Sample records for distance function wavelets

  1. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  2. Wavelet transform analysis of dynamic speckle patterns texture

    NASA Astrophysics Data System (ADS)

    Limia, Margarita Fernandez; Nunez, Adriana Mavilio; Rabal, Hector; Trivi, Marcelo

    2002-11-01

    We propose the use of the wavelet transform to characterize the time evolution of dynamic speckle patterns. We describe it by using as an example a method used for the assessment of the drying of paint. Optimal texture features are determined and the time evolution is described in terms of the Mahalanobis distance to the final (dry) state. From the behavior of this distance function, two parameters are defined that characterize the evolution. Because detailed knowledge of the involved dynamics is not required, the methodology could be implemented for other complex or poorly understood dynamic phenomena.

  3. Privacy Preserving Technique for Euclidean Distance Based Mining Algorithms Using a Wavelet Related Transform

    NASA Astrophysics Data System (ADS)

    Kadampur, Mohammad Ali; D. v. L. N., Somayajulu

    Privacy preserving data mining is an art of knowledge discovery without revealing the sensitive data of the data set. In this paper a data transformation technique using wavelets is presented for privacy preserving data mining. Wavelets use well known energy compaction approach during data transformation and only the high energy coefficients are published to the public domain instead of the actual data proper. It is found that the transformed data preserves the Eucleadian distances and the method can be used in privacy preserving clustering. Wavelets offer the inherent improved time complexity.

  4. A user's guide to the ssWavelets package

    Treesearch

    J.H. ​Gove

    2017-01-01

    ssWavelets is an R package that is meant to be used in conjunction with the sampSurf package (Gove, 2012) to perform wavelet decomposition on the results of a sampling surface simulation. In general, the wavelet filter decomposes the sampSurf simulation results by scale (distance), with each scale corresponding to a different level of the...

  5. Exploratory study and application of the angular wavelet analysis for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt structures

    NASA Astrophysics Data System (ADS)

    Muñoz-Gorriz, J.; Monaghan, S.; Cherkaoui, K.; Suñé, J.; Hurley, P. K.; Miranda, E.

    2017-12-01

    The angular wavelet analysis is applied for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt capacitors with areas ranging from 104 to 105 μm2. The breakdown spot lateral sizes are in the range from 1 to 3 μm, and they appear distributed on the top metal electrode as a point pattern. The spots are generated by ramped and constant voltage stresses and are the consequence of microexplosions caused by the formation of shorts spanning the dielectric film. This kind of pattern was analyzed in the past using the conventional spatial analysis tools such as intensity plots, distance histograms, pair correlation function, and nearest neighbours. Here, we show that the wavelet analysis offers an alternative and complementary method for testing whether or not the failure site distribution departs from a complete spatial randomness process in the angular domain. The effect of using different wavelet functions, such as the Haar, Sine, French top hat, Mexican hat, and Morlet, as well as the roles played by the process intensity, the location of the voltage probe, and the aspect ratio of the device, are all discussed.

  6. Content Based Image Retrieval based on Wavelet Transform coefficients distribution

    PubMed Central

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013

  7. The norms and variances of the Gabor, Morlet and general harmonic wavelet functions

    NASA Astrophysics Data System (ADS)

    Simonovski, I.; Boltežar, M.

    2003-07-01

    This paper deals with certain properties of the continuous wavelet transform and wavelet functions. The norms and the spreads in time and frequency of the common Gabor and Morlet wavelet functions are presented. It is shown that the norm of the Morlet wavelet function does not satisfy the normalization condition and that the normalized Morlet wavelet function is identical to the Gabor wavelet function with the parameter σ=1. The general harmonic wavelet function is developed using frequency modulation of the Hanning and Hamming window functions. Several properties of the general harmonic wavelet function are also presented and compared to the Gabor wavelet function. The time and frequency spreads of the general harmonic wavelet function are only slightly higher than the time and frequency spreads of the Gabor wavelet function. However, the general harmonic wavelet function is simpler to use than the Gabor wavelet function. In addition, the general harmonic wavelet function can be constructed in such a way that the zero average condition is truly satisfied. The average value of the Gabor wavelet function can approach a value of zero but it cannot reach it. When calculating the continuous wavelet transform, errors occur at the start- and the end-time indexes. This is called the edge effect and is caused by the fact that the wavelet transform is calculated from a signal of finite length. In this paper, we propose a method that uses signal mirroring to reduce the errors caused by the edge effect. The success of the proposed method is demonstrated by using a simulated signal.

  8. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan

    NASA Astrophysics Data System (ADS)

    Reddy, Ramakrushna; Nair, Rajesh R.

    2013-10-01

    This work deals with a methodology applied to seismic early warning systems which are designed to provide real-time estimation of the magnitude of an event. We will reappraise the work of Simons et al. (2006), who on the basis of wavelet approach predicted a magnitude error of ±1. We will verify and improve upon the methodology of Simons et al. (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source-receiver distance of up to 150 km during the period 1998-2011. We applied a wavelet transform on the seismogram data and calculating scale-dependent threshold wavelet coefficients. These coefficients were then classified into low magnitude and high magnitude events by constructing a maximum margin hyperplane between the two classes, which forms the essence of SVMs. Further, the classified events from both the classes were picked up and linear regressions were plotted to determine the relationship between wavelet coefficient magnitude and earthquake magnitude, which in turn helped us to estimate the earthquake magnitude of an event given its threshold wavelet coefficient. At wavelet scale number 7, we predicted the earthquake magnitude of an event within 2.7 seconds. This means that a magnitude determination is available within 2.7 s after the initial onset of the P-wave. These results shed light on the application of SVM as a way to choose the optimal regression function to estimate the magnitude from a few seconds of an incoming seismogram. This would improve the approaches from Simons et al. (2006) which use an average of the two regression functions to estimate the magnitude.

  9. The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppeliers, Christian

    This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In thismore » report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.« less

  10. Multiresolution Distance Volumes for Progressive Surface Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, D E; Bertram, M; Duchaineau, M A

    2002-04-18

    We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less

  11. Characterizing scale- and location-dependent correlation of water retention parameters with soil physical properties using wavelet techniques.

    PubMed

    Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng

    2008-01-01

    Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions.

  12. Photoacoustic signals denoising of the glucose aqueous solutions using an improved wavelet threshold method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Xiong, Zhihua

    2016-10-01

    The photoacoustic signals denoising of glucose is one of most important steps in the quality identification of the fruit because the real-time photoacoustic singals of glucose are easily interfered by all kinds of noises. To remove the noises and some useless information, an improved wavelet threshld function were proposed. Compared with the traditional wavelet hard and soft threshold functions, the improved wavelet threshold function can overcome the pseudo-oscillation effect of the denoised photoacoustic signals due to the continuity of the improved wavelet threshold function, and the error between the denoised signals and the original signals can be decreased. To validate the feasibility of the improved wavelet threshold function denoising, the denoising simulation experiments based on MATLAB programmimg were performed. In the simulation experiments, the standard test signal was used, and three different denoising methods were used and compared with the improved wavelet threshold function. The signal-to-noise ratio (SNR) and the root-mean-square error (RMSE) values were used to evaluate the performance of the improved wavelet threshold function denoising. The experimental results demonstrate that the SNR value of the improved wavelet threshold function is largest and the RMSE value is lest, which fully verifies that the improved wavelet threshold function denoising is feasible. Finally, the improved wavelet threshold function denoising was used to remove the noises of the photoacoustic signals of the glucose solutions. The denoising effect is also very good. Therefore, the improved wavelet threshold function denoising proposed by this paper, has a potential value in the field of denoising for the photoacoustic singals.

  13. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.

    PubMed

    Kupas, Katrin; Ultsch, Alfred; Klebe, Gerhard

    2008-05-15

    A new method to discover similar substructures in protein binding pockets, independently of sequence and folding patterns or secondary structure elements, is introduced. The solvent-accessible surface of a binding pocket, automatically detected as a depression on the protein surface, is divided into a set of surface patches. Each surface patch is characterized by its shape as well as by its physicochemical characteristics. Wavelets defined on surfaces are used for the description of the shape, as they have the great advantage of allowing a comparison at different resolutions. The number of coefficients to describe the wavelets can be chosen with respect to the size of the considered data set. The physicochemical characteristics of the patches are described by the assignment of the exposed amino acid residues to one or more of five different properties determinant for molecular recognition. A self-organizing neural network is used to project the high-dimensional feature vectors onto a two-dimensional layer of neurons, called a map. To find similarities between the binding pockets, in both geometrical and physicochemical features, a clustering of the projected feature vector is performed using an automatic distance- and density-based clustering algorithm. The method was validated with a small training data set of 109 binding cavities originating from a set of enzymes covering 12 different EC numbers. A second test data set of 1378 binding cavities, extracted from enzymes of 13 different EC numbers, was then used to prove the discriminating power of the algorithm and to demonstrate its applicability to large scale analyses. In all cases, members of the data set with the same EC number were placed into coherent regions on the map, with small distances between them. Different EC numbers are separated by large distances between the feature vectors. A third data set comprising three subfamilies of endopeptidases is used to demonstrate the ability of the algorithm to detect similar substructures between functionally related active sites. The algorithm can also be used to predict the function of novel proteins not considered in training data set. 2007 Wiley-Liss, Inc.

  14. Using Wavelet Bases to Separate Scales in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Michlin, Tracie L.

    This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.

  15. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  16. Wavelets and distributed approximating functionals

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Kouri, D. J.; Hoffman, D. K.

    1998-07-01

    A general procedure is proposed for constructing father and mother wavelets that have excellent time-frequency localization and can be used to generate entire wavelet families for use as wavelet transforms. One interesting feature of our father wavelets (scaling functions) is that they belong to a class of generalized delta sequences, which we refer to as distributed approximating functionals (DAFs). We indicate this by the notation wavelet-DAFs. Correspondingly, the mother wavelets generated from these wavelet-DAFs are appropriately called DAF-wavelets. Wavelet-DAFs can be regarded as providing a pointwise (localized) spectral method, which furnishes a bridge between the traditional global methods and local methods for solving partial differential equations. They are shown to provide extremely accurate numerical solutions for a number of nonlinear partial differential equations, including the Korteweg-de Vries (KdV) equation, for which a previous method has encountered difficulties (J. Comput. Phys. 132 (1997) 233).

  17. A human auditory tuning curves matched wavelet function.

    PubMed

    Abolhassani, Mohammad D; Salimpour, Yousef

    2008-01-01

    This paper proposes a new quantitative approach to the problem of matching a wavelet function to a human auditory tuning curves. The auditory filter shapes were derived from the psychophysical measurements in normal-hearing listeners using the variant of the notched-noise method for brief signals in forward and simultaneous masking. These filters were used as templates for the designing a wavelet function that has the maximum matching to a tuning curve. The scaling function was calculated from the matched wavelet function and by using these functions, low pass and high pass filters were derived for the implementation of a filter bank. Therefore, new wavelet families were derived.

  18. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  19. Synthesis of wavelet envelope in 2-D random media having power-law spectra: comparison with FD simulations

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Fehler, Michael C.

    2016-10-01

    The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the centre wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the centre wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε = 0.05, correlation scale a = 5 km and the background wave velocity V0 = 4 km s-1. We use the radiation of a 2 Hz Ricker wavelet from a point source. For all the cases of von Kármán order κ = 0.1, 0.5 and 1, we find the synthetic wavelet envelopes are a good match to the characteristics of FD simulation wavelet envelopes in a time window starting from the onset through the maximum peak to the time when the amplitude decreases to half the peak amplitude.

  20. Time-dependent vibrational spectral analysis of first principles trajectory of methylamine with wavelet transform.

    PubMed

    Biswas, Sohag; Mallik, Bhabani S

    2017-04-12

    The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.

  1. Wavelet methodology to improve single unit isolation in primary motor cortex cells

    PubMed Central

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A.

    2016-01-01

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein’s unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  2. Discrete wavelet approach to multifractality

    NASA Astrophysics Data System (ADS)

    Isaacson, Susana I.; Gabbanelli, Susana C.; Busch, Jorge R.

    2000-12-01

    The use of wavelet techniques for the multifractal analysis generalizes the box counting approach, and in addition provides information on eventual deviations of multifractal behavior. By the introduction of a wavelet partition function Wq and its corresponding free energy (beta) (q), the discrepancies between (beta) (q) and the multifractal free energy r(q) are shown to be indicative of these deviations. We study with Daubechies wavelets (D4) some 1D examples previously treated with Haar wavelets, and we apply the same ideas to some 2D Monte Carlo configurations, that simulate a solution under the action of an attractive potential. In this last case, we study the influence in the multifractal spectra and partition functions of four physical parameters: the intensity of the pairwise potential, the temperature, the range of the model potential, and the concentration of the solution. The wavelet partition function Wq carries more information about the cluster statistics than the multifractal partition function Zq, and the location of its peaks contributes to the determination of characteristic sales of the measure. In our experiences, the information provided by Daubechies wavelet sis slightly more accurate than the one obtained by Haar wavelets.

  3. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    PubMed

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. Copyright © 2014. Published by Elsevier Inc.

  4. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series

    PubMed Central

    Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.

    2014-01-01

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. PMID:24657353

  5. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  6. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  7. Wavelet analysis techniques applied to removing varying spectroscopic background in calibration model for pear sugar content

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping

    2005-11-01

    A new method is proposed to eliminate the varying background and noise simultaneously for multivariate calibration of Fourier transform near infrared (FT-NIR) spectral signals. An ideal spectrum signal prototype was constructed based on the FT-NIR spectrum of fruit sugar content measurement. The performances of wavelet based threshold de-noising approaches via different combinations of wavelet base functions were compared. Three families of wavelet base function (Daubechies, Symlets and Coiflets) were applied to estimate the performance of those wavelet bases and threshold selection rules by a series of experiments. The experimental results show that the best de-noising performance is reached via the combinations of Daubechies 4 or Symlet 4 wavelet base function. Based on the optimization parameter, wavelet regression models for sugar content of pear were also developed and result in a smaller prediction error than a traditional Partial Least Squares Regression (PLSR) mode.

  8. Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction

    NASA Astrophysics Data System (ADS)

    Rizal Isnanto, R.

    2015-06-01

    Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)

  9. Wavelets and the squeezed states of quantum optics

    NASA Technical Reports Server (NTRS)

    Defacio, B.

    1992-01-01

    Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.

  10. Wavelet methodology to improve single unit isolation in primary motor cortex cells.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2015-05-15

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. Copyright © 2015. Published by Elsevier B.V.

  11. Design of almost symmetric orthogonal wavelet filter bank via direct optimization.

    PubMed

    Murugesan, Selvaraaju; Tay, David B H

    2012-05-01

    It is a well-known fact that (compact-support) dyadic wavelets [based on the two channel filter banks (FBs)] cannot be simultaneously orthogonal and symmetric. Although orthogonal wavelets have the energy preservation property, biorthogonal wavelets are preferred in image processing applications because of their symmetric property. In this paper, a novel method is presented for the design of almost symmetric orthogonal wavelet FB. Orthogonality is structurally imposed by using the unnormalized lattice structure, and this leads to an objective function, which is relatively simple to optimize. The designed filters have good frequency response, flat group delay, almost symmetric filter coefficients, and symmetric wavelet function.

  12. An improved real time image detection system for elephant intrusion along the forest border areas.

    PubMed

    Sugumar, S J; Jayaparvathy, R

    2014-01-01

    Human-elephant conflict is a major problem leading to crop damage, human death and injuries caused by elephants, and elephants being killed by humans. In this paper, we propose an automated unsupervised elephant image detection system (EIDS) as a solution to human-elephant conflict in the context of elephant conservation. The elephant's image is captured in the forest border areas and is sent to a base station via an RF network. The received image is decomposed using Haar wavelet to obtain multilevel wavelet coefficients, with which we perform image feature extraction and similarity match between the elephant query image and the database image using image vision algorithms. A GSM message is sent to the forest officials indicating that an elephant has been detected in the forest border and is approaching human habitat. We propose an optimized distance metric to improve the image retrieval time from the database. We compare the optimized distance metric with the popular Euclidean and Manhattan distance methods. The proposed optimized distance metric retrieves more images with lesser retrieval time than the other distance metrics which makes the optimized distance method more efficient and reliable.

  13. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  14. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  15. A wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Yang, Yanxi

    2018-05-01

    We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.

  16. Implementing wavelet inverse-transform processor with surface acoustic wave device.

    PubMed

    Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan

    2013-02-01

    The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Segmentation-based wavelet transform for still-image compression

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.

    1996-10-01

    In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.

  18. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  19. Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahdavi, Seyed Hossein; Razak, Hashim Abdul

    2016-06-01

    This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.

  20. Adaptive Multilinear Tensor Product Wavelets

    DOE PAGES

    Weiss, Kenneth; Lindstrom, Peter

    2015-08-12

    Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how tomore » generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. In conclusion, we focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells.« less

  1. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  2. A de-noising method using the improved wavelet threshold function based on noise variance estimation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao

    2018-01-01

    The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.

  3. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    PubMed

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit quality namely Mango and Guava, and might be applicable to in-line sorting systems. © 2017 Wiley Periodicals, Inc.

  4. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  5. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  6. Peak finding using biorthogonal wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform muchmore » better than the FBI wavelets.« less

  7. Wigner functions from the two-dimensional wavelet group.

    PubMed

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  8. Necessary and sufficient condition for the realization of the complex wavelet

    NASA Astrophysics Data System (ADS)

    Keita, Alpha; Qing, Qianqin; Wang, Nengchao

    1997-04-01

    Wavelet theory is a whole new signal analysis theory in recent years, and the appearance of which is attracting lots of experts in many different fields giving it a deepen study. Wavelet transformation is a new kind of time. Frequency domain analysis method of localization in can-be- realized time domain or frequency domain. It has many perfect characteristics that many other kinds of time frequency domain analysis, such as Gabor transformation or Viginier. For example, it has orthogonality, direction selectivity, variable time-frequency domain resolution ratio, adjustable local support, parsing data in little amount, and so on. All those above make wavelet transformation a very important new tool and method in signal analysis field. Because the calculation of complex wavelet is very difficult, in application, real wavelet function is used. In this paper, we present a necessary and sufficient condition that the real wavelet function can be obtained by the complex wavelet function. This theorem has some significant values in theory. The paper prepares its technique from Hartley transformation, then, it gives the complex wavelet was a signal engineering expert. His Hartley transformation, which also mentioned by Hartley, had been overlooked for about 40 years, for the social production conditions at that time cannot help to show its superiority. Only when it came to the end of 70s and the early 80s, after the development of the fast algorithm of Fourier transformation and the hardware implement to some degree, the completely some positive-negative transforming method was coming to take seriously. W transformation, which mentioned by Zhongde Wang, pushed the studying work of Hartley transformation and its fast algorithm forward. The kernel function of Hartley transformation.

  9. Wavelets on the Group SO(3) and the Sphere S3

    NASA Astrophysics Data System (ADS)

    Bernstein, Swanhild

    2007-09-01

    The construction of wavelets relies on translations and dilations which are perfectly given in R. On the sphere translations can be considered as rotations but it difficult to say what are dilations. For the 2-dimensional sphere there exist two different approaches to obtain wavelets which are worth to be considered. The first concept goes back to Freeden and collaborators [2] which defines wavelets by means of kernels of spherical singular integrals. The other concept developed by Antoine and Vandergheynst and coworkers [3] is a purely group theoretical approach and defines dilations as dilations in the tangent plane. Surprisingly both concepts coincides for zonal functions. We will define wavelets on the 3-dimensional sphere by means of kernels of singular integrals and demonstrate that wavelets constructed by Antoine and Vandergheynst for zonal functions meet our definition.

  10. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  11. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  12. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.

    PubMed

    Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M

    2008-01-01

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving sexual function after surgery. Optical coherence tomography (OCT) of the prostate nerves has recently been studied for potential use in nerve-sparing prostate surgery. In this study, the discrete wavelet transform and complex dual-tree wavelet transform are implemented for wavelet shrinkage denoising in OCT images of the rat prostate. Applying the complex dual-tree wavelet transform provides improved results for speckle noise reduction in the OCT prostate image. Image quality metrics of the cavernous nerves and signal-to-noise ratio (SNR) were improved significantly using this complex wavelet denoising technique.

  13. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.

  14. Wavelet optimization for content-based image retrieval in medical databases.

    PubMed

    Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C

    2010-04-01

    We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.

  15. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    NASA Astrophysics Data System (ADS)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the robustness of WAVDETECT by applying it to an image from an idealized detector with a spatially invariant Gaussian PSF and an exposure map similar to that of the Einstein IPC; to Pleiades Cluster data collected by the ROSAT PSPC; and to simulated Chandra ACIS-I image of the Lockman Hole region.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. W. Ginsberg

    Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The resultsmore » show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.« less

  17. Representation and design of wavelets using unitary circuits

    NASA Astrophysics Data System (ADS)

    Evenbly, Glen; White, Steven R.

    2018-05-01

    The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets.

  18. On the frequency dependence of the otoacoustic emission latency in hypoacoustic and normal ears

    NASA Astrophysics Data System (ADS)

    Sisto, R.; Moleti, A.

    2002-01-01

    Experimental measurements of the otoacoustic emission (OAE) latency of adult subjects have been obtained, as a function of frequency, by means of wavelet time-frequency analysis based on the iterative application of filter banks. The results are in agreement with previous OAE latency measurements by Tognola et al. [Hear. Res. 106, 112-122 (1997)], as regards both the latency values and the frequency dependence, and seem to be incompatible with the steep 1/f law that is predicted by scale-invariant full cochlear models. The latency-frequency relationship has been best fitted to a linear function of the cochlear physical distance, using the Greenwood map, and to an exponential function of the cochlear distance, for comparison with derived band ABR latency measurements. Two sets of ears [94 audiometrically normal and 42 impaired with high-frequency (f>3 kHz) hearing loss] have been separately analyzed. Significantly larger average latencies were found in the impaired ears in the mid-frequency range. Theoretical implications of these findings on the transmission of the traveling wave are discussed.

  19. Iterated oversampled filter banks and wavelet frames

    NASA Astrophysics Data System (ADS)

    Selesnick, Ivan W.; Sendur, Levent

    2000-12-01

    This paper takes up the design of wavelet tight frames that are analogous to Daubechies orthonormal wavelets - that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. The oversampled dyadic DWT considered in this paper is based on a single scaling function and tow distinct wavelets. Having more wavelets than necessary gives a closer spacing between adjacent wavelets within the same scale. As a result, the transform is nearly shift-invariant, and can be used to improve denoising. Because the associated time- frequency lattice preserves the dyadic structure of the critically sampled DWT it can be used with tree-based denoising algorithms that exploit parent-child correlation.

  20. Noncoding sequence classification based on wavelet transform analysis: part II

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez-Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. We hypothesize that the characteristic periodicities of the noncoding sequences are related to their function. We describe the procedure to identify these characteristic periodicities using the wavelet analysis. Our results show that three groups of noncoding sequences, each one with different biological function, may be differentiated by their wavelet coefficients within specific frequency range.

  1. A study of stationarity in time series by using wavelet transform

    NASA Astrophysics Data System (ADS)

    Dghais, Amel Abdoullah Ahmed; Ismail, Mohd Tahir

    2014-07-01

    In this work the core objective is to apply discrete wavelet transform (DWT) functions namely Haar, Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets in non-stationary financial time series data from US stock market (DJIA30). The data consists of 2048 daily data of closing index starting from December 17, 2004 until October 23, 2012. From the unit root test the results show that the data is non stationary in the level. In order to study the stationarity of a time series, the autocorrelation function (ACF) is used. Results indicate that, Haar function is the lowest function to obtain noisy series as compared to Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets. In addition, the original data after decomposition by DWT is less noisy series than decomposition by DWT for return time series.

  2. Post optimization paradigm in maximum 3-satisfiability logic programming

    NASA Astrophysics Data System (ADS)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    Maximum 3-Satisfiability (MAX-3SAT) is a counterpart of the Boolean satisfiability problem that can be treated as a constraint optimization problem. It deals with a conundrum of searching the maximum number of satisfied clauses in a particular 3-SAT formula. This paper presents the implementation of enhanced Hopfield network in hastening the Maximum 3-Satisfiability (MAX-3SAT) logic programming. Four post optimization techniques are investigated, including the Elliot symmetric activation function, Gaussian activation function, Wavelet activation function and Hyperbolic tangent activation function. The performances of these post optimization techniques in accelerating MAX-3SAT logic programming will be discussed in terms of the ratio of maximum satisfied clauses, Hamming distance and the computation time. Dev-C++ was used as the platform for training, testing and validating our proposed techniques. The results depict the Hyperbolic tangent activation function and Elliot symmetric activation function can be used in doing MAX-3SAT logic programming.

  3. The ssWavelets package

    Treesearch

    Jeffrey H. Gove

    2017-01-01

    This package adds several classes, generics and associated methods as well as a few various functions to help with wavelet decomposition of sampling surfaces generated using sampSurf. As such, it can be thought of as an extension to sampSurf for wavelet analysis.

  4. The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations.

    PubMed

    Martini, Romeo; Bagno, Andrea

    2018-04-14

    The wavelet analysis has been applied to the Laser Doppler Fluxmetry for assessing the frequency spectrum of the flowmotion to study the microvascular function waves.Although the application of wavelet analysis has allowed a detailed evaluation of the microvascular function, its use does not seem to be yet widespread over the last two decades.Aiming to improve the diffusion of this methodology, we herein present a systematic review of the literature about the application of the wavelet analysis to the laser Doppler fluxmetry signal. A computer research has been performed on PubMed and Scopus databases from January 1990 to December 2017. The used terms for the investigation have been "wavelet analysis", "wavelet transform analysis", "Morlet wavelet transform" along with the terms "laser Doppler", "laserdoppler" and/or "flowmetry" or "fluxmetry". One hundred and eighteen studies have been found. After the scrutiny, 97 studies reporting data on humans have been selected. Fifty-three studies, 54.0% (95% CI 44.2-63.6) pooled rate, have been performed on 892 healthy subjects and 44, 45,9 % (95% CI 36.3-55.7%) pooled rate have been performed on 1679 patients. No significant difference has been found between the two groups (p 0,81). On average, the number of studies published each year was 4.8 (95% CI 3.4-6.2). The trend of studies production has increased significantly from 1998 to 2017, (p 0.0006). But only the studies on patients have shown a significant increase trend along the years (p 0.0003), than the studies on healthy subjects (p 0.09).In conclusion, this review highlights that despite being a promising and interesting methodology for the study of the microcirculatory function, the wavelet analysis has remained still neglected.

  5. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    NASA Astrophysics Data System (ADS)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  6. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  7. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    NASA Astrophysics Data System (ADS)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  8. Music Tune Restoration Based on a Mother Wavelet Construction

    NASA Astrophysics Data System (ADS)

    Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.

    2017-01-01

    It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.

