed a ratio of 55 : 12 : 6 : 24 : 3 of glucan : xylan : araban/galactan/mannan : lignin : ash. At high total solids content (>18.5% TS) single-stage enzyme hydrolysis gave a maximum glucan conversion of 68%. It was found that two-stage hydrolysis could give higher conversion if sugar inhibition was removed by an intermediate fermentation step between hydrolysis stages. This, however, was not as effective as direct removal of the sugar products, including xylose, by washing of the residual pulp at pH 5. This improved the water availability and allowed reactivation of the pulp-bound enzymes. Inhibition of enzyme activity could further be alleviated by replenishment of β-glucosidase which was shown to be removed during the wash step. The two-stage hydrolysis process developed could give an overall glucan conversion of 88%, with an average glucose concentration close to 8% in 4 days, thus providing an ideal starting point for ethanol fermentation with a likely yield of 4 wt%. This is a significant improvement over a single-step process. This hydrolysis configuration also provides the potential to recover the sugars associated with residual solids which are diluted when washing hydrolysed pulp.
Southern pulpwood production, 2000
Tony G. Johnson; Carolyn D. Steppleton
2002-01-01
In 2000, the Southâs production of pulpwood declined 6 percent to 66.6 million cords. Roundwood production dropped to 44.4 million cords and accounted for 67 percent of the total pulpwood production. The use of wood residue increased 2 percent to 22.3 million cords. Alabama continued to lead the South in total production, number of mills, and pulping capacity. In 2000...
Southern pulpwood production, 1992
Patrick E. Miller
1994-01-01
In 1992, southern pulpwood production increased 4 percent to 67.9 million cords. Roundwood production increased 1 percent to 47.3 million cords, and wood residue production increased 12 percent to 20.7 million cords. One pulpmill changed processes, reducing the number to 103. The pulping capacity of the 103 southern pulpmills was 133,400 tons per day. No new...
The marketing of dissolvable tobacco: social science and public policy research needs.
Southwell, Brian G; Kim, Annice E; Tessman, Greta K; MacMonegle, Anna J; Choiniere, Conrad J; Evans, Sarah E; Johnson, Robin D
2012-01-01
The latest generation of smokeless tobacco products encompasses a wide range of offerings, including what is commonly referred to as dissolvable tobacco. Designed to deliver nicotine upon dissolving or disintegrating in a user's mouth, dissolvable tobacco products currently appear in various United States markets as strips, orbs, sticks, and lozenges. The emergence of these new products poses distinct opportunities and challenges for social and behavioral science and public health research and raises important public policy questions.
Ikpeme, E V; Ekaluo, U B; Kooffreh, M E; Udensi, O
2011-03-15
This study was aimed at qualitative evaluation of the ethanol seed, leaf and pulp extracts of C. papaya for bioactive compounds and also to investigate their effect on the haematology in male albino rats. A 3 x 4 factorial experimental layout using randomized complete design was adopted. Results show that the phytochemicals found in seed, leaf and pulp were almost the same but however, in varying proportions. Present result also revealed that there were significant effects (p < 0.05) of the extracts on the heamatology of the treated rats, which was blamed on the varying and different variants ofbioactive compounds found in the extracts they were administered with. Suggestively, C. papaya extracts could be used to enhance the production of selected blood parameters, taking issue of dosage into consideration.
Gill, Christopher E; Elliott, John E
2003-01-01
Food supply and contaminants were investigated as possible causes of low bald eagle productivity near a bleached kraft pulp and paper mill at Crofton on Vancouver Island, British Columbia. Over a seven year period, 1992-1998, average productivity of five eagle territories situated south of the pulp mill at Crofton was significantly lower (0.43 young/occupied territory) than six territories north of the mill (1.04 young/occupied territory). A reference population of 32 territories located in Barkley Sound on the west coast of Vancouver Island demonstrated intermediary mean productivity (0.75 young/occupied territory). Measures of prey biomass delivered to nests were lowest south of the mill, and correlated significantly with nesting success. On average, measures of energy delivered to nests and a parameter determined to be related to prey availability, adult nest attendance time, accounted for about 70% of variability in nest success. Contaminant concentrations, including pulp mill derived polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), as well as dichlorodiphenyldichloroethane (DDE), polychlorinated biphenyls (PCBs), and calculated tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were significantly greater in plasma samples of nestlings from south of the mill compared to the other two sites, but did not correlate significantly with individual nest success data. Nests south of the mill concentrate around Maple Bay, which appears to be a deposition area for contaminants transported by tides and currents from sources such as the pulp mill. Concentrations of DDE and PCBs in plasma of nestling eagles from south of the mill were less than the critical values estimated to affect production of young. For TEQs, there are no published critical values for plasma by which to compare our results. We conclude that less than adequate energy provisioning to nests, presumably related to low prey availability, was likely the main cause of poor nest success south of the mill site at Crofton. However, higher concentrations of both DDE and PCDD/F derived TEQs may have acted in concert with food stress to further reduce bald eagle productivity.
Lime, Fertilizer Cottonwood Tests
B. G. Blackmon; W. M. Broadfoot
1969-01-01
As eastern cottonwood is cut increasingly for pulp and other wood products, efforts to boost its production in Mississippi are growing. To learn more about fertilizer requirements of the species, the Southern Hardwoods Laboratory at Stoneville recently tested four common bottomland soils in which cottonwood grows.