  9. Identification of speech transients using variable frame rate analysis and wavelet packets.

    PubMed

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  10. Research of generalized wavelet transformations of Haar correctness in remote sensing of the Earth

    NASA Astrophysics Data System (ADS)

    Kazaryan, Maretta; Shakhramanyan, Mihail; Nedkov, Roumen; Richter, Andrey; Borisova, Denitsa; Stankova, Nataliya; Ivanova, Iva; Zaharinova, Mariana

    2017-10-01

    In this paper, Haar's generalized wavelet functions are applied to the problem of ecological monitoring by the method of remote sensing of the Earth. We study generalized Haar wavelet series and suggest the use of Tikhonov's regularization method for investigating them for correctness. In the solution of this problem, an important role is played by classes of functions that were introduced and described in detail by I.M. Sobol for studying multidimensional quadrature formulas and it contains functions with rapidly convergent series of wavelet Haar. A theorem on the stability and uniform convergence of the regularized summation function of the generalized wavelet-Haar series of a function from this class with approximate coefficients is proved. The article also examines the problem of using orthogonal transformations in Earth remote sensing technologies for environmental monitoring. Remote sensing of the Earth allows to receive from spacecrafts information of medium, high spatial resolution and to conduct hyperspectral measurements. Spacecrafts have tens or hundreds of spectral channels. To process the images, the device of discrete orthogonal transforms, and namely, wavelet transforms, was used. The aim of the work is to apply the regularization method in one of the problems associated with remote sensing of the Earth and subsequently to process the satellite images through discrete orthogonal transformations, in particular, generalized Haar wavelet transforms. General methods of research. In this paper, Tikhonov's regularization method, the elements of mathematical analysis, the theory of discrete orthogonal transformations, and methods for decoding of satellite images are used. Scientific novelty. The task of processing of archival satellite snapshots (images), in particular, signal filtering, was investigated from the point of view of an incorrectly posed problem. The regularization parameters for discrete orthogonal transformations were determined.

  11. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    PubMed

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  12. PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang

    2016-11-01

    In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

  13. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  14. Systems for low frequency seismic and infrasound detection of geo-pressure transition zones

    DOEpatents

    Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.

    2007-10-16

    Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.

  15. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  16. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.

    PubMed

    Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan

    2012-01-01

    Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.

  17. Bayesian reconstruction of gravitational wave bursts using chirplets

    NASA Astrophysics Data System (ADS)

    Millhouse, Margaret; Cornish, Neil; Littenberg, Tyson

    2017-01-01

    The BayesWave algorithm has been shown to accurately reconstruct unmodeled short duration gravitational wave bursts and to distinguish between astrophysical signals and transient noise events. BayesWave does this by using a variable number of sine-Gaussian (Morlet) wavelets to reconstruct data in multiple interferometers. While the Morlet wavelets can be summed together to produce any possible waveform, there could be other wavelet functions that improve the performance. Because we expect most astrophysical gravitational wave signals to evolve in frequency, modified Morlet wavelets with linear frequency evolution - called chirplets - may better reconstruct signals with fewer wavelets. We compare the performance of BayesWave using Morlet wavelets and chirplets on a variety of simulated signals.

  18. Rank Determination of Mental Functions by 1D Wavelets and Partial Correlation.

    PubMed

    Karaca, Y; Aslan, Z; Cattani, C; Galletta, D; Zhang, Y

    2017-01-01

    The main aim of this paper is to classify mental functions by the Wechsler Adult Intelligence Scale-Revised tests with a mixed method based on wavelets and partial correlation. The Wechsler Adult Intelligence Scale-Revised is a widely used test designed and applied for the classification of the adults cognitive skills in a comprehensive manner. In this paper, many different intellectual profiles have been taken into consideration to measure the relationship between the mental functioning and psychological disorder. We propose a method based on wavelets and correlation analysis for classifying mental functioning, by the analysis of some selected parameters measured by the Wechsler Adult Intelligence Scale-Revised tests. In particular, 1-D Continuous Wavelet Analysis, 1-D Wavelet Coefficient Method and Partial Correlation Method have been analyzed on some Wechsler Adult Intelligence Scale-Revised parameters such as School Education, Gender, Age, Performance Information Verbal and Full Scale Intelligence Quotient. In particular, we will show that gender variable has a negative but a significant role on age and Performance Information Verbal factors. The age parameters also has a significant relation in its role on Performance Information Verbal and Full Scale Intelligence Quotient change.

  19. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  20. A novel algorithm for osteoarthritis detection in Hough domain

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Poria, Nilanjan; Chakraborty, Rajanya; Pratiher, Sawon; Mukherjee, Sukanya; Panigrahi, Prasanta K.

    2018-02-01

    Background subtraction of knee MRI images has been performed, followed by edge detection through canny edge detector. In order to avoid the discontinuities among edges, Daubechies-4 (Db-4) discrete wavelet transform (DWT) methodology is applied for the smoothening of edges identified through canny edge detector. The approximation coefficients of Db-4, having highest energy is selected to get rid of discontinuities in edges. Hough transform is then applied to find imperfect knee locations, as a function of distance (r) and angle (θ). The final outcome of the linear Hough transform is a two-dimensional array i.e., the accumulator space (r, θ) where one dimension of this matrix is the quantized angle θ and the other dimension is the quantized distance r. A novel algorithm has been suggested such that any deviation from the healthy knee bone structure for diseases like osteoarthritis can clearly be depicted on the accumulator space.

  1. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    NASA Astrophysics Data System (ADS)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  2. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  3. Wavelet Decomposition for Discrete Probability Maps

    DTIC Science & Technology

    2007-08-01

    using other wavelet basis functions, such as those mentioned in Section 7 15 DSTO–TN–0760 References 1. P. M. Bentley and J . T . E. McDonnell. Wavelet...84, 1995. 0272-1716. 18. E. J . Stollnitz, T . D. DeRose, and D. H. Salesin. Wavelets for computer graphics: a primer. 2. Computer Graphics and...and Computer Modelling in 2006 from the University of South Australia, Mawson Lakes. Part of this de- gree was undertaken at the University of Twente

  4. Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.

    PubMed

    Terraneo, M; Georgeot, B; Shepelyansky, D L

    2005-06-01

    We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.

  5. Discrete wavelet transform: a tool in smoothing kinematic data.

    PubMed

    Ismail, A R; Asfour, S S

    1999-03-01

    Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.

  6. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  7. Methods and systems for low frequency seismic and infrasound detection of geo-pressure transition zones

    DOEpatents

    Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.

    2006-07-18

    Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.

  8. Textural characterization of histopathological images for oral sub-mucous fibrosis detection.

    PubMed

    Krishnan, M Muthu Rama; Shah, Pratik; Choudhary, Anirudh; Chakraborty, Chandan; Paul, Ranjan Rashmi; Ray, Ajoy K

    2011-10-01

    In the field of quantitative microscopy, textural information plays a significant role very often in tissue characterization and diagnosis, in addition to morphology and intensity. The aim of this work is to improve the classification accuracy based on textural features for the development of a computer assisted screening of oral sub-mucous fibrosis (OSF). In fact, a systematic approach is introduced in order to grade the histopathological tissue sections into normal, OSF without dysplasia and OSF with dysplasia, which would help the oral onco-pathologists to screen the subjects rapidly. In totality, 71 textural features are extracted from epithelial region of the tissue sections using various wavelet families, Gabor-wavelet, local binary pattern, fractal dimension and Brownian motion curve, followed by preprocessing and segmentation. Wavelet families contribute a common set of 9 features, out of which 8 are significant and other 61 out of 62 obtained from the rest of the extractors are also statistically significant (p<0.05) in discriminating the three stages. Based on mean distance criteria, the best wavelet family (i.e., biorthogonal3.1 (bior3.1)) is selected for classifier design. support vector machine (SVM) is trained by 146 samples based on 69 textural features and its classification accuracy is computed for each of the combinations of wavelet family and rest of the extractors. Finally, it has been investigated that bior3.1 wavelet coefficients leads to higher accuracy (88.38%) in combination with LBP and Gabor wavelet features through three-fold cross validation. Results are shown and discussed in detail. It is shown that combining more than one texture measure instead of using just one might improve the overall accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun

    2016-04-01

    Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.

  10. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Continuous time wavelet entropy of auditory evoked potentials.

    PubMed

    Cek, M Emre; Ozgoren, Murat; Savaci, F Acar

    2010-01-01

    In this paper, the continuous time wavelet entropy (CTWE) of auditory evoked potentials (AEP) has been characterized by evaluating the relative wavelet energies (RWE) in specified EEG frequency bands. Thus, the rapid variations of CTWE due to the auditory stimulation could be detected in post-stimulus time interval. This approach removes the probability of missing the information hidden in short time intervals. The discrete time and continuous time wavelet based wavelet entropy variations were compared on non-target and target AEP data. It was observed that CTWE can also be an alternative method to analyze entropy as a function of time. 2009 Elsevier Ltd. All rights reserved.

  12. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  13. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    NASA Astrophysics Data System (ADS)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  14. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification

    NASA Astrophysics Data System (ADS)

    Sharif, I.; Khare, S.

    2014-11-01

    With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.

  15. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, R.; Kosovichev, A. G., E-mail: rakesh@quake.stanford.ed, E-mail: sasha@quake.stanford.ed

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts ofmore » acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen

    In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in thatmore » one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.« less

  17. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  18. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  19. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  20. Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2017-02-01

    Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.

  1. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    NASA Astrophysics Data System (ADS)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  2. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  3. Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC

    NASA Astrophysics Data System (ADS)

    Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.

    2015-06-01

    Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.

  4. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach

    PubMed Central

    Tan, Robin; Perkowski, Marek

    2017-01-01

    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems. PMID:28230745

  5. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach.

    PubMed

    Tan, Robin; Perkowski, Marek

    2017-02-20

    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.

  6. Continuous wavelet transforms for the simultaneous quantitative analysis and dissolution testing of lamivudine-zidovudine tablets.

    PubMed

    Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli

    2013-01-01

    Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.

  7. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  8. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.

  9. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  10. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  11. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    PubMed

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  12. Feature extraction across individual time series observations with spikes using wavelet principal component analysis.

    PubMed

    Røislien, Jo; Winje, Brita

    2013-09-20

    Clinical studies frequently include repeated measurements of individuals, often for long periods. We present a methodology for extracting common temporal features across a set of individual time series observations. In particular, the methodology explores extreme observations within the time series, such as spikes, as a possible common temporal phenomenon. Wavelet basis functions are attractive in this sense, as they are localized in both time and frequency domains simultaneously, allowing for localized feature extraction from a time-varying signal. We apply wavelet basis function decomposition of individual time series, with corresponding wavelet shrinkage to remove noise. We then extract common temporal features using linear principal component analysis on the wavelet coefficients, before inverse transformation back to the time domain for clinical interpretation. We demonstrate the methodology on a subset of a large fetal activity study aiming to identify temporal patterns in fetal movement (FM) count data in order to explore formal FM counting as a screening tool for identifying fetal compromise and thus preventing adverse birth outcomes. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Element analysis: a wavelet-based method for analysing time-localized events in noisy time series.

    PubMed

    Lilly, Jonathan M

    2017-04-01

    A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized 'events'. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event's 'region of influence' within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis , is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry.

  14. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  15. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  16. Feature extraction using gray-level co-occurrence matrix of wavelet coefficients and texture matching for batik motif recognition

    NASA Astrophysics Data System (ADS)

    Suciati, Nanik; Herumurti, Darlis; Wijaya, Arya Yudhi

    2017-02-01

    Batik is one of Indonesian's traditional cloth. Motif or pattern drawn on a piece of batik fabric has a specific name and philosopy. Although batik cloths are widely used in everyday life, but only few people understand its motif and philosophy. This research is intended to develop a batik motif recognition system which can be used to identify motif of Batik image automatically. First, a batik image is decomposed into sub-images using wavelet transform. Six texture descriptors, i.e. max probability, correlation, contrast, uniformity, homogenity and entropy, are extracted from gray-level co-occurrence matrix of each sub-image. The texture features are then matched to the template features using canberra distance. The experiment is performed on Batik Dataset consisting of 1088 batik images grouped into seven motifs. The best recognition rate, that is 92,1%, is achieved using feature extraction process with 5 level wavelet decomposition and 4 directional gray-level co-occurrence matrix.

  17. B-spline tight frame based force matching method

    NASA Astrophysics Data System (ADS)

    Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei

    2018-06-01

    In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.

  18. Analysis and Synthesis of Pseudo-Periodic[InlineEquation not available: see fulltext.]-Like Noise by Means of Wavelets with Applications to Digital Audio

    NASA Astrophysics Data System (ADS)

    Polotti, Pietro; Evangelista, Gianpaolo

    2001-12-01

    Voiced musical sounds have nonzero energy in sidebands of the frequency partials. Our work is based on the assumption, often experimentally verified, that the energy distribution of the sidebands is shaped as powers of the inverse of the distance from the closest partial. The power spectrum of these pseudo-periodic processes is modeled by means of a superposition of modulated[InlineEquation not available: see fulltext.] components, that is, by a pseudo-periodic[InlineEquation not available: see fulltext.]-like process. Due to the fundamental selfsimilar character of the wavelet transform,[InlineEquation not available: see fulltext.] processes can be fruitfully analyzed and synthesized by means of wavelets. We obtain a set of very loosely correlated coefficients at each scale level that can be well approximated by white noise in the synthesis process. Our computational scheme is based on an orthogonal[InlineEquation not available: see fulltext.]-band filter bank and a dyadic wavelet transform per channel. The[InlineEquation not available: see fulltext.] channels are tuned to the left and right sidebands of the harmonics so that sidebands are mutually independent. The structure computes the expansion coefficients of a new orthogonal and complete set of harmonic-band wavelets. The main point of our scheme is that we need only two parameters per harmonic in order to model the stochastic fluctuations of sounds from a pure periodic behavior.

  19. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  20. Double image encryption in Fresnel domain using wavelet transform, gyrator transform and spiral phase masks

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta

    2017-06-01

    In this paper, we propose a new technique for double image encryption in the Fresnel domain using wavelet transform (WT), gyrator transform (GT) and spiral phase masks (SPMs). The two input mages are first phase encoded and each of them are then multiplied with SPMs and Fresnel propagated with distances d1 and d2, respectively. The single-level discrete WT is applied to Fresnel propagated complex images to decompose each into sub-band matrices i.e. LL, HL, LH and HH. Further, the sub-band matrices of two complex images are interchanged after modulation with random phase masks (RPMs) and subjected to inverse discrete WT. The resulting images are then both added and subtracted to get intermediate images which are further Fresnel propagated with distances d3 and d4, respectively. These outputs are finally gyrator transformed with the same angle α to get the encrypted images. The proposed technique provides enhanced security in terms of a large set of security keys. The sensitivity of security keys such as SPM parameters, GT angle α, Fresnel propagation distances are investigated. The robustness of the proposed techniques against noise and occlusion attacks are also analysed. The numerical simulation results are shown in support of the validity and effectiveness of the proposed technique.

  1. On-Line Loss of Control Detection Using Wavelets

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J. (Technical Monitor); Thompson, Peter M.; Klyde, David H.; Bachelder, Edward N.; Rosenthal, Theodore J.

    2005-01-01

    Wavelet transforms are used for on-line detection of aircraft loss of control. Wavelet transforms are compared with Fourier transform methods and shown to more rapidly detect changes in the vehicle dynamics. This faster response is due to a time window that decreases in length as the frequency increases. New wavelets are defined that further decrease the detection time by skewing the shape of the envelope. The wavelets are used for power spectrum and transfer function estimation. Smoothing is used to tradeoff the variance of the estimate with detection time. Wavelets are also used as front-end to the eigensystem reconstruction algorithm. Stability metrics are estimated from the frequency response and models, and it is these metrics that are used for loss of control detection. A Matlab toolbox was developed for post-processing simulation and flight data using the wavelet analysis methods. A subset of these methods was implemented in real time and named the Loss of Control Analysis Tool Set or LOCATS. A manual control experiment was conducted using a hardware-in-the-loop simulator for a large transport aircraft, in which the real time performance of LOCATS was demonstrated. The next step is to use these wavelet analysis tools for flight test support.

  2. Real-time modeling of primitive environments through wavelet sensors and Hebbian learning

    NASA Astrophysics Data System (ADS)

    Vaccaro, James M.; Yaworsky, Paul S.

    1999-06-01

    Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.

  3. An improved peak frequency shift method for Q estimation based on generalized seismic wavelet function

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Gao, Jinghuai

    2018-02-01

    As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.

  4. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design.

    PubMed

    Huang, Zong-Hao; Wang, Zhi-Gong; Lu, Xiao-Ying; Li, Wen-Yuan; Zhou, Yu-Xuan; Shen, Xiao-Yan; Zhao, Xin-Tai

    2016-01-01

    The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.

  5. Intelligent Ensemble Forecasting System of Stock Market Fluctuations Based on Symetric and Asymetric Wavelet Functions

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim; Boukadoum, Mounir

    2015-08-01

    We present a new ensemble system for stock market returns prediction where continuous wavelet transform (CWT) is used to analyze return series and backpropagation neural networks (BPNNs) for processing CWT-based coefficients, determining the optimal ensemble weights, and providing final forecasts. Particle swarm optimization (PSO) is used for finding optimal weights and biases for each BPNN. To capture symmetry/asymmetry in the underlying data, three wavelet functions with different shapes are adopted. The proposed ensemble system was tested on three Asian stock markets: The Hang Seng, KOSPI, and Taiwan stock market data. Three statistical metrics were used to evaluate the forecasting accuracy; including, mean of absolute errors (MAE), root mean of squared errors (RMSE), and mean of absolute deviations (MADs). Experimental results showed that our proposed ensemble system outperformed the individual CWT-ANN models each with different wavelet function. In addition, the proposed ensemble system outperformed the conventional autoregressive moving average process. As a result, the proposed ensemble system is suitable to capture symmetry/asymmetry in financial data fluctuations for better prediction accuracy.

  6. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences.

  7. Impact of Plant Functional Types on Coherence Between Precipitation and Soil Moisture: A Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.

    2017-12-01

    Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.

  8. A new method of spatial analysis of irregularly spaced HLB data and biological implications

    USDA-ARS?s Scientific Manuscript database

    Field data on intensity of plant diseases is very often irregularly spaced (i.e., there are varying amounts of distance between rows, ponds, voids, roads, houses, or other land areas). A new method of analysis, sometimes called second-generation wavelet analysis, can be used on this type of irregula...

  9. Controlled wavelet domain sparsity for x-ray tomography

    NASA Astrophysics Data System (ADS)

    Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli

    2018-01-01

    Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \

  10. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.

    PubMed

    Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.

  11. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction

    PubMed Central

    Mendes, Alexandre; Chalup, Stephan K.

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578

  12. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  13. Characterization and Simulation of Gunfire with Wavelets

    DOE PAGES

    Smallwood, David O.

    1999-01-01

    Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of thesemore » records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.« less

  14. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  15. Element analysis: a wavelet-based method for analysing time-localized events in noisy time series

    PubMed Central

    2017-01-01

    A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized ‘events’. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event’s ‘region of influence’ within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis, is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry. PMID:28484325

  16. Wavelet decomposition and radial basis function networks for system monitoring

    NASA Astrophysics Data System (ADS)

    Ikonomopoulos, A.; Endou, A.

    1998-10-01

    Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.

  17. Modal identification of structures by a novel approach based on FDD-wavelet method

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2014-02-01

    An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.

  18. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  19. Wavelet-based clustering of resting state MRI data in the rat.

    PubMed

    Medda, Alessio; Hoffmann, Lukas; Magnuson, Matthew; Thompson, Garth; Pan, Wen-Ju; Keilholz, Shella

    2016-01-01

    While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain. Previous studies were performed using sliding window analysis on regions of interest defined based on anatomy or obtained from traditional steady-state analysis methods. The parcellation of the brain may therefore be suboptimal, and the characteristics of the time-varying connectivity between regions are dependent upon the length of the sliding window chosen. This manuscript describes an algorithm based on wavelet decomposition that allows data-driven clustering of voxels into functional regions based on temporal and spectral properties. Previous work has shown that different networks have characteristic frequency fingerprints, and the use of wavelets ensures that both the frequency and the timing of the BOLD fluctuations are considered during the clustering process. The method was applied to resting state data acquired from anesthetized rats, and the resulting clusters agreed well with known anatomical areas. Clusters were highly reproducible across subjects. Wavelet cross-correlation values between clusters from a single scan were significantly higher than the values from randomly matched clusters that shared no temporal information, indicating that wavelet-based analysis is sensitive to the relationship between areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  1. Wavelet extractor: A Bayesian well-tie and wavelet extraction program

    NASA Astrophysics Data System (ADS)

    Gunning, James; Glinsky, Michael E.

    2006-06-01

    We introduce a new open-source toolkit for the well-tie or wavelet extraction problem of estimating seismic wavelets from seismic data, time-to-depth information, and well-log suites. The wavelet extraction model is formulated as a Bayesian inverse problem, and the software will simultaneously estimate wavelet coefficients, other parameters associated with uncertainty in the time-to-depth mapping, positioning errors in the seismic imaging, and useful amplitude-variation-with-offset (AVO) related parameters in multi-stack extractions. It is capable of multi-well, multi-stack extractions, and uses continuous seismic data-cube interpolation to cope with the problem of arbitrary well paths. Velocity constraints in the form of checkshot data, interpreted markers, and sonic logs are integrated in a natural way. The Bayesian formulation allows computation of full posterior uncertainties of the model parameters, and the important problem of the uncertain wavelet span is addressed uses a multi-model posterior developed from Bayesian model selection theory. The wavelet extraction tool is distributed as part of the Delivery seismic inversion toolkit. A simple log and seismic viewing tool is included in the distribution. The code is written in Java, and thus platform independent, but the Seismic Unix (SU) data model makes the inversion particularly suited to Unix/Linux environments. It is a natural companion piece of software to Delivery, having the capacity to produce maximum likelihood wavelet and noise estimates, but will also be of significant utility to practitioners wanting to produce wavelet estimates for other inversion codes or purposes. The generation of full parameter uncertainties is a crucial function for workers wishing to investigate questions of wavelet stability before proceeding to more advanced inversion studies.

  2. Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures

    PubMed Central

    Raisutis, Renaldas; Samaitis, Vykintas

    2017-01-01

    This work proposes a novel hybrid signal processing technique to extract information on disbond-type defects from a single B-scan in the process of non-destructive testing (NDT) of glass fiber reinforced plastic (GFRP) material using ultrasonic guided waves (GW). The selected GFRP sample has been a segment of wind turbine blade, which possessed an aerodynamic shape. Two disbond type defects having diameters of 15 mm and 25 mm were artificially constructed on its trailing edge. The experiment has been performed using the low-frequency ultrasonic system developed at the Ultrasound Institute of Kaunas University of Technology and only one side of the sample was accessed. A special configuration of the transmitting and receiving transducers fixed on a movable panel with a separation distance of 50 mm was proposed for recording the ultrasonic guided wave signals at each one-millimeter step along the scanning distance up to 500 mm. Finally, the hybrid signal processing technique comprising the valuable features of the three most promising signal processing techniques: cross-correlation, wavelet transform, and Hilbert–Huang transform has been applied to the received signals for the extraction of defects information from a single B-scan image. The wavelet transform and cross-correlation techniques have been combined in order to extract the approximated size and location of the defects and measurements of time delays. Thereafter, Hilbert–Huang transform has been applied to the wavelet transformed signal to compare the variation of instantaneous frequencies and instantaneous amplitudes of the defect-free and defective signals. PMID:29232845

  3. Coupling of ELF/ULF energy from lightning and MeV particles to the middle atmosphere, inosphere, and global circuit

    NASA Technical Reports Server (NTRS)

    Hale, Leslie C.

    1994-01-01

    In an attempt to explain numerous atmospheric electrical phenomena, the elements of the global electrical circuit are reexamined. In addition to being a 'quasi-static 'DC' generator' and source of radiated energy at VLF and higher, the thunderstorm is found to be a pulse generator, with most of the external energy contained in ELF and ULF pulse currents to the ionosphere (and Earth). The pulse energy is found to deposit largely in the middle atmosphere above the thunderstorm. The VLF and above components are well understood, as are the ULF components due to the conductivity gradient. However, a previously poorly understood ELF component on the millsecond timescale, or 'slow tail,' contains a large fraction of the electrical energy. This component couples strongly to the ionosphere and also launches a unipolar transverse electromagnetic (TEM) wavelet in the radial Earth-ionosphere transmission line. The increase in charge with distance associated with such wavelets, and their ensemble sum at a point, may explain some large mesospheric 'DC' fields but there are still difficulties explaining other than rare occurrences, except for antipodal reconvergence. These millisecond duration unipolar wavelets also coupled to the ionosphere and may trigger other lightning at a distance. A schema is elucidated by which the charge of MeV particles deposited in the middle atmosphere persists for much longer than the local relaxation time. This also gives rise to unipolar waves of global extent which may explain lower-latitude field perturbations associated with solar/geomagnetic events.

  4. Wavelet based analysis of multi-electrode EEG-signals in epilepsy

    NASA Astrophysics Data System (ADS)

    Hein, Daniel A.; Tetzlaff, Ronald

    2005-06-01

    For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.

  5. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  6. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less

  7. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions

    NASA Astrophysics Data System (ADS)

    Shen, Zhengwei; Cheng, Lishuang

    2017-09-01

    Total variation (TV)-based image deblurring method can bring on staircase artifacts in the homogenous region of the latent images recovered from the degraded images while a wavelet/frame-based image deblurring method will lead to spurious noise spikes and pseudo-Gibbs artifacts in the vicinity of discontinuities of the latent images. To suppress these artifacts efficiently, we propose a nonconvex composite wavelet/frame and TV-based image deblurring model. In this model, the wavelet/frame and the TV-based methods may complement each other, which are verified by theoretical analysis and experimental results. To further improve the quality of the latent images, nonconvex penalty function is used to be the regularization terms of the model, which may induce a stronger sparse solution and will more accurately estimate the relative large gradient or wavelet/frame coefficients of the latent images. In addition, by choosing a suitable parameter to the nonconvex penalty function, the subproblem that splits by the alternative direction method of multipliers algorithm from the proposed model can be guaranteed to be a convex optimization problem; hence, each subproblem can converge to a global optimum. The mean doubly augmented Lagrangian and the isotropic split Bregman algorithms are used to solve these convex subproblems where the designed proximal operator is used to reduce the computational complexity of the algorithms. Extensive numerical experiments indicate that the proposed model and algorithms are comparable to other state-of-the-art model and methods.

  8. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)

    NASA Astrophysics Data System (ADS)

    Economou, Nikos; Kritikakis, George

    2016-03-01

    Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.

  9. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    PubMed

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  10. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient

    PubMed Central

    Zhang, Zhenwei; VanSwearingen, Jessie; Brach, Jennifer S.; Perera, Subashan

    2016-01-01

    Human gait is a complex interaction of many nonlinear systems and stride intervals exhibit self-similarity over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree and can be interpreted as a biomarker of relative diseases. The previous study showed that the average wavelet method provides the most accurate results to estimate this scaling exponent when applied to stride interval time series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet method. This paper presents a comparative numerical analysis of sixteen mother wavelets using simulated and real fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good performance on the mean square error test for both short and long signals. Next, we comparatively analyzed these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and relatively low errors for short signal lengths. It can be considered as the most suitable mother function without the burden of considering the signal length. PMID:27960102

  11. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  12. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  13. Segmentation of dermoscopy images using wavelet networks.

    PubMed

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeed; Gheissari, Niloofar; Mokhtari, Mojgan; Kolahdouzan, Farzaneh

    2013-04-01

    This paper introduces a new approach for the segmentation of skin lesions in dermoscopic images based on wavelet network (WN). The WN presented here is a member of fixed-grid WNs that is formed with no need of training. In this WN, after formation of wavelet lattice, determining shift and scale parameters of wavelets with two screening stage and selecting effective wavelets, orthogonal least squares algorithm is used to calculate the network weights and to optimize the network structure. The existence of two stages of screening increases globality of the wavelet lattice and provides a better estimation of the function especially for larger scales. R, G, and B values of a dermoscopy image are considered as the network inputs and the network structure formation. Then, the image is segmented and the skin lesions exact boundary is determined accordingly. The segmentation algorithm were applied to 30 dermoscopic images and evaluated with 11 different metrics, using the segmentation result obtained by a skilled pathologist as the ground truth. Experimental results show that our method acts more effectively in comparison with some modern techniques that have been successfully used in many medical imaging problems.

  14. A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains

    NASA Astrophysics Data System (ADS)

    Hu, Bingbing; Li, Bing

    2016-02-01

    It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.

  15. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  16. Lattice functions, wavelet aliasing, and SO(3) mappings of orthonormal filters

    NASA Astrophysics Data System (ADS)

    John, Sarah

    1998-01-01

    A formulation of multiresolution in terms of a family of dyadic lattices {Sj;j∈Z} and filter matrices Mj⊂U(2)⊂GL(2,C) illuminates the role of aliasing in wavelets and provides exact relations between scaling and wavelet filters. By showing the {DN;N∈Z+} collection of compactly supported, orthonormal wavelet filters to be strictly SU(2)⊂U(2), its representation in the Euler angles of the rotation group SO(3) establishes several new results: a 1:1 mapping of the {DN} filters onto a set of orbits on the SO(3) manifold; an equivalence of D∞ to the Shannon filter; and a simple new proof for a criterion ruling out pathologically scaled nonorthonormal filters.

  17. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hongzhu; Rao, N.S.V.; Protopopescu, V.

    Regression or function classes of Euclidean type with compact support and certain smoothness properties are shown to be PAC learnable by the Nadaraya-Watson estimator based on complete orthonormal systems. While requiring more smoothness properties than typical PAC formulations, this estimator is computationally efficient, easy to implement, and known to perform well in a number of practical applications. The sample sizes necessary for PAC learning of regressions or functions under sup norm cost are derived for a general orthonormal system. The result covers the widely used estimators based on Haar wavelets, trignometric functions, and Daubechies wavelets.

  19. Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)

    2001-01-01

    Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.

  20. Daubechies wavelets for linear scaling density functional theory.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan

    2014-05-28

    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.

  1. Multidimensional, mapping-based complex wavelet transforms.

    PubMed

    Fernandes, Felix C A; van Spaendonck, Rutger L C; Burrus, C Sidney

    2005-01-01

    Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce multidimensional, mapping-based, complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, nonredundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and nonredundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we exploit this flexibility to create the complex double-density DWT: a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3M - 1)/(2M - 1) in M dimensions. No other transform achieves all these properties at a lower redundancy, to the best of our knowledge. By exploiting the advantages of our multidimensional, mapping-based complex wavelet transforms in seismic signal-processing applications, we have demonstrated state-of-the-art results.

  2. Exact reconstruction with directional wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.

    2008-08-01

    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.

  3. Variability of Decimetre and Centimetre Scale Ice Surface Roughness and the Potential Consequences on the CryoSat Radar Altimeter Signal

    NASA Astrophysics Data System (ADS)

    Cawkwell, F. G.; Burgess, D. O.; Sharp, M. J.; Demuth, M.

    2004-12-01

    Snow and ice surface roughness affect the backscatter of the pulse emitted by a radar altimeter, and hence the accuracy of the surface elevation calculated from the waveform echo, but the influence of surface roughness has not been quantified. As part of the CryoSat calibration/validation field campaigns on the Devon Ice Cap in 2004, surface roughness measurements were made at 0.1-7km intervals along a 48km transect from near the summit to the southern margin. Measurements were made at the decimetre scale by surveying and at the centimetre scale using digital photography. The data collected were subjected to wavelet analysis to define characteristic roughness wavelengths, and the fractal dimension associated with each of these was calculated using the semi-variogram method. Vario functions were calculated for the photographic data. The survey results show that wavelength scales depend on orientation and distance from the ice cap summit, the fractal dimension depends on the wavelength scale and the orientation, and both are significantly affected by storm events. Profiles aligned with the easterly prevailing wind direction, and thus perpendicular to the predicted satellite track, proved to be more sensitive to meteorological events than those normal to the dominant winds. Wavelet and fractal analysis of the photographic data was less conclusive, potentially due to the `noisier' nature of the data at this scale, where `noise' is actually the superimposition of small scale wavelengths onto larger ones. Vario analysis showed the characteristic wavelengths at the centimetre scale to increase with distance from the summit, although the abrading effect of storm events caused a decrease in wavelength. The amplitude of the roughness also increases with distance from the summit, although following a period of calm this value is significantly decreased along the transect. Orientation with respect to the prevailing wind direction is also a significant factor. Analysis of the return waveforms acquired by an airborne radar altimeter concurrently with ground data will allow the impact of the different roughness scales and orientations to be assessed.

  4. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiolo, M., E-mail: massimo.maiolo@zhaw.ch; ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil; Vancheri, A., E-mail: alberto.vancheri@supsi.ch

    In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficientmore » orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.« less

  6. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  7. Wavelet analysis of MR functional data from the cerebellum

    NASA Astrophysics Data System (ADS)

    Romero Sánchez, Karen; Vásquez Reyes, Marcos A.; González Gómez, Dulce I.; Hidalgo Tobón, Silvia; Hernández López, Javier M.; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito

    2014-11-01

    The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.

  8. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  9. Doppler radar fall activity detection using the wavelet transform.

    PubMed

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.

  10. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  11. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task

    PubMed Central

    Al-Qazzaz, Noor Kamal; Hamid Bin Mohd Ali, Sawal; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-01-01

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions. PMID:26593918

  12. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task.

    PubMed

    Al-Qazzaz, Noor Kamal; Bin Mohd Ali, Sawal Hamid; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-11-17

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.

  13. Structural health monitoring approach for detecting ice accretion on bridge cable using the Haar Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Andre, Julia; Kiremidjian, Anne; Liao, Yizheng; Georgakis, Christos; Rajagopal, Ram

    2016-04-01

    Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.

  14. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    PubMed

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  15. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  16. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  17. Time-localized wavelet multiple regression and correlation

    NASA Astrophysics Data System (ADS)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  18. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    PubMed Central

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  19. Wavelet detection of coherent structures in interplanetary magnetic flux ropes and its role in the intermittent turbulence

    NASA Astrophysics Data System (ADS)

    Muñoz, P. R.; Chian, A. C.

    2013-12-01

    We implement a method to detect coherent magnetic structures using the Haar discrete wavelet transform (Salem et al., ApJ 702, 537, 2009), and apply it to an event detected by Cluster at the turbulent boundary layer of an interplanetary magnetic flux rope. The wavelet method is able to detect magnetic coherent structures and extract main features of solar wind intermittent turbulence, such as the power spectral density and the scaling exponent of structure functions. Chian and Muñoz (ApJL 733, L34, 2011) investigated the relation between current sheets, turbulence, and magnetic reconnections at the leading edge of an interplanetary coronal mass ejection measured by Cluster upstream of the Earth's bow shock on 2005 January 21. We found observational evidence of two magnetically reconnected current sheets in the vicinity of a front magnetic cloud boundary layer, where the scaling exponent of structure functions of magnetic fluctuations exhibits multifractal behavior. Using the wavelet technique, we show that the current sheets associated to magnetic reconnection are part of the set of magnetic coherent structures responsible for multifractality. By removing them using a filtering criteria, it is possible to recover a self-similar scaling exponent predicted for homogeneous turbulence. Finally, we discuss an extension of the wavelet technique to study coherent structures in two-dimensional solar magnetograms.

  20. Compression of real time volumetric echocardiographic data using modified SPIHT based on the three-dimensional wavelet packet transform.

    PubMed

    Hang, X; Greenberg, N L; Shiota, T; Firstenberg, M S; Thomas, J D

    2000-01-01

    Real-time three-dimensional echocardiography has been introduced to provide improved quantification and description of cardiac function. Data compression is desired to allow efficient storage and improve data transmission. Previous work has suggested improved results utilizing wavelet transforms in the compression of medical data including 2D echocardiogram. Set partitioning in hierarchical trees (SPIHT) was extended to compress volumetric echocardiographic data by modifying the algorithm based on the three-dimensional wavelet packet transform. A compression ratio of at least 40:1 resulted in preserved image quality.

  1. Denoising and 4D visualization of OCT images

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.

    2009-01-01

    We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509

  2. Representations and uses of light distribution functions

    NASA Astrophysics Data System (ADS)

    Lalonde, Paul Albert

    1998-11-01

    At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a small error in the reconstructed signal. The representation can be used to evaluate efficiently some integrals that appear in shading computation which allows fast, accurate computation of local shading. The representation can be used to represent light fields and is used to reconstruct views of environments interactively from a precomputed set of views. The representation of the BRDF also allows the efficient generation of reflected directions for Monte Carlo array tracing applications. The method can be integrated into many different global illumination algorithms, including ray tracers and wavelet radiosity systems.

  3. Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA) wastewater data.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo

    2016-07-12

    Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.

  4. The Wavelet ToolKat: A set of tools for the analysis of series through wavelet transforms. Application to the channel curvature and the slope control of three free meandering rivers in the Amazon basin.

    NASA Astrophysics Data System (ADS)

    Vaudor, Lise; Piegay, Herve; Wawrzyniak, Vincent; Spitoni, Marie

    2016-04-01

    The form and functioning of a geomorphic system result from processes operating at various spatial and temporal scales. Longitudinal channel characteristics thus exhibit complex patterns which vary according to the scale of study, might be periodic or segmented, and are generally blurred by noise. Describing the intricate, multiscale structure of such signals, and identifying at which scales the patterns are dominant and over which sub-reach, could help determine at which scales they should be investigated, and provide insights into the main controlling factors. Wavelet transforms aim at describing data at multiple scales (either in time or space), and are now exploited in geophysics for the analysis of nonstationary series of data. They provide a consistent, non-arbitrary, and multiscale description of a signal's variations and help explore potential causalities. Nevertheless, their use in fluvial geomorphology, notably to study longitudinal patterns, is hindered by a lack of user-friendly tools to help understand, implement, and interpret them. We have developed a free application, The Wavelet ToolKat, designed to facilitate the use of wavelet transforms on temporal or spatial series. We illustrate its usefulness describing longitudinal channel curvature and slope of three freely meandering rivers in the Amazon basin (the Purus, Juruá and Madre de Dios rivers), using topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000. Three types of wavelet transforms are used, with different purposes. Continuous Wavelet Transforms are used to identify in a non-arbitrary way the dominant scales and locations at which channel curvature and slope vary. Cross-wavelet transforms, and wavelet coherence and phase are used to identify scales and locations exhibiting significant channel curvature and slope co-variations. Maximal Overlap Discrete Wavelet Transforms decompose data into their variations at a series of scales and are used to provide smoothed descriptions of the series at the scales deemed relevant.

  5. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics

    PubMed Central

    Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A.; Calhoun, Vince D.

    2010-01-01

    We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D de-noising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional de-noising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the de-noised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of de-noised wavelet coefficients for each voxel. Given the decorrelated nature of these de-noised wavelet coefficients; it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules. First, the analysis module where we combine a new 3-D wavelet denoising approach with better signal separation properties of ICA in the wavelet domain, to yield an activation component that corresponds closely to the true underlying signal and is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing + spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic (ROC) curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false positives voxels. PMID:21034833

  7. Operation Reliability Assessment for Cutting Tools by Applying a Proportional Covariate Model to Condition Monitoring Information

    PubMed Central

    Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia

    2012-01-01

    The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980

  8. Bearing faults identification and resonant band demodulation based on wavelet de-noising methods and envelope analysis

    NASA Astrophysics Data System (ADS)

    Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali

    2017-07-01

    The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.

  9. Estimation of hazard function and its associated factors in gastric cancer patients using wavelet and kernel smoothing methods.

    PubMed

    Ahmadi, Azadeh; Roudbari, Masoud; Gohari, Mahmood Reza; Hosseini, Bistoon

    2012-01-01

    Increase of mortality rates of gastric cancer in Iran and the world in recent years reveal necessity of studies on this disease. Here, hazard function for gastric cancer patients was estimated using Wavelet and Kernel methods and some related factors were assessed. Ninety- five gastric cancer patients in Fayazbakhsh Hospital between 1996 and 2003 were studied. The effects of age of patients, gender, stage of disease and treatment method on patient's lifetime were assessed. For data analyses, survival analyses using Wavelet method and Log-rank test in R software were used. Nearly 25.3% of patients were female. Fourteen percent had surgery treatment and the rest had treatment without surgery. Three fourths died and the rest were censored. Almost 9.5% of patients were in early stages of the disease, 53.7% in locally advance stage and 36.8% in metastatic stage. Hazard function estimation with the wavelet method showed significant difference for stages of disease (P<0.001) and did not reveal any significant difference for age, gender and treatment method. Only stage of disease had effects on hazard and most patients were diagnosed in late stages of disease, which is possibly one of the most reasons for high hazard rate and low survival. Therefore, it seems to be necessary a public education about symptoms of disease by media and regular tests and screening for early diagnosis.

  10. Multidimensional signaling via wavelet packets

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  11. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    PubMed

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  12. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  13. A neural network detection model of spilled oil based on the texture analysis of SAR image

    NASA Astrophysics Data System (ADS)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  14. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  15. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  16. Wavelet-Based Signal and Image Processing for Target Recognition

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.

    2002-11-01

    The PI visited NSWC Dahlgren, VA, for six weeks in May-June 2002 and collaborated with scientists in the G33 TEAMS facility, and with Marilyn Rudzinsky of T44 Technology and Photonic Systems Branch. During this visit the PI also presented six educational seminars to NSWC scientists on various aspects of signal processing. Several items from the grant proposal were completed, including (1) wavelet-based algorithms for interpolation of 1-d signals and 2-d images; (2) Discrete Wavelet Transform domain based algorithms for filtering of image data; (3) wavelet-based smoothing of image sequence data originally obtained for the CRITTIR (Clutter Rejection Involving Temporal Techniques in the Infra-Red) project. The PI visited the University of Stellenbosch, South Africa to collaborate with colleagues Prof. B.M. Herbst and Prof. J. du Preez on the use of wavelet image processing in conjunction with pattern recognition techniques. The University of Stellenbosch has offered the PI partial funding to support a sabbatical visit in Fall 2003, the primary purpose of which is to enable the PI to develop and enhance his expertise in Pattern Recognition. During the first year, the grant supported publication of 3 referred papers, presentation of 9 seminars and an intensive two-day course on wavelet theory. The grant supported the work of two students who functioned as research assistants.

  17. Applications of wavelets in morphometric analysis of medical images

    NASA Astrophysics Data System (ADS)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  18. Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney: initial results in patients and healthy volunteers.

    PubMed

    Li, Sheng; Zöllner, Frank G; Merrem, Andreas D; Peng, Yinghong; Roervik, Jarle; Lundervold, Arvid; Schad, Lothar R

    2012-03-01

    Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88%, the medulla at 91%, and the pelvis at 98% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  20. Parameters effective on estimating a nonstationary mixed-phase wavelet using cumulant matching approach

    NASA Astrophysics Data System (ADS)

    Vosoughi, Ehsan; Javaherian, Abdolrahim

    2018-01-01

    Seismic inversion is a process performed to remove the effects of propagated wavelets in order to recover the acoustic impedance. To obtain valid velocity and density values related to subsurface layers through the inversion process, it is highly essential to perform reliable wavelet estimation such as cumulant matching approach. For this purpose, the seismic data were windowed in this work in such a way that two consecutive windows were only one sample apart. Also, we did not consider any fixed wavelet for any window and let the phase of each wavelet rotate in each sample in the window. Comparing the fourth order cumulant of the whitened trace and fourth-order moment of the all-pass operator in each window generated a cost function that should be minimized with a non-linear optimization method. In this regard, parameters effective on the estimation of the nonstationary mixed-phase wavelets were tested over the created nonstationary seismic trace at 0.82 s and 1.6 s. Besides, we compared the consequences of each parameter on estimated wavelets at two mentioned times. The parameters studied in this work are window length, taper type, the number of iteration, signal-to-noise ratio, bandwidth to central frequency ratio, and Q factor. The results show that applying the optimum values of the effective parameters, the average correlation of the estimated mixed-phase wavelets with the original ones is about 87%. Moreover, the effectiveness of the proposed approach was examined on a synthetic nonstationary seismic section with variable Q factor values alongside the time and offset axis. Eventually, the cumulant matching method was applied on a cross line of the migrated data from a 3D data set of an oilfield in the Persian Gulf. Also, the effect of the wrong Q estimation on the estimated mixed-phase wavelet was considered on the real data set. It is concluded that the accuracy of the estimated wavelet relied on the estimated Q and more than 10% error in the estimated value of Q is acceptable. Eventually, an 88% correlation was found between the estimated mixed-phase wavelets and the original ones for three horizons. The estimated wavelets applied to the data and the result of deconvolution processes was presented.

  1. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  2. Wavelet based approach for posture transition estimation using a waist worn accelerometer.

    PubMed

    Bidargaddi, Niranjan; Klingbeil, Lasse; Sarela, Antti; Boyle, Justin; Cheung, Vivian; Yelland, Catherine; Karunanithi, Mohanraj; Gray, Len

    2007-01-01

    The ability to rise from a chair is considered to be important to achieve functional independence and quality of life. This sit-to-stand task is also a good indicator to assess condition of patients with chronic diseases. We developed a wavelet based algorithm for detecting and calculating the durations of sit-to-stand and stand-to-sit transitions from the signal vector magnitude of the measured acceleration signal. The algorithm was tested on waist worn accelerometer data collected from young subjects as well as geriatric patients. The test demonstrates that both transitions can be detected by using wavelet transformation applied to signal magnitude vector. Wavelet analysis produces an estimate of the transition pattern that can be used to calculate the transition duration that further gives clinically significant information on the patients condition. The method can be applied in a real life ambulatory monitoring system for assessing the condition of a patient living at home.

  3. Applications of wavelets in interferometry and artificial vision

    NASA Astrophysics Data System (ADS)

    Escalona Z., Rafael A.

    2001-08-01

    In this paper we present a different point of view of phase measurements performed in interferometry, image processing and intelligent vision using Wavelet Transform. In standard and white-light interferometry, the phase function is retrieved by using phase-shifting, Fourier-Transform, cosinus-inversion and other known algorithms. Our novel technique presented here is faster, robust and shows excellent accuracy in phase determinations. Finally, in our second application, fringes are no more generate by some light interaction but result from the observation of adapted strip set patterns directly printed on the target of interest. The moving target is simply observed by a conventional vision system and usual phase computation algorithms are adapted to an image processing by wavelet transform, in order to sense target position and displacements with a high accuracy. In general, we have determined that wavelet transform presents properties of robustness, relative speed of calculus and very high accuracy in phase computations.

  4. Object's optical geometry measurements based on Extended Depth of Field (EDoF) approach

    NASA Astrophysics Data System (ADS)

    Szydłowski, Michał; Powałka, Bartosz; Chady, Tomasz; Waszczuk, Paweł

    2017-02-01

    The authors propose a method of using EDoF in macro inspections using bi-telecentric lenses and a specially designed experimental machine setup, allowing accurate focal distance changing. Also a software method is presented allowing EDoF image reconstruction using the continuous wavelet transform (CWT). Exploited method results are additionally compared with measurements performed with Keyence's LJ-V Series in-line Profilometer for reference matters.

  5. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance

    NASA Astrophysics Data System (ADS)

    Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling

    2017-05-01

    To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.

  6. On the probability density function and characteristic function moments of image steganalysis in the log prediction error wavelet subband

    NASA Astrophysics Data System (ADS)

    Bao, Zhenkun; Li, Xiaolong; Luo, Xiangyang

    2017-01-01

    Extracting informative statistic features is the most essential technical issue of steganalysis. Among various steganalysis methods, probability density function (PDF) and characteristic function (CF) moments are two important types of features due to the excellent ability for distinguishing the cover images from the stego ones. The two types of features are quite similar in definition. The only difference is that the PDF moments are computed in the spatial domain, while the CF moments are computed in the Fourier-transformed domain. Then, the comparison between PDF and CF moments is an interesting question of steganalysis. Several theoretical results have been derived, and CF moments are proved better than PDF moments in some cases. However, in the log prediction error wavelet subband of wavelet decomposition, some experiments show that the result is opposite and lacks a rigorous explanation. To solve this problem, a comparison result based on the rigorous proof is presented: the first-order PDF moment is proved better than the CF moment, while the second-order CF moment is better than the PDF moment. It tries to open the theoretical discussion on steganalysis and the question of finding suitable statistical features.

  7. A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.

    PubMed

    Patel, Ameera X; Bullmore, Edward T

    2016-11-15

    Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Method and system for determining precursors of health abnormalities from processing medical records

    DOEpatents

    None, None

    2013-06-25

    Medical reports are converted to document vectors in computing apparatus and sampled by applying a maximum variation sampling function including a fitness function to the document vectors to reduce a number of medical records being processed and to increase the diversity of the medical records being processed. Linguistic phrases are extracted from the medical records and converted to s-grams. A Haar wavelet function is applied to the s-grams over the preselected time interval; and the coefficient results of the Haar wavelet function are examined for patterns representing the likelihood of health abnormalities. This confirms certain s-grams as precursors of the health abnormality and a parameter can be calculated in relation to the occurrence of such a health abnormality.

  9. A method for surface topography measurement using a new focus function based on dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping

    2018-01-01

    Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.

  10. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less

  11. Detection of Dendritic Spines Using Wavelet Packet Entropy and Fuzzy Support Vector Machine.

    PubMed

    Wang, Shuihua; Li, Yang; Shao, Ying; Cattani, Carlo; Zhang, Yudong; Du, Sidan

    2017-01-01

    The morphology of dendritic spines is highly correlated with the neuron function. Therefore, it is of positive influence for the research of the dendritic spines. However, it is tried to manually label the spine types for statistical analysis. In this work, we proposed an approach based on the combination of wavelet contour analysis for the backbone detection, wavelet packet entropy, and fuzzy support vector machine for the spine classification. The experiments show that this approach is promising. The average detection accuracy of "MushRoom" achieves 97.3%, "Stubby" achieves 94.6%, and "Thin" achieves 97.2%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Solution of second order quasi-linear boundary value problems by a wavelet method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn

    2015-03-10

    A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less

  13. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    NASA Astrophysics Data System (ADS)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  14. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    NASA Astrophysics Data System (ADS)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  15. A New Look at Rainfall Fluctuations and Scaling Properties of Spatial Rainfall Using Orthogonal Wavelets.

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-02-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  16. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  17. The application of wavelet denoising in material discrimination system

    NASA Astrophysics Data System (ADS)

    Fu, Kenneth; Ranta, Dale; Guest, Clark; Das, Pankaj

    2010-01-01

    Recently, the need for cargo inspection imaging systems to provide a material discrimination function has become desirable. This is done by scanning the cargo container with x-rays at two different energy levels. The ratio of attenuations of the two energy scans can provide information on the composition of the material. However, with the statistical error from noise, the accuracy of such systems can be low. Because the moving source emits two energies of x-rays alternately, images from the two scans will not be identical. That means edges of objects in the two images are not perfectly aligned. Moreover, digitization creates blurry-edge artifacts. Different energy x-rays produce different edge spread functions. Those combined effects contribute to a source of false classification namely, the "edge effect." Other types of false classification are caused by noise, mainly Poisson noise associated with photons. The Poisson noise in xray images can be dealt with using either a Wiener filter or a wavelet shrinkage denoising approach. In this paper, we propose a method that uses the wavelet shrinkage denoising approach to enhance the performance of the material identification system. Test results show that this wavelet-based approach has improved performance in object detection and eliminating false positives due to the edge effects.

  18. A new look at rainfall fluctuations and scaling properties of spatial rainfall using orthogonal wavelets

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-01-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  19. Wavelet entropy: a new tool for analysis of short duration brain electrical signals.

    PubMed

    Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E

    2001-01-30

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials.

  20. Group theoretical methods and wavelet theory: coorbit theory and applications

    NASA Astrophysics Data System (ADS)

    Feichtinger, Hans G.

    2013-05-01

    Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the theory of coorbit spaces,12, 13 established by the author jointly with K. Gröchenig. Starting from an integrable and irreducible representation of some locally compact group (such as the "ax+b"-group or the Heisenberg group) one can derive families of Banach spaces having natural atomic characterizations, or alternatively a continuous transform associated to it. So at the end function spaces of locally compact groups come into play, and their generic properties help to explain why and how it is possible to obtain (nonorthogonal) decompositions. While unification of these two groups was one important aspect of the approach given in the late 80th, it was also clear that this approach allows to formulate and exploit the analogy to Banach spaces of analytic functions invariant under the Moebius group have been at the heart in this context. Recent years have seen further new instances and generalizations. Among them shearlets or the Blaschke product should be mentioned here, and the increased interest in the connections between wavelet theory and complex analysis. The talk will try to summarize a few of the general principles which can be derived from the general theory, but also highlight the difference between the different groups and signal expansions arising from corresponding group representations. There is still a lot more to be done, also from the point of view of applications and the numerical realization of such non-orthogonal expansions.

  1. Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition

    NASA Astrophysics Data System (ADS)

    Meckley, John R.

    1995-09-01

    The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total wavelet coefficient energy. The detection algorithm provides an estimate of the line offset, orientation, and length that is then used to index the appropriate filter shape. Additional wavelet pyramid decomposition is performed in areas of high energy to refine the line position estimate. After filtering, the new Radon transform is generated by inverting the wavelet pyramid. The Radon transform is then inverted by filtered backprojection to produce the final 2D signal estimate with the enhanced linear features. The wavelet-based method is compared to both the Fourier and the nonlinear filtering with examples of sparse and dense shapes in imaging, acoustics and medical tomography with test images of noisy concentric lines, a real spectrogram of a blow fish (a very nonstationary spectrum), and the Shepp Logan Computer Tomography phantom image. Both qualitative and derived quantitative measures demonstrate the improvement of wavelet-based filtering. Additional research is suggested based on these results. Open questions include what level(s) to use for detection and filtering because multiple-level representations exist. The lower levels are smoother at reduced spatial resolution, while the higher levels provide better response to edges. Several examples are discussed based on analytical and phenomenological arguments.