40 CFR 430.01 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that are representative of the application of the best practicable control technology currently available, the best conventional pollutant control technology, or new source performance standards in lieu... production at unbleached kraft mills including linerboard or bag paper and other mixed products, and to pulp...
40 CFR 430.01 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that are representative of the application of the best practicable control technology currently available, the best conventional pollutant control technology, or new source performance standards in lieu... production at unbleached kraft mills including linerboard or bag paper and other mixed products, and to pulp...
D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.
Zhang, Yixing; Vadlani, Praveen V
2013-12-01
Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.
Integration of pulp and paper technology with bioethanol production
2013-01-01
Background Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors have not been able to justify moving forward with large scale projects on woody biomass. Results Both issues have been addressed by targeting pulp and paper industry processes for application in bioethanol production, in Greenfield, Repurpose and Co-Location scenarios. Processes commercially proven in hundreds of mills for many decades have been tailored to the recalcitrance of the biomass available. Economically feasible cellulosic bioethanol can be produced in Greenfield application with hardwoods, but not softwoods, using kraft mill equipment. Both types of wood species can profitably produce ethanol when kraft mill or newsprint assets are Repurposed to a biorefinery. A third situation which can generate high financial returns is where excess kraft pulp is available at a mill which has no excess drying capacity. Each scenario is supported by laboratory simulation, engineering and financial analysis. While pretreatment is critical to providing access of the biomass to enzymes, capital investment per unit of ethanol produced can be attractive, even if ethanol yield is modest. Conclusions Three guiding principles result in attractive economics: (1) re-use existing assets to the maximum extent; (2) keep the process as simple as possible; (3) match the recalcitrance of the biomass with the severity of the pretreatment. PMID:23356540
Genetic transformation of Populus tomentosa to improve salt tolerance
Ningxia Du; Xin Liu; Yun Li; Shouyi Chen; Jinsong Zhang; Da Ha; Wenguang Deng; Chunkui Sun; Yingzhi Zhang; Paula M Pijut
2012-01-01
Soil salinity can be a limiting factor for productivity in agriculture and forestry. In order to fully utilize saline lands productively in plantation forestry for pulp production, the genetic modification of tree species for salt tolerance may be required. The AhDREB1 gene, a DREB-like transcription factor gene, was transferred into ...
Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu
2015-01-01
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID).
Chen, Zhen; Cao, Shansong; Wang, Haorong; Li, Yanqiu; Kishen, Anil; Deng, Xuliang; Yang, Xiaoping; Wang, Yinghui; Cong, Changhong; Wang, Huajun; Zhang, Xu
2015-01-01
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID). PMID:25587986
[Production of a carp-based hamburger-like product by reducing the water activity].
Santillán, M; Morales, L J
1992-06-01
The experimental conditions were determined in order to conserve lean fish by means of combined factors based on Aw and pH reduction as well as the addition of an antifungal. Theoretical Aw was determined in formulas containing fish, sodium chloride, glycerol and sorbitol applying a mathematic model. From the results of the prediction, 4 formulas were prepared experimentally with (Cyprinus carpio). Phosphoric acid was added to the products in order to obtain a 5.5-6.0 pH. The final formulas were packed in plastic bags and stored with a control product (100% carp pulp) at 25 +/- 2 degrees C and 38 +/- 3% R.H. during one month. Aw, water content and pH determinations were carried at weekly intervals. Results indicated a slight but significative (P < 0.025) lowering of Aw, water content and pH. Microbiological analysis showed an increase in MAB count with no growth of pathogens. A control product (100% carp pulp) was deteriorated in a five day period. Sensory evaluation of the products indicated a slight acceptance among an inexperienced panel.
Lignin carbon fiber: The path for quality
Yuan, Joshua S.; Li, Qiang; Ragauskas, Arthur J.
2017-03-01
Lignin represents an abundant biopolymer and a major waste from lignocellulosic processing plants, yet the utilization of lignin for fungible products remains one of the most challenging technical barriers for pulp mills and the modern biorefinery industry. In recent decades, lignin has been sought after as a precursor polymer for carbon fiber due to the high carbon content (up to 60%). Furthermore lignin carbon fiber is expected to be compatible with the market size of the pulp and paper industry and may have transformative impact on petroleum-based carbon fiber.
Xue, Y; Sun, C; Tan, J
1995-11-01
Porphyromonas endodontalis was known to be important microorganisms in the etiology of pulp and apical infection. In this paper, we generated hybridomas secreting monoclonal antibody against Porphyromonas endodontalis ATCC 35406. The specificity of the monoclonal antibody was examined by ELISA against a battery organisms (109 Strains). The results indicated that the monoclonal antibody did not react with any non-Porphy romanas endodontalis (104 Strains). So our monoclonal antibody is specific for Porphyromanas endodontalis and can be used in clinical samples for detection of pulp and apical infections.
New Approaches in Vital Pulp Therapy in Permanent Teeth
Ghoddusi, Jamileh; Forghani, Maryam; Parisay, Iman
2014-01-01
Vitality of dental pulp is essential for long-term tooth survival. The aim of vital pulp therapy is to maintain healthy pulp tissue by eliminating bacteria from the dentin-pulp complex. There are several different treatment options for vital pulp therapy in extensively decayed or traumatized teeth. Pulp capping or pulpotomy procedures rely upon an accurate assessment of the pulp status, and careful management of the remaining pulp tissue. The purpose of this review is to provide an overview of new approaches in vital pulp therapy in permanent teeth. PMID:24396371
Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice.
Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; Macdougall, Mary; Abboud-Werner, Sherry
2012-06-01
Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita ⁻/⁻ mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita ⁻/⁻ and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita ⁻/⁻ mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita ⁻/⁻ teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population.
Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice
Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; MacDougall, Mary; Abboud-Werner, Sherry
2012-01-01
Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita −/− mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita −/− and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita −/− mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita −/− teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population. PMID:22449801
Dubey, Swati; Singh, Jyoti; Singh, R P
2018-01-01
Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Native yeasts for alternative utilization of overripe mango pulp for ethanol production.
Buenrostro-Figueroa, Juan; Tafolla-Arellano, Julio C; Flores-Gallegos, Adriana C; Rodríguez-Herrera, Raúl; De la Garza-Toledo, Heliodoro; Aguilar, Cristóbal N
2017-11-18
Mango fruits (Mangifera indica L.) are highly perishable, causing postharvest losses and producing agroindustrial waste. In the present work, native yeasts were used to evaluate ethanol production in overripe mango pulp. The two isolated strains showed similar sequences in the 18S rDNA region corresponding to Kluyveromyces marxianus, being different to the data reported in the NCBI database. Values of up to 5% ethanol (w/v) were obtained at the end of fermentation, showing a productivity of 4g/l/day, a yield of up to 49% of ethanol and a process efficiency of 80%. These results represent a viable option for using the surplus production and all the fruits that have suffered mechanical injury that are not marketable and are considered as agroindustrial waste, thus achieving greater income and less postharvest losses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Huang, Caoxing; He, Juan; Wang, Yan; Min, Douyong; Yong, Qiang
2015-10-01
Cooking additive pulping technique is used in kraft mill to increase delignification degree and pulp yield. In this work, cooking additives were firstly applied in the sodium hydroxide pretreatment for improving the bioconversion of bamboo residues to monosaccharides. Meanwhile, steam explosion and sulfuric acid pretreatments were also carried out on the sample to compare their impacts on monosaccharides production. Results indicated that associating anthraquinone with sodium hydroxide pretreatment showed the best performance in improving the original carbohydrates recovery, delignification, enzymatic saccharification, and monosaccharides production. After consecutive pretreatment and enzymatic saccharification process, 347.49 g, 307.48 g, 142.93 g, and 87.15 g of monosaccharides were released from 1000 g dry bamboo residues pretreated by sodium hydroxide associating with anthraquinone, sodium hydroxide, steam explosion and sulfuric acid, respectively. The results suggested that associating cooking additive with sodium hydroxide is an effective pretreatment for bamboo residues to enhance enzymatic saccharification for monosaccharides production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barbosa, Priscila Oliveira; Pala, Daniela; Silva, Carla Teixeira; de Souza, Melina Oliveira; do Amaral, Joana Ferreira; Vieira, Renata Adrielle Lima; Folly, Gilce Andrezza de Freitas; Volp, Ana Carolina Pinheiro; de Freitas, Renata Nascimento
2016-06-01
The aim of the present study was to evaluate the effect of açai pulp (Euterpe oleracea Martius) intake on the prevention of oxidative damage by measuring the activity of antioxidant enzymes and biomarkers of protein oxidation in women. A nutritional intervention study was conducted with thirty-five healthy women who were asked to consume 200 g/d of açai pulp for 4 wk. Blood samples were collected, and blood pressure and anthropometric parameters were measured before and after the experimental period. Antioxidant enzymes, superoxide dismutase, catalase, glutathione, production of reactive oxygen species, and total antioxidant capacity were evaluated in polymorphonuclear cells. Serum concentration of protein carbonyl and sulfhydryl groups were also determined. The açai intake increased catalase activity, total antioxidant capacity, and reduced the production of reactive oxygen species. Furthermore, it reduced serum concentration of protein carbonyl and increased total serum sulfhydryl groups. These results show the antioxidant benefit of dietary açai for the healthy women included in the present study, and may increase understanding of the beneficial health properties of this fruit. Copyright © 2016 Elsevier Inc. All rights reserved.
Kwack, Kyu Hwan; Lee, Jung Min; Park, Sang Hyuk; Lee, Hyeon Woo
2017-01-01
Human dental pulp stem cells (hDPSCs) are ideal candidates for regenerating damaged dental tissue. To examine the possibility that hDPSCs may be used to regenerate pulp, we tested their in vitro effects on acute allogeneic immune responses. A peripheral blood mononuclear cell (PBMC) proliferation assay and immunoglobulin (Ig) production assay were performed to evaluate the immunosuppressive properties of hDPSCs. The mixed lymphocyte reaction was suppressed by incubation with hDPSCs. Transforming growth factor beta (TGF-β) was the major soluble factor responsible for inhibiting the allogeneic proliferation of PBMCs. The production of IgM and IgG by allogeneic activation of responder B lymphocytes was also completely abrogated by TGF-β released from hDPSCs via interferon gamma in response to activation of the responder T lymphocytes. hDPSCs inhibit acute allogeneic immune responses by their release of TGF-β as a result of allogeneic stimulation of T lymphocytes. This study provides an insight into the potential clinical use of hDPSCs for allogeneic transplantation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Gyanesh, E-mail: joshig@icfre.org; Naithani, Sanjay; Varshney, V.K.