  2. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    Geophysical methods are prompt, non-invasive and low-cost tool for quantitative delineation of buried archaeological targets. However, taking into account the complexity of geological-archaeological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient (Khesin and Eppelbaum, 1997). Besides this, it is well-known that the majority of inverse-problem solutions in geophysics are ill-posed (e.g., Zhdanov, 2002), which means, according to Hadamard (1902), that the solution does not exist, or is not unique, or is not a continuous function of observed geophysical data (when small perturbations in the observations will cause arbitrary mistakes in the solution). This fact has a wide application for informational, probabilistic and wavelet methodologies in archaeological geophysics (Eppelbaum, 2014a). The goal of the modern geophysical data examination is to detect the geophysical signatures of buried targets at noisy areas via the analysis of some physical parameters with a minimal number of false alarms and miss-detections (Eppelbaum et al., 2011; Eppelbaum, 2014b). The proposed wavelet approach to recognition of archaeological targets (AT) by the examination of geophysical method integration consists of advanced processing of each geophysical method and nonconventional integration of different geophysical methods between themselves. The recently developed technique of diffusion clustering combined with the abovementioned wavelet methods was utilized to integrate the geophysical data and detect existing irregularities. The approach is based on the wavelet packet techniques applied as to the geophysical images (or graphs) versus coordinates. For such an analysis may be utilized practically all geophysical methods (magnetic, gravity, seismic, GPR, ERT, self-potential, etc.). On the first stage of the proposed investigation a few tens of typical physical-archaeological models (PAM) (e.g., Eppelbaum et al., 2010; Eppelbaum, 2011) of the targets under study for the concrete area (region) are developed. These PAM are composed on the basis of the known archaeological and geological data, results of previous archaeogeophysical investigations and 3D modeling of geophysical data. It should be underlined that the PAMs must differ (by depth, size, shape and physical properties of AT as well as peculiarities of the host archaeological-geological media). The PAMs must include also noise components of different orders (corresponding to the archaeogeophysical conditions of the area under study). The same models are computed and without the AT. Introducing complex PAMs (for example, situated in the vicinity of electric power lines, some objects of infrastructure, etc. (Eppelbaum et al., 2001)) will reflect some real class of AT occurring in such unfavorable for geophysical searching conditions. Anomalous effects from such complex PAMs will significantly disturb the geophysical anomalies from AT and impede the wavelet methodology employment. At the same time, the 'self-learning' procedure laid in this methodology will help further to recognize the AT even in the cases of unfavorable S/N ratio. Modern developments in the wavelet theory and data mining are utilized for the analysis of the integrated data. Wavelet approach is applied for derivation of enhanced (e.g., coherence portraits) and combined images of geophysical fields. The modern methodologies based on the matching pursuit with wavelet packet dictionaries enables to extract desired signals even from strongly noised data (Averbuch et al., 2014). Researchers usually met the problem of extraction of essential features from available data contaminated by a random noise and by a non-relevant background (Averbuch et al., 2014). If the essential structure of a signal consists of several sine waves then we may represent it via trigonometric basis (Fourier analysis). In this case one can compare the signal with a set of sinusoids and extract consistent ones. An indicator of presence a wave in a signal f(t) is the Fourier coefficient ∫ f(t) sinwt dt. Wavelet analysis provides a rich library of waveforms available and fast, computationally efficient procedures of representation of signals and of selection of relevant waveforms. The basic assumption justifying an application of wavelet analysis is that the essential structure of a signal analyzed consists of not a large number of various waveforms. The best way to reveal this structure is representation of the signal by a set of basic elements containing waveforms coherent to the signal. For structures of the signal coherent to the basis, large coefficients are attributed to a few basic waveforms, whereas we expect small coefficients for the noise and structures incoherent to all basic waveforms. Wavelets are a family of functions ranging from functions of arbitrary smoothness to fractal ones. Wavelet procedure involves two aspects. The first one is a decomposition, i.e. breaking up a signal to obtain the wavelet coefficients and the 2nd one is a reconstruction, which consists of a reassembling the signal from coefficients There are many modifications of the WA. Note, first of all, so-called Continuous WA in whichsignal f(t) is tested for presence of waveforms ψ(t-b) a. Here, a is scaling parameter (dilation), bdetermines location of the wavelet ψ(t-b) a in a signal f(t). The integral ( ) ∫ t-b (W ψf) (b,a) = f (t) ψ a dt is the Continuous Wavelet Transform.When parameters a,b in ψ( ) t-ab take some discrete values, we have the Discrete Wavelet Transform. A general scheme of the Wavelet Decomposition Tree is shown, for instance, in (Averbuch et al., 2014; Eppelbaum et al., 2014). The signal is compared with the testing signal on each scale. It is estimated wavelet coefficients which enable to reconstruct the 1st approximation of the signal and details. On the next level, wavelet transform is applied to the approximation. Then, we can present A1 as A2 + D2, etc. So, if S - Signal, A - Approximation, D - Details, then S = A1 + D1 = A2 + D2 + D1 = A3 + D3 + D2 + D1. Wavelet packet transform is applied to both low pass results (approximations) and high pass results (Details). For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters (Eppelbaum et al., 2012). This set of parameters serves as a signature of the image and is utilized for discrimination of images (a) containing AT from the images (b) non-containing AT (let will designate these images as N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions (Alperovich et al., 2013). As a result of the previous steps we obtain two sets: containing AT and N of the signatures vectors for geophysical images. The obtained 3D set of the data representatives can be used as a reference set for the classification of newly arriving geophysical data. The obtained data sets are reduced by embedding features vectors into the 3D Euclidean space using the so-called diffusion map. This map enables to reveal the internal structure of the datasets AT and N and to distinctly separate them. For this, a matrix of the diffusion distances for the combined feature matrix F = FN ∴ FC of size 60 x C is constructed (Coifman and Lafon, 2006; Averbuch et al., 2010). Then, each row of the matrices FN and FC is projected onto three first eigenvectors of the matrix D(F ). As a result, each data curve is represented by a 3D point in the Euclidean space formed by eigenvectors of D(F ). The Euclidean distances between these 3D points reflect the similarity of the data curves. The scattered projections of the data curves onto the diffusion eigenvectors will be composed. Finally we observe that as a result of the above operations we embedded the original data into 3-dimensional space where data related to the AT subsurface are well separated from the N data. This 3D set of the data representatives can be used as a reference set for the classification of newly arriving data. Geophysically it means a reliable division of the studied areas for the AT-containing and not containing (N) these objects. Testing this methodology for delineation of archaeological cavities by magnetic and gravity data analysis displayed an effectiveness of this approach. References Alperovich, L., Eppelbaum, L., Zheludev, V., Dumoulin, J., Soldovieri, F., Proto, M., Bavusi, M. and Loperte, A., 2013. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineering, 10, No. 2, 025017, 1-17. Averbuch, A., Hochman, K., Rabin, N., Schclar, A. and Zheludev, V., 2010. A diffusion frame-work for detection of moving vehicles. Digital Signal Processing, 20, No.1, 111-122. Averbuch A.Z., Neittaanmäki, P., and Zheludev, V.A., 2014. Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Volume I: Periodic Splines. Springer. Coifman, R.R. and Lafon, S., 2006. Diffusion maps, Applied and Computational Harmonic Analysis. Special issue on Diffusion Maps and Wavelets, 21, No. 7, 5-30. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014a. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V. 2014b. Four Color Theorem and Applied Geophysics. Applied Mathematics, 5, 358-366. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No.3, 163-185. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 7, 849-860. Eppelbaum, L.V., Zheludev, V. and Averbuch, A., 2014. Diffusion maps as a powerful tool for integrated geophysical field analysis to detecting hidden karst terranes. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 1-2, 36-46. Hadamard, J., 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 13, 49-52. Khesin, B.E. and Eppelbaum, L.V., 1997. The number of geophysical methods required for target classification: quantitative estimation. Geoinformatics, 8, No.1, 31-39. Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, Vol. 36. Elsevier, Amsterdam.

  3. Instantaneous brain dynamics mapped to a continuous state space.

    PubMed

    Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D

    2017-11-15

    Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.

    PubMed

    Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied

    2014-12-01

    Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.

  5. Response of Autonomic Nervous System to Body Positions:

    NASA Astrophysics Data System (ADS)

    Xu, Aiguo; Gonnella, G.; Federici, A.; Stramaglia, S.; Simone, F.; Zenzola, A.; Santostasi, R.

    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1) and the second parts (HD2) of 90° head down tilt, and during recovery (REC). The wavelet transform was performed using the Haar function of period T=2j (j=1,2,...,6) to obtain wavelet coefficients. Power spectra components were analyzed within three bands, VLF (0.003-0.04), LF (0.04-0.15) and HF (0.15-0.4) with the frequency unit cycle/interval. Wavelet transform demonstrated a higher discrimination among all analyzed periods than the Fourier transform. For the Fourier analysis, the LF of R-R intervals and VLF of systolic blood pressure show more evident difference for different body positions. For the wavelet analysis, the systolic blood pressures show much more evident differences than the R-R intervals. This study suggests a difference in the response of the vessels and the heart to different body positions. The partial dissociation between VLF and LF results is a physiologically relevant finding of this work.

  6. Wavelet-based group and phase velocity measurements: Method

    NASA Astrophysics Data System (ADS)

    Yang, H. Y.; Wang, W. W.; Hung, S. H.

    2016-12-01

    Measurements of group and phase velocities of surface waves are often carried out by applying a series of narrow bandpass or stationary Gaussian filters localized at specific frequencies to wave packets and estimating the corresponding arrival times at the peak envelopes and phases of the Fourier spectra. However, it's known that seismic waves are inherently nonstationary and not well represented by a sum of sinusoids. Alternatively, a continuous wavelet transform (CWT) which decomposes a time series into a family of wavelets, translated and scaled copies of a generally fast oscillating and decaying function known as the mother wavelet, is capable of retaining localization in both the time and frequency domain and well-suited for the time-frequency analysis of nonstationary signals. Here we develop a wavelet-based method to measure frequency-dependent group and phase velocities, an essential dataset used in crust and mantle tomography. For a given time series, we employ the complex morlet wavelet to obtain the scalogram of amplitude modulus |Wg| and phase φ on the time-frequency plane. The instantaneous frequency (IF) is then calculated by taking the derivative of phase with respect to time, i.e., (1/2π)dφ(f, t)/dt. Time windows comprising strong energy arrivals to be measured can be identified by those IFs close to the frequencies with the maximum modulus and varying smoothly and monotonically with time. The respective IFs in each selected time window are further interpolated to yield a smooth branch of ridge points or representative IFs at which the arrival time, tridge(f), and phase, φridge(f), after unwrapping and correcting cycle skipping based on a priori knowledge of the possible velocity range, are determined for group and phase velocity estimation. We will demonstrate our measurement method using both ambient noise cross correlation functions and multi-mode surface waves from earthquakes. The obtained dispersion curves will be compared with those by a conventional narrow bandpass method.

  7. Roughness of the Mantle Transition Zone Discontinuities Revealed by High Resolution Wavefield Imaging with the Earthscope Transportable Array

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pavlis, G. L.

    2015-12-01

    We post-processed 141,080 pairs of high quality radial and transverse receiver functions from the Earthscope Automated Receiver Survey using a variant of what we have called generalized iterative deconvolution method and reshaped the spiking output into different scales of Ricker wavelets. We then used these data as input to our 3D plane wave migration method to produce an image volume of P to S scattering surfaces under all of the lower 48 states. The result is arguably the highest resolution image ever produce of the mantle transition zone. Due to the effect of migration impulse response, different scales of Ricker wavelets provide another important means of controlling the resolution of the image produced by 3D plane wave migration method. Model simulation shows that comparing to the widely used CCP stacking method with receiver functions shaped by Gaussian wavelet, the application of our methods is capable of resolving not only dipping discontinuities but also more subtle details of the discontinuities. Application to the latest USArray data reveals several previously unobserved features of the 410 and 660 discontinuities. Both discontinuities are resolved to a precision approaching 1 km under the stable interior, but degrading to the order of 10 km in the western US due to a probably combination of higher attenuation and velocity heterogeneity not resolved by current generation tomography models. Topography with many 10s of km is resolved at a range of scales. In addition, we observe large variation of relative amplitude on the radial component and large variations in the radial to transverse amplitude ratio that correlate with inferred variations in discontinuity topography. We argue this combination of observations can be explained by roughness at a range of scales. Roughness is consistent with the phase-change model for these discontinuities given there is little reason to think the mantle is homogeneous at these distance scales. Continental scale isopach of the transition zones shows the average thickness of the transition is approximately 15 km greater in the eastern US compared to the western US. This change occurs on a well define boundary roughly under the Mississippi River. The standard phase change model would thus predict higher transition zone temperatures on the western side of this boundary.

  8. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Wavelet domain image restoration with adaptive edge-preserving regularization.

    PubMed

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.

  10. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized.

  11. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    NASA Astrophysics Data System (ADS)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  12. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.

    PubMed

    Lima, Clodoaldo A M; Coelho, André L V

    2011-10-01

    We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A novel method for 3D measurement of RFID multi-tag network based on matching vision and wavelet

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiao; Yu, Xiaolei; Zhao, Zhimin; Wang, Donghua; Zhang, Wenjie; Liu, Zhenlu; Lu, Dongsheng; Dong, Dingbang

    2018-07-01

    In the field of radio frequency identification (RFID), the three-dimensional (3D) distribution of RFID multi-tag networks has a significant impact on their reading performance. At the same time, in order to realize the anti-collision of RFID multi-tag networks in practical engineering applications, the 3D distribution of RFID multi-tag networks must be measured. In this paper, a novel method for the 3D measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. Then, the wavelet threshold denoising method is used to remove noise in the obtained images. The template matching method is used to determine the two-dimensional coordinates and vertical coordinate of each tag. The 3D coordinates of each tag are obtained subsequently. Finally, a model of the nonlinear relation between the 3D coordinate distribution of the RFID multi-tag network and the corresponding reading distance is established using the wavelet neural network. The experiment results show that the average prediction relative error is 0.71% and the time cost is 2.17 s. The values of the average prediction relative error and time cost are smaller than those of the particle swarm optimization neural network and genetic algorithm–back propagation neural network. The time cost of the wavelet neural network is about 1% of that of the other two methods. The method proposed in this paper has a smaller relative error. The proposed method can improve the real-time performance of RFID multi-tag networks and the overall dynamic performance of multi-tag networks.

  14. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    PubMed

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and utilized in radial basis function neural network. Our simulation results indicate the accuracy of 92% classification using F1W2 method.

  15. A new approach of watermarking technique by means multichannel wavelet functions

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Puccio, Luigia

    2012-12-01

    The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.

  16. Noncoding sequence classification based on wavelet transform analysis: part I

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  17. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  18. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    NASA Astrophysics Data System (ADS)

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients across scales. We also focus on the likely gains of future inversions of finite-frequency seismic data using a sparsity promoting penalty in combination with our new wavelet approach.

  19. Wab-InSAR: a new wavelet based InSAR time series technique applied to volcanic and tectonic areas

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Shirzaei, M.; Nankali, H.; Roustaei, M.

    2009-12-01

    Modern geodetic techniques such as InSAR and GPS provide valuable observations of the deformation field. Because of the variety of environmental interferences (e.g., atmosphere, topography distortion) and incompleteness of the models (assumption of the linear model for deformation), those observations are usually tainted by various systematic and random errors. Therefore we develop and test new methods to identify and filter unwanted periodic or episodic artifacts to obtain accurate and precise deformation measurements. Here we present and implement a new wavelet based InSAR (Wab-InSAR) time series approach. Because wavelets are excellent tools for identifying hidden patterns and capturing transient signals, we utilize wavelet functions for reducing the effect of atmospheric delay and digital elevation model inaccuracies. Wab-InSAR is a model free technique, reducing digital elevation model errors in individual interferograms using a 2D spatial Legendre polynomial wavelet filter. Atmospheric delays are reduced using a 3D spatio-temporal wavelet transform algorithm and a novel technique for pixel selection. We apply Wab-InSAR to several targets, including volcano deformation processes at Hawaii Island, and mountain building processes in Iran. Both targets are chosen to investigate large and small amplitude signals, variable and complex topography and atmospheric effects. In this presentation we explain different steps of the technique, validate the results by comparison to other high resolution processing methods (GPS, PS-InSAR, SBAS) and discuss the geophysical results.

  20. A data-driven wavelet-based approach for generating jumping loads

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  1. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in Rn

    PubMed Central

    Donoho, David L.

    1999-01-01

    For each pair (n, k) with 1 ≤ k < n, we construct a tight frame (ρλ : λ ∈ Λ) for L2 (Rn), which we call a frame of k-plane ridgelets. The intent is to efficiently represent functions that are smooth away from singularities along k-planes in Rn. We also develop tools to help decide whether k-plane ridgelets provide the desired efficient representation. We first construct a wavelet-like tight frame on the X-ray bundle χn,k—the fiber bundle having the Grassman manifold Gn,k of k-planes in Rn for base space, and for fibers the orthocomplements of those planes. This wavelet-like tight frame is the pushout to χn,k, via the smooth local coordinates of Gn,k, of an orthonormal basis of tensor Meyer wavelets on Euclidean space Rk(n−k) × Rn−k. We then use the X-ray isometry [Solmon, D. C. (1976) J. Math. Anal. Appl. 56, 61–83] to map this tight frame isometrically to a tight frame for L2(Rn)—the k-plane ridgelets. This construction makes analysis of a function f ∈ L2(Rn) by k-plane ridgelets identical to the analysis of the k-plane X-ray transform of f by an appropriate wavelet-like system for χn,k. As wavelets are typically effective at representing point singularities, it may be expected that these new systems will be effective at representing objects whose k-plane X-ray transform has a point singularity. Objects with discontinuities across hyperplanes are of this form, for k = n − 1. PMID:10051554

  2. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular reactivity.

    PubMed

    Latka, M; Kolodziej, W; Turalska, M; Latka, D; Zub, W; West, B J

    2007-05-01

    We introduce a wavelet transfer model to relate spontaneous arterial blood pressure (ABP) fluctuations to intracranial pressure (ICP) fluctuations. We employ a complex continuous wavelet transform to develop a consistent mathematical framework capable of parametrizing both cerebral compensatory reserve and cerebrovascular reactivity. The frequency-dependent gain and phase of the wavelet transfer function are introduced because of the non-stationary character of the ICP and ABP time series. The gain characterizes the dampening of spontaneous ABP fluctuations and is interpreted as a novel measure of cerebrospinal compensatory reserve. For a group of 12 patients who died as a result of cerebral lesions (Glasgow Outcome Scale (GOS) = 1) the average gain in the low-frequency (0.02- 0.07 Hz) range was 0.51 +/- 0.13 and significantly exceeded that of 17 patients with GOS = 2 having an average gain of 0.26 +/- 0.11 with p = 1x10(-4) (Kruskal-Wallis test). A time-averaged synchronization index (which may vary from 0 to 1) defined in terms of the wavelet transfer function phase yields information about the stability of the phase difference of the ABP and ICP signals and is used as a cerebrovascular reactivity index. A low value of synchronization index reflects a normally reactive vascular bed, while a high value indicates pathological entrainment of ABP and ICP fluctuations. Such entrainment is strongly pronounced in patients with fatal outcome (for this group the low-frequency synchronization index was 0.69 +/- 0.17). The gain and synchronization parameters define a cerebral hemodynamic state space (CHS) in which the patients with GOS = 1 are to large extent partitioned away from those with GOS = 2. The concept of CHS elucidates the interplay of vascular and compensatory mechanisms.

  3. Probing Mantle Heterogeneity Across Spatial Scales

    NASA Astrophysics Data System (ADS)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.

  4. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    NASA Astrophysics Data System (ADS)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  5. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  6. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffin, Mark A., E-mail: mark.a.goffin@gmail.com; Buchan, Andrew G.; Dargaville, Steven

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specifiedmore » functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  8. Wavelet library for constrained devices

    NASA Astrophysics Data System (ADS)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  9. Fractal properties and denoising of lidar signals from cirrus clouds

    NASA Astrophysics Data System (ADS)

    van den Heuvel, J. C.; Driesenaar, M. L.; Lerou, R. J. L.

    2000-02-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by combining shots to obtain the backscatter at constant altitude. The signal at high altitude was analyzed for horizontal structure of cirrus clouds. The power spectrum and the structure function show straight lines on a double logarithmic plot. This behavior is characteristic for a Brownian fractal. Wavelet analysis using the Haar wavelet confirms the fractal aspects. It is shown that the horizontal structure of cirrus can be described by a fractal with a dimension of 1.8 over length scales that vary 4 orders of magnitude. We use the fractal properties in a new denoising method. Denoising is required for future lidar measurements from space that have a low signal to noise ratio. Our wavelet denoising is based on the Haar wavelet and uses the statistical fractal properties of cirrus clouds in a method based on the maximum a posteriori (MAP) probability. This denoising based on wavelets is tested on airborne lidar signals from ELITE using added Gaussian noise. Superior results with respect to averaging are obtained.

  10. Mexican Hat Wavelet Kernel ELM for Multiclass Classification.

    PubMed

    Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei

    2017-01-01

    Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.

  11. Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Baluev, R. V.

    2018-04-01

    Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.

  12. Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees.

    PubMed

    Anam, Khairul; Al-Jumaily, Adel

    2014-01-01

    The use of a small number of surface electromyography (EMG) channels on the transradial amputee in a myoelectric controller is a big challenge. This paper proposes a pattern recognition system using an extreme learning machine (ELM) optimized by particle swarm optimization (PSO). PSO is mutated by wavelet function to avoid trapped in a local minima. The proposed system is used to classify eleven imagined finger motions on five amputees by using only two EMG channels. The optimal performance of wavelet-PSO was compared to a grid-search method and standard PSO. The experimental results show that the proposed system is the most accurate classifier among other tested classifiers. It could classify 11 finger motions with the average accuracy of about 94 % across five amputees.

  13. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    NASA Astrophysics Data System (ADS)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  14. Shape-driven 3D segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2006-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.

  15. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  16. Wavelets and spacetime squeeze

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1993-01-01

    It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.

  17. Conference on Operator Theory, Wavelet Theory and Control Theory

    DTIC Science & Technology

    1993-09-30

    UNCC and TAMU Wavelet collocation method for nonlinear time evolution - PDE’s 4 : 00 - 4: 20 A in Li, the University of Nevada - Las Vagas Wav slet...operator-valued functions. Inspired by Robinson’s characterization, we havc found a similar mninimum deliy characterization for the central... Midi -Pyr{\\ ’e)n{\\’e)les de l’Universit{\\e) Paul SabatierO, ADDRESS=*Toulouse, France’, NOTE=’ISBN 2-86332-130-7’, MONTH=08--13 June’, YEAR=�

  18. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  19. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-Ray Phase CT

    DTIC Science & Technology

    2013-06-01

    fibrils in the x-ray phase contrast CT imaging, as a function over the molar concentrations corresponding to normal, pathologic and Alzheimer’s...panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001. 4. X Wu and H Liu, “Clinical...and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001 12. Tang X, Hsieh J, Nilsen RA, Hagiwara A

  20. A New Scheme for the Design of Hilbert Transform Pairs of Biorthogonal Wavelet Bases

    NASA Astrophysics Data System (ADS)

    Shi, Hongli; Luo, Shuqian

    2010-12-01

    In designing the Hilbert transform pairs of biorthogonal wavelet bases, it has been shown that the requirements of the equal-magnitude responses and the half-sample phase offset on the lowpass filters are the necessary and sufficient condition. In this paper, the relationship between the phase offset and the vanishing moment difference of biorthogonal scaling filters is derived, which implies a simple way to choose the vanishing moments so that the phase response requirement can be satisfied structurally. The magnitude response requirement is approximately achieved by a constrained optimization procedure, where the objective function and constraints are all expressed in terms of the auxiliary filters of scaling filters rather than the scaling filters directly. Generally, the calculation burden in the design implementation will be less than that of the current schemes. The integral of magnitude response difference between the primal and dual scaling filters has been chosen as the objective function, which expresses the magnitude response requirements in the whole frequency range. Two design examples illustrate that the biorthogonal wavelet bases designed by the proposed scheme are very close to Hilbert transform pairs.

  1. End-point detection in potentiometric titration by continuous wavelet transform.

    PubMed

    Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W

    2009-10-15

    The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.

  2. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images.

    PubMed

    Maheshwari, Shishir; Pachori, Ram Bilas; Acharya, U Rajendra

    2017-05-01

    Glaucoma is an ocular disorder caused due to increased fluid pressure in the optic nerve. It damages the optic nerve and subsequently causes loss of vision. The available scanning methods are Heidelberg retinal tomography, scanning laser polarimetry, and optical coherence tomography. These methods are expensive and require experienced clinicians to use them. So, there is a need to diagnose glaucoma accurately with low cost. Hence, in this paper, we have presented a new methodology for an automated diagnosis of glaucoma using digital fundus images based on empirical wavelet transform (EWT). The EWT is used to decompose the image, and correntropy features are obtained from decomposed EWT components. These extracted features are ranked based on t value feature selection algorithm. Then, these features are used for the classification of normal and glaucoma images using least-squares support vector machine (LS-SVM) classifier. The LS-SVM is employed for classification with radial basis function, Morlet wavelet, and Mexican-hat wavelet kernels. The classification accuracy of the proposed method is 98.33% and 96.67% using threefold and tenfold cross validation, respectively.

  3. A Wavelet-based Fast Discrimination of Transformer Magnetizing Inrush Current

    NASA Astrophysics Data System (ADS)

    Kitayama, Masashi

    Recently customers who need electricity of higher quality have been installing co-generation facilities. They can avoid voltage sags and other distribution system related disturbances by supplying electricity to important load from their generators. For another example, FRIENDS, highly reliable distribution system using semiconductor switches or storage devices based on power electronics technology, is proposed. These examples illustrates that the request for high reliability in distribution system is increasing. In order to realize these systems, fast relaying algorithms are indispensable. The author proposes a new method of detecting magnetizing inrush current using discrete wavelet transform (DWT). DWT provides the function of detecting discontinuity of current waveform. Inrush current occurs when transformer core becomes saturated. The proposed method detects spikes of DWT components derived from the discontinuity of the current waveform at both the beginning and the end of inrush current. Wavelet thresholding, one of the wavelet-based statistical modeling, was applied to detect the DWT component spikes. The proposed method is verified using experimental data using single-phase transformer and the proposed method is proved to be effective.

  4. Contextual Compression of Large-Scale Wind Turbine Array Simulations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny M; Brunhart-Lupo, Nicholas J; Potter, Kristin C

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysismore » and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interactive visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contexualized representation is a valid approach and encourages contextual data management.« less

  5. Contextual Compression of Large-Scale Wind Turbine Array Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny M; Brunhart-Lupo, Nicholas J; Potter, Kristin C

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysismore » and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interative visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contextualized representation is a valid approach and encourages contextual data management.« less

  6. Analyze the dynamic features of rat EEG using wavelet entropy.

    PubMed

    Feng, Zhouyan; Chen, Hang

    2005-01-01

    Wavelet entropy (WE), a new method of complexity measure for non-stationary signals, was used to investigate the dynamic features of rat EEGs under three vigilance states. The EEGs of the freely moving rats were recorded with implanted electrodes and were decomposed into four components of delta, theta, alpha and beta by using multi-resolution wavelet transform. Then, the wavelet entropy curves were calculated as a function of time. The results showed that there were significant differences among the average WEs of EEGs recorded under the vigilance states of waking, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The changes of WE had different relationships with the four power components under different states. Moreover, there was evident rhythm in EEG WEs of SWS sleep for most experimental rats, which indicated a reciprocal relationship between slow waves and sleep spindles in the micro-states of SWS sleep. Therefore, WE can be used not only to distinguish the long-term changes in EEG complexity, but also to reveal the short-term changes in EEG micro-state.

  7. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Hulya Kodal; Aslan, Zafer; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  8. JPEG and wavelet compression of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  9. Prediction of the outcome in cardiac arrest patients undergoing hypothermia using EEG wavelet entropy.

    PubMed

    Moshirvaziri, Hana; Ramezan-Arab, Nima; Asgari, Shadnaz

    2016-08-01

    Cardiac arrest (CA) is the leading cause of death in the United States. Induction of hypothermia has been found to improve the functional recovery of CA patients after resuscitation. However, there is no clear guideline for the clinicians yet to determine the prognosis of the CA when patients are treated with hypothermia. The present work aimed at the development of a prognostic marker for the CA patients undergoing hypothermia. A quantitative measure of the complexity of Electroencephalogram (EEG) signals, called wavelet sub-band entropy, was employed to predict the patients' outcomes. We hypothesized that the EEG signals of the patients who survived would demonstrate more complexity and consequently higher values of wavelet sub-band entropies. A dataset of 16-channel EEG signals collected from CA patients undergoing hypothermia at Long Beach Memorial Medical Center was used to test the hypothesis. Following preprocessing of the signals and implementation of the wavelet transform, the wavelet sub-band entropies were calculated for different frequency bands and EEG channels. Then the values of wavelet sub-band entropies were compared among two groups of patients: survived vs. non-survived. Our results revealed that the brain high frequency oscillations (between 64100 Hz) captured from the inferior frontal lobes are significantly more complex in the CA patients who survived (p-value <; 0.02). Given that the non-invasive measurement of EEG is part of the standard clinical assessment for CA patients, the results of this study can enhance the management of the CA patients treated with hypothermia.

  10. Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients

    PubMed Central

    Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P.

    2015-01-01

    Abstract The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS−]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125–0.250 Hz, SF2: 0.060–0.125 Hz, SF3: 0.030–0.060 Hz, SF4: 0.015–0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS−), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS− patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS− group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities. PMID:25808612

  11. Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients.

    PubMed

    Sours, Chandler; Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P

    2015-09-01

    The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS-]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125-0.250 Hz, SF2: 0.060-0.125 Hz, SF3: 0.030-0.060 Hz, SF4: 0.015-0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS-), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS- patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS- group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities.

  12. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  13. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of time dynamical evolution of electroencephalographic epileptic records

    NASA Astrophysics Data System (ADS)

    Rosso, Osvaldo A.; Mairal, María. Liliana

    2002-09-01

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of the brain dynamics. The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the qualitative variation of the signal in both time and frequency. The entropy defined from the wavelet functions is a measure of the order/disorder degree present in a time series. In consequence, this entropy evaluates over EEG time series gives information about the underlying dynamical process in the brain, more specifically of the synchrony of the group cells involved in the different neural responses. The total wavelet entropy results independent of the signal energy and becomes a good tool for detecting dynamical changes in the system behavior. In addition the total wavelet entropy has advantages over the Lyapunov exponents, because it is parameter free and independent of the stationarity of the time series. In this work we compared the results of the time evolution of the chaoticity (Lyapunov exponent as a function of time) with the corresponding time evolution of the total wavelet entropy in two different EEG records, one provide by depth electrodes and other by scalp ones.

  15. Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models.

    PubMed

    Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A

    2010-07-01

    Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.

  16. Wavelets in Physics

    NASA Astrophysics Data System (ADS)

    van den Berg, J. C.

    2004-03-01

    A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.

  17. Wavelets in Physics

    NASA Astrophysics Data System (ADS)

    van den Berg, J. C.

    1999-08-01

    A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.

  18. Shape-Driven 3D Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2013-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875

  19. Cloud-scale genomic signals processing classification analysis for gene expression microarray data.

    PubMed

    Harvey, Benjamin; Soo-Yeon Ji

    2014-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring inference though analysis of DNA/mRNA sequence data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological inference by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale classification analysis of microarray data using Wavelet thresholding in a Cloud environment to identify significantly expressed features. This paper proposes a novel methodology that uses Wavelet based Denoising to initialize a threshold for determination of significantly expressed genes for classification. Additionally, this research was implemented and encompassed within cloud-based distributed processing environment. The utilization of Cloud computing and Wavelet thresholding was used for the classification 14 tumor classes from the Global Cancer Map (GCM). The results proved to be more accurate than using a predefined p-value for differential expression classification. This novel methodology analyzed Wavelet based threshold features of gene expression in a Cloud environment, furthermore classifying the expression of samples by analyzing gene patterns, which inform us of biological processes. Moreover, enabling researchers to face the present and forthcoming challenges that may arise in the analysis of data in functional genomics of large microarray datasets.

  20. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.

    PubMed

    Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu

    2007-01-01

    As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (p<0.01) different between young and healthy elderly group. Results also suggest that the Beta between scales 1 to 2 are effective for recognizing falls risk gait patterns. Results have implication for quantifying gait dynamics in normal, ageing and pathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.

  1. Identification of large geomorphological anomalies based on 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Doglioni, A.; Simeone, V.

    2012-04-01

    The identification and analysis based on quantitative evidences of large geomorphological anomalies is an important stage for the study of large landslides. Numerical geomorphic analyses represent an interesting approach to this kind of studies, allowing for a detailed and pretty accurate identification of hidden topographic anomalies that may be related to large landslides. Here a geomorphic numerical analyses of the Digital Terrain Model (DTM) is presented. The introduced approach is based on 2D discrete wavelet transform (Antoine et al., 2003; Bruun and Nilsen, 2003, Booth et al., 2009). The 2D wavelet decomposition of the DTM, and in particular the analysis of the detail coefficients of the wavelet transform can provide evidences of anomalies or singularities, i.e. discontinuities of the land surface. These discontinuities are not very evident from the DTM as it is, while 2D wavelet transform allows for grid-based analysis of DTM and for mapping the decomposition. In fact, the grid-based DTM can be assumed as a matrix, where a discrete wavelet transform (Daubechies, 1992) is performed columnwise and linewise, which basically represent horizontal and vertical directions. The outcomes of this analysis are low-frequency approximation coefficients and high-frequency detail coefficients. Detail coefficients are analyzed, since their variations are associated to discontinuities of the DTM. Detailed coefficients are estimated assuming to perform 2D wavelet transform both for the horizontal direction (east-west) and for the vertical direction (north-south). Detail coefficients are then mapped for both the cases, thus allowing to visualize and quantify potential anomalies of the land surface. Moreover, wavelet decomposition can be pushed to further levels, assuming a higher scale number of the transform. This may potentially return further interesting results, in terms of identification of the anomalies of land surface. In this kind of approach, the choice of a proper mother wavelet function is a tricky point, since it conditions the analysis and then their outcomes. Therefore multiple levels as well as multiple wavelet analyses are guessed. Here the introduced approach is applied to some interesting cases study of south Italy, in particular for the identification of large anomalies associated to large landslides at the transition between Apennine chain domain and the foredeep domain. In particular low Biferno valley and Fortore valley are here analyzed. Finally, the wavelet transforms are performed on multiple levels, thus trying to address the problem of which is the level extent for an accurate analysis fit to a specific problem. Antoine J.P., Carrette P., Murenzi R., and Piette B., (2003), Image analysis with two-dimensional continuous wavelet transform, Signal Processing, 31(3), pp. 241-272, doi:10.1016/0165-1684(93)90085-O. Booth A.M., Roering J.J., and Taylor Perron J., (2009), Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109(3-4), pp. 132-147, doi:10.1016/j.geomorph.2009.02.027. Bruun B.T., and Nilsen S., (2003), Wavelet representation of large digital terrain models, Computers and Geoscience, 29(6), pp. 695-703, doi:10.1016/S0098-3004(03)00015-3. Daubechies, I. (1992), Ten lectures on wavelets, SIAM.

  2. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux onmore » the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.« less

  3. Investigating the enhancement of template-free activation detection of event-related fMRI data using wavelet shrinkage and figures of merit.

    PubMed

    Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan

    2011-03-01

    We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker

    NASA Astrophysics Data System (ADS)

    Shang, Xueyi; Li, Xibing; Weng, Lei

    2018-01-01

    P phase arrival picking of weak signals is still challenging in seismology. A wavelet denoising is proposed to enhance seismic P phase arrival picking, and the kurtosis picker is applied on the wavelet-denoised signal to identify P phase arrival. It has been called the WD-K picker. The WD-K picker, which is different from those traditional wavelet-based pickers on the basis of a single wavelet component or certain main wavelet components, takes full advantage of the reconstruction of main detail wavelet components and the approximate wavelet component. The proposed WD-K picker considers more wavelet components and presents a better P phase arrival feature. The WD-K picker has been evaluated on 500 micro-seismic signals recorded in the Chinese Yongshaba mine. The comparison between the WD-K pickings and manual pickings shows the good picking accuracy of the WD-K picker. Furthermore, the WD-K picking performance has been compared with the main detail wavelet component combining-based kurtosis (WDC-K) picker, the single wavelet component-based kurtosis (SW-K) picker, and certain main wavelet component-based maximum kurtosis (MMW-K) picker. The comparison has demonstrated that the WD-K picker has better picking accuracy than the other three-wavelet and kurtosis-based pickers, thus showing the enhanced ability of wavelet denoising.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, L.H.

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less

  6. Nonlinear scattering of ultrashort laser pulses on two-level system

    NASA Astrophysics Data System (ADS)

    Astapenko, Valery A.; Sakhno, Sergey V.

    2015-05-01

    The presentation is devoted to the theoretical investigation of nonlinear scattering of ultrashort electromagnetic pulses (USP) on two-level quantum system. We consider the scattering of several types of USP, namely, so called corrected Gaussian pulse (CGP) and cosine wavelet pulse. Such pulses have no constant component in their spectrum in contrast with traditional Gaussian pulse. It should be noted that the presence of constant component in the limit of ultrashort pulse durations leads to unphysical results. The main purpose of the present work is the investigation of the change of pulse temporal shape after scattering as a function of initial phase at different distances from the target. Numerical calculations are based on the solution of Bloch equations and expression for scattering field strength via dipole moment of two-level system exposed by the action of incident USP. In our calculation we also account for the influence of refracting index of the air on electric field strength in the pulse after scattering.

  7. On the "Optimal" Choice of Trial Functions for Modelling Potential Fields

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2015-04-01

    There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A.B.; Clothiaux, E.

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where themore » dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.« less

  9. Wavelet-based automatic determination of the P- and S-wave arrivals

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2013-12-01

    The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.

  10. Blind identification of image manipulation type using mixed statistical moments

    NASA Astrophysics Data System (ADS)

    Jeong, Bo Gyu; Moon, Yong Ho; Eom, Il Kyu

    2015-01-01

    We present a blind identification of image manipulation types such as blurring, scaling, sharpening, and histogram equalization. Motivated by the fact that image manipulations can change the frequency characteristics of an image, we introduce three types of feature vectors composed of statistical moments. The proposed statistical moments are generated from separated wavelet histograms, the characteristic functions of the wavelet variance, and the characteristic functions of the spatial image. Our method can solve the n-class classification problem. Through experimental simulations, we demonstrate that our proposed method can achieve high performance in manipulation type detection. The average rate of the correctly identified manipulation types is as high as 99.22%, using 10,800 test images and six manipulation types including the authentic image.

  11. Dense grid sibling frames with linear phase filters

    NASA Astrophysics Data System (ADS)

    Abdelnour, Farras

    2013-09-01

    We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.

  12. Intraoperative monitoring of somatosensory-evoked potential in the spinal cord rectification operation by means of wavelet analysis

    NASA Astrophysics Data System (ADS)

    Liu, W.; Du, M. H.; Chan, Francis H. Y.; Lam, F. K.; Luk, D. K.; Hu, Y.; Fung, Kan S. M.; Qiu, W.

    1998-09-01

    Recently there has been a considerable interest in the use of a somatosensory evoked potential (SEP) for monitoring the functional integrity of the spinal cord during surgery such as spinal scoliosis. This paper describes a monitoring system and signal processing algorithms, which consists of 50 Hz mains filtering and a wavelet signal analyzer. Our system allows fast detection of changes in SEP peak latency, amplitude and signal waveform, which are the main parameters of interest during intra-operative procedures.

  13. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    DTIC Science & Technology

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  14. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury

    PubMed Central

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel’farb, Georgy; Ovechkin, Alexander

    2013-01-01

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals. PMID:24307920

  15. Automatic Phase Picker for Local and Teleseismic Events Using Wavelet Transform and Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Gaillot, P.; Bardaine, T.; Lyon-Caen, H.

    2004-12-01

    Since recent years, various automatic phase pickers based on the wavelet transform have been developed. The main motivation for using wavelet transform is that they are excellent at finding the characteristics of transient signals, they have good time resolution at all periods, and they are easy to program for fast execution. Thus, the time-scale properties and flexibility of the wavelets allow detection of P and S phases in a broad frequency range making their utilization possible in various context. However, the direct application of an automatic picking program in a different context/network than the one for which it has been initially developed is quickly tedious. In fact, independently of the strategy involved in automatic picking algorithms (window average, autoregressive, beamforming, optimization filtering, neuronal network), all developed algorithms use different parameters that depend on the objective of the seismological study, the region and the seismological network. Classically, these parameters are manually defined by trial-error or calibrated learning stage. In order to facilitate this laborious process, we have developed an automated method that provide optimal parameters for the picking programs. The set of parameters can be explored using simulated annealing which is a generic name for a family of optimization algorithms based on the principle of stochastic relaxation. The optimization process amounts to systematically modifying an initial realization so as to decrease the value of the objective function, getting the realization acceptably close to the target statistics. Different formulations of the optimization problem (objective function) are discussed using (1) world seismicity data recorded by the French national seismic monitoring network (ReNass), (2) regional seismicity data recorded in the framework of the Corinth Rift Laboratory (CRL) experiment, (3) induced seismicity data from the gas field of Lacq (Western Pyrenees), and (4) micro-seismicity data from glacier monitoring. The developed method is discussed and tested using our wavelet version of the standard STA-LTA algorithm.

  16. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    PubMed

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  17. Intelligent Power Swing Detection Scheme to Prevent False Relay Tripping Using S-Transform

    NASA Astrophysics Data System (ADS)

    Mohamad, Nor Z.; Abidin, Ahmad F.; Musirin, Ismail

    2014-06-01

    Distance relay design is equipped with out-of-step tripping scheme to ensure correct distance relay operation during power swing. The out-of-step condition is a consequence result from unstable power swing. It requires proper detection of power swing to initiate a tripping signal followed by separation of unstable part from the entire power system. The distinguishing process of unstable swing from stable swing poses a challenging task. This paper presents an intelligent approach to detect power swing based on S-Transform signal processing tool. The proposed scheme is based on the use of S-Transform feature of active power at the distance relay measurement point. It is demonstrated that the proposed scheme is able to detect and discriminate the unstable swing from stable swing occurring in the system. To ascertain validity of the proposed scheme, simulations were carried out with the IEEE 39 bus system and its performance has been compared with the wavelet transform-based power swing detection scheme.

  18. Bilateral connectivity in the somatosensory region using near-infrared spectroscopy (NIRS) by wavelet coherence

    NASA Astrophysics Data System (ADS)

    Fernandez Rojas, Raul; Huang, Xu; Ou, Keng-Liang

    2016-12-01

    Near-infrared spectroscopy (NIRS) has been used in medical imaging to obtain oxygenation and hemodynamic response in the cerebral cortex. This technique has been applied in cortical activation detection and functional connectivity in brain research. Despite some advances in functional connectivity, most of the studies have focused on the prefrontal cortex and little has been done to study the somatosensory region (S1). For that reason, the aim of our present study is to assess bilateral connectivity in the somatosensory region by using NIRS and noxious stimulation. Eleven healthy subjects were investigated using near-infrared spectroscopy during an acupuncture stimulation procedure to safely induce pain in subjects. A multiscale analysis based on wavelet transform coherence (WTC) was designed to assess the functional connectivity of corresponding channel pairs within the left and right s1 region. The cortical activation in the somatosensory region was higher after the acupuncture stimulation, which was consistent with similar studies. The coherence in time-frequency domain between homologous signals generated by contralateral channel pairs revealed two main periods (3.2 s and 12.8 s) with high coherence. Based on the WTC analysis, it was also found that the coherence increase in these periods was task-related. This study contributes to the research field to investigate cerebral hemodynamic response of pain perception using NIRS and demonstrates the use of wavelet transform as a method to investigate functional lateralization in the cerebral cortex.

  19. Short-term forecasting of urban rail transit ridership based on ARIMA and wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Zhang, Ning; Chen, Ying; Zhang, Yunlong

    2018-05-01

    Due to different functions and land use types, there are significant differences in ridership patterns among different urban rail transit stations. Considering the characteristics of different ridership and coping with the uncertainty, periodical and stochastic natures of short-term passenger flow, and this paper proposes a novel hybrid methodology that combines the autoregressive integrated moving average (ARIMA) model and wavelet decomposition, which has strong strengths in signal processing, to short-term ridership forecasting. The seasonal ARIMA is used to represent the relatively stable and regular ridership patterns while the wavelet decomposition is used to capture the stochastic or sometimes drastic changing characteristics of ridership patterns. The inclusion of wavelet decomposition and reconstruction provides the hybrid model with a unique strength in capturing sudden change in ridership patterns associated with certain rail stations. The case study is carried out by analyzing real ridership data of Metro Line 1 in Nanjing, China. The experimental results indicate that the hybrid method is superior to the individual ARIMA model for all ridership patterns, but particularly advantageous in predicting ridership at stations often associated with sudden pattern changes due to special events.

  20. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    PubMed

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  1. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  2. Analysis of multiplex gene expression maps obtained by voxelation.

    PubMed

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.

  3. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  4. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Su; Arredondo, Maria M.; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F.; Johnson, Timothy D.; Shalinsky, Mark; Kovelman, Ioulia

    2015-12-01

    Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.

  5. Wavelet Analyses of F/A-18 Aeroelastic and Aeroservoelastic Flight Test Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1997-01-01

    Time-frequency signal representations combined with subspace identification methods were used to analyze aeroelastic flight data from the F/A-18 Systems Research Aircraft (SRA) and aeroservoelastic data from the F/A-18 High Alpha Research Vehicle (HARV). The F/A-18 SRA data were produced from a wingtip excitation system that generated linear frequency chirps and logarithmic sweeps. HARV data were acquired from digital Schroeder-phased and sinc pulse excitation signals to actuator commands. Nondilated continuous Morlet wavelets implemented as a filter bank were chosen for the time-frequency analysis to eliminate phase distortion as it occurs with sliding window discrete Fourier transform techniques. Wavelet coefficients were filtered to reduce effects of noise and nonlinear distortions identically in all inputs and outputs. Cleaned reconstructed time domain signals were used to compute improved transfer functions. Time and frequency domain subspace identification methods were applied to enhanced reconstructed time domain data and improved transfer functions, respectively. Time domain subspace performed poorly, even with the enhanced data, compared with frequency domain techniques. A frequency domain subspace method is shown to produce better results with the data processed using the Morlet time-frequency technique.

  6. Wavelet decomposition analysis in the two-flash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field.

    PubMed

    Brandao, Livia M; Monhart, Matthias; Schötzau, Andreas; Ledolter, Anna A; Palmowski-Wolfe, Anja M

    2017-08-01

    To further improve analysis of the two-flash multifocal electroretinogram (2F-mfERG) in glaucoma in regard to structure-function analysis, using discrete wavelet transform (DWT) analysis. Sixty subjects [35 controls and 25 primary open-angle glaucoma (POAG)] underwent 2F-mfERG. Responses were analyzed with the DWT. The DWT level that could best separate POAG from controls was compared to the root-mean-square (RMS) calculations previously used in the analysis of the 2F-mfERG. In a subgroup analysis, structure-function correlation was assessed between DWT, optical coherence tomography and automated perimetry (mf103 customized pattern) for the central 15°. Frequency level 4 of the wavelet variance analysis (144 Hz, WVA-144) was most sensitive (p < 0.003). It correlated positively with RMS but had a better AUC. Positive relations were found between visual field, WVA-144 and GCIPL thickness. The highest predictive factor for glaucoma diagnostic was seen in the GCIPL, but this improved further by adding the mean sensitivity and WVA-144. mfERG using WVA analysis improves glaucoma diagnosis, especially when combined with GCIPL and MS.

  7. High-performance wavelet engine

    NASA Astrophysics Data System (ADS)

    Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.

    1993-11-01

    Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.

  8. Simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures by RP-HPLC, derivative and wavelet transforms of UV ratio spectra

    NASA Astrophysics Data System (ADS)

    Hoang, Vu Dang; Hue, Nguyen Thu; Tho, Nguyen Huu; Nguyen, Hue Minh Thi

    2015-03-01

    The application of chemometrics-assisted UV spectrophotometry and RP-HPLC to the simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures is presented. The spectrophotometric procedure is based on the first-order derivative and wavelet transforms of ratio spectra using single, double and successive divisors. The ratio spectra were differentiated and smoothed using Savitzky-Golay filter; whereas wavelet transform realized with wavelet functions (i.e. db6, gaus5 and coif3) to obtain highest spectral recoveries. For the RP-HPLC procedure, the separation was achieved on a ZORBAX SB-C18 (150 × 4.6 mm; 5 μm) column at ambient temperature and the total run time was less than 7 min. A mixture of acetonitrile - 25 mM phosphate buffer pH 3 (27:73, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min and the effluent monitored by measuring absorbance at 220 nm. Calibration graphs were established in the range 20-70 mg/L for chloramphenicol, 6-14 mg/L for dexamethasone and 3-8 mg/L for naphazoline (R2 > 0.990). The RP-HPLC and ratio spectra transformed by a combination of derivative-wavelet algorithms proved to be able to successfully determine all analytes in commercial eye drop formulations without sample matrix interference (mean percent recoveries, 97.4-104.3%).

  9. Wavelet Analysis Used for Spectral Background Removal in the Determination of Glucose from Near-Infrared Single-Beam Spectra

    PubMed Central

    Wan, Boyong; Small, Gary W.

    2010-01-01

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than six months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. PMID:21035604

  10. Wavelet analysis used for spectral background removal in the determination of glucose from near-infrared single-beam spectra.

    PubMed

    Wan, Boyong; Small, Gary W

    2010-11-29

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than 6 months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. [FREQUENCY-TEMPORAL STRUCTURE OF HUMAN ELECTROENCEPHALOGRAM IN THE CONDITION OF ARTIFICIAL HYPOGRAVITY: DRY IMMERSION MODEL].

    PubMed

    Kuznetsova, G D; Gabova, A V; Lazarev, I E; Obukhov, Iu V; Obukhov, K Iu; Morozov, A A; Kulikov, M A; Shchatskova, A B; Vasil'eva, O N; Tomilovskaia, E S

    2015-01-01

    Frequency-temporal electroencephalogram (EEG) reactions to hypogravity were studied in 7 male subjects at the age of 20 to 27 years. The experiment was conducted using dry immersion (DI) as the best known method of simulating the space microgravity effects on the Earth. This hypogravity model reproduces hypokinesia, i.e. the weight-bearing and mechanic load removal, which is typical of microgravity. EEG was recorded by Neuroscan-2 (Compumedics) before the experiment (baseline data) and at the end of day 2 in DI. Comparative analysis of the EEG frequency-temporal structure was performed with the use of 2 techniques: Fourier transform and modified wavelet analysis. The Fourier transform elicited that after 2 days in DI the main shifts occurring to the EEG spectral composition are a decline in the alpha power and a slight though reliable growth of theta power. Similar frequency shifts were detected in the same records analyzed using the wavelet transform. According to wavelet analysis, during DI shifts in EEG frequency spectrum are accompanied by frequency desorganization of the EEG dominant rhythm and gross impairment of total stability of the electrical activity with time. Wavelet transform provides an opportunity to quantify changes in the frequency-temporal structure of the electrical activity of the brain. Quantitative evidence of frequency desorganization and temporal instability of EEG wavelet spectrograms may be the key to the understanding of mechanisms that drive functional disorders in the brain cortex in the conditions of hypogravity.

  12. Robust, Adaptive Functional Regression in Functional Mixed Model Framework.

    PubMed

    Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S

    2011-09-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.

  13. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015

  14. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  15. Implementation and performance evaluation of acoustic denoising algorithms for UAV

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ahmed Sony Kamal

    Unmanned Aerial Vehicles (UAVs) have become popular alternative for wildlife monitoring and border surveillance applications. Elimination of the UAV's background noise and classifying the target audio signal effectively are still a major challenge. The main goal of this thesis is to remove UAV's background noise by means of acoustic denoising techniques. Existing denoising algorithms, such as Adaptive Least Mean Square (LMS), Wavelet Denoising, Time-Frequency Block Thresholding, and Wiener Filter, were implemented and their performance evaluated. The denoising algorithms were evaluated for average Signal to Noise Ratio (SNR), Segmental SNR (SSNR), Log Likelihood Ratio (LLR), and Log Spectral Distance (LSD) metrics. To evaluate the effectiveness of the denoising algorithms on classification of target audio, we implemented Support Vector Machine (SVM) and Naive Bayes classification algorithms. Simulation results demonstrate that LMS and Discrete Wavelet Transform (DWT) denoising algorithm offered superior performance than other algorithms. Finally, we implemented the LMS and DWT algorithms on a DSP board for hardware evaluation. Experimental results showed that LMS algorithm's performance is robust compared to DWT for various noise types to classify target audio signals.

  16. A wavelet analysis for the X-ray absorption spectra of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less

  17. A new seismic probe for coal seam hazard detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Owen, T.E.; Thill, R.E.

    1985-01-01

    An experimental hole-to-hole seismic probe system has been developed for use in coal measure geology as a means of determining the structural conditions of coal seams. The source probe produces a 500-joule electric arc discharge whose seismic wavelet has a spectrum in the 200 to 2,000 Hz frequency range. Low compliance hydrophones contained in the source probe as well as in a separate seismic detector probe are matched to the frequency range of the source. Both probes are constructed with 5.72 cm diameter housings. The transducers in the probes are equipped with fluid-inflatable boots to permit operation in either wetmore » or dry boreholes. Preliminary tests in vertical boreholes drilled 213 m apart in sedimentary rock formations show reliable operation and useful seismic propagation measurements along horizontal and oblique paths up to 232 m in length. Because the seismic wavelet has an accurately repeatable waveshape, multiple shots and signal averaging techniques can be used to enhance the signal-to-noise ratio and extend the transmission distances.« less

  18. The wavelet transform as an analysis tool for structure identification in molecular clouds

    NASA Astrophysics Data System (ADS)

    Gill, Arnold Gerald

    1993-01-01

    Of the many methods used to attempt to understand the complex structure of giant molecular clouds, perhaps the most commonly used are the autocorrelation functions (ACF), the structure function, and the power spectrum. However, these do not give unique interpretations of structure, as is shown by explicit examples compared to the Taurus Molecular Complex. Thus, another, independent method of analysis is indicated. Here, the wavelet transform is presented, a relatively new technique less than 10 years old. It can be thought of as a band-pass filter that identifies structures of specific sizes. In addition, its mathematical properties allow it to be used to identify fractal structures and accurately identify the scaling exponent. This is shown by the wavelet transform identifying the fractal dimension of a hierarchical rain cloud model first proposed by Frisch et al. (1978). A wavelet analysis is then carried out for a range of astronomical CO data, including the clouds Orion A and B and NGC 7538 (in (12)CO) and Orion A and B, Mon R2, and L1551 (in (13)CO). The data analyzed consists of the velocities of the fitted Gaussians to the individual spectra, the halfwidths and amplitude of these Gaussians, and the total area of the spectral line. For most of the clouds investigated, each of these data types showed a very high degree of scaling coherence over a wide range of scales, from down at the beam spacing up to the full size of the cloud. The analysis carried out uses both the scaling and structure identification strengths of the wavelet transform The fragmentation parameters used by Scalo (1985) and the parameters of the geometric molecular cloud description introduced by Henriksen (1986) are calculated for each cloud. These results are all consistent with previous observations of these and other molecular clouds, though they are obtained individually for each cloud investigated. It is found that the uncertainties are of a magnitude that the differentiation of various theories of molecular cloud structure is not possible. It is noted that the effects of projection and superposition strongly affect the values of some of these parameters, thus hampering a thorough understanding of the underlying physics. The strengths and weaknesses of the wavelet transform in the analysis of molecular cloud data are presented, as well as directions for future work.