2015-04-15
Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50%more » deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH{sub 2}COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH{sub 2}COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product.« less
Chutani, Preeti; Sharma, Krishna Kant
2016-05-01
Sixty fungal cultures were isolated from agricultural soil, industrial soil, forest canopy soil having decomposed leaf litter and compost samples collected from different regions of India. Fifteen fungal cultures were selected qualitatively for the production of xylanase and cellulases and were identified employing ITS, NS and MNS primers. The enzyme cocktail consisting of 3811 IU g(-1) of xylanase and 9.9 IU g(-1) of cellulase from Trichoderma longibrachiatum MDU-6 was selected quantitatively for the deinking of diverse paper wastes. The enzyme production increased two fold when produced at tray level in comparison with flasks. The enzyme cocktail was effective in the deinking of old newspaper samples with significant removal of chromophores, phenolics and hydrophobic compounds and less sugar loss. While in case of examination papers and laser printed papers, ink removal was not very significant. Moreover, the sugar loss was significantly high in case of examination papers. The deinking results were further confirmed with FTIR analysis. Deinked newspaper pulp sample shows brightness of 52%, which was 9.6% high than its control sample. The ERIC value for deinked newspaper pulp was found to be 655.9 ppm. Thereafter, the deinked newspaper pulp was examined under light microscope after differential staining with safranin and malachite green and also examined under scanning and transmission electron microscope, which revealed fibrillation and perforation.
NASA Astrophysics Data System (ADS)
Kilulya, K. F.; Msagati, T. A. M.; Mamba, B. B.; Ngila, J. C.; Bush, T.
Pulping industries are increasing worldwide as a result of the increase in the demand for pulp for cellulose derivatives and paper manufacturing. Due to the activities involved in pulping processes, different chemicals from raw materials (wood) and bleaching agents are released in pulp-mill effluent streams discharged into the environment and find their way into water bodies. Large quantities of water and chemicals used in pulping result in large amounts of wastewater with high concentrations of extractives such as unsaturated fatty acids, which are known to be toxic, and plant sterols which affect the development, growth and reproduction of aquatic organisms. This study was aimed at assessing the composition of extractives in two eucalyptus species used for pulp production in South Africa, in order to identify the suitable species with regard to extractive content. Samples from two eucalyptus plant species (Eucalyptus grandis and Eucalyptus dunnii) were collected from three sites and analysed for extractives by first extracting with water, followed by Soxhlet extraction using acetone. Compounds were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Major classes of extractives identified were fatty acids (mainly hexadecanoic acid, 9,12-octadecadienoic, 9-octadecenoic and octadecanoic acids) and sterols (mainly β-sitosterol and stigmastanol). E. dunnii was found to contain higher amounts of the compounds compared to those found in E. grandis in all sampled sites. Principal component analysis (PCA) was performed and explained 92.9% of the total variation using three principal components. It was revealed that the percentage of fatty acids, which has a negative influence on both principal components 2 and 3, was responsible for the difference between the species. E. grandis, which was found to contain low amounts of extractives, was therefore found suitable for pulping with regard to minimal water usage and environment pollution.
Pulpwood Chip Productions and Markets in the Lake States
Eugene W. Fobes
1966-01-01
As a major pulp and paper production area, the Lake States is a potential market for pulpwood chips. As a producer of solid wood products, it has a considerable potential for the production of pulpwood chips from coarse sawmill residues (slabs, edgings, and trim) and other sources. Only a small amount of the available residues, however, is now being utilized. In...
Timber products output and timber harvests in Alaska: projections for 1989-2010.
David J. Brooks; Richard W. Haynes
1990-01-01
Projections of Alaska timber products output and timber harvest by owner were developed by using a detailed, trend-based analysis. Historical data for 1965-88 were the basis for projections for 1989-2010. Projections of timber products output for each major product (export logs, sawn wood, and market pulp) were used to compute the derived demand for timber. The...
Hoffman, Emma; Bernier, Meagan; Blotnicky, Brenden; Golden, Peter G; Janes, Jeffrey; Kader, Allison; Kovacs-Da Costa, Rachel; Pettipas, Shauna; Vermeulen, Sarah; Walker, Tony R
2015-12-01
Communities across Canada rely heavily on natural resources for their livelihoods. One such community in Pictou County, Nova Scotia, has both benefited and suffered, because of its proximity to a pulp and paper mill (currently owned by Northern Pulp). Since production began in 1967, there have been increasing impacts to the local environment and human health. Environmental reports funded by the mill were reviewed and compared against provincial and federal regulatory compliance standards. Reports contrasted starkly to societal perceptions of local impacts and independent studies. Most environmental monitoring reports funded by the mill indicate some levels of compliance in atmospheric and effluent emissions, but when compliance targets were not met, there was a lack of regulatory enforcement. After decades of local pollution impacts and lack of environmental compliance, corporate social responsibility initiatives need implementing for the mill to maintain its social licence to operate.
Acousto-Optical Evaluation Of Fiber Size In Wood Pulp
NASA Astrophysics Data System (ADS)
Dion, J. L.; Garceau, J. J.; Morissette, J. C.
1986-10-01
In the pulp and paper industry, the problem of regular and fast evaluation of wood fiber characteristics such as length and specific area is an important one. With this in view, we have been studying an acousto-optical technique based on the acoustic agglomeration of fibers in a water suspension, where a stationary ultrasonic field is created at about 150 kHz. Under the influence of radiation forces, fibers re-orient themselves parallel to the nodal planes of acoustic pressure, and regroup or agglomerate in these planes in different characteristic times. These are mesured by means of the light scattered at small angles. We have found that these times depend on the size distribution of fibers, particularly length. We present results obtained with an assortment of fiber types, under various experimental conditions which indicate eventual applications in the automatic control of pulp production.
High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp.
Pugh, George; Zaidel, Lynette; Lin, Nora; Stranick, Michael; Bagley, Daniel
2005-01-01
Limited data are available to assess the safety of high levels of hydrogen peroxide in overnight tooth-whitening formulas. The purpose of this study was to assess the effects of hydrogen peroxide on enamel microhardness, pulp penetration, and enamel morphology. Colgate Platinum Professional Overnight Whitening System (Colgate Oral Pharmaceuticals, Inc., Canton, MA, USA) (10% carbamide peroxide, equivalent to 3.5% hydrogen peroxide) was compared with two prototype formulations containing either 7.0% or 12.0% hydrogen peroxide. In the pulp chamber studies, human extracted teeth were exposed to 3.5%, 7.0%, or 12.0% hydrogen peroxide for 30 minutes, 4 hours, or 7 hours. Microhardness, electron spectroscopy for chemical analysis, and atomic force microscopy evaluations were made from enamel blocks cut from human extracted molars. The enamel blocks were evaluated following 14 7-hour treatments (98 h total). At 7 hours' post-treatment, hydrogen peroxide penetrated the pulp chamber at 23.12 +/- 10.09, 24.58 +/- 6.90, and 26.39 +/- 5.43 microg for 3.5%, 7.0%, and 12.0% hydrogen peroxide, respectively. With regard to enamel morphology, pulp penetration, microhardness, and elemental composition, no statistically significant differences were observed between treatment groups following 98 hours of treatment. Hydrogen peroxide does not adversely affect enamel morphology or microhardness. The levels recovered in pulp indicate that hydrogen peroxide is not expected to inhibit pulpal enzymes. Overnight tray products containing levels of hydrogen peroxide of 3.5%, 7.0%, and 12.0% are not expected to adversely affect the enamel or pulpal enzymes. Additional safety studies are needed to assess the potential for tooth sensitivity and gingival irritation.
Expression profiles of a MhCTR1 gene in relation to banana fruit ripening.
Hu, Huei-Lin; Do, Yi-Yin; Huang, Pung-Ling
2012-07-01
The banana (Musa spp.) is a typical climacteric fruit of high economic importance. The development of bananas from maturing to ripening is characterized by increased ethylene production accompanied by a respiration burst. To elucidate the signal transduction pathway involved in the ethylene regulation of banana ripening, a gene homologous to Arabidopsis CTR1 (constitutive triple response 1) was isolated from Musa spp. (Hsien Jin Chiao, AAA group) and designated as MhCTR1. MhCTR1 spans 11.5 kilobases and consists of 15 exons and 14 introns with consensus GT-AG nucleotides situated at their boundaries. MhCTR1 encodes a polypeptide of 805 amino acid residues with a calculated molecular weight of 88.6 kDa. The deduced amino acid sequence of MhCTR1 demonstrates 55%, 56% and 55% homology to AtCTR1, RhCTR1, and LeCTR1, respectively. MhCTR1 is expressed mostly in the mature green pulp and root organs. During fruit development MhCTR1 expression increases just before ethylene production rises. Moreover, MhCTR1 expression was detected mainly in the pulps at ripening stage 3, and correlated with the onset of peel yellowing, while MhCTR1 was constitutively expressed in the peels. MhCTR1 expression could be induced by ethylene treatment (0.01 μL L(-1)), and MhCTR1 expression decreased in both peel and pulp 24 h after treatment. Overall, changes observed in MhCTR1 expression in the pulp closely related to the regulation of the banana ripening process. Copyright © 2012. Published by Elsevier Masson SAS.
Physicochemical and functional properties of peeled and unpeeled pumpkin flour.
Noor Aziah, A A; Komathi, C A
2009-09-01
This study was intended to investigate the potential of peeled and unpeeled pumpkin pulp as a raw material for the production of flour that could be used in composite blend with wheat flour or as a functional ingredient in food products. The peeled and unpeeled pumpkin pulp were soaked in sodium metabisulphite solution, sliced and dried overnight in a hot air oven, followed by milling into peeled pumpkin pulp flour (PPPF) and unpeeled pumpkin pulp flour (UPPF), respectively. The flours were then evaluated for physicochemical attributes (color, proximate compositions, and water activity) and functional properties (water holding capacity and oil holding capacity), in comparison to the commercial wheat flour. PPPF and UPPF were observed to be more attractive in terms of color than wheat flour, as indicated by the significantly higher results (P
Southern pulpwood production, 1979
Thomas R. Bellamy; Cecil C. Hutchins
1979-01-01
Pulpwood production in the South rose a modest 7 percent in 1979 to 54 million cords. Of the increase, 55 percent was from roundwood and 45 percent was from plant byproducts. Pulping capacity of the 115 mills in the South also rose 7 percent to over 110,000 tons per day.
Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer
2015-08-01
The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.
Economic Report of the President
2001-01-01
and include an assessment of overall benefits, costs, and risks . The most effective fiscal strategy to prepare for the future is to pursue...biotechnology regulation. These include analyses of the assessment and monitoring of environmental risks and a broad review of available evidence on human...commodities—Continued Rubber and plastic products Lumber and wood products Pulp , paper , and allied products Metals
Louisiana forest industries: 1946-1971
P. Irland
1973-01-01
Louisiana is a prominent supplier of forest products to the nation. In 1971, it was the third leading state in output of softwood plywood, third in pulp production, and third in paper and paperboard. Louisiana ranked tenth in production of hardwood lumber, and thirteenth in all lumber. This article describes development of forest industries in the state since World War...
Min, Byeong Cheol; Ramarao, Bandaru V
2017-06-01
Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40-60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme-calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme-calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.
Bonilla-Hermosa, Verónica Alejandra; Duarte, Whasley Ferreira; Schwan, Rosane Freitas
2014-08-01
The semi-dry processing of coffee generates significant amounts of coffee pulp and wastewater. This study evaluated the production of bioethanol and volatile compounds of eight yeast strains cultivated in a mixture of these residues. Hanseniaspora uvarum UFLA CAF76 showed the best fermentation performance; hence it was selected to evaluate different culture medium compositions and inoculum size. The best results were obtained with 12% w/v of coffee pulp, 1 g/L of yeast extract and 0.3 g/L of inoculum. Using these conditions, fermentation in 1 L of medium was carried out, achieving higher ethanol yield, productivity and efficiency with values of 0.48 g/g, 0.55 g/L h and 94.11% respectively. Twenty-one volatile compounds corresponding to higher alcohols, acetates, terpenes, aldehydes and volatile acids were identified by GC-FID. Such results indicate that coffee residues show an excellent potential as substrates for production of value-added compounds. H. uvarum demonstrated high fermentative capacity using these residues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kitamura, Chiaki; Nishihara, Tatsuji; Terashita, Masamichi; Tabata, Yasuhiko; Washio, Ayako
2012-01-01
Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to amputated dental pulp. PMID:22174717
Microbially driven export of labile organic carbon from the Greenland ice sheet
NASA Astrophysics Data System (ADS)
Musilova, Michaela; Tranter, Martyn; Wadham, Jemma; Telling, Jon; Tedstone, Andrew; Anesio, Alexandre M.
2017-04-01
Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland ice sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater. Further, we determined that freely available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities are the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces, and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.
Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulin Deng; Art Ragauskas
Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The secondmore » method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.« less
Estrogenicity of sugar beet by-products used as animal feeds
USDA-ARS?s Scientific Manuscript database
A veterinarian observed a reduction in embryo transfer success rates on beef and dairy farms in Minnesota, which were both feeding sugar beet by-products. Beet tailings and pelleted post-extraction beet pulp, associated with the affected farms were analyzed for estrogenicity by E-Screen (proliferati...
Southern pulpwood production, 1974
Daniel F. Bertelson
1975-01-01
Southern pulpwood production in 1974 reached a record high of 49,102,144 cords, a 4-percent increase over the previous year. Daily pulping capacity at the 114 southern pulpmills rose 3 per- cent to 94,982 tons; the increase resulted from expansion of existing facilities and the opening of three new mills.
Wei, L; Liu, M; Xiong, H; Peng, B
2017-11-06
To investigate the effects of the pro-inflammatory and Th17-polarizing mediator IL-17 on HDPFs-mediated IL-23 production and the molecular mechanism involved. Interleukin (IL)-17R expression was determined by semi-quantitative reverse transcriptase-polymerase chain reaction and Western blot in cultured human dental pulp fibroblasts (HDPFs). Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay were used to determine IL-23 mRNA and protein levels in IL-17-stimulated HDPFs, respectively. The nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signalling pathways that mediate the IL-17-stimulated production of IL-23 was investigated using Western blot and specific signalling inhibitor analyses. Statistical analyses were performed using Kruskal-Wallis tests followed by the Mann-Whitney U-test. Statistical significance was considered when the P value < 0.05. Primary HDPFs steadily expressed IL-17R mRNA and surface-bound protein. IL-17 stimulated the expression of IL-23 mRNA and protein in cultured human dental pulp fibroblasts, which was attenuated by IL-17 or IL-17R neutralizing antibodies. In accordance with the enhanced expression of IL-23, IL-17 stimulation resulted in rapid activation of p38 MAPK, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK) and NF-κB in HDPFs. Inhibitors of p38 MAPK, ERK 1/2 or NF-κB significantly suppressed, whereas blocking JNK substantially augmented IL-23 production from IL-17-stimulated HDPFs. HDPFs expressed IL-17R and responded to IL-17 to produce IL-23 via the activation of the NF-κB and MAPK signalling pathways. The findings provide insights into the cellular mechanisms of the participation of IL-17 in the activation of HDPFs in inflamed pulp tissue. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Low Temperature Soda-Oxygen Pulping of Bagasse.
Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang
2016-01-13
Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.
40 CFR 430.10 - Applicability; description of the dissolving kraft subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dissolving kraft subcategory. 430.10 Section 430.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Dissolving Kraft Subcategory § 430.10 Applicability; description of the dissolving kraft subcategory. The provisions of this subpart apply to discharges resulting from the production of dissolving...
40 CFR 430.10 - Applicability; description of the dissolving kraft subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dissolving kraft subcategory. 430.10 Section 430.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Dissolving Kraft Subcategory § 430.10 Applicability; description of the dissolving kraft subcategory. The provisions of this subpart apply to discharges resulting from the production of dissolving...
40 CFR 430.10 - Applicability; description of the dissolving kraft subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dissolving kraft subcategory. 430.10 Section 430.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Dissolving Kraft Subcategory § 430.10 Applicability; description of the dissolving kraft subcategory. The provisions of this subpart apply to discharges resulting from the production of dissolving...
40 CFR 430.56 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium... mass limitations are provided as guidance: Subpart E Pollutant or pollutant property Supplemental PSES...
40 CFR 430.56 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium... mass limitations are provided as guidance: Subpart E Pollutant or pollutant property Supplemental PSES...
Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration
Hu, Lei; Gao, Zhenhua; Zhu, Zhao; Zhang, Chunmei; Wang, Jinsong
2017-01-01
Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases. PMID:29387727
The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.
NASA Astrophysics Data System (ADS)
Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.
2017-10-01
Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.
Uranium chloride extraction of transuranium elements from LWR fuel
Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.
1992-08-25
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.
Uranium chloride extraction of transuranium elements from LWR fuel
Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.
Liu, Y; Wang, S N; Cui, C Y; Dong, Y M
2017-04-18
Positive effects of bioactive glass (BG) on proliferation, mineralization, and differentiation of human dental pulp cells (hDPCs) was already verified in various former studies. The Arg-Gly-Asp-Ser sequence (RGDS) was confirmed of affecting cell adhesion. Before further investigation, the objective of this study is to investigate whether RGDS can affect the effects of BG on the adhesion, proliferation and mineralization of hDPCs. hDPCs were harvested from third molars of 18-25-year-old individuals after informed consent. Enzyme digestion technique was used. The 4th to 6th generation of hDPCs were used for all experiments. The cells of the experimental groups were cultured in Dulbecco minimum essential medium (DMEM) containing ionic dissolution products of BG and RGDS of several concentrations (12.5 mg/L, 25.0 mg/L, 50.0 mg/L, 100.0 mg/L, 200.0 mg/L). DMEM containing ionic dissolution products of BG without RGDS was used for cell culture as control group. Cell adhesion was tested 4 h after cell seeding by MTT assay. Cell proliferation was examined at 1, 3, 5, 7, and 9 d after cell seeding by MTT assay. Cell mineralization was investigated on days 14 and 28 by alizarin red staining. After being stained and dried, mineralized nodules were dissolved by cetylpyridinium chloride (CPC) for semi-quantitative test. Results were statistically analyzed by one way ANOVA, SPSS (version 19.0) and P<0.05 was considered to be significant. Cell adhesion in BG group showed no difference from that in DMEM group. Compared with BG group, hDPCs in BG+RGDS groups suggested weaker cell adhesion.When the concentration of RGDS increased, the adhered cell number decreased. hDPCs cultured with BG and RGDS showed lower proliferation activity in the early stage, while no significant difference was observed after 3 d. BG group promoted the mineralization of hDPCs compared with positive control group, negative control group and RGDS group. No significant difference was observed between BG+RGDS group and BG group or between RGDS group and positive control group. BG promotes proliferation and mineralization without affecting cell adhesion of hDPCs. Unbounded RGDS inhibits cell adhesion, but has no influence on the positive effects of BG on the proliferation and mineralization of hDPCs.
Lignor process for acidic rock drainage treatment.
Zhuang, J M; Walsh, T
2004-09-01
The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the dotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 - 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.
7 CFR 319.73-2 - Products prohibited importation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the fungus Hemileia vastatrix (Berkely and Broome), which causes an injurious rust disease, the..., seeds of all kinds when in pulp, including coffee berries or fruits, are prohibited importation into all...
ERIC Educational Resources Information Center
Morrison, David L.; And Others
1982-01-01
Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)
Code of Federal Regulations, 2010 CFR
2010-04-01
... exclusive of pulp). Pure dry sugar may be used for sweetening. After complete fermentation or complete fermentation and sweetening, the finished product may not have a total solids content that exceeds 35 degrees...