  19. The Time-Dependent Wavelet Spectrum of HH 1 and 2

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Reipurth, B.; Esquivel, A.; González-Gómez, D.; Riera, A.

    2018-04-01

    We have calculated the wavelet spectra of four epochs (spanning ≍20 yr) of Hα and [S II] HST images of HH 1 and 2. From these spectra we calculated the distribution functions of the (angular) radii of the emission structures. We found that the size distributions have maxima (corresponding to the characteristic sizes of the observed structures) with radii that are logarithmically spaced with factors of ≍2→3 between the successive peaks. The positions of these peaks generally showed small shifts towards larger sizes as a function of time. This result indicates that the structures of HH 1 and 2 have a general expansion (seen at all scales), and/or are the result of a sequence of merging events resulting in the formation of knots with larger characteristic sizes.

  20. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    NASA Astrophysics Data System (ADS)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  1. Wavelet transforms as solutions of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweig, G.

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuousmore » wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.« less

  2. Wavelet Transforms using VTK-m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaomeng; Sewell, Christopher Meyer

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach ofmore » performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.« less

  3. Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.

    PubMed

    Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil

    2018-01-25

    Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.

  4. Dynamics of a multi-thermal loop in the solar corona

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2014-10-01

    Context. We present an observation of a long-living multi-thermal coronal loop, visible in different extreme ultra-violet wavebands of SDO/AIA in a quiet-Sun region close to the western solar limb. Aims: Analysis of persistent kink displacements of the loop seen in different bandpasses that correspond to different temperatures of the plasma allows sub-resolution structuring of the loop to be revealed. Methods: A vertically oriented slit is taken at the loop top, and time-distance maps are made from it. Loop displacements in time-distance maps are automatically tracked with the Gaussian fitting technique and fitted with a sinusoidal function that is "guessed". Wavelet transforms are further used in order to quantify the periodicity variation in time of the kink oscillations. Results: The loop strands are found to oscillate with the periods ranging between 3 and 15 min. The oscillations are observed in intermittent regime with temporal changes in the period and amplitude. The oscillations are different at three analysed wavelengths. Conclusions: This finding suggests that the loop-like threads seen at different wavelengths are not co-spatial, hence that the loop consists of several multi-thermal strands. The detected irregularity of the oscillations can be associated with a stochastic driver acting at the footpoints of the loop. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  5. Audio signal encryption using chaotic Hénon map and lifting wavelet transforms

    NASA Astrophysics Data System (ADS)

    Roy, Animesh; Misra, A. P.

    2017-12-01

    We propose an audio signal encryption scheme based on the chaotic Hénon map. The scheme mainly comprises two phases: one is the preprocessing stage where the audio signal is transformed into data by the lifting wavelet scheme and the other in which the transformed data is encrypted by chaotic data set and hyperbolic functions. Furthermore, we use dynamic keys and consider the key space size to be large enough to resist any kind of cryptographic attacks. A statistical investigation is also made to test the security and the efficiency of the proposed scheme.

  6. Classification of spontaneous EEG signals in migraine

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; De Carlo, F.; de Tommaso, M.; Lucente, M.

    2007-08-01

    We set up a classification system able to detect patients affected by migraine without aura, through the analysis of their spontaneous EEG patterns. First, the signals are characterized by means of wavelet-based features, than a supervised neural network is used to classify the multichannel data. For the feature extraction, scale-dependent and scale-independent methods are considered with a variety of wavelet functions. Both the approaches provide very high and almost comparable classification performances. A complete separation of the two groups is obtained when the data are plotted in the plane spanned by two suitable neural outputs.

  7. Beam-plasma instability in inhomogeneous magnetic field and second order cyclotron resonance effects

    NASA Astrophysics Data System (ADS)

    Trakhtengerts, V. Y.; Hobara, Y.; Demekhov, A. G.; Hayakawa, M.

    1999-03-01

    A new analytical approach to cyclotron instability of electron beams with sharp gradients in velocity space (step-like distribution function) is developed taking into account magnetic field inhomogeneity and nonstationary behavior of the electron beam velocity. Under these conditions, the conventional hydrodynamic instability of such beams is drastically modified and second order resonance effects become important. It is shown that the optimal conditions for the instability occur for nonstationary quasimonochromatic wavelets whose frequency changes in time. The theory developed permits one to estimate the wave amplification and spatio-temporal characteristics of these wavelets.

  8. A wavelet based method for automatic detection of slow eye movements: a pilot study.

    PubMed

    Magosso, Elisa; Provini, Federica; Montagna, Pasquale; Ursino, Mauro

    2006-11-01

    Electro-oculographic (EOG) activity during the wake-sleep transition is characterized by the appearance of slow eye movements (SEM). The present work describes an algorithm for the automatic localisation of SEM events from EOG recordings. The algorithm is based on a wavelet multiresolution analysis of the difference between right and left EOG tracings, and includes three main steps: (i) wavelet decomposition down to 10 detail levels (i.e., 10 scales), using Daubechies order 4 wavelet; (ii) computation of energy in 0.5s time steps at any level of decomposition; (iii) construction of a non-linear discriminant function expressing the relative energy of high-scale details to both high- and low-scale details. The main assumption is that the value of the discriminant function increases above a given threshold during SEM episodes due to energy redistribution toward higher scales. Ten EOG recordings from ten male patients with obstructive sleep apnea syndrome were used. All tracings included a period from pre-sleep wakefulness to stage 2 sleep. Two experts inspected the tracings separately to score SEMs. A reference set of SEM (gold standard) were obtained by joint examination by both experts. Parameters of the discriminant function were assigned on three tracings (design set) to minimize the disagreement between the system classification and classification by the two experts; the algorithm was then tested on the remaining seven tracings (test set). Results show that the agreement between the algorithm and the gold standard was 80.44+/-4.09%, the sensitivity of the algorithm was 67.2+/-7.37% and the selectivity 83.93+/-8.65%. However, most errors were not caused by an inability of the system to detect intervals with SEM activity against NON-SEM intervals, but were due to a different localisation of the beginning and end of some SEM episodes. The proposed method may be a valuable tool for computerized EOG analysis.

  9. Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung

    2017-05-01

    Thanks to some recent research works, dynamic Bayesian wavelet transform as new methodology for extraction of repetitive transients is proposed in this short communication to reveal fault signatures hidden in rotating machine. The main idea of the dynamic Bayesian wavelet transform is to iteratively estimate posterior parameters of wavelet transform via artificial observations and dynamic Bayesian inference. First, a prior wavelet parameter distribution can be established by one of many fast detection algorithms, such as the fast kurtogram, the improved kurtogram, the enhanced kurtogram, the sparsogram, the infogram, continuous wavelet transform, discrete wavelet transform, wavelet packets, multiwavelets, empirical wavelet transform, empirical mode decomposition, local mean decomposition, etc.. Second, artificial observations can be constructed based on one of many metrics, such as kurtosis, the sparsity measurement, entropy, approximate entropy, the smoothness index, a synthesized criterion, etc., which are able to quantify repetitive transients. Finally, given artificial observations, the prior wavelet parameter distribution can be posteriorly updated over iterations by using dynamic Bayesian inference. More importantly, the proposed new methodology can be extended to establish the optimal parameters required by many other signal processing methods for extraction of repetitive transients.

  10. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  11. Optical phase distribution evaluation by using zero order Generalized Morse Wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Elmas, Merve Naz; Durmuş, ćaǧla; Coşkun, Emre; Tiryaki, Erhan; Özder, Serhat

    2017-02-01

    When determining the phase from the projected fringes by using continuous wavelet transform (CWT), selection of wavelet is an important step. A new wavelet for phase retrieval from the fringe pattern with the spatial carrier frequency in the x direction is presented. As a mother wavelet, zero order generalized Morse wavelet (GMW) is chosen because of the flexible spatial and frequency localization property, and it is exactly analytic. In this study, GMW method is explained and numerical simulations are carried out to show the validity of this technique for finding the phase distributions. Results for the Morlet and Paul wavelets are compared with the results of GMW analysis.

  12. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  13. Comparison between deterministic and statistical wavelet estimation methods through predictive deconvolution: Seismic to well tie example from the North Sea

    NASA Astrophysics Data System (ADS)

    de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode

    2017-01-01

    Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.

  14. A feasibility study for long-path multiple detection using a neural network

    NASA Technical Reports Server (NTRS)

    Feuerbacher, G. A.; Moebes, T. A.

    1994-01-01

    Least-squares inverse filters have found widespread use in the deconvolution of seismograms and the removal of multiples. The use of least-squares prediction filters with prediction distances greater than unity leads to the method of predictive deconvolution which can be used for the removal of long path multiples. The predictive technique allows one to control the length of the desired output wavelet by control of the predictive distance, and hence to specify the desired degree of resolution. Events which are periodic within given repetition ranges can be attenuated selectively. The method is thus effective in the suppression of rather complex reverberation patterns. A back propagation(BP) neural network is constructed to perform the detection of first arrivals of the multiples and therefore aid in the more accurate determination of the predictive distance of the multiples. The neural detector is applied to synthetic reflection coefficients and synthetic seismic traces. The processing results show that the neural detector is accurate and should lead to an automated fast method for determining predictive distances across vast amounts of data such as seismic field records. The neural network system used in this study was the NASA Software Technology Branch's NETS system.

  15. Denoising embolic Doppler ultrasound signals using Dual Tree Complex Discrete Wavelet Transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2010-01-01

    Early and accurate detection of asymptomatic emboli is important for monitoring of preventive therapy in stroke-prone patients. One of the problems in detection of emboli is the identification of an embolic signal caused by very small emboli. The amplitude of the embolic signal may be so small that advanced processing methods are required to distinguish these signals from Doppler signals arising from red blood cells. In this study instead of conventional discrete wavelet transform, the Dual Tree Complex Discrete Wavelet Transform was used for denoising embolic signals. Performances of both approaches were compared. Unlike the conventional discrete wavelet transform discrete complex wavelet transform is a shift invariant transform with limited redundancy. Results demonstrate that the Dual Tree Complex Discrete Wavelet Transform based denoising outperforms conventional discrete wavelet denoising. Approximately 8 dB improvement is obtained by using the Dual Tree Complex Discrete Wavelet Transform compared to the improvement provided by the conventional Discrete Wavelet Transform (less than 5 dB).

  16. Real-time human versus animal classification using pyro-electric sensor array and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2014-03-01

    In this paper, we propose a real-time human versus animal classification technique using a pyro-electric sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a pyro-electric sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.

  17. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  18. Why the soliton wavelet transform is useful for nonlinear dynamic phenomena

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1992-10-01

    If signal analyses were perfect without noise and clutters, then any transform can be equally chosen to represent the signal without any loss of information. However, if the analysis using Fourier transform (FT) happens to be a nonlinear dynamic phenomenon, the effect of nonlinearity must be postponed until a later time when a complicated mode-mode coupling is attempted without the assurance of any convergence. Alternatively, there exists a new paradigm of linear transforms called wavelet transform (WT) developed for French oil explorations. Such a WT enjoys the linear superposition principle, the computational efficiency, and the signal/noise ratio enhancement for a nonsinusoidal and nonstationary signal. Our extensions to a dynamic WT and furthermore to an adaptive WT are possible due to the fact that there exists a large set of square-integrable functions that are special solutions of the nonlinear dynamic medium and could be adopted for the WT. In order to analyze nonlinear dynamics phenomena in ocean, we are naturally led to the construction of a soliton mother wavelet. This common sense of 'pay the nonlinear price now and enjoy the linearity later' is certainly useful to probe any nonlinear dynamics. Research directions in wavelets, such as adaptivity, and neural network implementations are indicated, e.g., tailoring an active sonar profile for explorations.

  19. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements

    NASA Astrophysics Data System (ADS)

    Kougioumtzoglou, Ioannis A.; dos Santos, Ketson R. M.; Comerford, Liam

    2017-09-01

    Various system identification techniques exist in the literature that can handle non-stationary measured time-histories, or cases of incomplete data, or address systems following a fractional calculus modeling. However, there are not many (if any) techniques that can address all three aforementioned challenges simultaneously in a consistent manner. In this paper, a novel multiple-input/single-output (MISO) system identification technique is developed for parameter identification of nonlinear and time-variant oscillators with fractional derivative terms subject to incomplete non-stationary data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel linear sub-systems. In this regard, the oscillator is transformed into an equivalent MISO system in the wavelet domain. Next, a recently developed L1-norm minimization procedure based on compressive sensing theory is applied for determining the wavelet coefficients of the available incomplete non-stationary input-output (excitation-response) data. Finally, these wavelet coefficients are utilized to determine appropriately defined time- and frequency-dependent wavelet based frequency response functions and related oscillator parameters. Several linear and nonlinear time-variant systems with fractional derivative elements are used as numerical examples to demonstrate the reliability of the technique even in cases of noise corrupted and incomplete data.

  20. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  1. Wavelet entropy characterization of elevated intracranial pressure.

    PubMed

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  2. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    NASA Astrophysics Data System (ADS)

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  3. Pigmented skin lesion detection using random forest and wavelet-based texture

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  4. A hybrid wavelet analysis-cloud model data-extending approach for meteorologic and hydrologic time series

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing

    2015-05-01

    For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.

  5. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  6. Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi

    2017-04-01

    The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.

  7. Acoustical Emission Source Location in Thin Rods Through Wavelet Detail Crosscorrelation

    DTIC Science & Technology

    1998-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS ACOUSTICAL EMISSION SOURCE LOCATION IN THIN RODS THROUGH WAVELET DETAIL CROSSCORRELATION...ACOUSTICAL EMISSION SOURCE LOCATION IN THIN RODS THROUGH WAVELET DETAIL CROSSCORRELATION 6. AUTHOR(S) Jerauld, Joseph G. 5. FUNDING NUMBERS Grant...frequency characteristics of Wavelet Analysis. Software implementation now enables the exploration of the Wavelet Transform to identify the time of

  8. Wavelet median denoising of ultrasound images

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.

    2002-05-01

    Ultrasound images are contaminated with both additive and multiplicative noise, which is modeled by Gaussian and speckle noise respectively. Distinguishing small features such as fallopian tubes in the female genital tract in the noisy environment is problematic. A new method for noise reduction, Wavelet Median Denoising, is presented. Wavelet Median Denoising consists of performing a standard noise reduction technique, median filtering, in the wavelet domain. The new method is tested on 126 images, comprised of 9 original images each with 14 levels of Gaussian or speckle noise. Results for both separable and non-separable wavelets are evaluated, relative to soft-thresholding in the wavelet domain, using the signal-to-noise ratio and subjective assessment. The performance of Wavelet Median Denoising is comparable to that of soft-thresholding. Both methods are more successful in removing Gaussian noise than speckle noise. Wavelet Median Denoising outperforms soft-thresholding for a larger number of cases of speckle noise reduction than of Gaussian noise reduction. Noise reduction is more successful using non-separable wavelets than separable wavelets. When both methods are applied to ultrasound images obtained from a phantom of the female genital tract a small improvement is seen; however, a substantial improvement is required prior to clinical use.

  9. Ethylene Glycol - Polyethylene Glycol (EG-PEG) Mixtures: Infrared Spectra Wavelet Cross-Correlation Analysis.

    PubMed

    Caccamo, Maria Teresa; Magazù, Salvatore

    2017-03-01

    Infrared spectra were collected on mixtures of ethylene glycol (EG) and polyethylene glycol 600 (PEG600) as a function of weight fraction from pure EG to pure PEG600. In this paper, it will be shown that while the OH vibrational contribution drastically reduces its center frequency from 3450 cm -1 to 3300 cm -1 in the weight fraction range 0-25%, the displacement of the mixture spectral features of the mixtures from ideal behavior, i.e., in the absence of interaction, shows the presence of a non-ideal mixing process. Furthermore, wavelet cross-correlation analysis of the registered pairs of spectra and of the intramolecular O-H stretching contributions reveals how the addition of a small amount of pure EG to PEG600 dramatically influences the structural properties of the polymeric matrix, owing to an increase the intermolecular connectivity. In particular, the wavelet cross-correlation parameters, evaluated between each pair of the registered data as a function of weight fraction, in a linear-logarithmic plot, reveals an inflection point for a weight fraction of about 25% of EG, which confirms that, within the three-dimensional networks of hydrogen-bonded EG-PEG600 molecules, a key role is played by EG in determining an increase in the hydrogen-bond network density.

  10. Wavelet detection of singularities in the presence of fractal noise

    NASA Astrophysics Data System (ADS)

    Noel, Steven E.; Gohel, Yogesh J.; Szu, Harold H.

    1997-04-01

    Here we detect singularities with generalized quadrature processing using the recently developed Hermitian Hat wavelet. Our intended application is radar target detection for the optimal fuzzing of ship self-defense munitions. We first develop a wavelet-based fractal noise model to represent sea clutter. We then investigate wavelet shrinkage as a way to reduce and smooth the noise before attempting wavelet detection. Finally, we use the complex phase of the Hermitian Hat wavelet to detect a simulated target singularity in the presence of our fractal noise.

  11. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  12. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between rainfall and groundwater signal at low frequency and high frequency relationship at some certain extreme rainfall events. Keywords: extreme rainfall, groundwater, EOF, wavelet coherence

  13. Wavelet and Fractal Analysis of Remotely Sensed Surface Temperature with Applications to Estimation of Surface Sensible Heat Flux Density

    NASA Technical Reports Server (NTRS)

    Schieldge, John

    2000-01-01

    Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses, and the validation of the results.

  14. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  15. Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1996-03-01

    Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.

  16. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  17. Wavelet-based system identification of short-term dynamic characteristics of arterial baroreflex.

    PubMed

    Kashihara, Koji; Kawada, Toru; Sugimachi, Masaru; Sunagawa, Kenji

    2009-01-01

    The assessment of arterial baroreflex function in cardiovascular diseases requires quantitative evaluation of dynamic and static baroreflex properties because of the frequent modulation of baroreflex properties with unstable hemodynamics. The purpose of this study was to identify the dynamic baroreflex properties from transient changes of step pressure inputs with background noise during a short-duration baroreflex test in anesthetized rabbits with isolated carotid sinuses, using a modified wavelet-based time-frequency analysis. The proposed analysis was able to identify the transfer function of baroreflex as well as static properties from the transient input-output responses under normal [gain at 0.04 Hz from carotid sinus pressure (CSP) to arterial pressure (n = 8); 0.29 +/- 0.05 at low (40-60 mmHg), 1.28 +/- 0.12 at middle (80-100 mmHg), and 0.38 +/- 0.07 at high (120-140 mmHg) CSP changes] and pathophysiological [gain in control vs. phenylbiguanide (n = 8); 0.32 +/- 0.07 vs. 0.39 +/- 0.09 at low, 1.39 +/- 0.15 vs. 0.59 +/- 0.09 (p < 0.01) at middle, and 0.35 +/- 0.04 vs. 0.15 +/- 0.02 (p < 0.01) at high CSP changes] conditions. Subsequently, we tested the proposed wavelet-based method under closed-loop baroreflex responses; the simulation study indicates that it may be applicable to clinical situations for accurate assessment of dynamic baroreflex function. In conclusion, the dynamic baroreflex property to various pressure inputs could be simultaneously extracted from the step responses with background noise.

  18. A multiscale Markov random field model in wavelet domain for image segmentation

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Cheng, Yu; Wang, Shengchun; Du, Xinyu; Wu, Dan

    2017-07-01

    The human vision system has abilities for feature detection, learning and selective attention with some properties of hierarchy and bidirectional connection in the form of neural population. In this paper, a multiscale Markov random field model in the wavelet domain is proposed by mimicking some image processing functions of vision system. For an input scene, our model provides its sparse representations using wavelet transforms and extracts its topological organization using MRF. In addition, the hierarchy property of vision system is simulated using a pyramid framework in our model. There are two information flows in our model, i.e., a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls. The two procedures are controlled simply by two pyramidal parameters, and some Gestalt laws are also integrated implicitly. Equipped with such biological inspired properties, our model can be used to accomplish different image segmentation tasks, such as edge detection and region segmentation.

  19. Multifractal and wavelet analysis of epileptic seizures

    NASA Astrophysics Data System (ADS)

    Dick, Olga E.; Mochovikova, Irina A.

    The aim of the study is to develop quantitative parameters of human electroencephalographic (EEG) recordings with epileptic seizures. We used long-lasting recordings from subjects with epilepsy obtained as part of their clinical investigation. The continuous wavelet transform of the EEG segments and the wavelet-transform modulus maxima method enable us to evaluate the energy spectra of the segments, to fin lines of local maximums, to gain the scaling exponents and to construct the singularity spectra. We have shown that the significant increase of the global energy with respect to background and the redistribution of the energy over the frequency range are observed in the patterns involving the epileptic activity. The singularity spectra expand so that the degree of inhomogenety and multifractality of the patterns enhances. Comparing the results gained for the patterns during different functional probes such as open and closed eyes or hyperventilation we demonstrate the high sensitivity of the analyzed parameters (the maximal global energy, the width and asymmetry of the singularity spectrum) for detecting the epileptic patterns.

  20. Wavelet Packet Feature Assessment for High-Density Myoelectric Pattern Recognition and Channel Selection toward Stroke Rehabilitation.

    PubMed

    Wang, Dongqing; Zhang, Xu; Gao, Xiaoping; Chen, Xiang; Zhou, Ping

    2016-01-01

    This study presents wavelet packet feature assessment of neural control information in paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking advantage of high-resolution time-frequency representations of surface electromyogram (EMG) signals. On this basis, a novel channel selection method was developed by combining the Fisher's class separability index and the sequential feedforward selection analyses, in order to determine a small number of appropriate EMG channels from original high-density EMG electrode array. The advantages of the wavelet packet features and the channel selection analyses were further illustrated by comparing with previous conventional approaches, in terms of classification performance when identifying 20 functional arm/hand movements implemented by 12 stroke survivors. This study offers a practical approach including paretic EMG feature extraction and channel selection that enables active myoelectric control of multiple degrees of freedom with paretic muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke rehabilitation.

  1. A Multiscale Vision Model and Applications to Astronomical Image and Data Analyses

    NASA Astrophysics Data System (ADS)

    Bijaoui, A.; Slezak, E.; Vandame, B.

    Many researches were carried out on the automated identification of the astrophy sical sources, and their relevant measurements. Some vision models have been developed for this task, their use depending on the image content. We have developed a multiscale vision model (MVM) \\cite{BR95} well suited for analyzing complex structures such like interstellar clouds, galaxies, or cluster of galaxies. Our model is based on a redundant wavelet transform. For each scale we detect significant wavelet coefficients by application of a decision rule based on their probability density functions (PDF) under the hypothesis of a uniform distribution. In the case of a Poisson noise, this PDF can be determined from the autoconvolution of the wavelet function histogram \\cite{SLB93}. We may also apply Anscombe's transform, scale by scale in order to take into account the integrated number of events at each scale \\cite{FSB98}. Our aim is to compute an image of all detected structural features. MVM allows us to build oriented trees from the neighbouring of significant wavelet coefficients. Each tree is also divided into subtrees taking into account the maxima along the scale axis. This leads to identify objects in the scale space, and then to restore their images by classical inverse methods. This model works only if the sampling is correct at each scale. It is not generally the case for the orthogonal wavelets, so that we apply the so-called `a trous algorithm \\cite{BSM94} or a specific pyramidal one \\cite{RBV98}. It leads to ext ract superimposed objets of different size, and it gives for each of them a separate image, from which we can obtain position, flux and p attern parameters. We have applied these methods to different kinds of images, photographic plates, CCD frames or X-ray images. We have only to change the statistical rule for extr acting significant coefficients to adapt the model from an image class to another one. We have also applied this model to extract clusters hierarchically distributed or to identify regions devoid of objects from galaxy counts.

  2. (Multi)fractality of Earthquakes by use of Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Ito, K.; Struzik, Z. R.

    2002-12-01

    The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability distribution function. One of the most attractive features of wavelet analysis is its ability to determine a local Hurst exponent. We show that this feature together with the possibility of extending the analysis to spatial patterns may constitute a valuable approach to search for anomalous (precursory?) patterns of seismic activity.

  3. SU-C-304-05: Use of Local Noise Power Spectrum and Wavelets in Comprehensive EPID Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Gopal, A; Yan, G

    2015-06-15

    Purpose: As EPIDs are increasingly used for IMRT QA and real-time treatment verification, comprehensive quality assurance (QA) of EPIDs becomes critical. Current QA with phantoms such as the Las Vegas and PIPSpro™ can fail in the early detection of EPID artifacts. Beyond image quality assessment, we propose a quantitative methodology using local noise power spectrum (NPS) to characterize image noise and wavelet transform to identify bad pixels and inter-subpanel flat-fielding artifacts. Methods: A total of 93 image sets including bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Quantitative metrics such asmore » modulation transform function (MTF), NPS and detective quantum efficiency (DQE) were computed for each image set. Local 2D NPS was calculated for each subpanel. A 1D NPS was obtained by radial averaging the 2D NPS and fitted to a power-law function. R-square and slope of the linear regression analysis were used for panel performance assessment. Haar wavelet transformation was employed to identify pixel defects and non-uniform gain correction across subpanels. Results: Overall image quality was assessed with DQE based on empirically derived area under curve (AUC) thresholds. Using linear regression analysis of 1D NPS, panels with acceptable flat fielding were indicated by r-square between 0.8 and 1, and slopes of −0.4 to −0.7. However, for panels requiring flat fielding recalibration, r-square values less than 0.8 and slopes from +0.2 to −0.4 were observed. The wavelet transform successfully identified pixel defects and inter-subpanel flat fielding artifacts. Standard QA with the Las Vegas and PIPSpro phantoms failed to detect these artifacts. Conclusion: The proposed QA methodology is promising for the early detection of imaging and dosimetric artifacts of EPIDs. Local NPS can accurately characterize the noise level within each subpanel, while the wavelet transforms can detect bad pixels and inter-subpanel flat fielding artifacts.« less

  4. Wavelets

    NASA Astrophysics Data System (ADS)

    Strang, Gilbert

    1994-06-01

    Several methods are compared that are used to analyze and synthesize a signal. Three ways are mentioned to transform a symphony: into cosine waves (Fourier transform), into pieces of cosines (short-time Fourier transform), and into wavelets (little waves that start and stop). Choosing the best basis, higher dimensions, fast wavelet transform, and Daubechies wavelets are discussed. High-definition television is described. The use of wavelets in identifying fingerprints in the future is related.

  5. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach

    NASA Technical Reports Server (NTRS)

    Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.

  6. Enhancement of Signal-to-noise Ratio in Natural-source Transient Magnetotelluric Data with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paulson, K. V.

    For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.

  7. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  8. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  9. F-wave decomposition for time of arrival profile estimation.

    PubMed

    Han, Zhixiu; Kong, Xuan

    2007-01-01

    F-waves are distally recorded muscle responses that result from "backfiring" of motor neurons following stimulation of peripheral nerves. Each F-wave response is a superposition of several motor unit responses (F-wavelets). Initial deflection of the earliest F-wavelet defines the traditional F-wave latency (FWL) and earlier F-wavelet may mask F-wavelets traveling along slower (and possibly diseased) fibers. Unmasking the time of arrival (TOA) of late F-wavelets could improve the diagnostic value of the F-waves. An algorithm for F-wavelet decomposition is presented, followed by results of experimental data analysis.

  10. EEG analysis using wavelet-based information tools.

    PubMed

    Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A

    2006-06-15

    Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.

  11. Optical coherence tomography of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving a man's ability to have spontaneous erections following surgery. These microscopic nerves course along the surface of the prostate within a few millimeters of the prostate capsule, and they vary in size and location from one patient to another, making preservation of the nerves difficult during dissection and removal of a cancerous prostate gland. These observations may explain in part the wide variability in reported sexual potency rates (9--86%) following prostate cancer surgery. Any technology capable of providing improved identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery would be of great assistance in improving sexual function after surgery, and result in direct patient benefit. Optical coherence tomography (OCT) is a noninvasive optical imaging technique capable of performing high-resolution cross-sectional in vivo and in situ imaging of microstructures in biological tissues. OCT imaging of the cavernous nerves in the rat and human prostate has recently been demonstrated. However, improvements in the OCT system and the quality of the images for identification of the cavernous nerves is necessary before clinical use. The following chapters describe complementary approaches to improving identification and imaging of the cavernous nerves during OCT of the prostate gland. After the introduction to OCT imaging of the prostate gland, the optimal wavelength for deep imaging of the prostate is studied in Chapter 2. An oblique-incidence single point measurement technique using a normal-detector scanning system was implemented to determine the absorption and reduced scattering coefficients, mua and m's , of fresh canine prostate tissue, ex vivo, from the diffuse reflectance profile of near-IR light as a function of source-detector distance. The effective attenuation coefficient, mueff, and the Optical Penetration Depth (OPD) were then calculated for near-IR wavelengths of 1064 nm, 1307 nm, and 1555 nm. Chapters 3 and 4 describe locally adaptive denoising algorithms applied to reduce speckle noise in OCT images of the prostate taken by experimental and clinical systems, respectively. The dual-tree complex wavelet transform (CDWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. The CDWT algorithm was implemented for denoising of OCT images. In Chapter 5, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low pass sub-band was chosen as the filtered image. Finally, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. Morphological post-processing was used to remove small voids. In Chapter 6, a new algorithm based on thresholding and first-order derivative class of differential edge detection was implemented to see deeper in the OCT images. One of the main limitations in OCT imaging of the prostate tissue is the inability to image deep into opaque tissues. Currently, OCT is limited to an image depth of approximately 1 min in opaque tissues. Theoretical comparisons of detection performance for Fourier domain (FD) and time domain (TD) OCT have been previously reported. In Chapter 7, we compare several image quality metrics including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and equivalent number of looks (ENL) for TD-OCT and FD-OCT images taken of the rat prostate, in vivo. The results show that TD-OCT has inferior CNR, but superior SNR compared to FD-OCT, and that TD-OCT is better for deep imaging of opaque tissues. Finally, Chapter 8 summarizes the study and future directions for OCT imaging of the prostate gland are discussed.

  12. Periodicities of hail precipitation in France

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Hierro, Rodrigo; Wu, Xueke; García-Ortega, Eduardo

    2013-04-01

    The wavelet analysis is a powerful tool appropriated for studying multiscale and non-stationary processes that occur in finite spatial and temporal domains. Its development began with Morlet and, since then, the wavelet transform (WT) has had better applications in Geophysics. However, the characterization of hail precipitation is not exempt from difficulty, since it deals with phenomenon on a small scale, with elevated spatial and temporal variation. The extreme variability of the frequency and distribution of hail is attributed, among other things, to the same process of its formation. The conditions that influence hail formation span from air masses climatology to lower-scale factors such as orography, wind fields, concentration of ice nuclei or temperature. This last factor is important both from a point of view of convective activity as well as its influence in the height of the freezing point. Thus, it would be possible to do comparative analysis between time series of temperature and diverse hail variables; or, rather, to try to establish a relationship between periodicities found and phenomenon such as ENSO (El Niño, Southern Oscillation) or NAO (North-Atlantic Oscillation). France is one of the European countries that is most affected by hail precipitation. Previous climatic studies have been done with the objective of characterizing the long-term variability of distinct variables of this hydrometeor that is present in the time series. These measurements are obtained using networks of hailpads distributed in French territory and managed by ANELFA. Berthet et al. (2011) observed the annual hail frequency in France, finding successions of three years with high values followed by three years of low values; this being calculated as the number of hailfalls per year divided by the number of hailpad stations that were in use during said year. In the present paper, a wavelet analysis was carried out with the objective of detecting the possible existence of oscillations in the number of impacts of hailstones and to know the period in which they occur. In order to do so, the Continuous Wavelet Transform (CWT) was applied. A non-orthogonal wavelet function was chosen, which is useful for the analysis of temporal series in which slight and continuous variations are expected in the amplitude of the wavelet. The mother wavelet used is the Morlet wavelet, which consists of a plane wave modified by a Gaussian envelope. The results show how, both in the Atlantic area and in the Midi-Pyrenees area, climatic periodicities are observed.

  13. A global strategy based on experiments and simulations for squeal prediction on industrial railway brakes

    NASA Astrophysics Data System (ADS)

    Sinou, J.-J.; Loyer, A.; Chiello, O.; Mogenier, G.; Lorang, X.; Cocheteux, F.; Bellaj, S.

    2013-09-01

    This paper presents an overview of recent experimental and numerical investigations on industrial railway brakes. The goal of the present study is to discuss the relevance of the mechanical modeling strategy for squeal prediction. Specific experimental set-ups based on transient and controlled braking tests are designed for this purpose. Measurements are performed on it to investigate the dynamic behavior of TGV squeal noise and its squeal characterization through experiments. It will be demonstrated that it is possible to build consistent and efficient finite element models to simulate squeal events in TGV brake systems. The numerical strategy will be presented, including not only the modeling of the TGV brake system and the stability analysis, but also the transient nonlinear dynamic and computational process based on efficient reduced basis. This complete numerical strategy allows us to perform relevance squeal prediction on industrial railway brakes. This study comes within the scope of a research program AcouFren that is supported by ADEME (Agence De l'Environnement et de la Maîtrise de l'Energie) concerning the reduction of the squeal noise generated by high power railway disc brakes. experiments with an evolution of the rotational speed of the disc: these tests are called "transient braking tests" and correspond to real braking tests, experiments with a controlled steady rotational speed (i.e. dynamic fluctuations in rotational speed are not significant): these tests are called "controlled braking tests". In the present study, the Continuous Wavelet Transform (CWT) [20] is used to study the time-history responses of the TGV brake system. So, a brief basic theory of the wavelet analysis that transforms a signal into wavelets that are well localized both in frequency and time is presented in this part of the paper. Considering a function f(t), the associated Continuous Wavelet Transform (CWT) corresponds to a wavelet transform given by W(a,b)=∫-∞+∞f(t)ψa,b*(t) dt where ψ(t)={1}/{√{a}}ψ({t-b}/{a}) where a and b define the scale parameter and the time translation factor, respectively. The asterisk ψa,b* indicates the complex conjugate of ψ that are the daughter wavelets (i.e. the dilated and shifted versions of the "'mother"' wavelet ψ that is continuous in both time and frequency). The mother wavelet must satisfy an admissibility criterion in order to get a stably invertible transform.

  14. Use of the wavelet transform to investigate differences in brain PET images between patient groups

    NASA Astrophysics Data System (ADS)

    Ruttimann, Urs E.; Unser, Michael A.; Rio, Daniel E.; Rawlings, Robert R.

    1993-06-01

    Suitability of the wavelet transform was studied for the analysis of glucose utilization differences between subject groups as displayed in PET images. To strengthen statistical inference, it was of particular interest investigating the tradeoff between signal localization and image decomposition into uncorrelated components. This tradeoff is shown to be controlled by wavelet regularity, with the optimal compromise attained by third-order orthogonal spline wavelets. Testing of the ensuing wavelet coefficients identified only about 1.5% as statistically different (p < .05) from noise, which then served to resynthesize the difference images by the inverse wavelet transform. The resulting images displayed relatively uniform, noise-free regions of significant differences with, due to the good localization maintained by the wavelets, very little reconstruction artifacts.

  15. Time frequency analysis of sound from a maneuvering rotorcraft

    NASA Astrophysics Data System (ADS)

    Stephenson, James H.; Tinney, Charles E.; Greenwood, Eric; Watts, Michael E.

    2014-10-01

    The acoustic signatures produced by a full-scale, Bell 430 helicopter during steady-level-flight and transient roll-right maneuvers are analyzed by way of time-frequency analysis. The roll-right maneuvers comprise both a medium and a fast roll rate. Data are acquired using a single ground based microphone that are analyzed by way of the Morlet wavelet transform to extract the spectral properties and sound pressure levels as functions of time. The findings show that during maneuvering operations of the helicopter, both the overall sound pressure level and the blade-vortex interaction sound pressure level are greatest when the roll rate of the vehicle is at its maximum. The reduced inflow in the region of the rotor disk where blade-vortex interaction noise originates is determined to be the cause of the increase in noise. A local decrease in inflow reduces the miss distance of the tip vortex and thereby increases the BVI noise signature. Blade loading and advance ratios are also investigated as possible mechanisms for increased sound production, but are shown to be fairly constant throughout the maneuvers.

  16. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    PubMed Central

    Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo

    2017-01-01

    Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance. PMID:28300790

  17. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  18. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  19. Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer

    NASA Astrophysics Data System (ADS)

    Sreewirote, Bancha; Ngaopitakkul, Atthapol

    2018-03-01

    The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.

  20. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  1. The 4D hyperspherical diffusion wavelet: A new method for the detection of localized anatomical variation.

    PubMed

    Hosseinbor, Ameer Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K; Chung, Moo K

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links Hyper-SPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the first-ever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM.

  2. The 4D Hyperspherical Diffusion Wavelet: A New Method for the Detection of Localized Anatomical Variation

    PubMed Central

    Hosseinbor, A. Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K.; Chung, Moo K.

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links HyperSPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the firstever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM. PMID:25320783

  3. Islanding detection technique using wavelet energy in grid-connected PV system

    NASA Astrophysics Data System (ADS)

    Kim, Il Song

    2016-08-01

    This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.

  4. Wavelets and molecular structure

    NASA Astrophysics Data System (ADS)

    Carson, Mike

    1996-08-01

    The wavelet method offers possibilities for display, editing, and topological comparison of proteins at a user-specified level of detail. Wavelets are a mathematical tool that first found application in signal processing. The multiresolution analysis of a signal via wavelets provides a hierarchical series of `best' lower-resolution approximations. B-spline ribbons model the protein fold, with one control point per residue. Wavelet analysis sets limits on the information required to define the winding of the backbone through space, suggesting a recognizable fold is generated from a number of points equal to 1/4 or less the number of residues. Wavelets applied to surfaces and volumes show promise in structure-based drug design.

  5. Polar Wavelet Transform and the Associated Uncertainty Principles

    NASA Astrophysics Data System (ADS)

    Shah, Firdous A.; Tantary, Azhar Y.

    2018-06-01

    The polar wavelet transform- a generalized form of the classical wavelet transform has been extensively used in science and engineering for finding directional representations of signals in higher dimensions. The aim of this paper is to establish new uncertainty principles associated with the polar wavelet transforms in L2(R2). Firstly, we study some basic properties of the polar wavelet transform and then derive the associated generalized version of Heisenberg-Pauli-Weyl inequality. Finally, following the idea of Beckner (Proc. Amer. Math. Soc. 123, 1897-1905 1995), we drive the logarithmic version of uncertainty principle for the polar wavelet transforms in L2(R2).

  6. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform

    NASA Astrophysics Data System (ADS)

    Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-06-01

    Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.

  7. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  8. Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain.

    PubMed

    V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S

    2016-12-01

    The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

  9. Non-parametric transient classification using adaptive wavelets

    NASA Astrophysics Data System (ADS)

    Varughese, Melvin M.; von Sachs, Rainer; Stephanou, Michael; Bassett, Bruce A.

    2015-11-01

    Classifying transients based on multiband light curves is a challenging but crucial problem in the era of GAIA and Large Synoptic Sky Telescope since the sheer volume of transients will make spectroscopic classification unfeasible. We present a non-parametric classifier that predicts the transient's class given training data. It implements two novel components: the use of the BAGIDIS wavelet methodology - a characterization of functional data using hierarchical wavelet coefficients - as well as the introduction of a ranked probability classifier on the wavelet coefficients that handles both the heteroscedasticity of the data in addition to the potential non-representativity of the training set. The classifier is simple to implement while a major advantage of the BAGIDIS wavelets is that they are translation invariant. Hence, BAGIDIS does not need the light curves to be aligned to extract features. Further, BAGIDIS is non-parametric so it can be used effectively in blind searches for new objects. We demonstrate the effectiveness of our classifier against the Supernova Photometric Classification Challenge to correctly classify supernova light curves as Type Ia or non-Ia. We train our classifier on the spectroscopically confirmed subsample (which is not representative) and show that it works well for supernova with observed light-curve time spans greater than 100 d (roughly 55 per cent of the data set). For such data, we obtain a Ia efficiency of 80.5 per cent and a purity of 82.4 per cent, yielding a highly competitive challenge score of 0.49. This indicates that our `model-blind' approach may be particularly suitable for the general classification of astronomical transients in the era of large synoptic sky surveys.

  10. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  11. Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367

    NASA Technical Reports Server (NTRS)

    Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.

    1995-01-01

    We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the PSPC and the HRI observations, we detect 16 extended features, of which nine have galaxies coincided with the X-ray-measured positions (within the positional error circles). These extended sources have luminosities lying in the range (3 - 30) x 10(exp 40) ergs/s and gas masses of approximately (1 - 30) x 10(exp 9) solar mass, if the X-rays are of thermal origin. We confirm the presence of extended features in A1367 first reported by Bechtold et al. (1983). The nature of these systems remains uncertain. The luminosities are large if the emission is attributed to single galaxies, and several of the extended features have no associated galaxy counterparts. The extended features may be associated with galaxy groups, as suggested by Canizares, Fabbiano, & Trinchieri (1987), although the number required is large.

  12. Analysis of the tennis racket vibrations during forehand drives: Selection of the mother wavelet.

    PubMed

    Blache, Y; Hautier, C; Lefebvre, F; Djordjevic, A; Creveaux, T; Rogowski, I

    2017-08-16

    The time-frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time-frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25±17%, 2±5%, 5±7% and 27±27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Automatic lumen segmentation in IVOCT images using binary morphological reconstruction

    PubMed Central

    2013-01-01

    Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation. PMID:23937790

  14. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection

    NASA Astrophysics Data System (ADS)

    Yang, Huijuan; Guan, Cuntai; Sui Geok Chua, Karen; San Chok, See; Wang, Chuan Chu; Kok Soon, Phua; Tang, Christina Ka Yin; Keng Ang, Kai

    2014-06-01

    Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke rehabilitation. This paper firstly investigates the detection of motor imagery of swallow (MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation patterns between tongue movements and swallowing and there being fewer movement artifacts in performing tongue movements compared to swallowing. Approach. Novel features were extracted based on the coefficients of the dual-tree complex wavelet transform to build multiple training models for detecting MI-SW. The session-to-session classification accuracy was boosted by adaptively selecting the training model to maximize the ratio of between-classes distances versus within-class distances, using features of training and evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV) classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy subjects, which are significantly better than the results from existing methods. In addition, averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state. Furthermore, averaged session-to-session classification accuracies of 72.08% and 70% were achieved for ten healthy subjects and one stroke patient using the MI-Ton model. Significance. These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.

  15. Predicted Deepwater Bathymetry from Satellite Altimetry: Non-Fourier Transform Alternatives

    NASA Astrophysics Data System (ADS)

    Salazar, M.; Elmore, P. A.

    2017-12-01

    Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb's phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of the step and saw-tooth functions and resulted in lower RMS error with fewer coefficients. This investigation, thus, examined the feasibility of utilizing sparser base functions such as the Mexican Hat Wavelet, which is local in space, to first calculate the gravitational potential, and then relate it to sea-floor topography.

  16. An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations.

    PubMed

    Nagy, Szilvia; Pipek, János

    2015-12-21

    In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.

  17. Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li

    2017-12-01

    In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.

  18. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  19. Shoulder muscles recruitment during a power backward giant swing on high bar: a wavelet-EMG-analysis.

    PubMed

    Frère, Julien; Göpfert, Beat; Slawinski, Jean; Tourny-Chollet, Claire

    2012-04-01

    This study aimed at determining the upper limb muscles coordination during a power backward giant swing (PBGS) and the recruitment pattern of motor units (MU) of co-activated muscles. The wavelet transformation (WT) was applied to the surface electromyographic (EMG) signal of eight shoulder muscles. Total gymnast's body energy and wavelet synergies extracted from the WT-EMG by using a non-negative matrix factorization were analyzed as a function of the body position angle of the gymnast. A cross-correlation analysis of the EMG patterns allowed determining two main groups of co-activated muscles. Two wavelet synergies representing the main spectral features (82% of the variance accounted for) discriminated the recruitment of MU. Although no task-group of MU was found among the muscles, it appeared that a higher proportion of fast MU was recruited within the muscles of the first group during the upper part of the PBGS. The last increase of total body energy before bar release was induced by the recruitment of the muscles of the second group but did not necessitate the recruitment of a higher proportion of fast MU. Such muscle coordination agreed with previous simulations of elements on high bar as well as the findings related to the recruitment of MU. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Simultaneous Determination of Average Thickness and P-wave Speed of the Crust by Virtual Deep Seismic Sounding (VDSS)

    NASA Astrophysics Data System (ADS)

    Kang, D.; Yu, C.; Ning, J.; TAO, K.; Chen, W. P.

    2014-12-01

    Using teleseismic S-waves, VDSS treats the SV-to-P conversion under the free surface (on the station-side) as a virtual source to generate strong, post-critical reflection off the Moho (SsPmp phase). With just a single, good-quality earthquake, arrival-time difference between SsPmp and the direct S-phase (TSsPmp-Ss) can effectively determine the crustal thickness (H) near the receiver. However, there is a strong trade-off between H and P-wave speed (Vp) in the crust. Here we extend VDSS to constrain both H and Vp by taking advantage of the variation in ray-parameters, or incident angles, as a function of epicentral distance. Note that in conventional receiver functions, information contained in data of different ray-parameters is usually lost, because stacking over move-out corrected data is required to get a clear signal. At a given station, we collect data from many events, each with a different ray-parameter of the direct S-phase (ps­). For each event, we 1) estimate the source wavelet of the direct S-wave through particle motion analysis; 2) deconvolve this wavelet from the vertical- and radial-component seismograms (Yu et al., GJI, 2013); and then 3) determine TSsPmp-Ss through waveform modeling. Finally, we analyze data pairs (ps2, T2SsPmp-Ss) to find the best-fitting values of H and Vp. Synthetic tests verify the robustness of the method even with 15% of white noise. Moreover, we applied the method to public domain data from Forrest (FORT), located in the Eucla basin of western Australia. Based on 30 earthquakes from a narrow back-azimuth range (105±15°) but with ps changing from 0.1221 to 0.1349 s/km, we estimate that near FORT, H and Vp are about 44±2 km and 6.67±0.35 km/s, respectively. This crustal thickness is consistent with previous reports - a surprisingly high value for a region where the elevation is less than 200 m. Together with the high Vp, our results imply that the crust has a dense, mafic component.

  1. Wavelets, non-linearity and turbulence in fusion plasmas

    NASA Astrophysics Data System (ADS)

    van Milligen, B. Ph.

    Introduction Linear spectral analysis tools Wavelet analysis Wavelet spectra and coherence Joint wavelet phase-frequency spectra Non-linear spectral analysis tools Wavelet bispectra and bicoherence Interpretation of the bicoherence Analysis of computer-generated data Coupled van der Pol oscillators A large eddy simulation model for two-fluid plasma turbulence A long wavelength plasma drift wave model Analysis of plasma edge turbulence from Langmuir probe data Radial coherence observed on the TJ-IU torsatron Bicoherence profile at the L/H transition on CCT Conclusions

  2. Wavelets and the Poincaré half-plane

    NASA Astrophysics Data System (ADS)

    Klauder, J. R.; Streater, R. F.

    1994-01-01

    A square-integrable signal of positive energy is transformed into an analytic function in the upper half-plane, on which SL(2,R) acts. It is shown that this analytic function is determined by its scalar products with the discrete family of functions obtained by acting with SL(2,Z) on a cyclic vector, provided that the spin of the representation is less than 3.

  3. Exploring time- and frequency- dependent functional connectivity and brain networks during deception with single-trial event-related potentials

    NASA Astrophysics Data System (ADS)

    Gao, Jun-Feng; Yang, Yong; Huang, Wen-Tao; Lin, Pan; Ge, Sheng; Zheng, Hong-Mei; Gu, Ling-Yun; Zhou, Hui; Li, Chen-Hong; Rao, Ni-Ni

    2016-11-01

    To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception.

  4. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  5. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  6. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  7. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  8. Speckle noise reduction in quantitative optical metrology techniques by application of the discrete wavelet transformation

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.

  9. Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis.

    PubMed

    Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng

    2012-04-20

    This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.

  10. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  11. Spectral decomposition of seismic data with reassigned smoothed pseudo Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyang; Liu, Tianyou

    2009-07-01

    Seismic signals are nonstationary mainly due to absorption and attenuation of seismic energy in strata. Referring to spectral decomposition of seismic data, the conventional method using short-time Fourier transform (STFT) limits temporal and spectral resolution by a predefined window length. Continuous-wavelet transform (CWT) uses dilation and translation of a wavelet to produce a time-scale map. However, the wavelets utilized should be orthogonal in order to obtain a satisfactory resolution. The less applied, Wigner-Ville distribution (WVD) being superior in energy distribution concentration, is confronted with cross-terms interference (CTI) when signals are multi-component. In order to reduce the impact of CTI, Cohen class uses kernel function as low-pass filter. Nevertheless it also weakens energy concentration of auto-terms. In this paper, we employ smoothed pseudo Wigner-Ville distribution (SPWVD) with Gauss kernel function to reduce CTI in time and frequency domain, then reassign values of SPWVD (called reassigned SPWVD) according to the center of gravity of the considering energy region so that distribution concentration is maintained simultaneously. We conduct the method above on a multi-component synthetic seismic record and compare with STFT and CWT spectra. Two field examples reveal that RSPWVD potentially can be applied to detect low-frequency shadows caused by hydrocarbons and to delineate the space distribution of abnormal geological body more precisely.

  12. [Laser Raman spectrum analysis of carbendazim pesticide].

    PubMed

    Wang, Xiao-bin; Wu, Rui-mei; Liu, Mu-hua; Zhang, Lu-ling; Lin, Lei; Yan, Lin-yuan

    2014-06-01

    Raman signal of solid and liquid carbendazim pesticide was collected by laser Raman spectrometer. The acquired Raman spectrum signal of solid carbendazim was preprocessed by wavelet analysis method, and the optimal combination of wavelet denoising parameter was selected through mixed orthogonal test. The results showed that the best effect was got with signal to noise ratio (SNR) being 62.483 when db2 wavelet function was used, decomposition level was 2, the threshold option scheme was 'rigisure' and reset mode was 'sln'. According to the vibration mode of different functional groups, the de-noised Raman bands could be divided into 3 areas: 1 400-2 000, 700-1 400 and 200-700 cm(-1). And the de-noised Raman bands were assigned with and analyzed. The characteristic vibrational modes were gained in different ranges of wavenumbers. Strong Raman signals were observed in the Raman spectrum at 619, 725, 964, 1 022, 1 265, 1 274 and 1 478 cm(-1), respectively. These characteristic vibrational modes are characteristic Raman peaks of solid carbendazim pesticide. Find characteristic Raman peaks at 629, 727, 1 001, 1 219, 1 258 and 1 365 cm(-1) in Raman spectrum signal of liquid carbendazim. These characteristic peaks were basically tallies with the solid carbendazim. The results can provide basis for the rapid screening of pesticide residue in food and agricultural products based on Raman spectrum.

  13. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  14. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    NASA Astrophysics Data System (ADS)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  15. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  16. Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.

    2017-12-01

    The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

  17. Detection of changes in SEMG signals with myofascial pain using the pattern-classifier

    NASA Astrophysics Data System (ADS)

    Jiang, Ching-Fen; Huang, Pao-Tieh

    2013-10-01

    Myofascial pain on the upper back (MFPUB) has been a common occupational hazard associated with consistent computer use. Investigations into any sort neuromuscular functional changes due to myofascial pain are rare. This study aims to differentiate the wavelet energy patterns of the surface electromyography signals measured from 30 normal and 26 patient subjects using the K-means clustering process. The results show that the wavelet energy pattern of patient subjects was different to that of normal subject and reveals a sensitivity of 57.69% at a specificity of 76.67% in the identification of myofascial pain. Therefore, this model could provide a reliable feature for clinical diagnosis of myofascial pain.

  18. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  19. A novel method of identifying motor primitives using wavelet decomposition*

    PubMed Central

    Popov, Anton; Olesh, Erienne V.; Yakovenko, Sergiy; Gritsenko, Valeriya

    2018-01-01

    This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.

  20. EnvironmentalWaveletTool: Continuous and discrete wavelet analysis and filtering for environmental time series

    NASA Astrophysics Data System (ADS)

    Galiana-Merino, J. J.; Pla, C.; Fernandez-Cortes, A.; Cuezva, S.; Ortiz, J.; Benavente, D.

    2014-10-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time-period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.

  1. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    NASA Astrophysics Data System (ADS)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  2. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-12-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.

  3. Detection of nicotine content impact in tobacco manufacturing using computational intelligence.

    PubMed

    Begic Fazlic, Lejla; Avdagic, Zikrija

    2011-01-01

    A study is presented for the detection of nicotine impact in different cigarette type, using recorded data and Computational Intelligence techniques. Recorded puffs are processed using Continuous Wavelet Transform and used to extract time-frequency features for normal and abnormal puffs conditions. The wavelet energy distributions are used as inputs to classifiers based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Genetic Algorithms (GAs). The number and the parameters of Membership Functions are used in ANFIS along with the features from wavelet energy distributionare selected using GAs, maximising the diagnosis success. GA with ANFIS (GANFIS) are trained with a subset of data with known nicotine conditions. The trained GANFIS are tested using the other set of data (testing data). A classical method by High-Performance Liquid Chromatography is also introduced to solve this problem, respectively. The results as well as the performances of these two approaches are compared. A combination of these two algorithms is also suggested to improve the efficiency of this solution procedure. Computational results show that this combined algorithm is promising.