Ertl, P; Zebeli, Q; Zollitsch, W; Knaus, W
2016-02-01
Besides the widely discussed negative environmental effects of dairy production, such as greenhouse gas emissions, the feeding of large amounts of potentially human-edible feedstuffs to dairy cows is another important sustainability concern. The aim of this study was therefore to investigate the effects of a complete substitution of common cereal grains and pulses with a mixture of wheat bran and sugar beet pulp in a high-forage diet on cow performance, production efficiency, feed intake, and ruminating behavior, as well as on net food production potential. Thirteen multiparous and 7 primiparous mid-lactation Holstein dairy cows were randomly assigned to 1 of 2 treatments in a change-over design with 7-wk periods. Cows were fed a high-forage diet (grass silage and hay accounted for 75% of the dry matter intake), supplemented with either a cereal grain-based concentrate mixture (CON), or a mixture of wheat bran and dried sugar beet pulp (WBBP). Human-edible inputs were calculated for 2 different scenarios based on minimum and maximum potential recovery rates of human-edible energy and protein from the respective feedstuffs. Dietary starch and neutral detergent fiber contents were 3.0 and 44.1% for WBBP, compared with 10.8 and 38.2% in CON, respectively. Dietary treatment did not affect milk production, milk composition, feed intake, or total chewing activity. However, chewing index expressed in minutes per kilogram of neutral detergent fiber ingested was 12% lower in WBBP compared with CON. In comparison to CON, the human-edible feed conversion efficiencies for energy and protein, defined as human-edible output per human-edible input, were 6.8 and 5.3 times higher, respectively, in WBBP under the maximum scenario. For the maximum scenario, the daily net food production (human-edible output minus human-edible input) increased from 5.4 MJ and 250 g of crude protein per cow in CON to 61.5 MJ and 630 g of crude protein in the WBBP diet. In conclusion, our data suggest that in forage-based dairy production systems, wheat bran and sugar beet pulp could replace common cereal grains in mid-lactation dairy cows without impairing performance, while strongly increasing human-edible feed conversion efficiency and net food production index. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A Review on Vital Pulp Therapy in Primary Teeth
Parisay, Iman; Ghoddusi, Jamileh; Forghani, Maryam
2015-01-01
Maintaining deciduous teeth in function until their natural exfoliation is absolutely necessary. Vital pulp therapy (VPT) is a way of saving deciduous teeth. The most important factors in success of VPT are the early diagnosis of pulp and periradicular status, preservation of the pulp vitality and proper vascularization of the pulp. Development of new biomaterials with suitable biocompatibility and seal has changed the attitudes towards preserving the reversible pulp in cariously exposed teeth. Before exposure and irreversible involvement of the pulp, indirect pulp capping (IPC) is the treatment of choice, but after the spread of inflammation within the pulp chamber and establishment of irreversible pulpitis, removal of inflamed pulp tissue is recommended. In this review, new concepts in preservation of the healthy pulp tissue in deciduous teeth and induction of the reparative dentin formation with new biomaterials instead of devitalization and the consequent destruction of vital tissues are discussed. PMID:25598803
Effect of Residual Lignin Type and Amount on Bleaching of Kraft Pulp by Trametes versicolor
Reid, Ian D.; Paice, Michael G.
1994-01-01
The white rot fungus Trametes (Coriolus) versicolor can delignify and brighten unbleached hardwood kraft pulp within a few days, but softwood kraft pulps require longer treatment. To determine the contributions of higher residual lignin contents (kappa numbers) and structural differences in lignins to the recalcitrance of softwood kraft pulps to biobleaching, we tested softwood and hardwood pulps cooked to the same kappa numbers, 26 and 12. A low-lignin-content (overcooked) softwood pulp resisted delignification by T. versicolor, but a high-lignin-content (lightly cooked) hardwood pulp was delignified at the same rate as a normal softwood pulp. Thus, the longer time taken by T. versicolor to brighten softwood kraft pulp than hardwood pulp results from the higher residual lignin content of the softwood pulp; possible differences in the structures of the residual lignins are important only when the lignin becomes highly condensed. Under the conditions used in this study, when an improved fungal inoculum was used, six different softwood pulps were all substantially brightened by T. versicolor. Softwood pulps whose lignin contents were decreased by extended modified continuous cooking or oxygen delignification to kappa numbers as low as 15 were delignified by T. versicolor at the same rate as normal softwood pulp. More intensive O2 delignification, like overcooking, decreased the susceptibility of the residual lignin in the pulps to degradation by T. versicolor. PMID:16349246
2009 Wood and Fiber Product Seminar : VTT and USDA joint activity
Ali Harlin; Minna Vikman
2010-01-01
Foward -- The development of high-value wood and fiber products is one of the most important challenges currently facing the forest industry. Traditional pulp and paper products are on a critical path in developed countries with prices and markets decreasing. Finland and the USA have faced the same problem, which is a fundamental reason for Industrial Biomaterials...
California’s forest products industry and timber harvest, 2006
Todd A. Morgan; Jason P. Brandt; Kathleen E. Songster; Charles E. Keegan; Glenn A. Christensen
2012-01-01
This report traces the flow of Californiaâs 2006 timber harvest through the primary wood products industry (i.e., firms that process timber into manufactured products such as lumber, as well as facilities such as pulp mills and particleboard plants, which use the wood fiber or mill residue directly from timber processors) and provides a description of the structure,...
Using low-grade hardwoods for CLT production: a yield analysis
R. Edward Thomas; Urs Buehlmann
2017-01-01
Low-grade hardwood logs are the by-product of logging operations and, more frequently today, urban tree removals. The market prices for these logs is low, as is the value recovered from their logs when producing traditional forest products such as pallet parts, railroad ties, landscaping mulch, or chips for pulp. However, the emergence of cross-laminated timber (CLT)...