  4. Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet

    NASA Astrophysics Data System (ADS)

    Hussong, Rene; Tholey, Andreas; Hildebrandt, Andreas

    2007-09-01

    Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.

  5. Uncertainty analysis of wavelet-based feature extraction for isotope identification on NaI gamma-ray spectra

    DOE PAGES

    Stinnett, Jacob; Sullivan, Clair J.; Xiong, Hao

    2017-03-02

    Low-resolution isotope identifiers are widely deployed for nuclear security purposes, but these detectors currently demonstrate problems in making correct identifications in many typical usage scenarios. While there are many hardware alternatives and improvements that can be made, performance on existing low resolution isotope identifiers should be able to be improved by developing new identification algorithms. We have developed a wavelet-based peak extraction algorithm and an implementation of a Bayesian classifier for automated peak-based identification. The peak extraction algorithm has been extended to compute uncertainties in the peak area calculations. To build empirical joint probability distributions of the peak areas andmore » uncertainties, a large set of spectra were simulated in MCNP6 and processed with the wavelet-based feature extraction algorithm. Kernel density estimation was then used to create a new component of the likelihood function in the Bayesian classifier. Furthermore, identification performance is demonstrated on a variety of real low-resolution spectra, including Category I quantities of special nuclear material.« less

  6. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  7. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    PubMed Central

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  8. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less

  9. Research and Implementation of Heart Sound Denoising

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  10. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in terms of near-receiver P-SH converted energy due to 3D effects. Those particular coda waves, however, do exhibit a large variability in the rotation/acceleration ratio, as a likely consequence of differences in the wavepath and/or source mechanism.

  11. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  12. Remote sensing of soil organic matter of farmland with hyperspectral image

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Wang, Lei; Yang, Guijun; Zhang, Liyan

    2017-10-01

    Monitoring soil organic matter (SOM) of cultivated land quantitively and mastering its spatial change are helpful for fertility adjustment and sustainable development of agriculture. The study aimed to analyze the response between SOM and reflectivity of hyperspectral image with different pixel size and develop the optimal model of estimating SOM with imaging spectral technology. The wavelet transform method was used to analyze the correlation between the hyperspectral reflectivity and SOM. Then the optimal pixel size and sensitive wavelet feature scale were screened to develop the inversion model of SOM. Result showed that wavelet transform of soil hyperspectrum was help to improve the correlation between the wavelet features and SOM. In the visible wavelength range, the susceptible wavelet features of SOM mainly concentrated 460 603 nm. As the wavelength increased, the wavelet scale corresponding correlation coefficient increased maximum and then gradually decreased. In the near infrared wavelength range, the susceptible wavelet features of SOM mainly concentrated 762 882 nm. As the wavelength increased, the wavelet scale gradually decreased. The study developed multivariate model of continuous wavelet transforms by the method of stepwise linear regression (SLR). The CWT-SLR models reached higher accuracies than those of univariate models. With the resampling scale increasing, the accuracies of CWT-SLR models gradually increased, while the determination coefficients (R2) fluctuated from 0.52 to 0.59. The R2 of 5*5 scale reached highest (0.5954), while the RMSE reached lowest (2.41 g/kg). It indicated that multivariate model based on continuous wavelet transform had better ability for estimating SOM than univariate model.

  13. Fast generation of computer-generated holograms using wavelet shrinkage.

    PubMed

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  14. Determination of phase from the ridge of CWT using generalized Morse wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Ozlem; Tiryaki, Erhan; Coskun, Emre; Ozder, Serhat

    2018-03-01

    The selection of wavelet is an important step in order to determine the phase from the fringe patterns. In the present work, a new wavelet for phase retrieval from the ridge of continuous wavelet transform (CWT) is presented. The phase distributions have been extracted from the optical fringe pattern by choosing the zero order generalized morse wavelet (GMW) as a mother wavelet. The aim of the study is to reveal the ways in which the two varying parameters of GMW affect the phase calculation. To show the validity of this method, an experimental study has been conducted by using the diffraction phase microscopy (DPM) setup; consequently, the profiles of red blood cells have been retrieved. The results for the CWT ridge technique with GMW have been compared with the results for the Morlet wavelet and the Paul wavelet; the results are almost identical for Paul and zero order GMW because of their degree of freedom. Also, for further discussion, the Fourier transform and the Stockwell transform have been applied comparatively. The outcome of the comparison reveals that GMWs are highly applicable to the research in various areas, predominantly biomedicine.

  15. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  16. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  17. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  18. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  19. Research on the fault diagnosis of bearing based on wavelet and demodulation

    NASA Astrophysics Data System (ADS)

    Li, Jiapeng; Yuan, Yu

    2017-05-01

    As a most commonly-used machine part, antifriction bearing is extensively used in mechanical equipment. Vibration signal analysis is one of the methods to monitor and diagnose the running status of antifriction bearings. Therefore, using wavelet analysis for demising is of great importance in the engineering practice. This paper firstly presented the basic theory of wavelet analysis to study the transformation, decomposition and reconstruction of wavelet. In addition, edition software LabVIEW was adopted to conduct wavelet and demodulation upon the vibration signal of antifriction bearing collected. With the combination of Hilbert envelop demodulation analysis, the fault character frequencies of the demised signal were extracted to conduct fault diagnosis analysis, which serves as a reference for the wavelet and demodulation of the vibration signal in engineering practice.

  20. Wavelet analysis can sensitively describe dynamics of ethanol evoked local field potentials of the slug (Limax marginatus) brain.

    PubMed

    Schütt, Atsuko; Ito, Iori; Rosso, Osvaldo A; Figliola, Alejandra

    2003-10-30

    Odorants evoke characteristic, but complex, local field potentials (LFPs) in the molluscan brain. Wavelet tools in combination with Fourier analysis can detect and characterize hitherto unknown discrete, slow potentials underlying the conspicuous oscillations. Ethanol was one of the odorants that we have extensively studied (J. Neurosci. Methods, 119 (2002) 89). To detect new features and to elucidate their functions, we tested the wavelet tools on the ethanol-evoked LFP responses of the slug (Limax) procerebrum. Recordings were made in vitro from the neuropile and the cell layer. The present study led to the following findings: (i) Mutual exclusion. Energy concentrated mainly in two ranges, (a) 0.1-0.4 Hz and (b) 1.56-12.5 Hz, and the sum of energy remained constant throughout experiments regardless of the condition. A redistribution of relative energy within this sum seemed to occur in the course of main, possible interactions between the two components excluding each other ('mutual exclusion'). (ii) Transient signal ordering and disordering. Ethanol stimulation alternatingly evoked periods of strongly time evolving oscillation dominated by the energy of 1.56-12.5 Hz (increase of entropy=disordered or complexly ordered state) and those of near-silence were predominated by the energy of 0.1-0.4 Hz (decrease of entropy=ordered state). (iii) About 0.1 Hz slow wave oscillation. It was robust. The dominant energy oscillation and the resulting large entropy fluctuation were negatively correlated to each other, and revealed strong frequency-tuning or synchronization at this frequency. Our findings suggest that discrete slow waves play functionally important roles in the invertebrate brain, as widely known in vertebrate EEG. Wavelet tools allow an easy interpretation of several minutes of frequency variations in a single display and give precise information on stimulus-evoked complex change of the neural system describing the new state 'more ordered' or 'non-ordered or more complexly ordered'.

  1. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  2. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  3. Correlation Filtering of Modal Dynamics using the Laplace Wavelet

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.

    1997-01-01

    Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.

  4. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    NASA Astrophysics Data System (ADS)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  5. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  6. Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms

    DTIC Science & Technology

    2004-08-06

    wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus

  7. Sediment Dynamics in a Vegetated Tidally Influenced Interdistributary Island: Wax Lake, Louisiana

    DTIC Science & Technology

    2017-07-01

    60 Appendix A: Time Series of Wax Lake Hydrological Measurements...north-south wind stress (right). In each plot, the global wavelet spectrum is shown to the right of the wavelet plot, and and the original time series ...for Hs. The global wavelet spectrum is shown to the right of the wavelet plot, and and the original time series is shown below

  8. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  9. SPECT reconstruction using DCT-induced tight framelet regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej

    2015-03-01

    Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.

  10. Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2013-02-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale. In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.

  11. Comparison between wavelet and wavelet packet transform features for classification of faults in distribution system

    NASA Astrophysics Data System (ADS)

    Arvind, Pratul

    2012-11-01

    The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.

  12. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hadi; Rajaee, Taher

    2017-01-01

    Simulation of groundwater level (GWL) fluctuations is an important task in management of groundwater resources. In this study, the effect of wavelet analysis on the training of the artificial neural network (ANN), multi linear regression (MLR) and support vector regression (SVR) approaches was investigated, and the ANN, MLR and SVR along with the wavelet-ANN (WNN), wavelet-MLR (WLR) and wavelet-SVR (WSVR) models were compared in simulating one-month-ahead of GWL. The only variable used to develop the models was the monthly GWL data recorded over a period of 11 years from two wells in the Qom plain, Iran. The results showed that decomposing GWL time series into several sub-time series, extremely improved the training of the models. For both wells 1 and 2, the Meyer and Db5 wavelets produced better results compared to the other wavelets; which indicated wavelet types had similar behavior in similar case studies. The optimal number of delays was 6 months, which seems to be due to natural phenomena. The best WNN model, using Meyer mother wavelet with two decomposition levels, simulated one-month-ahead with RMSE values being equal to 0.069 m and 0.154 m for wells 1 and 2, respectively. The RMSE values for the WLR model were 0.058 m and 0.111 m, and for WSVR model were 0.136 m and 0.060 m for wells 1 and 2, respectively.

  13. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  14. Image Retrieval using Integrated Features of Binary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Agarwal, Megha; Maheshwari, R. P.

    2011-12-01

    In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].

  15. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  16. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  17. A lung sound classification system based on the rational dilation wavelet transform.

    PubMed

    Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P

    2016-08-01

    In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.

  18. A simulation study for determination of refractive index dispersion of dielectric film from reflectance spectrum by using Paul wavelet

    NASA Astrophysics Data System (ADS)

    Tiryaki, Erhan; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat

    2017-02-01

    In this work, the Continuous Wavelet Transform (CWT) with Paul wavelet was improved as a tool for determination of refractive index dispersion of dielectric film by using the reflectance spectrum of the film. The reflectance spectrum was generated theoretically in the range of 0.8333 - 3.3333 μm wavenumber and it was analyzed with presented method. Obtained refractive index determined from various resolution of Paul wavelet were compared with the input values, and the importance of the tunable resolution with Paul wavelet was discussed briefly. The noise immunity and uncertainty of the method was also studied.

  19. Heuristic-driven graph wavelet modeling of complex terrain

    NASA Astrophysics Data System (ADS)

    Cioacǎ, Teodor; Dumitrescu, Bogdan; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Nǎpǎrus, Magdalena; Stoicescu, Ioana; Peringer, Alexander; Buttler, Alexandre; Golay, François

    2015-03-01

    We present a novel method for building a multi-resolution representation of large digital surface models. The surface points coincide with the nodes of a planar graph which can be processed using a critically sampled, invertible lifting scheme. To drive the lazy wavelet node partitioning, we employ an attribute aware cost function based on the generalized quadric error metric. The resulting algorithm can be applied to multivariate data by storing additional attributes at the graph's nodes. We discuss how the cost computation mechanism can be coupled with the lifting scheme and examine the results by evaluating the root mean square error. The algorithm is experimentally tested using two multivariate LiDAR sets representing terrain surface and vegetation structure with different sampling densities.

  20. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  1. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  2. Highly efficient codec based on significance-linked connected-component analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua

    1997-04-01

    Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.

  3. Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data

    NASA Astrophysics Data System (ADS)

    Xing, L.

    2016-12-01

    Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.

  4. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  5. Revisiting the Bohr Atom 100 Years Later

    NASA Astrophysics Data System (ADS)

    Wall, Ernst

    2013-03-01

    We use a novel electron model wherein the electron is modeled as a point charge behaving as a trapped photon revolving in a Compton wavelength orbit at light speed. The revolving point charge gives rise to spiraling Compton wavelets around the electron, which give rise to de Broglie waves. When applied to the Bohr model, the orbital radius of the electron scales to the first Bohr orbit's radius via the fine structure constant. The orbiting electron's orbital velocity, Vb, scales to that of the electron's charge's internal velocity (the velocity of light, c) via the fine structure constant. The Compton wavelets, if they reflect off the nucleus, have a round trip time just long enough to allow the electron to move one of its diameters in distance in the first Bohr orbit. The ratio of the electron's rotational frequency, fe, to its rotational frequency in the Bohr orbit fb, is fe/fb = 1/α2, which is also the number of electron rotations in single orbit. If we scale the electron's rotational energy (h*fe) to that of the orbit using this, the orbital energy value (h*fb) would be 27.2114 eV. However, the virial theorem reduces it to 13.6057, the ground state energy of the first Bohr orbit. Ref: www.tachyonmodel.com.

  6. A Wavelet Model for Vocalic Speech Coarticulation

    DTIC Science & Technology

    1994-10-01

    control vowel’s signal as the mother wavelet. A practical experiment is conducted to evaluate the coarticulation channel using samples 01 real speech...transformation from a control speech state (input) to an effected speech state (output). Specifically, a vowel produced in isolation is transformed into an...the wavelet transform of the effected vowel’s signal, using the control vowel’s signal as the mother wavelet. A practical experiment is conducted to

  7. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  8. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  9. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  10. WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING

    PubMed Central

    Reiss, Philip T.; Huo, Lan; Zhao, Yihong; Kelly, Clare; Ogden, R. Todd

    2016-01-01

    An increasingly important goal of psychiatry is the use of brain imaging data to develop predictive models. Here we present two contributions to statistical methodology for this purpose. First, we propose and compare a set of wavelet-domain procedures for fitting generalized linear models with scalar responses and image predictors: sparse variants of principal component regression and of partial least squares, and the elastic net. Second, we consider assessing the contribution of image predictors over and above available scalar predictors, in particular via permutation tests and an extension of the idea of confounding to the case of functional or image predictors. Using the proposed methods, we assess whether maps of a spontaneous brain activity measure, derived from functional magnetic resonance imaging, can meaningfully predict presence or absence of attention deficit/hyperactivity disorder (ADHD). Our results shed light on the role of confounding in the surprising outcome of the recent ADHD-200 Global Competition, which challenged researchers to develop algorithms for automated image-based diagnosis of the disorder. PMID:27330652

  11. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Mousavi, Shahram; Dabrowska, Dominika; Sadikoglu, Fahreddin

    2017-05-01

    As an innovation, both black box and physical-based models were incorporated into simulating groundwater flow and contaminant transport. Time series of groundwater level (GL) and chloride concentration (CC) observed at different piezometers of study plain were firstly de-noised by the wavelet-based de-noising approach. The effect of de-noised data on the performance of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) was evaluated. Wavelet transform coherence was employed for spatial clustering of piezometers. Then for each cluster, ANN and ANFIS models were trained to predict GL and CC values. Finally, considering the predicted water heads of piezometers as interior conditions, the radial basis function as a meshless method which solves partial differential equations of GFCT, was used to estimate GL and CC values at any point within the plain where there is not any piezometer. Results indicated that efficiency of ANFIS based spatiotemporal model was more than ANN based model up to 13%.

  12. Automatic classification of sleep stages based on the time-frequency image of EEG signals.

    PubMed

    Bajaj, Varun; Pachori, Ram Bilas

    2013-12-01

    In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Scaling analysis and model estimation of solar corona index

    NASA Astrophysics Data System (ADS)

    Ray, Samujjwal; Ray, Rajdeep; Khondekar, Mofazzal Hossain; Ghosh, Koushik

    2018-04-01

    A monthly average solar green coronal index time series for the period from January 1939 to December 2008 collected from NOAA (The National Oceanic and Atmospheric Administration) has been analysed in this paper in perspective of scaling analysis and modelling. Smoothed and de-noising have been done using suitable mother wavelet as a pre-requisite. The Finite Variance Scaling Method (FVSM), Higuchi method, rescaled range (R/S) and a generalized method have been applied to calculate the scaling exponents and fractal dimensions of the time series. Autocorrelation function (ACF) is used to find autoregressive (AR) process and Partial autocorrelation function (PACF) has been used to get the order of AR model. Finally a best fit model has been proposed using Yule-Walker Method with supporting results of goodness of fit and wavelet spectrum. The results reveal an anti-persistent, Short Range Dependent (SRD), self-similar property with signatures of non-causality, non-stationarity and nonlinearity in the data series. The model shows the best fit to the data under observation.

  14. An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram.

    PubMed

    Barraco, R; Persano Adorno, D; Brai, M

    2011-12-01

    Most biomedical signals are non-stationary. The knowledge of their frequency content and temporal distribution is then useful in a clinical context. The wavelet analysis is appropriate to achieve this task. The present paper uses this method to reveal hidden characteristics and anomalies of the human a-wave, an important component of the electroretinogram since it is a measure of the functional integrity of the photoreceptors. We here analyse the time-frequency features of the a-wave both in normal subjects and in patients affected by Achromatopsia, a pathology disturbing the functionality of the cones. The results indicate the presence of two or three stable frequencies that, in the pathological case, shift toward lower values and change their times of occurrence. The present findings are a first step toward a deeper understanding of the features of the a-wave and possible applications to diagnostic procedures in order to recognise incipient photoreceptoral pathologies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Adaptive multiscale processing for contrast enhancement

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  16. Reducing the complexity of the CCSDS standard for image compression decreasing the DWT filter order

    NASA Astrophysics Data System (ADS)

    Ito, Leandro H.; Pinho, Marcelo S.

    2014-10-01

    The goal for this work is to evaluate the impact of utilizing shorter wavelet filters in the CCSDS standard for lossy and lossless image compression. Another constraint considered was the existence of symmetry in the filters. That approach was desired to maintain the symmetric extension compatibility of the filter banks. Even though this strategy works well for oat wavelets, it is not always the case for their integer approximations. The periodic extension was utilized whenever symmetric extension was not applicable. Even though the latter outperforms the former, for fair comparison the symmetric extension compatible integer-to-integer wavelet approximations were evaluated under both extensions. The evaluation methods adopted were bit rate (bpp), PSNR and the number of operations required by each wavelet transforms. All these results were compared against the ones obtained utilizing the standard CCSDS with 9/7 filter banks, for lossy and lossless compression. The tests were performed over tallies (512x512) of raw remote sensing images from CBERS-2B (China-Brazil Earth Resources Satellites) captured from its high resolution CCD camera. These images were cordially made available by INPE (National Institute for Space Research) in Brazil. For the CCSDS implementation, it was utilized the source code developed by Hongqiang Wang from the Electrical Department at Nebraska-Lincoln University, applying the appropriate changes on the wavelet transform. For lossy compression, the results have shown that the filter bank built from the Deslauriers-Dubuc scaling function, with respectively 2 and 4 vanishing moments on the synthesis and analysis banks, presented not only a reduction of 21% in the number of operations required, but also a performance on par with the 9/7 filter bank. In the lossless case, the biorthogonal Cohen-Daubechies-Feauveau with 2 vanishing moments presented a performance close to the 9/7 integer approximation of the CCSDS, with the number of operations reduced by 1/3.

  17. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.

  18. Potential Representation - Global vs. Local Trial Functions

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2014-05-01

    Many systems of trial functions are available for representing potential fields on the sphere or parts of the sphere. We distinguish global trial functions (such as spherical harmonics) from localized trial functions (such as spline basis functions, scaling functions, wavelets, and Slepian functions). All these systems have their own pros and cons. We discuss the advantages and disadvantages of several selected systems of trial functions and propose criteria for their applicability. Moreover, we present an algorithm which is able to combine different types of trial functions. This yields a sparser solution which combines the features of the different basis systems which are used.

  19. Exploration of EEG features of Alzheimer's disease using continuous wavelet transform.

    PubMed

    Ghorbanian, Parham; Devilbiss, David M; Hess, Terry; Bernstein, Allan; Simon, Adam J; Ashrafiuon, Hashem

    2015-09-01

    We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.

  20. Toward Improved Methods of Estimating Attenuation, Phase and Group velocity of surface waves observed on Shallow Seismic Records

    NASA Astrophysics Data System (ADS)

    Diallo, M. S.; Holschneider, M.; Kulesh, M.; Scherbaum, F.; Ohrnberger, M.; Lück, E.

    2004-05-01

    This contribution is concerned with the estimate of attenuation and dispersion characteristics of surface waves observed on a shallow seismic record. The analysis is based on a initial parameterization of the phase and attenuation functions which are then estimated by minimizing a properly defined merit function. To minimize the effect of random noise on the estimates of dispersion and attenuation we use cross-correlations (in Fourier domain) of preselected traces from some region of interest along the survey line. These cross-correlations are then expressed in terms of the parameterized attenuation and phase functions and the auto-correlation of the so-called source trace or reference trace. Cross-corelation that enter the optimization are selected so as to provide an average estimate of both the attenuation function and the phase (group) velocity of the area under investigation. The advantage of the method over the standard two stations method using Fourier technique is that uncertainties related to the phase unwrapping and the estimate of the number of 2π cycle skip in the phase phase are eliminated. However when mutliple modes arrival are observed, its become merely impossible to obtain reliable estimate the dipsersion curves for the different modes using optimization method alone. To circumvent this limitations we using the presented approach in conjunction with the wavelet propagation operator (Kulesh et al., 2003) which allows the application of band pass filtering in (ω -t) domain, to select a particular mode for the minimization. Also by expressing the cost function in the wavelet domain the optimization can be performed either with respect to the phase, the modulus of the transform or a combination of both. This flexibility in the design of the cost function provides an additional mean of constraining the optimization results. Results from the application of this dispersion and attenuation analysis method are shown for both synthetic and real 2D shallow seismic data sets. M. Kulesh, M. Holschneider, M. S. Diallo, Q. Xie and F. Scherbaum, Modeling of Wave Dispersion Using Wavelet Transfrom (Submitted to Pure and Applied Geophysics).

  1. Sparse regularization for force identification using dictionaries

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  2. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  3. The generalized Morse wavelet method to determine refractive index dispersion of dielectric films

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Özcan, Seçkin; Coşkun, Emre; Özder, Serhat

    2017-04-01

    The continuous wavelet transform (CWT) method is a useful tool for the determination of refractive index dispersion of dielectric films. Mother wavelet selection is an important factor for the accuracy of the results when using CWT. In this study, generalized Morse wavelet (GMW) was proposed as the mother wavelet because of having two degrees of freedom. The simulation studies, based on error calculations and Cauchy Coefficient comparisons, were presented and also the noisy signal was tested by CWT method with GMW. The experimental validity of this method was checked by D263 T schott glass having 100 μm thickness and the results were compared to those from the catalog value.

  4. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  5. Evidence for asymmetric inertial instability in the FIRE satellite dataset

    NASA Technical Reports Server (NTRS)

    Stevens, Duane E.; Ciesielski, Paul E.

    1990-01-01

    One of the main goals of the First ISCCP Regional Experiment (FIRE) is obtaining the basic knowledge to better interpret satellite image of clouds on regional and smaller scales. An analysis of a mesoscale circulation phenomenon as observed in hourly FIRE satellite images is presented. Specifically, the phenomenon of interest appeared on satellite images as a group of propagating cloud wavelets located on the edge of a cirrus canopy on the anticylonic side of a strong, upper-level subtropical jet. These wavelets, which were observed between 1300 and 2200 GMT on 25 February 1987, are seen most distinctly in the GOES-West infrared satellite picture at 1800 GMT. The purpose is to document that these wavelets were a manifestation of asymmetric inertial instability. During their lifetime, the wavelets were located over the North American synoptic sounding network, so that the meteorological conditions surrounding their occurrence could be examined. A particular emphasis of the analysis is on the jet streak in which the wavelets were imbedded. The characteristics of the wavelets are examined using hourly satellite imagery. The hypothesis that inertial instability is the dynamical mechanism responsible for generating the observed cloud wavelets was examined. To further substantiate this contention, the observed characteristics of the wavelets are compared to, and found to be consistent with, a theoretical model of inertia instability by Stevens and Ciesielski.

  6. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  7. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  8. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  9. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    PubMed Central

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  10. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  11. Time-of-flight depth image enhancement using variable integration time

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong

    2013-03-01

    Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.

  12. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-07-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  13. Comparative spectral analysis of veterinary powder product by continuous wavelet and derivative transforms

    NASA Astrophysics Data System (ADS)

    Dinç, Erdal; Kanbur, Murat; Baleanu, Dumitru

    2007-10-01

    Comparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported.

  14. Diurnal global variability of the Earth's magnetic field during geomagnetically quiet conditions

    NASA Astrophysics Data System (ADS)

    Klausner, V.

    2012-12-01

    This work proposes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation. It is based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. We apply the Principal Component Analysis (PCA) technique using gapped wavelet transform and wavelet correlation. This new approach was used to describe the characteristics of the magnetic variations at Vassouras (Brazil) and 12 other magnetic stations spread around the terrestrial globe. Using magnetograms from 2007, we have investigated the global dominant pattern of the Sq variation as a function of low solar activity. This year was divided into two seasons for seasonal variation analysis: solstices (June and December) and equinoxes (March and September). We aim to reconstruct the original geomagnetic data series of the H component taking into account only the diurnal variations with periods of 24 hours on geomagnetically quiet days. We advance a proposal to reconstruct the Sq baseline using only the PCA first mode. The first interpretation of the results suggests that PCA/wavelet method could be used to the reconstruction of the Sq baseline.

  15. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland.

    PubMed

    Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M

    2009-01-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  16. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  17. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  18. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification.

    PubMed

    Soares, João V B; Leandro, Jorge J G; Cesar Júnior, Roberto M; Jelinek, Herbert F; Cree, Michael J

    2006-09-01

    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and two-dimensional Gabor wavelet transform responses taken at multiple scales. The Gabor wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et al., 2000) databases of manually labeled images. On the DRIVE database, it achieves an area under the receiver operating characteristic curve of 0.9614, being slightly superior than that presented by state-of-the-art approaches. We are making our implementation available as open source MATLAB scripts for researchers interested in implementation details, evaluation, or development of methods.

  19. Nonlinear analysis of EEG in major depression with fractal dimensions.

    PubMed

    Akar, Saime A; Kara, Sadik; Agambayev, Sumeyra; Bilgic, Vedat

    2015-01-01

    Major depressive disorder (MDD) is a psychiatric mood disorder characterized by cognitive and functional impairments in attention, concentration, learning and memory. In order to investigate and understand its underlying neural activities and pathophysiology, EEG methodologies can be used. In this study, we estimated the nonlinearity features of EEG in MDD patients to assess the dynamical properties underlying the frontal and parietal brain activity. EEG data were obtained from 16 patients and 15 matched healthy controls. A wavelet-chaos methodology was used for data analysis. First, EEGs of subjects were decomposed into 5 EEG sub-bands by discrete wavelet transform. Then, both the Katz's and Higuchi's fractal dimensions (KFD and HFD) were calculated as complexity measures for full-band and sub-bands EEGs. Last, two-way analyses of variances were used to test EEG complexity differences on each fractality measures. As a result, a significantly increased complexity was found in both parietal and frontal regions of MDD patients. This significantly increased complexity was observed not only in full-band activity but also in beta and gamma sub-bands of EEG. The findings of the present study indicate the possibility of using the wavelet-chaos methodology to discriminate the EEGs of MDD patients from healthy controls.

  20. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

Top